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these are exemplified by the extremely rapid frequency
changes within a time frame that is too rapid for human
discrimination. Pumphrey (1961) notes that a small
bird accomplishes this 10 times better than humans.
Furthermore, Greenewalt (1968) points out that the
syrinx of song birds enables them to produce two notes
or phrases simultaneously and that ‘““these sounds can
be modulated, in either frequency, or in amplitude,
or more usually in both, with extraordinary rapidity;
so rapidly in fact that human ears cannot preceive the
modulations as such, receiving instead an impression
of notes of varying quality or timbre.”

Quite fascinating is the recent disclosure that low-
frequency sounds, termed infrasounds, can be detected
as low as 0.05 Hz by homing pigeons in a sound-iso-
lated chamber (Kreithen and Quine, 1979). Such
sounds have been recorded in thunderstorms, earth-
quakes, auroras, ocean waves, and even mountain
ranges, and are believed to be an important source
of navigational and meteorological information during
migration (Kreithen, 1979). At this level, pigeons are
at least 50 dB more sensitive than humans (Kreithen
and Quine, 1979). In addition, a few birds, e.g., oil-
birds (Steatornis caripensis) (Griffin, 1953) and swiftlets
(Collocallia brevirostra unicolor) (Novick, 1959), have
successfully developed the ability to use their own
sound (short clicks between 4 and 7 Hz) for echolocation
as bats do, for acoustic orientation and navigation in
the dark when pursuing prey and avoiding obstacles.

The Chemical Senses in Birds
M.R. KARE AND J.R. MASON

The chemical senses are commonly thought to fall
into three classes: (1) olfaction (smell), (2) gustation
(taste), and (3) the common chemical sense. In birds,
as in most other vertebrates, olfaction is usually thought
to be a telereceptor, capable of receiving airborne
chemical stimuli in extreme dilution over relatively
great distances. Gustation, on the other hand, usually
requires more intimate contact of higher concentra-
tions of the chemical stimuli with the taste receptors.
Gustatory receptors are most often located in the taste
buds of the oral cavity, although functional taste buds
are found outside the oral cavity and on the body sur-
face of some fish (i.e., the channel catfish, Ictalurus
punctatus) (Pfaffmann, 1978). The common chemical
sense is usually reserved for nonspecific stimuli, which
are often irritating.

Common Chemical Sense

“Parker (1922) suggests that the common chemical
sense is relatively primitive and that taste and olfaction
are later differentiations. The prevalence of the com-
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mon chemical sense among vertebrates, and the di-
verse, relatively unspecialized nature of the receptors
(i.e., free nerve endings), support this interpretation.
In higher vertebrates, a major component of the com-
mon chemical sense is the trigeminal system. An exten-
sive review of this system with special emphasis on
trigeminal chemoreception in the nasal and oral cavities
has been provided by Silver and Maruniak (1980).

Irritants such as ammonia and acids stimulate the
free nerve endings of numerous surfaces, including
those in the nasal chambers, mouth, and eyelids of
vertebrates. The organization of the trigeminal system
in birds does not appear to be essentially different from
that found in mammals (Dubbledam and Karten,
1978), although its extent is exaggerated in some
aquatic forms, such as ducks and flamingos (Welty,
1975). The well-developed nature of the trigeminal
system in aquatic species may serve in the initiation
of diving reflexes, or in the detection of tactile proper-
ties of foods. That latter possibility is consistent with
evidence that pigeons use oral trigeminal cues for this
purpose (Ziegler, 1977).

The pigeon and gray partridge are indifferent to
strong ammonia solutions that stimulate trigeminal re-
ceptors in mammals (Soudek, 1929). Likewise, parrots
consume Capsicum peppers that are rejected by mam-
mals (Mason and Reidinger, 1983a), and red-winged
blackbirds are relatively insensitive to capsaicin, the
pungent principle in Capsicum peppers (Mason and Ma-
runiak, 1983). From such results, one might conclude
that the avian trigeminal system is relatively insensitive
to chemical stimuli, although capsaicin and ammonia
are probably not characteristic of irritants that birds
are likely to encounter. Perhaps the use of ecologically
and evolutionarily more relevant irritants (e.g., sapo-
nins in plants) would lead to different conclusions.
Also, the avian trigeminal system may serve purposes
different from those of the mammalian system. Pigeons
may home using trigeminal cues, when other sensory
inputs are blocked (Wallraff, 1980), and the European
starling readily avoids nonirritating concentrations of
phenethyl alcohol on the basis of trigeminally mediated
information (Mason and Silver, 1983). These data sug-
gest that some birds may be able to make qualitative
discriminations between odors using only the trigemi-
nal system, but this possibility remains controversial.
Walker et al. (1979), using conditioned suppression,
found that after bilateral section of the olfactory nerves
pigeons could detect but no longer discriminate be-
tween the chemically similar compounds butyl and pen-
tyl acetate. More systematic work is needed to elucidate
the function(s) of the common chemical sense in birds.

Smell

The question of whether or not birds possess olfactory
capabilities was a controversial one for many years.
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Nineteenth-century naturalists (e.g., Audubon, 1826)
carried out experiments designed to test the olfactory
ability of vultures. Both positive and negative results
were obtained, and the reports of these early investiga-
tors were followed by others whose conclusions regard-
ing the sense of smell in birds were as contradictory
as they were numerous. Anatomic investigations car-
ried out over the last two decades have indicated that
birds possess olfactory systems whose complexity and
development vary widely among species. Neural
events, presumably the result of stimulus-receptor in-
teraction, have been studied electrophysiologically in
birds, and some species have been reported to regulate
their behavior on the basis of olfactory information
(Archer and Glen, 1969; Wenzel, 1973, 1980).

The Olfactory Organ. Bang (1971) has summarized
the functional anatomy of the olfactory system of birds
representing 23 orders. Birds possess several nasal con-
chae and lack a vomeronasal (Jacobsen’s) organ, al-
though the latter has been identified in the very early
embryonic life of some birds (Matthes, 1934). Typi-
cally, the avian olfactory system consists of external
nares (nostrils), nasal chambers (conchae), internal
nares (choane), and olfactory nerves, the peripheral
terminals of which lie in the olfactory epithelium, and
the olfactory bulbs of the brain. There are three nasal
chambers, but reportedly only the turbinates of the
third (posteriosuperior) chamber possess olfactory ep-
ithelium (Bang, 1971). The first two chambers serve
to moisten, warm, and cleanse inspired air. Other possi-
ble functions of these chambers are suggested by stud-
ies of ““dynamic gliders,” such as albatroses, petrels,
and fulmars (Welty, 1975). Dissections of the nasal
chambers of these birds reveal a pair of small forward-
opening pockets of the middle chamber, which may
act as organs for detecting variable pressures produced
by differing external airstream velocities (see Figure
2-14).

In pelicans and their allies, the external nares are
small or closed and there is a reduction in size of other
parts of the olfactory system, but the choane between
the third chamber and the mouth are relatively large.

Airstream pocket

2. Sense Organs

These openings may be adapted to provide retronasal
access for volatile materials held in the mouth (Welty,
1975). The comparative anatomy of the nose and nasal
airstreams is discussed by Bang and Bang (1959) (see
Figures 2-15 and 2-16). Much general information
on olfactory receptor cells, nerves, and central pro-
jections is found in Biedler (1971). (See Chapter 1
for further details on olfactory neural pathways.)

Numerous negative reports on olfaction in birds
have probably discouraged the use of this animal class
in olfactory research, and this may explain why so little
work on the mechanism of olfaction deals with avian
species. Yet olfaction is important for some birds (Wen-
zel, 1980), and intriguing evolutionary questions re-
main to be addressed. For example, there is as yet
no explanation for the observation that diving petrels
and auks, well-known examples of convergent evolu-
tion, differ sharply in respect to olfactory system. Very
likely, olfactory development (or the lack of it) among
avian species reflects the importance of this sense in
locating food or in homing.

Methods of Detecting Olfaction. Two general labo-
ratory methods have been used to detect olfactory per-
ception in birds. The neurophysiological methods have
involved recording from the olfactory nerve (Tucker,
1965) or directly from the olfactory bulb (Wenzel and
Sieck, 1972) during odorant stimulus presentation in
an olfactometer. Behavioral study of olfaction in birds
involves two techniques. In the first, birds are required
to discriminate between air and an odor that previous
training has made relevant to the test (Shumake et
al., 1970; Walker et al., 1979). The second technique
involves continuous monitoring of heart rate and/or
respiration during intermittent presentation of odorous
stimuli (Wenzel, 1968). Which of these latter tech-
niques is the more accurate depends in part on the
species under investigation (Shallenberger, 1973,
1975).

Olfactory Development in Various Species. The ol-
factory system is well developed in kiwi, vulture, alba-
tross, and petrels; moderately developed in the fowl,
pigeon, and most birds of prey; and poorly developed

FIGURE 2-14. Cross and longitu-
dinal sections of the nasal cham-
bers of a fulmar, showing the loca-
tion of the valvelike pockets that
may serve sea birds as airvelocity
sense organs to aid them in ex-
ploiting winds of varying speeds
during dynamic gliding. (After
Mangold, 1946.)
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FIGURE 2-15. Diagramatic sagittal
section of right medial surface of
f the nasal chambers of a chicken.
& Olfactory sensory area indicated
5 by diagonal shading; position of
eye and lachrymal duct, by broken
lines. Inserts of partially dissected
head of chicken gives an idea of
extent of fossa in relation to exter-
nal landmarks. Not drawn to scale.
(From Bang and Bang, 1959.)

orifice

External nares

in songbirds. It is very possible that development (or
the lack of it) is related to the foods and other resources
exploited by various species.

Vultures are carrion eaters, and their conspicuous
circling behavior in the area of a carcass led to much
early speculation that they locate sources of food by
olfaction. This has been confirmed for the turkey vul-
ture, and strongly suggested for the king vulture by
Stager (1967). By careful release of ethyl mercaptan
fumes in the path of migrating turkey vultures, Stager
was able to demonstrate that vultures are led to the
general area of food by olfaction. Once in the general
area, these birds seem to rely more heavily on vision
to lead them to the exact location of a food source.
Conversely, ravens rely on visual cues to identify forag-
ing locations, but sometimes then use subtle odor cues

epithelium

Middle or

. maxilloturbinate
FIGURE 2-16. Diagram or map

of sections through the anterior
part of the respiratory portion
of the nasal fossa of a chicken.
Cartilage is stippled; bone is
solid black; cornified squamous
epithelium is solid black line.
(From Bang and Bang, 1959.)
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to locate buried food stuffs (Synder and Peterson,
1979).

Several species of the Procellariformes may use olfac-
tion in navigation and nest location (Grubb, 1972).
The most compelling evidence is for Leach’s storm
petrel, which usually return to their island nesting loca-
tions at night by flying upwind (Grubb, 1974). Sever-
ing the olfactory nerves or plugging the nares in these
birds interferes with their ability to return to the nest.
Nesting material effectively serves as a lure for the
birds in total darkness, and these birds consistently
chose the arm of a Y-maze that contains their own
nesting material. An excellent review of seabird olfac-
tion has been provided by Wenzel (1980).

The flightless kiwi is nocturnal and feeds largely on
earthworms and other hidden food. Its vision is poor;

Olfactory
epithelium

Vascular
tissues

Mouth of
lateral nasal
gland duct
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it is the only bird with nostrils at the tip of the beak,
and it sniffs while foraging. It can detect food hidden
or in the dark (Wenzel, 1968).

Stager (1967) suggested that African honeyguides
locate beehives by means of olfaction and are attracted
by burning beeswax candles. Honeyguides can locate
abandoned hives presumably by smell, when other cues
(e.g., vision, audition) are no longer available (Archer
and Glen, 1969).

Operant conditioning techniques have been used to
demonstrate that pigeons use olfactory cues to perform
key-pecking and other tasks (e.g., Shumake et al.,
1970). For example, homing pigeons with bilaterally
sectioned olfactory nerves or nares plugged with cotton
display an impaired ability to return to the home loft
(Papi et al., 1973; Benvenuti et al., 1973). These and
other experiments indicate that olfaction may play a
role in the initial orientation of homing pigeons (Wall-
raff, 1979). Recent evidence suggests that olfactory
cues are especially important for navigation by pigeons
over long distances (e.g., 500 km). Like vultures, how-
ever, such cues appear relatively less important at short
distances (e.g., 10 km), contrary to reports of homing
by storm petrels (Grubb, 1974).

Gallinaceous birds have been the subjects of little
olfactory research. Tucker (1965) presented electro-
physiologic evidence that the bobwhite quail can per-
ceive some odors. Stattleman et al. (1975) have deter-
mined that chickens are most sensitive to pentane and
hexane, while pigeons are most sensitive to heptane.
As in work with other species, it is unclear whether
reagent-grade chemicals have any biological relevance
to gallinaceous birds, and whether different results
would obtain if biologically relevant stimuli were used.

The olfactory system in a number of aquatic species,
e.g., penguins, geese, and terns, is well developed
(Bang, 1971). Neuhaus (1963) reported that greylag
geese respond to skatol, and odors of plants on which
adult greylag geese will not feed (e.g., violet, lavender)
are also aversive to goslings (Wurdinger, 1979).

The reports of olfactory behavior in many songbirds
are predominantly negative, but the olfactory systems
in such birds may be important for other purposes.
Robinzon et al. (1979) reported that the surgical re-
moval of olfactory bulbs in male red-wing blackbirds
caused hyperphagia, weight gains, increased thyroid
follicular activity, and increased testicular develop-
ment, suggesting that the olfactory bulbs in red-wings
may be involved in the photoperiodic regulation of
activity of the gonads and thyroids.

Summary. The evidence available on the sense of
smell in birds does not permit many generalizations.
The failure of birds to react to odors as they are pre-
sented in the laboratory does not necessarily reflect a
deficit in acuity, but that the odor may not have reached
olfactory receptors. The lack of sniffing behavior in

2. Sense Organs

all birds but the kiwi may indicate that moving air is
required to effect contact between the odor stimuli
and receptors. On the other hand, the perfumes and
reagent-grade chemicals that are most often used in
the laboratory may not be biologically relevant to birds
(Wurdinger, 1979) and/or may not be presented at
levels that correspond to the birds’ spectrum of chemi-
cal sensitivity.

Taste

The function of taste is to encourage the ingestion
of nutrients, to discriminate among foods that are avail-
able, and possibly to avoid those that are toxic. The
taste system in a particular species can be expected
to complement digestion, metabolism, and the dietary
requirements of that species. While relationships, if
any exist, have yet to be clearly defined between num-
ber of taste buds and taste behavior, the relatively poor
taste acuity of avian species may be related to the rela-
tively small number of sensory cells (Table 2—4).

Taste Receptors (Buds). Receptors are largely found
at the base of the tongue and the floor of the pharynx,
commonly in close association with the salivary glands
(Gentle, 1971; Wenzel, 1973; Dmitrieva, 1981).
However, taste buds can be found in other areas (Saito,
1966; Warner et al., 1967; Berkhoudt, 1977), and
the number of buds and their distribution may change
over time (Duncan, 1960). Whether or not such
changes have any ecological importance to these ani-
mals is not clear.

Little use has been made of birds in neuroanatomic
research on taste, although both the chorda tympani
(Gentle, 1983) and the glossopharyngeal nerve (Berk-
houdt, 1983) carry taste information. The chorda tym-
pani innervates taste buds adjacent to the anterior man-
dibular salivary glands, situated in the buccal
epithelium of the lower jaw. The glossopharyngeal
nerve innervates the posterior buccal and pharyngeal
areas. Cutaneous (as well as taste) information is carried
by both nerves. The details of their distribution at the
level of the first relay and at all higher points in the
brain are unclear (Wenzel, 1980). The reader is re-
ferred to Berkhoudt (1983) for a review of the struc-
ture and function of avian taste receptors. Beidler
(1971) also provides a discussion, based largely on
mammalian research, of current knowledge and theo-
ries concerning central functions and peripheral mecha-
nisms in taste.

Methods of Study. Early studies of taste in birds in-
volved observation of individuals as they consumed
foods or fluids. Preference testing is now the most
common laboratory method used to measure the sensi-
tivity of birds to taste stimuli. Usually the material to
be tested is placed in aqueous solution, and the animal
is given a choice between the mixture and distilled
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TABLE 2-4. Numbers of taste buds in birds and various other vertebrates

Species n Reference
Blue tit 24 Gentle (1975)
Pigeon 37-75 Moore and Elliott (1946)

Van Kan (1979)
Bullfinch 46 Duncan (1960)
Barbary dove 54 Gentle (1975)
Japanese quail 62 Warner et al. (1967)
Starling 200 Bath (1906)
Chicken 250-350 Van Prooije (1978)
Saito (1966)
Duck 375 Berkhoudt (1977)
Parrot 300-400 Bath (1906)
Snake 0 Payne (1945)
Kitten 473 Elliot (1937)
Bat 800 Moncrieff (1951)
Human 9,000 Cole (1941)
Pig and goat 15,000 Moncrieff (1951)
Rabbit 17,000 Moncrieff (1951)
Catfish 100,000 Hyman (1942)

water, the two being presented simultaneously. How-
ever, single-stimulus methods, in which choices are pre-
sented singly at different times, and three-choice meth-
ods, in which a tastant and two control solutions are
offered simultaneously, have been used to eliminate
confounding by position bias. Cafeteria-type tests in
which more than three taste stimuli are presented si-
multaneously seem to overwhelm the chicken’s dis-
criminatory ability.

Chickens show a characteristic response to aversive
oral stimulation, as produced by quinine hydrochlo-
ride, typified by persistent tongue and beak move-
ments, and headshaking and beak-wiping behavior. No
characteristic responses to presentations of neutral or
appetitive oral stimuli such as sucrose have been ob-
served (Gentle, 1978; Gentle and Harkin, 1979).

Neurophysiologic studies of taste in birds have been
few and have involved chickens or pigeons as experi-
mental animals (Halpern, 1963; Landolt, 1970). Such
studies usually involve the application of substances
to the tongue of the subject and measurement of multi-
unit or single-fiber activity in the glossopharyngeal
nerve. Using these techniques, Kitchell et al. (1959)
demonstrated the water taste phenomenon in birds.
That is, water has been shown not to be a neutral
carrier of taste stimuli, but to act as a taste stimulus
itself under certain conditions. For example, adaptation
to NaCl in humans will cause water to have a bitter
or bitter-sour taste. Adaptation to the concentration
of NaCl present in saliva is sufficient to produce this
effect (McBurney, 1978). Electrophysiologically, water
taste might be reflected in the response of sour- or
bitter-sensitive neurons to water following adaptation.
However, such results merely indicate whether a chem-
ical can evoke a peripheral neural response. They do
not indicate whether the chemical has an appealing

or offensive taste to the animal, and while there are
examples of positive correlations between behavioral
and electrophysiological response, there are also con-
tradictions (Halpern, 1963). Operant techniques,
which often have been used successfully in studies on
vision or olfaction (see above), are not often used in
taste research with birds.

Research on taste in birds has been handicapped
by the general assumption that they live in the human
sensory world. The taste sensations experienced by
man cannot be assumed to be the same as for birds.
For example, dimethyl anthranilate, a flavoring used
in human foods, has been used to reduce food intake
in growing chicks and turkey poults, and has been sug-
gested as a bird repellent livestock-feed additive. This
compound is offensive to starlings, Japanese quail, pi-
geons, red-wing blackbirds, jungle fowl, herring gulls,
and finches at dilutions as low as 1 part in 10,000 in
two-choice tests (Kare and Pick, 1960; Mason et al.,
1985). Nevertheless, in order to compare results ob-
tained from birds with results from other species, the
classical categories of sweet, sour, bitter, and salty are
frequently used.

Ability to Taste. Sweet. Many avian species evidence
little or no interest in the common sugars, although
parrots, budgerigars, hummingbirds, and other nectar
feeders actively select sugar solutions. Kare and Med-
way (1959) observed that fowl on an ad libitum diet
failed to perceive, or were indifferent to, dextrose and
sucrose in food when tested at concentrations ranging
from 2.5 to 25%. The findings are different, however,
when tastants are presented in aqueous solution. Gentle
(1972) reported that chickens exhibit rejection of 30%
sucrose, fructose, or glucose solutions, and that glucose
is rejected at concentrations as low as 5%. Several
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investigators observed modest preferences for sugar
solutions over water. Jacobs and Scott (1957) showed
that chickens perferred a 12% sucrose solution to wa-
ter. Japanese and bobwhite quail prefer some concen-
trations of sucrose and glucose (Brindley, 1965), but
red-wing blackbirds select pure water over sucrose
(Rogers and Maller, 1973). There is unanimity in
the literature that birds reject such synthetic sweet-
ners as saccharin or dulcin. Curiously, even though
chickens reject saccharin in behavioral tests, electro-
physiologic techniques have failed to uncover neural
activity when taste buds are rinsed with the substance
(Welty, 1975). Collectively, the data suggest that
nectar- or fruit-eating species are more likely to
respond positively to sugars than are insectivorous
or granivorous birds, which respond negatively or
not at all.

The discovery that three tropical fruits contain in-
tensely sweet proteins (Cagan, 1973) led to speculation
on the role (if any) of the sweet principles in the plant.
It is possible (though not demonstrated) that the sweet
taste-active proteins may aid in seed dispersal by some
frugivorous birds or other animals (Davison, 1962).
No avian species have yet been tested with any of
the sweet proteins.

A number of factors other than taste may be in-
volved, individually or collectively, in the response
of a bird to a sugar solution, e.g., osmotic pressure,
viscosity, melting point, nutritive value, toxicity, and
optical characteristics. Some have suggested that visual
properties and surface texture sometimes take prece-
dence over all other qualities in the birds’ selection
of food (Mason and Reidinger, 1983b). Across species,
no physical or chemical characteristic can be used to
reliably predict how a bird on an adequate diet will
respond to the taste of a solution (Kare and Medway,
1959).

Salt. Birds kept on a salt-free diet will eagerly consume
pure salt when it is made available to them. Numerous
finches of the family Carduelidae have notorious appe-
tites for salt, and cross-bills, for example, may be caught
in traps baited with salt alone (Welty, 1975; Wil-
loughby, 1971). Also, the domestic fowl maintained
on a diet very low in sodium or calcium will exhibit
a specific appetite and select, in a choice situation, the
diet or solution that corrects its deficiency. However,
the domestic chick delays drinking for extended peri-
ods to avoid consuming a sodium chloride solution
whose concentration exceeds that which the chick’s
kidneys can handle (Kare and Biely, 1948). In fact,
where no alternative is available, many chicks die of
thirst rather than consume a toxic 2% salt solution.
They accept sodium chloride solutions only up to about
0.9% (0.15 M). Various other birds without nasal salt
glands that have been studied have similar taste-toler-
ance thresholds (Bartholomew and Cade, 1958).

2. Sense Organs

Mourning doves freely drink any solution that is hypo-
tonic to their body fluids (Bartholomew and MacMil-
lian, 1960).

Rensch and Neunzig (1925) investigated sodium
chloride thresholds (i.e., the lowest concentration at
which solutions are rejected) for 58 species, and found
that the thresholds ranged from 0.35% in a parrot
to 37.5% in the siskin. Unlike the rat, which avidly
selects some hypotonic concentrations of sodium chlo-
ride, many birds are indifferent up to the concentration
at which they reject the salt solution.

The common tern, which has a nasal salt gland, has
a high threshold for salt that has been associated with
the intake of brackish water with its food. However,
when given a choice, the herring or laughing gull (with
salt glands) selects pure water over saline solution
(Harriman, 1967; Harriman and Kare, 1966). Simi-
larly, penguins are said to prefer fresh water after hav-
ing been at sea for extended periods (Warham, 1971).
The role of the nasal salt gland in the handling of
salt is discussed elsewhere in this volume.

The order of acceptability of ionic series by birds
does not appear to fit into the lyotropic or sensitivity
series reported for other animals. No physical or chemi-
cal theory has been offered to explain the responses
to sodium salts and chlorides presented in Table
2-5.

Sour. Birds have a wide range of tolerance for acidity
and alkalinity in their drinking water (Figure 2-17
and Table 2-6). Fuerst and Kare (1962) reported that
over an 18-day period, chicks will tolerate strong min-
eral acid solutions, i.e., pH 2 (Table 2-6). Organic
acids are less acceptable, and the tolerance for the hy-
drogen ion is not equivalent to that for the hydroxyl
ion. The starling and the herring gull also readily accept
hydrochloric acid solutions. The chick’s aversion to
acid (sour) solutions is reduced by the addition of glu-
cose (Gentle, 1972). Brindley and Prior (1968) re-
ported that bobwhites prefer 0.05% HCI to water.

Bitter. Many tastants are offensive at low concentra-
tions. These include compounds that are bitter to man
but quite acceptable to birds, some that are offensive
to both man and birds, and a third category of those
quite acceptable to man but rejected by some birds.

Sucrose octacetate at a concentration bitter to man
is readily accepted by the herring gull and the chicken.
Bobwhite quail, which do not respond to sucrose oc-
tacetate as very young birds, gradually develop the
ability to discriminate this compound (Cane and Vince,
1968). Quinine hydrochloride or sulfate, both of which
are used extensively as standard bitter stimuli for man
and rats, are also rejected by some species of birds,
although bread mixed with quinine is readily eaten
by some parrots, and grain dipped in picric acid is
readily consumed by seed eaters and titmice (Heinroth,
1938). Among those birds that reject quinine however,
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The Chemical Senses in Birds

TABLE 2-5. Preference for sodium and chloride metallic solutions at various

concentrations over distilled water (chicks)®

Concentration (g/100 ml)

Solution 0.1 0.2 0.4 0.8 1.0
Na acetate 55¢ 52 56 52 51
Na sulfate 54 52 52 53 50
Na phosphate (monobasic) 52 53 52 52 54
Na succinate 49 52 54 50 56
Na citric 54 52 54 47 35
Na phosphate (diabasic) 51 49 47 44 14
Na tungstate 50 46 48 — —
Na bicarbonate 52 43 38 20 14
Na benzoate 49 41 23 15 10
Na bisulfate 38 23 35 17 23
Na pyrophosphate 46 37 20 3 4
Na perborate 42 29 10 9 4
Na carbonate 42 30 10 4 2
Na phosphate (tribasic) 46 20 4 1 2
Na cholate 4 20 3 — 3
Sodium Cl 50¢ 50 55 50 45
Magnesium Cl 49 51 51 53 45
Choline Cl 51 48 49 50 51
Manganese Cl 49 51 46 16 —
Strontium Cl 50 38 44 18 9
Ammonium Cl 49 46 35 12 6
Barium Cl 36 48 41 — 15
Calcium ClI 43 45 27 15 5
Zinc Cl 33 24 10 2 2
Cobalt Cl 26 12 6 5 6
Tin Cl 30 7 1 1 2
Copper Cl 6 11 3 8 4
Iron Cl 2 4 2 3 4

@ Preference = (salt solution consumed X 100)/total fluid intake.

TABLE 2-6. Percent intake in chickens of acids and bases at different

pH levels®
pH 1.0 2.0 3.0 4.0
e [TTTTTTTTTT T T T T
HCI 4 19 50 59
H,SO, 15 35 54 56
HNO; 8 62 52
Acetic 16 33
Lactic 15 61
pH 10.0 11.0 12.0 13.0
T T TTTTTTTTTT T
Bases
NaOH 45 47 33 2
KOH 48 36 3

@ Tabled values are the mean of replicate lots. The percent intake = (volume of tested
fluid/total fluid intake) X 100 (18 daily values were averaged). The position of the numbers
is an indication of the pH of the test solution. For example, at pH 1.5 the average daily
consumption of HCl was 19% of the total fluid intake. Distilled water was the alternative
in every instance.
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FIGURE 2—17. Daily consumption of HCl solutions for
days 1-6 (®) compared with daily consumption for
days 13-18 (4), expressed as percent of total fluid
intake at four pH levels. (From Fuerst and Kare, 1962.)

responding is influenced by deprivation, and as in the
rat (Johnson and Fisher, 1973), there is increasing ac-
ceptance with increasing deprivation (Gentle, 1975).
Both quinine and sucrose octaacetate evoke strong
neural responses in the chicken.

The offensive secretions of some insects serve as a
protective device against avian predators. Some of
these have a caustic action on the eyes and possess
offensive and possibly bitter tastes (Yang and Kare,
1968). Taste may serve as an important cue to adverse
effects that may occur subsequent to ingestion of certain
prey (Rozin and Kalat, 1971). For example, Wilcoxon
et al. (1971) found that bobwhites could learn to associ-
ate adverse postingestinal effects with particular tastes,
but they were more responsive t0 visual cues. Similar
results have been obtained for red-wing blackbirds
(Mason and Reidinger, 1983b). Little is known about
the chemistry of offensive tastes in relation to the hu-
man senses.

Nutrition and Taste. The function of taste in nutri-
tion is an enigma. In some instances, the birds’ prefer-
ence compliments its nutritional needs. For example,
when caloric intake is restricted, a chick selects a su-
crose solution to which it is normally indifferent and
increases its fluid intake to make up the deficiency
(Kare and Ficken, 1963). However, a similarly correct
nutritional choice is not made when the sugar is re-
placed with an isocaloric solution of fat or protein.
In a comparison of the responsiveness of domestic and
wild jungle fowl to chemical stimuli in caloric regula-

2. Sense Organs

tion, Kare and Maller (1967) found that the wild strain
was much more sensitive than the domestic. As such,
the preference behavior of laboratory animals may not
be a reliable guide to the nutritional adequacy of a
diet (Kare and Scott, 1962). Presumably, this is a result
of domestication, insofar as important traits may have
been bred out of the population. Feed consumption
is also discussed elsewhere in this volume.

Temperature and Taste. The domestic fowl is acutely
sensitive to the temperature of water. Acceptability de-
creases as the temperature of the water increases above
the ambient. Fowl can discriminate a temperature dif-
ference of only 5°F, rejecting the higher temperature.
Chickens suffer from acute thirst rather than drink wa-
ter 10°F above their body temperature.

At the other extreme, the chicken readily accepts
water down to freezing temperatures. This pattern of
sensitivity to temperature has also been observed in
electrophysiologic studies. A sizable minority of chick-
ens lacks this sensitivity, however. Because the re-
sponse to temperature may take precedence over all
chemical stimulants, temperature should be eliminated
as a variable in taste studies of the fowl.

Saliva and Taste. Saliva is involved in the normal
phenomena of taste. Birds have been described as hav-
ing a limited salivary flow. Using a technique that per-
mitted continuous collection, Belman and Kare (1961)
observed that the flow of saliva in the chicken was
greater than that of man in terms of body weight but
less in terms of food consumed.

Individual Variation in Taste. Japanese quail and
domestic chickens have been tested to measure their
reactions to a variety of chemicals, including ferric am-
monium and calcium chloride. Individuals show mark-
edly different thresholds. The distribution of thresholds
is continuous, with reactions among birds to a single
concentration of one chemical varying from preference
to rejection. Chemical specificity is involved, because
an individual that can taste one chloride at either unusu-
ally low or only very high concentrations is likely to
respond in an average manner to the others. It has
been possible to select and breed for taste sensitivity
to a specific chemical. This individual variation is not
limited to birds (Kare, 1961).

That birds differ in their taste preference as individu-
als, strains, or species has obvious ecologic advantages.
For example, it may permit a population composed
of different species to utilize more of the potential food
in an environment than would be possible if all were
to compete for a limited group of foods, and it contrib-
utes to an adaptive plasticity of food habits, making
the invasion of new habitats and utilization of new
foods possible.

Variation in response to taste is made more complex
by seasonal changes in sensitivity. It is interesting to
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consider whether taste directs or follows the abrupt
changes in feeding pattern of birds that are insectivo-
rous for part of the year and granivorous for the rest.
A possible role for taste in the intensive feeding prior
to migration is therefore to be considered.

Summary. Kare and Beauchamp (1984), in discussing
the comparative aspects of the sense of taste in birds
and mammals, pointed out that most of the work on
the basic mechanism of taste stimulation has been con-
ducted with mammals. This mammalian work has sug-
gested that the initial interaction of a taste stimulus
and a receptor cell may occur on the microvilli of the

taste receptor cells, but this has not been demonstrated
in Aves.

Birds have a sense of taste. However, no pattern,
whether chemical, physical, nutrition, or physiologic,
can be correlated consistently with the bird’s taste be-
havior. The behavioral, ecologic, and chemical context
of a taste stimulant can influence the bird’s response.
The observed response, particularly to sweet and bitter,
indicates that the bird does not share human taste expe-
riences. However, the supposition that there is a differ-
ence in degree between individual birds and an abso-
lute difference between some species appears
warranted.
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