E. W. Schafer, Jr., J. L. Guarino, and
R. B. Brunton

Use of Male Coturnix Quail in the
Laboratory Development of Avian
Chemosterilants

ABSTRACT: Egg fertility of coturnix quail (Coturnix coturnix) was measured for 35 to 45 days following single, oral doses of six candidate chemosterilants to adult breeding males, adult males whose testes had been regressed by photoperiod manipulation, twelve-day-old male chicks, and six-week-old males with undeveloped testes. Azasterol, 3-chloro-1,2-propanediol, and mestranol were essentially inactive at 100 or 316 mg/kg in all treatment groups. Breeding adults were sterile for 30 to 25 days after doses of 31.6 mg/kg busulfan, 31.6 mg/kg triethylene melamine, or 316 mg/kg isopropyl methane sulphonate—all alkylating agents. Adults with regressed testes showed reduced fertility or sterility after treatment with busulfan and triethylene melamine. These tests indicate that the evaluation of male chemosterilants intended for use on wild avian populations during the period of testicular regression should consist of initial tests on breeding adult quail, followed by tests on adult quail with regressed testes if sterility is noted.

KEY WORDS: vertebrate pest control, azasterol, bioassay, busulfan, mestranol, propanediols, quail, reproduction, sterilization, sulphonates

Bray et al [1] demonstrated the feasibility of using the sterile male approach to reduce reproductive success of wild red-winged blackbirds (Agelaius phoeniceus). Although their studies were conducted by surgically vasectomizing territorial males, the substitution of chemical agents producing sterility should not invalidate their results. It is, however, impractical to use redwings as the only test animals in the laboratory evaluation of chemosterilants because of difficulty of breeding them in captivity [2,3]. Inducing testicular growth by manipulating photoperiods is also of limited

1 Chemist, biologist, and biological technician, respectively, U.S. Fish and Wildlife Service, Wildlife Research Center, Federal Center, Denver, Colo. 80225.
2 The italic numbers in brackets refer to the list of references appended to this paper.
use because male redwings are refractory or partially refractory to testicular stimulation from July to December [4], and their testicular growth in the laboratory is usually less than 50 percent of normal development [4-6]. Thus, for routine laboratory studies, it is necessary to use an avian species whose breeding can be manipulated easily throughout the year. This paper describes initial studies with coturnix quail conducted to determine how this species could be used in the routine laboratory phases of developing avian male chemosterilants. Since chemosterilants for redwings most likely would be administered to flocks of nonbreeding males during fall or winter [7], the response of male coturnix with undeveloped or regressed testes was of particular interest.

Methods and Materials

Our coturnix were bred randomly from original stock (Random Line 926) obtained from the University of California at Davis. Six quail breeding racks each containing four tiers of six cages were used for all production and fertility studies. Standard procedures [8] were followed in the husbandry of the coturnix colony, except that each cage was equipped with a light source providing an average illumination of 107 lx, and chicks were raised in modified three-tier, six-section poultry brooders for six weeks, with either continuous lighting or a photoperiod of 6 hours of light:18 hours of darkness (6L:18D).

Six compounds were selected for study because of known or suspected activity on testicular maintenance or growth: azasterol [17-β-({3-dimethyl amino propyl}) methylamino] androst-5-en-3β-ol di-hydrochloride (AZA), busulfan (1,4-butanediol dimethanesulfonate (BUS)), 3-chloro-1,2-propanediol [α-chlorohydrin (CPD)], isopropyl methane sulfonate (IMS), mestranol [3-methoxy 19-nor-17α-pregn-1,3,5(10) trien-20-yn-17-ol (MES)], and triethylene melamine [2,4,6-tris (1-aziridinyl)-s-triazine (TEM)].

The acute oral toxicity of these compounds was determined on male and female coturnix by the methods described by Schaefer et al. [9].

To evaluate chemosterilant activity, males were gavaged with the compounds in propylene glycol at levels ranging from 5 to 75 percent of the male LD₅₀. One to three levels of each compound and a control treatment of propylene glycol only were administered to test groups of 10 males. For each compound, at least one group in each of the following four states of testicular development was treated.

Breeding Adult Males

Thirteen groups of six or seven breeding males were dosed and immediately caged individually with fertile females.

Regressed Adult Males

Testes weights in breeding adult male coturnix can be regressed from 3500 to about 10 mg in 28 to 41 days by exposing the birds to a 6L:18D photoperiod. The regressed testes are morphologically similar to those of immature birds that have not bred [10,11]. Seven groups of four to seven breeding males were proved fertile under a 16L:8D photoperiod, held under 6L:18D for 45 days, dosed, and immediately paired with fertile females.

Twelve-Day-Old Chicks

Testes in coturnix chicks raised under a continuous 16L:8D photoperiod begin to develop almost immediately after hatching. Through Day 12, however, only resting spermatagonia are present [12], and, thus, the testes are morphologically similar to those of adult males in nonbreeding condition. Motile spermatids are first produced at an age of 36 to 40 days. Chicks subjected to a 16L:8D photoperiod were sexed at twelve days of age [13], and seven groups of ten males were dosed. At five weeks of age, five to seven randomly selected surviving males in each group were paired with fertile females.

Six-Week-Old Chicks

Testes in coturnix raised under a continuous 6L:18D photoperiod remain undeveloped for at least ten weeks [14,15]. When these birds are exposed to a 16L:8D photoperiod, the testes respond quickly and within 24 to 28 days the birds are in breeding condition [16,17]. Seven groups of seven males, raised under a 6L:18D photoperiod, were dosed at six weeks of age and immediately paired with fertile females.

All test pairs were maintained under a 16L:8D photoperiod. Eggs were collected from each cage three times each week and incubated for four days in a Jamesway incubator. After incubation, all eggs were opened and recorded as fertile, or infertile if no embryonic development was evident. The effects of treatment were measured by the egg fertility rate (percent of eggs laid that were fertile) during seven or nine consecutive five-day periods. At the end of the test, the males were killed with carbon dioxide (CO₂), and both tests were removed and weighed as a unit.

Fertility rates for treatments and time periods were tested by a two-way analysis of variance with repeated measures [18], and testes weights and time to first fertile egg for treatments by one-way analysis of variance. Duncan's multiple-range test (P < 0.05) was used to separate means for tabular presentation.
Results

Acute Oral LD₅₀

The data on acute oral LD₅₀'s of the six chemicals and the propylene glycol carrier to adult coturnix (Table 1) indicate that TEM was the most toxic chemical to males (LD₅₀ = 100 mg/kg), and IMS and MES the least toxic (LD₅₀ > 1000 mg/kg). The order and level of toxicity to females was similar to that observed in males. Mortality occurred throughout the seven-day observation period but usually within three days after treatment.

Reproductive Effects

Breeding Adult Males—For all treatments of AZA, CPD, and MES, fertility rates were not significantly different from those of the controls during any of the nine test periods (Table 2). The three remaining compounds, all alkylating agents, induced complete sterility at the highest treatment levels with little or no mortality except for BUS at 100 mg/kg. BUS at 10 mg/kg had no effect on sterility but at 31.6 mg/kg induced temporary sterility for two periods and significantly reduced fertility during four other periods. TEM at 10 mg/kg significantly reduced fertility during three periods, and IMS at 100 mg/kg significantly reduced it during one period.

Regressed Adult Males—Since males with regressed testes were not switched to the 16L:8D photoperiod until they were dosed and paired with females, the fertility rate was zero percent for all treatments during the first two five-day periods. During the remaining five periods, IMS had no significant effect on any parameter measured (Table 3). AZA and MES delayed fertility (probably by delaying testicular maturation or decreasing libido), but, by the end of 30 days, reproductive function in treated birds was similar to that in the controls. CPD-treated males had significantly smaller testes than the controls, but their reproductive function was not impaired. BUS and TEM caused significantly lighter testes and almost complete sterility throughout the test period, but fertility returned to one BUS-treated male during the final period; 31 to 35 days after treatment.

Twelve-Day-Old Chicks—Like regressed adults, these males showed zero percent fertility for at least the first two periods after they were paired with five-week-old females. During the remaining seven periods, AZA, BUS, and TEM had no significant effect on reproductive function (Table 4). Initial fertility in MES-treated males was delayed slightly, but, by the end of the 45-day test period, testes were significantly heavier than in the controls. CPD-treated birds had significantly lighter testes than the controls but no reduction in fertility. Testicular development in IMS-treated
TABLE 2—Reproductive effects when adult breeding male coturnix quail were treated with a single oral dose of a chemosterilant and immediately paired with fertile females.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Dose, mg/kg</th>
<th>No. Pairs Tested</th>
<th>Percent Egg Fertility by Consecutive 5-Day Periods*</th>
<th>Percent Male Mortality During Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG</td>
<td>2080</td>
<td>6</td>
<td>100a 86ab 95ab 80abc 100a 95ab 91ab 95ab 92ab 92ab</td>
<td>0</td>
</tr>
<tr>
<td>AZA</td>
<td>100</td>
<td>7</td>
<td>97a 100a 86ab 91ab 87ab 91ab 96a 84abc 84ab 84ab</td>
<td>14</td>
</tr>
<tr>
<td>BUS</td>
<td>100</td>
<td>7</td>
<td>54c 18c 43cd 50bcd 0c 0d 0d 0d 0c 0c</td>
<td>86</td>
</tr>
<tr>
<td>BUS</td>
<td>31.6</td>
<td>7</td>
<td>50c 61b 75abc 33de 0c 0d 21cd 53c 73b 14</td>
<td></td>
</tr>
<tr>
<td>BUS</td>
<td>10.0</td>
<td>7</td>
<td>93ab 87ab 90ab 100a 91ab 60bc 91ab 94ab 89ab 14</td>
<td></td>
</tr>
<tr>
<td>CPD</td>
<td>316</td>
<td>7</td>
<td>100a 76ab 80abc 96a 94ab 100a 50ab 78abc 82ab 43</td>
<td></td>
</tr>
<tr>
<td>CPD</td>
<td>100</td>
<td>7</td>
<td>94a 97a 97a 92ab 97a 96ab 100a 91abc 76ab 0</td>
<td></td>
</tr>
<tr>
<td>IMS</td>
<td>316</td>
<td>7</td>
<td>81ab 77ab 83ab 39cde 0c 0d 0d 0c 0c 14</td>
<td></td>
</tr>
<tr>
<td>IMS</td>
<td>100</td>
<td>7</td>
<td>100a 97a 97a 70abc 55ab 26cd 45bc 93abc 90ab 0</td>
<td></td>
</tr>
<tr>
<td>MES</td>
<td>316</td>
<td>7</td>
<td>96a 95a 77abc 94a 96ab 91ab 95ab 74bc 74b 0</td>
<td></td>
</tr>
<tr>
<td>MES</td>
<td>100</td>
<td>7</td>
<td>100a 100a 97a 100a 100a 96ab 96a 97a 92abc 0</td>
<td></td>
</tr>
<tr>
<td>TEM</td>
<td>31.6</td>
<td>7</td>
<td>54c 6c 18d 18e 5c 0d 0d 0d 0c 0</td>
<td></td>
</tr>
<tr>
<td>TEM</td>
<td>10.0</td>
<td>7</td>
<td>50c 16c 59bc 55bcd 43b 59bc 70ab 71bc 71b 0</td>
<td></td>
</tr>
</tbody>
</table>

*Numbers followed by different letters are significantly different (P ≤ 0.05) within each vertical column.

TABLE 3—Reproductive effects when adult male coturnix quail with regressed testes were treated with a single oral dose of a chemosterilant and immediately paired with fertile females.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Dose, mg/kg</th>
<th>No. Pairs Tested</th>
<th>Percent Egg Fertility by Consecutive 5-Day Periods*</th>
<th>Percent Male Mortality During Test</th>
<th>Mean Weight of Both Testes, g</th>
<th>Mean No. of Days to First Fertile Egg*</th>
</tr>
</thead>
<tbody>
<tr>
<td>PG</td>
<td>2080</td>
<td>7</td>
<td>0a 74a 100a 100a 90a 10a 0 2.876a 18a</td>
<td>29.532a 20a</td>
<td>1.568bc</td>
<td>2.080b 18a</td>
</tr>
<tr>
<td>AZA</td>
<td>100</td>
<td>7</td>
<td>9a 28b 53b 88a 100a 0 0 2.876a 18a</td>
<td>29.532a 20a</td>
<td>1.568bc</td>
<td>2.080b 18a</td>
</tr>
<tr>
<td>BUS</td>
<td>31.6</td>
<td>7</td>
<td>0a 0b 0c 0d 11b 14 0 2.876a 18a</td>
<td>29.532a 20a</td>
<td>1.568bc</td>
<td>2.080b 18a</td>
</tr>
<tr>
<td>CPD</td>
<td>100</td>
<td>7</td>
<td>26a 24b 72ab 87a 100a 14 0 2.876a 18a</td>
<td>29.532a 20a</td>
<td>1.568bc</td>
<td>2.080b 18a</td>
</tr>
<tr>
<td>IMS</td>
<td>316</td>
<td>7</td>
<td>6a 41b 59ab 85a 94a 14 0 2.876a 18a</td>
<td>29.532a 20a</td>
<td>1.568bc</td>
<td>2.080b 18a</td>
</tr>
<tr>
<td>MES</td>
<td>316</td>
<td>7</td>
<td>0a 0b 47b 92a 100a 0 2.876a 18a</td>
<td>29.532a 20a</td>
<td>1.568bc</td>
<td>2.080b 18a</td>
</tr>
<tr>
<td>TEM</td>
<td>31.6</td>
<td>7</td>
<td>0a 4b 0c 0b 0b 14 0 2.876a 18a</td>
<td>29.532a 20a</td>
<td>1.568bc</td>
<td>2.080b 18a</td>
</tr>
</tbody>
</table>

*Numbers followed by different letters are significantly different (P ≤ 0.05) within each vertical column.

*Fertility for all treatments during the first two periods was 0 percent.
males lagged behind that in the controls, and fertility was significantly lower during the last three periods.

Six-Week-Old Males with Undeveloped Testes—In these males, the fertility rate was zero percent for the first four five-day periods. AZA and CPD had no effect on reproductive function (Table 5) during the following five periods. Fertility was significantly depressed during one period in MES-treated males, two periods in BUS-treated males, and all five periods in IMS- and TEM-treated males. Testes weights were reduced significantly by BUS, IMS, and TEM.

Discussion

The results allow some tentative conclusions about laboratory procedures for the evaluation of male avian chemosterilants. The four different reproductive stages gave four different test results. Chicks treated at twelve days and paired at five weeks were refractory, showing delayed and reduced fertility only with IMS. Six-week-old males with undeveloped testes were somewhat more sensitive and showed slightly delayed fertility with BUS and MES and reduced fertility throughout the nine-period test with IMS and TEM. We concluded, however, that both these groups were too insensitive to chemosterilants for use in preliminary laboratory evaluations. Adults with regressed testes were somewhat more sensitive, since all treatments tested had significantly lower fertility rates than the controls during at least one period but only TEM produced complete sterility beyond the fourth period. Adult breeding males were the most sensitive to the reproductive effects of the three alkylating agents—BUS, IMS, and TEM. Since our purpose was to find laboratory test procedures that could indicate the effectiveness of compounds on male birds during the fall or winter months when testes are regressed, we preferred to conduct initial tests directly on regressed males. However, economy of time, money, and manpower indicated that it was more practical to concentrate on the adult breeding males, since they take an average of ten weeks from hatch to testable condition versus more than 16 weeks for regressed adults. We, therefore, concluded that initial evaluations should be made on breeding adults followed by tests on regressed adults if sterility was noted.

Of the six chemicals we tested for avian chemosterilant activity, three (TEM, BUS, and IMS), all alkylating agents, produced complete male sterility for varying periods of time. Of the three, TEM showed the greatest activity on both adult breeding males and adult regressed males. TEM has been investigated as an avian male chemosterilant in some limited studies conducted in the United States and Europe. Davis [19] indicated that TEM delayed sexual maturation in male starlings (Sturnus vulgaris) dosed with 0.2 mg/day for five days during December (when testes were regressed). Although Elder [20] and Becker [21] indicated that
TEM was not effective in reducing reproduction when fed to pigeons for periods of 10 to 15 days, Lorant and Furnsin [22] obtained a patent describing its use as a pigeon chemosterilant. Two field studies with redwings and common grackles (Quiscalus quiscula) [23,24] indicated a significant reduction in reproduction in marshes when TEM-treated food was continuously available during the breeding season, but neither study differentiated between the effects on the sexes.

Studies with coturnix quail conducted in Massachusetts by D. K. Wetherbee and B. C. Wentworth (unpublished data) indicated that reproductive performance in breeding pairs could be reduced greatly by repeated oral doses of TEM. Further studies indicated that single subacute treatments of males reduced subsequent reproductive performance, but incorporation of low levels of TEM in the food of immature and adult coturnix did not. Jones et al [25] found that single oral doses of 5 mg/kg TEM and single intraperitoneal doses of 2 mg/kg produced sterility in breeding male coturnix between Days 3 and 10 after treatment. Males treated at 2 mg/kg were also sterile between Days 20 and 38 but then resumed normal reproductive function. Our studies were in general agreement and showed that single oral doses of TEM reduced reproductive performance or induced sterility in adult breeding males, adult regressed males, and twelve-day-old chicks but not in six-week-old males with undeveloped testes.

BUS was investigated in male coturnix by Jones and Jackson [26], who used five consecutive daily intraperitoneal (ip) doses of 5 and 10 mg/kg and single ip doses of 20, 30, and 40 mg/kg. Although all treatments produced a biphasic fertility pattern similar to that seen with BUS in mammals [27], the 10 mg/kg repeated dose produced complete infertility for only three days. In our studies, a single oral dose of 31.6 mg/kg BUS in breeding birds produced complete infertility during the fifth and sixth five-day periods, but the reproductive function returned to normal levels by the ninth period. The same dose also produced sterility in regressed males and reduced fertility in six-week-old undeveloped males, but it was ineffective in twelve-day-old chicks.

To the best of our knowledge, IMS has not been previously investigated in birds. Our studies indicate that IMS at 316 mg/kg can induce sterility in adult breeding male coturnix and reduce fertility in twelve-day-old chicks and six-week-old males with undeveloped testes, but it does not affect adult males with regressed testes.

References