
COMPUTERS AND BIOMEDICAL RESEARCH 16, 531-536 (1983) 

Optimal Frequency Locations for Estimating Model 
Parameters in Studies on Respiratory Control 

RICHARD M. ENGEMAN 

U.S. Fish and Wildlife Service, Denver Wildlife Research Center, Building 16, 
Denver Federal Center. Denver, Colorado 80225 

GEORGE D. SWANSON 

Departments of Anesthesiology and Biometrics, University of Colorado Health Sciences Center, 
Denver, Colorado 80262 

AND 

RICHARD H. JONES 

Department of Biometrics, University of Colorado Health Sciences Center. 
Denver, Colorado 80262 

Received March 4. 1983 

Sinusoidal work rate inputs yield a dynamic ventilatory response which can be fitted to a 
mathematical model. The model structure leads to inferences about the underlying physiol- 
ogy of the respiratory control mechanism. A particular problem of interest in model parame- 
ter estimation concerns the location of the test frequencies. The effects of estimating the 
parameters of a relatively complex model developed by Fujihara et al. using arbitrary 
frequency locations from a study by Casaburi et al. versus using the frequencies derived 
from an optimization method presented in a recent paper by Engeman et al. were examined. 
The Fujihara model is indicated to be much more likely to be justified when optimal sinu- 
soids are used to generate the data than when Casaburi’s arbitrary frequencies are used. The 
implications are that more descriptive models of respiratory control may be developed with 
the aid of optimal frequency design for the input sinusoids. 

INTRODUCTION 

Studies on respiratory control frequently use mathematical models to charac- 
terize the ventilatory response to a dynamic input. Inferences about the physio- 
logical structure of the respiratory control mechanism are made by interpreting 
the model structure. A variety of recent studies in respiratory control have 
used sinusoidal inputs and frequency response methods to develop such mathe- 
matical models (Z-6). In these studies, the frequency response was usually 
determined at six or seven discrete frequencies in the range of interest. These 
input frequencies have been arbitrarily located in past studies (e.g., equally 
spaced on a logarithmic scale), although a recent study (1) has expressed a 
need for specifically designed input frequencies. 
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The descriptiveness of a parametric model in terms of the underlying physiol- 
ogy depends largely on the quality of the data. The signal degradation due to 
noise limits the usefulness of the data and, consequently, the descriptiveness of 
the resulting model by obscuring the response characteristics so that they are 
not apparent statistically. However, the degradation by the noise can be mini- 
mized by forcing the physiological system to behave in such a manner that the 
signal is enhanced in relation to the noise (7). 

In the present paper we investigate the effect that optimizing the locations of 
frequencies for the input sinusoids has on estimating the parameters of a rela- 
tively complex model proposed by Fujihara et al. (8). These input frequencies 
are selected by using a recently presented optimal design method (9). For 
comparison we examine the arbitrary sinusoidal inputs and the resulting model 
presented by Casaburi et al. (2). Using each of these two sets of input sinu- 
soids, we predict the effect that each would have on estimating the parameters 
of the Fujihara model. 

OPTIMIZATION REVIEW 

Recently, Engeman et al. (9) presented the derivation for a method whereby 
the locations of the input frequencies are optimized to enhance parameter 
estimation. The problem is formulated in the frequency domain where the input 
and output of the system are related by the following equation: 

zy(d = B(W,)Zx(Oj) + Z~(Wi) 

where oi indicates the ith of k frequencies: Z,(.), Z.J.), and Z,(‘) are, respec- 
tively, the Fourier transforms of the output, input, and the corrupting observa- 
tional noise process; B(.) represents a frequency response function that is 
nonlinear in the parameters (9). It is assumed that the noise process is station- 
ary so that its Fourier transform is asymptotically uncorrelated at different 
frequencies (10). Using a Taylor series expansion (truncated at the first order). 
B(a) is linearized with respect to the parameters. This puts Eq. [I] into the 
statistical context of the general linear model. The optimal frequencies selected 
are those that minimize the generalized variance (II. 12) for the parameter 
estimation error. The frequencies selected using the generalized variance as the 
design criterion are independent of the scaling of the model parameters. 

Only the form of the frequency response function whose parameters are to be 
estimated and an initial guess at these parameters are needed to construct the 
design criterion (9). The selection of the optimal frequencies is accomplished 
by using a nonlinear minimization algorithm to minimize the generalized vari- 
ance criterion. A logistic transformation (9, 13) is used to prevent the comput- 
ing from “blowing up” by restricting the frequencies to a range between steady 
state and a realistic upper bound. 

In the present paper the input is an exercise work rate and the output is the 
ventilation response. The structure of the respiratory control mechanism is 
inferred from the estimated frequency response function. 
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APPLICATION AND DISCUSSION 

First we present the modeling results and their physiological implications 
given in the Casaburi and Fujihara studies. Both models were derived to char- 
acterize data from subjects who exercised on a cycle ergometer with the ergom- 
eter pedaled at a constant rate. The predicted effect on estimating the parame- 
ters of the Fujihara model is examined when using optimally designed input 
sinusoids versus those used in the Casaburi study. 

Casaburi et al. (2) studied the responses of five subjects to sinusoidal 
changes in work rate to derive a model of the form 

G?(s) = j& 
1 
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where G*(S) is the transfer function between a work rate input and a ventilation 
response and “s” is the complex parameter in the Laplace transform, A is a 
gain term, and r is a time constant. The subscript 2 refers to the number of 
parameters in the model. The resulting response has been interpreted as involv- 
ing a humoral mechanism (2), that is, the ventilation response is postulated to 
be triggered by a blood borne element such as pH or CO2 tension in the blood. 

A contrasting model was developed by Fujihara et al. (8) from studying the 
responses of five subjects to impulse, step, and ramp work rate changes. The 
Laplace transform formulation indicates a complex, seven parameter model 
with two response modes: 

131 

The first term on the right-hand side of [3] is a fast-responding component of the 
model and the second term represents a slower response component (8). The 
parameters A and B indicate the relative contribution of the respective model 
components, whereas td, and td, indicate time delays to the two components, 
and TV, 72, and 73 determine the nature of the dynamic response. The fast 
component has traditionally been interpreted as a neuro-mechanism response, 
while the slow component is thought to be a humoral response. Thus, the 
Fujihara model (G7) suggests a combination of neuro and humoral mechanisms, 
whereas the Casaburi model (GJ suggests an exclusive humoral mechanism. 

The average estimated parameter values (across subjects) for the models 
from the Casaburi and Fujihara studies are given in Table I. The frequency 
response plots for the Casaburi and Fujihara models using the parameter values 
in Table I are given in Fig. 1. In addition, Fig. 1 incorporates frequency re- 
sponse data in the high frequency range from the five Casaburi subjects. It is 
noteworthy that four out of the five Casaburi subjects indicate a high frequency 
response component similar to the Fujihara model. This component is appar- 
ently not strong enough to be distinguished from the background noise during 
the model fitting process. 
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FIG. 1. Frequency responses for the Fujihara (G7) and Casaburi (G2) models. Also shown is the 
data for the five Casaburi subjects in the high frequency region. 

To explore the effect of sinusoidal frequency location for minimizing parame- 
ter estimation error, we determine the seven optimal frequencies that minimize 
the first order generalized variance for the Fujihara model. For comparability 
with Casaburi’s input format and since it is traditional in respiratory control 
studies (e.g., ( I, 2, 6)), we consider only an equal power allocation among the 
seven input sinusoids. The optimal frequencies selected by the design proce- 
dure as well as Casaburi’s frequencies are presented in Table II. Note that the 
set of optimal frequencies includes a long period analogous to the steady state 
in Casaburi’s frequencies, and includes higher frequencies not present in the 

TABLE I 

ESTIMATED PARAMETER VALUES FOR THE CASABLJRI MODEL AND THE FUJIHARA MODEL*’ 

Casaburi 
Fujihara 

td, td, TI 72 T; 

A B (set) (set) (set) (secl isec1 
-. 

7.74 85.2 
1.24 6.50 3.20 18.8 1.4 43.0 16.0 

D The steady state response of all models is set to 7.74 (A + B = 7.741, the average for the 
Casaburi subjects. 
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TABLE II 

OPTIMAL FREQUENCIES FOR THE FUJIHARA 
MODELS 

Optimal period (set) Casaburi periods (set) 

1386 (Steady state) 
335 600 

176 360 

77 240 

42 120 

19 60 

8 42 

u Frequencies are tabulated by period in sec- 
onds. 

Casaburi input spectrum (the upper frequency bound was assigned a period of 8 
set because it was believed that this is approximately the highest frequency 
that the body could resolve). 

The predicted coefficients of variation for the parameter estimates for the 
Fujihara model are indicated in Table III when the optimal and Casaburi sinu- 
soids are used on input. The model was set to yield the steady state gain equiva- 
lent to the average of the five Casaburi subjects. The work rate sinusoidal 
inputs had an amplitude equivalent to the average work rate amplitude of the 
five Casaburi subjects. Since the residual noise variance is not known, it was 
assumed to be equal to 1.0 for purposes of comparison. The predicted coeffi- 
cients of variation (Table III) resulting from the optimally designed input sinu- 
soids are smaller (generally substantially smaller) than those resulting from the 
Casaburi sinusoids. This implies that a much larger work rate amplitude on 
input would be necessary with the Casaburi sinusoids than with the optimal 
sinusoids to justify the Fujihara model. However, the input signal must be 
below the anaerobic threshold for the system to be considered linear (14). 
Hence, it appears unlikely that the Fujihara model would be justified from data 
gathered by using the Casaburi input sinusoids. 

TABLE III 

COEFFICIENTOFVARIATION FOR THEMODELPARAMETERESTIMATES' 

Optimal 1.03 0.23 1.48 0.92 2.41 0.77 1.80 

Casaburi 9.43 1.78 19.0 6.80 29.6 0.84 3.86 

D For purposes of comparison, the noise variance was assumed equal to one. 
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CONCLUSIONS 

The inability of the Casaburi study to justify a more descriptive (complex) 
model may be caused in part by the arbitrary placement of the work rate 
sinusoidal frequencies used to generate the data. The results presented above 
indicate that parameter estimation can be enhanced by optimally located sinu- 
soidal test signals. Further improvement may be gained by simultaneously opti- 
mizing the sinusoidal amplitudes in addition to the frequency locations (9). 
Enhanced parameter estimation implies that more complex models can be iden- 
tified which, as applied to a model of respiratory control during exercise. sug- 
gests that more of the underlying physiology may be described. Thus, the 
application of the optimal design procedure to modeling efforts on respiratory 
control during exercise may assist in resolving the underlying structure of the 
respiratory control mechanism (15). 
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