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For a variety of reasons, bioassay experiments are frequently conducted with small
sample sizes. However, the statistical literature offers little comparative information
for small sample sizes among the analytical procedures most typically applied in
vertebrate studies for chemical registration. A simulation study was performed to
compare several traditional analytical procedures for estimating the median lethal
dose (LDso). These estimation procedures include probit analysis with maximum
likelihood estimation, logit analysis with maximum likelihood and minimum chi-
square estimation methods, and analysis by a nonparametric moving average
procedure. The simulation results indicate the conditions under which each analytical
method appears most useful. Recommendations are tentatively made for minimally
adequate designs for bioassay studies.
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1. INTRODUCTION

Little information is available on the small sample properties of the
procedures for analyzing the data from bioassay experiments. Such
bioassay studies with small sample sizes are particularly common in
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wildlife biology and related fields, for a variety of reasons. The
subject animals may be rare, difficult to capture, or expensive to buy.
Governmental regulations such as quarantine procedures or permit
limits may also restrict sample sizes. Unfortunately, some inves-
tigators use small samples simply because an analytical technique
may require only a small amount of data to yield an estimate, even
though the small sample properties of that technique are unknown.
For situations when only a small number of subjects are available,
information about the properties of the various analytical methods
would be useful for developing and justifying a study protocol.

The few recommendations that are available on minimum sample
sizes and analytical techniques are inconsistent. In the avian and
mammalian testing section of EPA’s Proposed Guidelines (1978) for
the Registration of Pesticides in the United States, the recommended
study design calls for at least 5 dose levels, plus a control, and at
least 10 animals per level to estimate an avian median lethal (single)
dose LDs,. The suggested estimation method is described as “any
acceptable method”. Only two estimation methods are specifically
mentioned as acceptable: those due to Thompson (1947) and to
Litchfield and Wilcoxon (1949). However, the suggested study design
for estimating a dietary median lethal concentration LCs,, one page
later in the same document, calls for 6 concentration levels with at
least 6 animals per level. The recommended estimation method is
“probit analysis as described by Finney (1971)”. The American
Society for Testing and Materials (ASTM) (1976) suggests that 12
animals, 6 male and 6 female, should be used. No minimum number
of doses nor minimum number of animals per dose is indicated.
Again, the two estimation procedures specifically mentioned as
acceptable are those due to Litchfield and Wilcoxon (1949) and to
Thompson (1947), although publications by Finney (1971) and Bliss
(1938) are mentioned as containing “other equally reliable methods”.
The motivations behind the above recommendations for design and
estimation are not given. In contrast to these recommendations on a
minimal experimental design, Finney (1971) expressed mild reser-
vations concerning the possible bias in parametric estimates from
experiments as large as 100 animals in each of 8 dose levels.

Similarly, the statistical literature contains little information com-
paring the small sample properties of the various analytical tech-
niques for bioassay experiments when small sample numbers are
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unavoidable. Most analytical procedures for estimating quantal
responses and associated confidence intervals rely on asymptotic
theoretical results or approximations to establish their properties.
The problem of determining finite sample properties, particularly for
small samples, has long been recognized (e.g., Berkson, 1955a).
Sowden (1971) demonstrated that, for quantal response models,
estimates can be quite biased and their asymptotic variances in
substantial error. Cramer (1964) compared three estimation methods
for fitting the normal integrated response curve, but did not consider
comparing other analytical procedures such as the use of logits or
moving averages. Hamilton (1979) compared 10 nonparametric and
logit estimators in moderately-sized experiments with 10 dose levels
and 5 to 20 individuals per level. Cobb and Church (1983) studied
the small sample properties of several estimation methods for a
general family of dose-response curves, but did not compare some of
the traditional analytical methods in use such as probit or nonpara-
metric methods. Smith et al. (1984) compared maximum likelihood
and minimum chi-square techniques for logit analyses with moderate
sample sizes. Oglesby and Bundrick (1981) compared several analyti-
cal approaches for estimating an LDs,, including probit analysis
and Thompson’s (1947) moving average method, but they were
investigating primarily moderate sample sizes. They suggested that
when distributional assumptions are not satisfied, the Thompson
method should be given consideration.

In light of the irresolution among the recommendations and the
lack of comparative information among analytical procedures. we
studied the effects of small sample sizes and small numbers of dose
levels on the estimates arrived at through the analytical procedures
most commonly applied and recommended in the literature pertaining
to vertebrate studies for registration of chemicals. In particular, we
were interested in how well the often used and recommended pro-
cedure of Thompson (1947) compared with the most commonly used
parametric methods.

2. ANALYTICAL PROCEDURES

In addition to Thompson’é (1947) nonparametric method, the probit
and logit methods were the parametric analyses considered. Only
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maximum likelihood estimation was considered for the probit method;
however, for the logit analyses we considered a minimum chi-square
estimation technique in addition to that of maximum likelihood.
Since these methods are well documented in the literature, only
a brief description and references for each are given.

The probit method of bioassay analysis was initiated by Bliss
(1935a, 1935b, 1938) and further developed by Finney (1971). The
theory underlying probit analysis is that the hypothetical frequency
distribution of susceptibility as measured by individual lethal doses
is normally distributed. In other words, the dose-response curve
follows the cumulative normal frequency distribution. Since this
curve is difficult to work with, Bliss (1935a) developed the probit
transformation. This transformation effectively straightens the sig-
moid dose response curve and allows the LD, and, in fact, the
complete range of LD values to be estimated based on a weighted
linear regression model. :

The logit method of bioassay analysis (Berkson, 1944) is similar to
the probit method except that the underlying tolerance distribution
is assumed to be logistic rather than normal (see, for example,
Berkson, 1944, 1951; Finney, 1971). The logistic distribution is a bell-
shaped curve similar to the normal curve, but it has heavier tails, i.e.,
the probabilities of extreme values are larger. However, it is well
known (e.g., Armitage and Allen, 1950; Berkson, 1950; Miller, 1950;
Finney, 1971) that probit and logit methods often result in estimates
of LD values that are very close and often indistinguishable in
moderate to large sample sizes. Instead of calculating probits for the
dose-effect regression line, logit values are produced by the logit
transformation (e.g., Finney, 1971) and the linear regression model is
solved by either maximum likelihood or minimum chi-square tech-
‘niques (e.g., Cox, 1970).

Many early biologists had a preference for a parametric analysis
because they wanted information on the whole range of lethal dose
(LD) values (e.g., from LD,, to LDy,). Many also believed that
the assumed underlying response distribution for their analysis was
appropriate. However, the tedious mathematical calculations of the
parametric methods and the lack of efficient computing often
precluded their use. Also, some were aware that parametric methods
for estimating LD values may not be robust to the failure of the
assumption concerning the form of the tolerance distribution for the
population of animals being considered.
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Potential bias caused by lack of fit of the data to the underlying .
distribution and the computational difficulties for the parametric
estimators led Thompson (1947) to develop a distribution-free,
moving average method for calculating the median lethal dose (LDsp).
Although there are a number of nonparametric estimators available
in the literature (e.g., Finney, 1971), we study the Thompson
estimator because it is the standard procedure in the environmental
protection literature. The Thompson method uses moving averages
on the proportion of animals responding at each dose level followed
by interpolations to arrive at an estimate of the LD,

The Thompson method has certain advantages over the probit
and logit methods. It is nonparametric, relatively simple to calculate,
and it can produce an estimate when there are as few as two dose
levels of two animals each. Disadvantages to the Thompson method
include the fact that only the LDy, and its approximate standard
error can be computed, and that all dose levels must be equally
spaced on a geometric scale.

3. SIMULATION SETUP

Evaluation of the relative performance of the estimation methods
was done through a Monte Carlo simulation study. Five bioassay
estimators were considered for the simulation: probit maximum
likelihood (ML), logit ML, logit minimum chi-square (MCS), and
the Thompson moving average method.

The first of two FORTRAN programs used in the study generated
the data and performed the computations necessary for the esti-
mation procedures. Most of this program was developed by the U.S.
Forest Service, Pacific Southwest Forest and Range Experiment
Station. The probit and logit procedures from their published
program, POLO (Russell et al, 1977), were incorporated into the
simulation program. These researchers performed their own simul-
ation study on bioassay methods, but were concerned with response
of insects to insecticides and, therefore, were working with sample
sizes much greater than those usually available in vertebrate studies
(Smith et al., 1984). The minimum chi-square method that we used
was the two-stage procedure of Cox (1970), although Smith et al.
(1984) subsequently used the MCS method of Berkson (1955b) in
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their study. Thompson’s moving average method was the only major
addition to their program.

Because the Thompson method can be used only with geometri-
cally spaced dose levels, the simulation study was restricted to
experiments of this type. The simulated data were generated from a
theoretical population following a logistic distribution with location
parameter equal to five and scale parameter equal to one. Thus, for
our simulations, the true LD, was equal to 5.

The basic configuration for the dose levels consisted of equally
spaced doses on a geometric scale with the theoretical levels of
response for the first and last doses set at 0.05 and 0.95, respectively.
This pattern was applied to experiments with 3, 4, 5 and 6 dose
levels. We simulated these experiments using 2, 4, 6, 10 and 20
subjects per dose level. For each experimental combination (number
of doses by number of subjects per dose), 5000 replications were
simulated.

We developed a second FORTRAN program, to summarize the
results of the simulations into statistics for comparing and evaluating
the estimation methods. For each replication of each experiment, the
essential results generated for each estimation procedure were the
estimated LDy, and its associated 95 percent confidence intervals.
The statistics calculated in the summary program included estimated
mean squared error, bias, and variance for each estimator of the
LDs,. Also calculated was confidence interval coverage, that is, the
percentage of replications in which the calculated 95 percent con-
fidence interval included the true LD value. The average width of the
95 percent interval was also calculated. For our own information,
these estimates and statistics were also calculated for estimating the
LDy, using the parametric estimators. If any estimator failed to
calculate an estimate in a given replication of the simulation, then
none of the results for any of the estimators were allowed in the
calculation of the summary statistics (failure rates for most simu-
lation setups were less than 25%). Thus, each replication that is
included in the summarization can be considered a member of an
ideal (conditional) set of responses where all estimators are able to
produce finite point and variance estimates. We do not consider in
this study the much more complex situation for investigating the
properties of each of the estimators when one or more of the others
fail.
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4. SIMULATION RESULTS

The mean squared error (MSE) results from simulations are given in
Table I. As would be expected, the MSE for each estimator almost
always decreased as the number of subjects per dose level increased
and/or as the number of dose levels increased. For estimating the
LDs,, the probit ML and the two logit estimators, in general, had
similar MSE’s. For the cases with 6 or fewer subjects per dose level,
the logit MCS estimator tended to have a slightly smaller MSE than
the probit or logit ML (with the logit MCS having the smallest
MSE in each case). In every dose level by sample size combination,
the Thompson moving average method had the largest MSE.

TABLE I
Mean squared error for estimators of LD,

No. of No. of Probit Logit Logit
dose levels animals/level ML ML  MCS Thompson

3 4 0.665 0.620 0447 0.744
6 0429 0410 0314 0478

10 0.282 0279 0233 0312

20 0.160 0.166 0.147 0.180

4 2 0445 0434 0234 0.791
4 0452 0443 0358  0.560

6 0344 0341 0301 0438

10 02190217 - 0208 '0.282

20 0117 204167510i116:53:0.167

S 2 0459 0456 0380  0.683
4 0359 0361 0319 0446

6 0276 0278 0263  0.342

10 0.169 0173 0.169  0.230

20 0.088 0.090 0.090 0.135

6 2 0512 0513 0423 0671
4 0302 0335 0330 0409

6 0226 0229 0216 0.282

10 0.143 0.146 0.144  0.191

20 6071y 0072 ...0072,.40112

- The results for the magnitude of the biases of the LDy, estimates
(Table II) parallel those for the MSE’s. The Thompson method had
the largest absolute bias in every case whereas biases of the
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TABLE 1II
Bias for estimators of LD,

No. of No. of Probit  Logit Logit
dose levels animals/level ML ML MCS Thompson
3 4 —0.505 —0.501 —0.356 —0.763
6 —0247 —-0.253 —0.124 —0.504
10 —-0.075 -—0.09 +0014 —0.313
20 +0.028 —0.014 +0067 —0.216
4 2 —0.648 —0.638 —0434 —0.754
4 —-0210 -0.203 —-0.092 —-0.397
6 —-0.109 -0.105 -0.012 —-0.278
10 —0.023 —-0.027 +0.045 —0.197
20 +0.008 —0.004 +0.043 —0.182
5 2 . —0335 -0323 —0.197 -0477
4 —0.055 —0.050 +0.027 —0.206
6 —0.005 —0.005 +0.057 —0.164
10 —0.002 —-0.004 +0.047 —0.159
20 +0.013 +0.006 +0.038 —0.165
6 2 —-0237 -0221 —-0.122 -0.341
4 —-0.012 —-0.007 +0.055 —0.140
6 —0.003 —0.002 +0.049 —0.156
10 +0.010 +0.008 +0.046 —0.148
20 +0.004 —0.003 +0.022 -0.170

parametric estimators were similar, except at the smallest sample
sizes, where the logit MCS had smallest absolute bias. For every
dose level by sample size combination considered, the Thompson
estimator had a negative bias (underestimated the true LD,).

Table III contains the results for the percent of replications in
which the 95% confidence interval actually contained the true value
being estimated. Coverage achieved or exceeded the stated (95%)
level for each of the two logit methods and the probit method except
for the cases of 2 animals per dose (regardless of the number of dose
levels) and 4 animals per dose when there were 3 dose levels. In
these instances, the Thompson method exhibited higher coverage of
the true LDs, although it did not achieve the stated 95% level.
Generally, the Thompson method did not compare favorably to the
other methods. Because the Thompson method usually achieved only
84% to 93% coverage, its variance approximation may be negatively
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TABLE III

Percentage coverage of actual LDs, by 95% confidence intervals
(conditional set of replications where no estimator failed)

No. of No. of Probit Logit Logit
dose levels animals/level ML ML  MCS Thompson

3 4 93.8 62.5 85.0 100.0
6 99.5 95.2 99.1 96.7

10 99.9 99.9 99.9 91.9

20 98.3 994 99.8 91.9

4 2 434 434 434 93.2
4 98.5 97.4 97.9 93.2

6 99.8 99.9 99.7 90.1

10 96.8 96.8 98.5 90.6

20 95.1 95:5 96.3 89.3

5 2 59.4 594 594 84.2
4 99.6 99.3 99.3 894

6 979 98.1 98.8 90.3

10 96.2 96.8 974 89.1

20 94.9 954 95.9 -88.6

6 2 78.5 51.1 68.9 71.0
4 98.6 99.2 99.2 86.5

6 96.6 974 98.6 894

10 95.3 96.0 96.7 89.2

20 94.9 95.2 95.9 86.7

biased (underestimation of variance) or it requires a much larger
sample size before it becomes accurate. The consistent negative bias
in the LD, estimate itself could also decrease coverage.

The results on confidence interval width (Table IV) were neces-
sarily associated with the results on confidence interval coverage.
In most designs for estimating the LDs,, the Thompson method
resulted in the narrowest 95% confidence intervals; however, few of
these designs also produced 95% coverage of the true LD,, using
the Thompson method. As indicated above, this was probably due
to a variance approximation that is too small. In most simulations,
the probit ML method confidence intervals were next narrowest,
followed by logit ML and then the logit MCS estimator.

Although the Thompson method did not perform as well as the
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TABLE IV
Mean width of 959 confidence intervals on LD,

No. of No. of Probit Logit Logit
dose levels animals/level ML ML = MCS Thompson

3 4 127.400 2090  58.140 4.285
6 5.955 7.465 10.730 3.205

10 3.155 3.586 4.117 2.295

20 1.813 2.025 2.169 1.559

4 2 1.618 1.618 1.618 3476
4 6990 11.310  15.090 2.944

6 4.025 5.162 6.995 2.403

10 2.219 2.382 2.778 1.858

20 1.408 1.457 1.601 1.326

5 2 1.663 1.663 1.663 2.587
4 5.497 7570  13.050 2.379

6 2.862 3.078 4.225 2.042

10 1.830 1.932 2.188 1.595

20 1.208 1.248 1.339 1.165

6 2 20.610 1.534 12540 2.071
4 3.848 4269 14.260 2.053

6 2.428 2.665 3.321 1.815

10 1.614 1.690 1.877 1.449

20 1.073 1.106 1.171 1.049

others judging by most of the above criteria, it was clearly the best
with respect to failure rate since it consistently was able to produce
an LDy, estimate more often than the other procedures. This
difference was particularly pronounced when the total number of
subjects was less than 20. For example, the failure rate for the
parametric methods was as high as 70% for the case of 3 dose levels
with 4 animals per level. In these cases, the Thompson method
usually had a failure rate one-third to one-fifth that of the para-
metric methods. As the sample size and/or the number of dose levels
increased, the failure rate for each method declined. For the larger
sample sizes (e.g., more than 3 dose levels and at least 30 subjects

overall), the failure rates for calculating an LD, were negligible
(0-7%) for each method.
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5. DISCUSSION

Although there is a considerable body of literature to ponder when
choosing an analytical procedure to use for a given bioassay, most of
this information relates to moderate or large sample size situations.
Little information is available to help decide what procedure to use
for the small sample size situation. If a study is conducted with small
sample sizes, a goodness-of-fit test would be of little use for selecting
among similar parametric tolerance distributions such as probit or
logit analyses. Also, the particular computational method must be
selected, e.g, maximum likelihood versus minimum chi-square. A
nonparametric procedure may be suggested to avoid distributional
concerns and for ease of calculation, but at the cost of less
information produced and more prior constraints on the experi-
mental design. In this vein, Finney (1971, p. 40) maintained that
satisfactory nonparametric methods had not been reported.

If the study is designed with the Thompson method in mind, one
must consider its performance relative (o that of competing esti-
mators. In general, the Thompson method did not perform as well
as the other four methods studied for estimating the LDs,. In parti-
cular, if underestimation of the LD, (i.c., overestimation of toxicity)
- can have seriously adverse consequences, then the Thompson
method should be given less consideration. However, the failure rate
of the Thompson method was substantially less for the simulation
involving smaller sample sizes. This property could represent a real
advantage if the Thompson method was able to produce reasonable
estimates when other methods fail. For this reason, we ran further
simulations on only the Thompson method for two designs in which
the failure rates for the parametric methods were about three times
greater than that of the Thompson method (38 and 339% versus 11
and 12%). Results for the design having 4 dose levels and 4 subjects
per level were acceptable since they were very similar to those
reported for the Thompson method in Tables I-IV. However, for the
design having 6 dose levels and 2 subjects per level, performance of
the Thompson method was poor: e.g., the confidence interval
coverage was only 58 percent. Finney (1951) indicates that the
Thompson method’s greatest advantage is its admissibility of a
limited dose range (the range needs only to be wide enough to
include the LDs,), but if the experimenter has enough previous
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knowledge, then a more efficient experiment can be designed with
other analytical techniques in mind. More study is needed to further
define when the Thompson method can produce useful estimates if
the data are insufficient for the more rigorous parametric techniques.
It should also be remembered that we only considered a symmetric
underlying distribution (logistic), and we would, therefore, expect the
logit and probit estimators to perform well. Perhaps with a more
unusual (e.g., asymmetric) underlying distribution, the nonparametric
Thompson method would perform better relative to the other four
methods (e.g., Oglesby and Bundrick, 1981).

For other than the very small sample sizes, the parametric
methods outperform the Thompson method for estimating the LD,
and their failure rates are not much greater than that for the
Thompson method. With the current availability and technology of
computers and calculators, computational ease is no longer a strong
reason for considering the Thompson method over these parametric
methods. :

Based on our study, we suggest the following as an absolutely
minimum design for a bioassay study: at least four dose levels and
more than four subjects per dose level; otherwise the resulting
estimates would lack credibility and should be considered to be at
most a dose ranging study. This minimal design should be con-
sidered only if the doses can be at least approximately balanced
similar to the simulation setup described in Section 3. For dose
ranging studies, it appears that the Thompson estimation method
would be of most use (see also Finney, 1951). However, for studies
satisfying at least the above minimal recommendations, we suggest
the use of the probit or logit ML procedures.

Before more general recommendations can be set forth on small
- sample design and estimation methods, more extensive study on the
effects of the underlying tolerance distribution must be done.
Additionally, studies on the effects of where the doses lic in the
tolerance distribution should be done (Hertzberg, 1975 and Smith
et al., 1984, indicated that dose allocation can significantly affect the
performance of estimators). We ran some additional simulations in
which the theoretical responses for the doses were skewed, rather
than the balanced pattern discussed here. In these few probes, the
relative results for the estimators remained the same as described in
Section 4. Also, further investigation of the properties of the other
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estimators when one estimator fails would allow stronger recom-
mendations on study design and analysis.

This study was restricted to the bioassay estimation techniques
most widely recommended and applied in the literature pertaining to
vertebrate studies for the registration of chemicals. The statistical
literature contains variations on these techniques as well as other
techniques which may offer improvements. Some of these methods
may provide estimates for even smaller sample sizes (e.g., a binomial
test, Siegel, 1956) or they may be more efficient. However, to main-
tain the study at a tractable size and within computing resources,
we chose to limit the study only to these most widely practised
methods.

Bioassay studies with small sample sizes will become more preva-
lent as more studies are done on rare species, as research dollars
become scarcer, and as the animal welfare movement becomes more
effective at inhibiting the use of animals in research (e.g., Holden,
1982). The present study provides the researcher with useful infor-
mation on design and data analysis considerations for bioassay
studies where small sample sizes are unavoidable.
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