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Abstract.—In numerous avian species, egg size is correlated to female body condition, hatchling size and nest-
ling growth. Recent demography studies of Interior Double-crested Cormorants (Phalacrocorax auritus) suggest a 
migratory divide across the Great Lakes; western populations winter in the Gulf of Mexico region of the southeast-
ern United States (Alabama, Arkansas, Louisiana, and Mississippi) with extensive catfish (Ictalurus punctatus) aqua-
culture, and eastern populations winter in Florida, where catfish aquaculture is not pervasive. If Double-crested 
Cormorants have improved their overall body condition through catfish exploitation, then egg and chick sizes 
should also be affected. Three breeding areas in Ontario (east, central, and west) were selected for empirical 
measures of size variation. During the breeding seasons of 2006 and 2007, egg, naked young, fledgling, and adult 
morphometric data were collected. Eggs in eastern areas (volume = 465.8 ± 3.9 cm³) were on average larger than 
eggs in central (volume = 458.1 ± 3.5 cm³) and western (volume = 451.7 ± 3.5 cm³) areas. However, chicks in eastern 
areas (culmen = 54.9 ± 0.6 mm) were smaller than chicks in central (culmen = 57.6 ± 0.4 mm) and western (cul-
men = 59.3 ± 0.3 mm) areas, not only at hatching, but throughout development and fledging. A comprehensive 
Double-crested Cormorant morphometric gradient that may suggest a potential reproductive advantage for birds 
exploiting aquaculture facilities is presented. Received 6 July 2015, accepted 26 October 2015.
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Interior Double-crested Cormorants 
(Phalacrocorax auritus; hereafter, cormorant) 
have increased throughout much of their 
breeding range. For example, breeding 
numbers have increased in the Great Lakes 
from 89 nests in 1970 to over 115,000 nests 
in 2000 (Weseloh et al. 1995, 2002). Dur-
ing the last 30 years, wintering populations 
of cormorants in the southeastern United 
States have also increased, concomitant with 
growth of the channel catfish (Ictalurus punc-
tatus) aquaculture industry in that region 
(Glahn and Stickley 1995; Glahn et al. 1999; 
King et al. 2010). With increased aquacul-
ture, researchers suggest cormorants have 
shifted their winter range from the Gulf of 
Mexico coast to encompass these areas of 
high catfish production (Glahn and Stickley 
1995; King et al. 2010). Satellite telemetry 
data revealed the summer ranges of cormo-
rants captured near southeastern aquacul-

ture facilities include the Great Lakes and 
the Prairie Pothole Region of the Northern 
Great Plains (King et al. 2012). Moreover, 
King et al. (2010) reported a 454% increase 
in band recoveries from southeastern aqua-
culture areas compared to a 55% increase 
in other areas since the mid-1980s. Most (> 
90%) of these recoveries were from birds 
banded as young-of-the-year in Lake Huron, 
Lake Michigan and Lake of the Woods (King 
et al. 2010).

Across many avian species, female body 
condition affects egg formation; birds with 
better body condition typically produce 
larger eggs (Amundsen and Stokland 1990; 
Chastel et al. 1995; Bernardo 1996). Egg size 
is also positively correlated to hatchling size, 
nestling growth and overall progeny fitness 
in many species (Williams 1994; Christians 
2002). At commercial aquaculture facilities, 
cormorant numbers peak in March, before 
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spring migration, and catfish comprises 87% 
of their diet (Glahn et al. 1999). These pi-
scivorous birds have subsequently increased 
their overwinter survival by improving body 
condition through catfish exploitation 
(Glahn et al. 1999; Chastant et al. 2014). 
Using sulfur isotope analysis from feathers 
grown during winter months, Hebert et al. 
(2008) also suggested that if cormorants 
spent at least a portion of the winter forag-
ing at aquaculture facilities, they returned 
to the breeding grounds in better physical 
condition than cormorants that solely fed in 
marine environments.

A recent study of cormorant movement 
suggests the Appalachian Mountains may 
serve as a migratory divide for cormorants 
across the Great Lakes; western populations 
migrate to winter in the Gulf of Mexico re-
gion of the southeastern United States (Ala-
bama, Arkansas, Louisiana, and Mississippi), 
and eastern populations overwinter in Flori-
da (Guillaumet et al. 2011). Moreover, popu-
lation models reveal survival disparity within 
the cormorant’s range; first-year survival 
rates in western populations more than dou-
ble the first-year survival rates of their east-
ern counterparts (Chastant et al. 2014). If 
overwinter foraging on aquaculture facilities 
enhances body condition of western cormo-
rants, and distinct eastern and western pop-
ulations truly exist and are differentiable, we 
predict that reproductive performance of 
western cormorants will exceed that of the 
eastern population.

Currently, cormorant chick develop-
ment has only been recorded for the eastern 
portion of the Interior range (Dunn 1975; 
DesGranges 1982), and substantial egg size 
variation exists throughout their breeding 
range (Mitchell 1977; Hanbidge and Fox 
1996). Furthermore, cormorant egg size 
and chick development data, mostly col-
lected prior to the aquaculture boom of the 
mid-1980s, were based on small sample sizes 
at limited spatial scales, and by different in-
vestigators (Dorr et al. 2014). The objective 
of this study was to assess a possible repro-
ductive advantage to birds exploiting south-
eastern aquaculture by measuring eggs and 
chicks throughout the cormorant’s breeding 

range. If management actions to alleviate 
cormorant depredation of aquaculture fa-
cilities are to be successful, the populations 
that exploit the facilities must be identified.

methods

Study Area

We selected three cormorant breeding areas 
across southern Ontario for acquiring morphomet-
rics (Fig. 1). Study areas included: Lake of the Woods 
(western), near Kenora, in the southwestern corner of 
Ontario (49° 39′ 46.80″ N, 94° 30′ 25.20″ W); North 
Channel of Lake Huron (central), near Blind River, in 
south-central Ontario (46° 6′ 28.80″ N, 83° 1′ 33.60″ 
W); and Eastern Lake Ontario (eastern), near Kings-
ton, in the far southeastern corner of Ontario (44° 11′ 
27.60″ N, 76° 32′ 34.80″ W). Each of these areas con-
sisted of ground nesting cormorant colonies on a series 
of small islands within approximately 15 km of the ad-
jacent city. Islands were composed of granite slabs and/
or outcroppings ranging in size from 0.2-3.0 ha. The 
western breeding area included four islands: Manitou 
Island, Lemon Island, Island North of Lemon Island, 
and Guano Rock. The central breeding area consisted 
of seven islands: West Cousin Island, Fortin Rocks, Hur-
burt Island, Magazine Island, Doucet Rock, West Island, 
and Middle Grant Island. The eastern breeding area 
consisted of three islands: Snake Island, Pigeon Island, 
and West Brothers Island.

Egg and Chick Sampling

During breeding seasons 2006 and 2007, we visited 
colonies once monthly from May-July, with a post-fledg-
ing visit at the end of the season (September). Clutch 
size and egg measurement data were taken during first 
(May) and second (June) visits. Egg measurements in-
cluded maximum length (L) and maximum width (W) 
using dial calipers to the nearest 0.1 mm. We used an 
equation developed for the European Shag (P. aristote-
lis; Coulson et al. 1969), a congener of the cormorant, 
to calculate egg volume (EV):

EV = 0.51 x W 2 x L

Freshly laid cormorant eggs are light blue in color; 
older eggs become stained with feces and dirt during 
incubation (Dorr et al. 2014). We collected data from 
freshly laid eggs and classified eggs laid before 1 June 
as ‘early’ and eggs laid after 1 June as ‘late’ (McNeil 
and Lèger 1987). We stretched a 50-m tape measure in 
a straight line in a random direction across each colony 
we sampled. We systematically chose nests (n = 60 for 
each area, both years) in 5-m increments and measured 
all the eggs in the corresponding nest. We calculated 
colony clutch size as the average number of eggs per 
nest for all “Apparently Occupied Nests (AON)” pres-
ent in the colony (Weseloh et al. 1995). To avoid pseu-
doreplication of the laying female, we used the nest as 
the independent sample unit.
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Northwestern and upper Great Lakes cormorant 
colonies initiate nesting 2 to 3 weeks later than colo-
nies in the eastern and lower Great Lakes (Ewins et al. 
1995). We classified chicks into age groups to account 
for the observed temporal variation across the large 
geographic scale. Without regard to gender, we ran-
domly selected and measured naked cormorant chicks 
(one per nest), and assigned an age class based on 
their size, skin color (‘pink’), egg tooth, and whether 
or not the eyes were closed or open (3-4 days after 
hatching but before short down begins to appear in 

6-7 days; Dorr et al. 2014). Later in the season, we ran-
domly pulled fledglings with ≤ 15 mm of the primary 
feather sheath present from the crèche and measured 
them. Morphology measurements included exposed 
culmen, tarsus, and ulna lengths using dial calipers to 
the nearest 0.1 mm, flattened wing chord length us-
ing a ruler to the nearest mm, and body-mass using 
a pesola scale to the nearest 0.1 kg. We measured the 
ulna, flattened wing chord (wrist joint to tip of longest 
primary), and tarsus (metatarsus from proximal to dis-
tal joint) as the greatest length of the segment with the 

Figure 1. Map of the study area showing the three Interior Double-crested Cormorant (Phalacrocorax auritus) breed-
ing areas sampled during summers 2006 and 2007.
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ruler/calipers held parallel to the bone and adjacent 
portions of the appendage held at a right angle. We 
measured exposed culmen from the most distal point 
of the bill to the notch at the base. We trapped and 
measured adult cormorants at randomly selected ac-
tive nests using modified padded leg hold traps (King 
et al. 1998).

Each year during the fledging stage of chick devel-
opment, we conducted a census on foot of all nests and 
estimated the number of fledglings in a colony using 
direct observation. We used a technique modified from 
Weseloh et al. (1995) to estimate colony-specific fledge 
rates (CFR = number of fledglings/nest/colony) with 
the following equation:

CFR = 
Fl

Tn - An

where Fl is the total number of fledglings in the colony, 
Tn is the total number of nests, and An is the number 
of active nests. Given the advanced stage of the breed-
ing season, we assumed active nests containing eggs 
or naked young did not contribute to the number of 
fledglings present in the colony at the time of the count 
(Weseloh et al. 1995).

Statistical Analysis

We investigated variation in egg volume, clutch 
size, and fledge rate among breeding areas using a 
standard Analysis of Variance (ANOVA) and Fisher’s 
Least Significant Difference pairwise comparisons 
(SAS Institute, Inc. 2013). We used principal compo-
nents analysis (Oksanen et al. 2011) on the morpholog-
ical measurements (culmen, tarsus, and flattened wing 
chord) of chicks, fledglings, and adults to determine 
body condition; the first principal component (PC1) 
was a measure of body size. We regressed PC1 against 
body mass and treated the residuals, the positive or 
negative difference from an expected body mass for a 
given body size, as a measure of body condition (He-
bert et al. 2008; Craig 2015). We then performed ANO-
VAs and Tukey’s Honest Significant Difference tests 
(R Development Core Team 2014) on body condition 
for chicks, fledglings, and adults to investigate differ-
ences among the three breeding areas. We separated 
chicks based on their developmental stage (eyes closed 
vs. eyes open). Statistical significance for all tests was 
concluded at α = 0.05 level.

results

Egg and Clutch Sizes

We used a total of 885 eggs from 318 cor-
morant nests to examine differences among 
breeding areas. Egg volume varied among 
breeding areas (F2, 317 = 3.62, P = 0.028); eggs 
from the eastern breeding area were larger 
than eggs from the western breeding area 
(Table 1). Egg volume in the central breed-
ing area was intermediate to the other two 
areas. There was no significant difference 
in egg volume between years (F1, 317 = 0.83, 
P = 0.364) or breeding status(F1, 317 = 1.45, 
P = 0.230); thus, we pooled the data across 
years and breeding status. Mean clutch size 
varied among breeding areas (F2, 317 = 5.25, P 
= 0.006) with greater clutch sizes in the east-
ern and central breeding areas than in the 
western breeding area (Table 1). Clutch size 
of early breeders was greater than clutch size 
of late breeders (F1, 317 = 12.79, P < 0.001).

Morphological Development

Morphology of naked chicks varied 
among breeding areas for both eyes closed 
(F2, 109 = 12.66, P < 0.001) and eyes open (F1, 91 = 
10.95, P = 0.001) chicks (Table 2; Fig. 2). In 
both instances, eyes closed and eyes open, 
chicks were smaller in the east (P < 0.001) 
and larger in the west (P < 0.001). We did 
not collect data for eyes open chicks in the 
central breeding area (Table 2). Fledgling 
morphology varied among breeding ar-
eas (F2, 369 = 39.69, P < 0.001; Table 3; Fig. 
2) with significant pairwise differences be-
tween west and east (P < 0.001), central 
and east (P < 0.001), and central and west 

Table 1. Egg measurements (SE) from three breeding areas of Interior Double-crested Cormorants (Phalacrocorax 
auritus) across the southern border of Ontario, summers 2006 and 2007. Clutch size was measured as the average 
number of eggs/nest. Letters in the same row represent Least Significant Difference codes at the alpha 0.05 level.

Metric

Breeding Area

Lake of the Woods North Channel of Lake Huron Eastern Lake Ontario

Number of nests                123                      90               105
Volume (cm³)                 451.7 (3.5)B    458.1 (3.5)A,B 465.8 (3.9)A

Length (mm)                  60.4 (0.2)                      60.8 (0.3)                  61.3 (0.2)
Width (mm)                  38.2 (0.1)                      38.4 (0.1)                 38.6 (0.1)
Clutch size                    2.5 (0.1)B                        2.9 (0.1)A                   3.0 (0.1)A
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(P = 0.006). Lastly, we found no difference 
among breeding areas for adult cormorant 
body condition (F2, 173 = 2.17, P = 0.117; Ta-
ble 3; Fig. 2).

Fledge Rate

We used the annual average fledge rate 
from a total of 10,556 cormorant nests 

to examine differences among breeding 
areas. Fledge rate varied among areas (F2, 5 
= 28.42, P = 0.011); nests from eastern 
breeding areas fledged more chicks (2.04 
± 0.12 chicks/nest) than nests from cen-
tral (1.30 ± 0.21 chicks/nest) and western 
(1.34 ± 0.16 chicks/nest) breeding areas 
(Table 3).

Table 2. Mean morphologic measurements (SE) of naked Interior Double-crested Cormorant (Phalacrocorax au-
ritus) nestlings with eyes closed and eyes open from three breeding areas across the southern border of Ontario, 
summer 2007.

Breeding Area

Lake of the Woods North Channel of Lake Huron Eastern Lake Ontario

Metric Eyes Closed Eyes Open Eyes Closed Eyes Open Eyes Closed Eyes Open

Number 41 33 10 0 61 60
Culmen (mm) 11.3 (0.2) 15.6 (0.2) 11.7 (0.4) — 10.3 (0.2) 13.8 (0.3)
Tarsus (mm) 15.8 (0.4) 23.2 (0.3) 15.3 (0.6) — 15.0 (0.2) 21.5 ( 0.5)
Ulna (mm) 21.4 (0.3) 31.2 (0.5) 20.4 (0.7) — 20.0 (0.3) 28.5 (0.8)
Mass (g) 50.3 (2.1) 127.7 (4.3) 43.4 (2.4) — 46.8 (1.5) 111.3 (5.9)

Figure 2. Mean body condition (i.e., residuals of Principal Component 1 regressed against body mass) of Interior 
Double-crested Cormorant (Phalacrocorax auritus) chicks, fledglings, and adults from three breeding areas across 
the southern border of Ontario, summers 2006-2007. LOW = Lake of the Woods, NChan = North Channel of Lake 
Huron, and ELO = Eastern Lake Ontario. No data were collected for Eyes Open chicks in NChan.
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disCussion

Cormorant egg size and chick morphol-
ogy varied regionally across their breeding 
range. Cormorant eggs in the east were larg-
er than those in the west. However, chicks in 
the east, not only at hatching but throughout 
development (naked through fledgling), 
were smaller than the two western breeding 
areas. But adult cormorants were relatively 
the same size for all three breeding areas. 
Our egg measurements were similar to those 
previously reported for the species (Dorr et 
al. 2014); cormorant egg size increased east 
to west across North America. Moreover, 
eggs laid earlier in the breeding season were 
larger than later-laid eggs, as is common in 
seabirds (Moreno 1998). It is widely accept-
ed that cormorants do not typically breed 
until 2 or 3 years of age (Price and Weseloh 
1986; Dorr et al. 2014). Older, more expe-
rienced males arrive at the colony first, se-
lecting the best nesting sites (Siegel-Causey 
and Hunt 1986; McNeil and Lèger 1987), 
thus egg volume may reflect the individual’s 
age or level of experience (Christians 2002; 
Svagelj et al. 2015).

Contrary to our expectation, cormo-
rants breeding in western areas, which 
winter in southeastern catfish aquaculture 
areas, laid smaller eggs than cormorants 
breeding in eastern areas, which winter in 
Florida where catfish aquaculture is not 
pervasive. Moreover, chick size conflicted 
with the positive association generally ob-
served between egg volume and nestling 

body size (reviewed in Christians 2002; Krist 
2011). In this case, the size of naked cor-
morant chicks increased from west to east 
(i.e., larger eggs produced smaller chicks). 
The reason for this anomaly is unknown 
but likely reflects maternal condition dur-
ing egg formation. Adult body condition 
upon arrival at the breeding grounds could 
result in larger chicks (Hebert et al. 2008; 
Barrionuevo and Frere 2014). The nutrient 
quality of the yolk sac is likely improved in 
cormorants wintering near and foraging at 
aquaculture facilities (Navara and Mendon-
ça 2008). Also interesting, clutch sizes were 
smaller in the west despite the perceived 
better adult body condition. How cormo-
rants allocate resources during egg forma-
tion, whether originating from direct food 
intake and/or from stored body reserves 
(i.e., capital vs. income breeding; Stephens 
et al. 2009), is unknown. Perhaps females 
mix breeding strategies by using southern 
resources as well as local resources to gov-
ern egg and clutch size (Bolton et al. 1993; 
Bêty et al. 2003). Future study of cormorant 
eggs using stable isotope ratios is needed 
to elucidate egg resource allocation (e.g., 
Hahn et al. 2011).

Among altricial species, larger chicks 
have increased fitness and survival (Ricklefs 
1984; Amundsen and Stokland 1990), yet 
our data show that despite smaller chick size 
throughout development, fledge rates were 
greater in the eastern breeding area. Supe-
rior foraging opportunities at nest site loca-
tions may explain why fledge rate was greater 

Table 3. Mean morphologic measurements (SE) of fledgling and adult Interior Double-crested Cormorants (Phala-
crocorax auritus) from three breeding areas across the southern border of Ontario, summers 2006-2007. Fledge rate 
was defined as the number of chicks produced per nest, calculated at the colony level and then averaged for each 
breeding area. Fledge rate was estimated independent from the fledglings used for morphologic measurements (n). 
Letters in the same row represent Least Significant Difference codes at the alpha 0.05 level.

Metric

Breeding Area

Lake of the Woods North Channel of Lake Huron Eastern Lake Ontario

Fledgling Adult Fledgling Adult Fledgling Adult

Number      128        32    120      34    125     112
Culmen (mm)  59.3 (0.3)      56.3 (0.4)      57.6 (0.4)      56.3 (0.6) 54.9 (0.6) 58.2 (0.3)
Tarsus (mm)  69.3 (0.2)      68.3 (0.4)      67.6 (0.2)      69.2 (0.3) 67.5 (0.2) 66.5 (0.3)
Ulna (mm)   267.5 (2.1)    328.2 (1.9)    271.1 (2.7)    326.9 (1.6) 230.1 (3.1) 323.5 (1.6)
Mass (g) 1,935.5 (17.5) 2,067.2 (31.2) 1,651.4 (23.0) 2,008.8 (37.9) 1,658.8 (21.6)    2,074.5 (17.1)
Fledge rate  1.3 (0.2)B        1.3 (0.2)B      2.0 (0.1)A
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in the east (Duerr 2007). Larger clutch sizes 
may also contribute to higher fledge rates, 
particularly when coupled with superior for-
aging, because larger clutches facilitate the 
opportunity to raise more young. Likewise, 
the cause for reduced fledge rate in western 
breeding areas is unclear, but may be linked 
to poor nest site quality or inadequate local 
foraging opportunities as the birds nesting 
in the west exhibit weak colony site fidelity 
(Chastant et al. 2014). Colony differences in 
chick growth and development may reflect 
age and experience of the adults. DesGrang-
es (1982) found that the most rapid growth 
rates and largest asymptotic mass came from 
the oldest colonies where older, more expe-
rienced cormorants breed. However, Potts et 
al. (1980) argued that nest site quality had 
a greater effect on Shag (P. aristotelis) fledg-
ing success than previous breeding experi-
ence. In light of these results, it is unclear 
whether aquaculture practices provide cor-
morants with reproductive advantages. At 
a minimum, we have documented egg and 
chick development variation within the cor-
morant’s breeding range. Further research 
is needed to resolve the mechanistic link be-
tween winter foraging and cormorant repro-
duction.
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