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Relative abundance indices are widely applied tomonitorwildlife populations. A general indexing paradigmwas
developed for structuring data collection and validly conducting analyses. This approach is applicable for many
observation metrics, with observations made at stations through the area of interest and repeated over several
days. The variance formula for the general index was derived using a linear mixed model, with statistical tests
and confidence intervals constructed assuming Gaussian-distributed observations. However, many observation
methods, like intrusions to track plots or camera traps, involve counts with many zeroes, producing Poisson-
like observations. To fill this inferential gap between Gaussian analytical assumptions and Poisson-distributed
data we evaluated, via a broadMonte Carlo simulation study, variance estimation and confidence interval cover-
agewhenGaussian statistical inference is applied to data generated from a Poissondistribution. Themixed effects
linear model assuming Gaussian observations performed well in estimating variances and confidence intervals
when simulated Poisson data were in the range found in field studies (88–96% confidence interval coverage). Es-
timation improved by increasing the number of observation days. Confidence interval coverage rates performed
verywell (evenwith few observation days)when day-to-day variabilitywas small, while effective estimation re-
sulted for a great range in station-to-station variability. These results provide a foundational basis for applying the
general indexing paradigm to count data, strengthen the generality of the approach, provide valuable informa-
tion for study design, and should reassure practitioners about the validity of their analytical inferences when
using count data.
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1. Introduction

A quantitativemeans to track animal abundance is an essential com-
ponent of wildlife management and ecological and environmental
study, with its importance well-portrayed by the old adage, “If you
can't monitor it, you can't manage it.” Practical in-field observation
methods for assessing relative abundance of single species or multiple
wildlife species simultaneously provides a broad ability and efficiency
for managers and researchers to infer and compare population differ-
ences, trends, and changes over time or between geographical areas
(e.g. Caughley, 1977; Engeman, 2005). Due to their practicality, index
methods quantifying relative population abundances play pivotal roles
in addressing questions about, and monitoring changes in wildlife pop-
ulations (Caughley, 1977; Engeman, 2005). Indices are observation
methods combined with analytical procedures that produce a statistic
that reflects relative abundance of a population (Caughley, 1977;
Engeman, 2005). Despite the many potential benefits offered, indexing
Center, 4101 LaPorte Avenue,
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has been both criticized (Anderson, 2001) and praised (e.g., Caughley,
1977) as an inferential approach concerning animal abundance dynam-
ics. However, when suitable statistical design and analysis principles are
applied in the development of indexing procedures, the criticisms be-
comeunfounded (Engeman, 2003, 2005). To the endof obtaining obser-
vations and calculating abundance indices within the context of valid
statistical theory, Engeman (2005) presented a general observation
structure and analytical methods which are applicable to many forms
of field observations for creating indices of abundance. In that general
paradigm, observations are made at stations located throughout the
area of interest, with observations beingmade at each station onmulti-
ple occasions for each indexing session. A wide variety of observation
methods for many animal species can fit into this format including
tracking rates, camera trap data, spotlight counts, pellet counts, capture
rates, bait consumption, or visual observations, amongmany other pos-
sibilities (Engeman, 2005).

Engeman (2005) quantitatively described the general index (GI)
using a linear mixed model and derived a corresponding formula for
its variance and applied traditional Gaussian-based (normal distribu-
tion based) methods for confidence interval calculations, thereby pro-
viding an efficient way for investigators to make comparisons such as
between indices from different sites at the same time(s) or between
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years at the same site. Thus, observations are implicitly assumed to fol-
low a Gaussian distribution in construction of statistical tests and confi-
dence intervals incorporating the variance calculation for GI. Making
continuous measurements at each station suits well the application of
Gaussian-based statistical inference about index values, whereas binary
(presence-absence)measurements have beenwell-documented to pro-
duce inferior results (e.g. Allen et al., 1996, 2011; Engeman, 2005;
Engeman and Allen, 2000). Alternatively, it is very common for the ob-
servations made at each station to involve a count. The most common
examples of count observations include the number of intrusions (num-
ber of sets of tracks) by a species into a tracking plot, the number of in-
dividuals (or intrusions) of a species photographed at a camera station,
and the number of each species visually observed at an observation sta-
tion in a fixed amount of time. Many examples (with citations) of the
types of observation stations and observation methods that result in
count data are given in Table 1.

For many common situations (such as the above-mentioned track-
ing plot intrusions or photographs from camera traps), the observation
at each station usually involves a small count (typically ≤10)with a high
frequency of zeroes, not uncommonlymore than half of all observations
(see citations in Table 1). Such data clearly are not normally distributed,
which calls into question the validity of applying themethods based on
the normality assumption to calculate confidence intervals and compar-
ative statistical tests, although inference validity was assumed legiti-
mate under the Central Limit Theorem because the index form is
calculated as a mean of means. Nonetheless, this indexing method is
in widespread use with count observations and has been for many
years. For example, when used as a passive tracking index (PTI), the GI
has been recommended, and even standardized as themonitoring tech-
nique for assessing various wildlife populations (Allen et al., 2012;
Engeman et al., 2013; Mitchell and Balogh, 2007). Thus, it is vital to
evaluate GI performance from a statistical theory and empirical
estimation standpoint using the type of count data to which it is often
applied.

We performed a Monte Carlo simulation study to generate small
count data from the Poisson distribution and evaluated the effective-
ness of the linear mixed model and Gaussian-based inference for es-
timating the variance and confidence interval using the GI. To do this,
formulae for themean and variance of GIwere first derived when ob-
servations follow a Poisson model with over-dispersion as described
in Methods below. Observations were then simulated, allowing for
over-dispersion and crossed random effects for station and day. Fi-
nally, the variance of the index was estimated using the existing
Table 1
Examples demonstrating the diversity of animals and observation procedures encompassed by

Observation station
example

Potential count measurement Examples of pot
observed

Tracking plots Number of track intrusions
by each species into plot

medium to large
e.g.,
carnivores, ungu
macropods, mes

Camera Number photographed Most terrestrial

Road counts (normal light,
night vision, thermal
imaging)

Number of each species counted
in each road segment

Many mammal a

Aerial surveys (normal light,
thermal imaging)

Number counted in each aerial
transect

Larger mammals

Mound count plot Number of mounds or
feeder plugs in plot

pocket gophers

Visual observation sites Number seen within a
fixed time and distance

birds, ground sq
muskrats

Dung survey plots Number of pellet groups in plot Ungulates and o
large mammals

Road segment scat station Number of scats deposited in fixed
time frame in each road segment

canids
linear mixedmodel methodology under the assumption of normality
and the resulting estimates were compared to the known (pre-spec-
ified input) variances from which the data were generated, and the
coverage of 95% CIs under the assumption of normality was also
assessed.

2. Methods

2.1. Normal mixed model

Firstwe consider the data structure and accompanyingmixedmodel
upon which the GI calculations were based (Engeman, 2005). For S sta-
tions observed over D days, let Yij represent the count (e.g., number of
sets of tracks) observed for the ith station on the jth day. GI then is the
mean of the d daily means; each daily mean is the mean of all stations
observed on day j. Note that the number of stations observed may
vary from day to day due to missing data.

Engeman (2005) defined a linear mixed model to describe the Yij:

Yij ¼ μ þ si þ dj þ eij: ð1Þ

In this model, eij~N(0,σε
2) represents random error associated with

each station on each day; dj~N(0,σd
2) is a random effect associated

with the jth day on which an observation was made; j=1,2 ,3 ,…D,
where D is the number of days on which the stations are monitored.
si~N(0,σs

2) is a random effect associated with the ith station; i=
1,2 ,3 ,…Sj≤S, where Sj is the number of stations observed on day j
from a total of S available stations. Because each station is observed on
each day (barring missing data), the random effects for station and
day, si and dj, are defined as “crossed” random effects. We note that
this crossed random effect observation pattern would be distinctly dif-
ferent from random effects arising from each day having a unique set
of stations observed, which are commonly referred to as “nested” ran-
dom effects (Fitzmaurice et al., 2008). The crossed random effect linear
mixed model (1) is the one on which the current variance estimation
method is based, and is the model evaluated in this simulation study.

2.2. Poisson mixed model

An alternative, generalized linear mixed model based on a Poisson
distribution with over-dispersion was used to simulate the correlated
the general indexing paradigm where observations typically are counts.

ential species Example citations for the type of station or measurement

mammals;

lates,
opredators

Allen et al. (1996); Engeman and Evangelista (2006);
Engeman et al. (2000, 2003); Mahon et al. (1998)

wildlife species Bengsen et al. (2011); De Bondi et al. (2010);
Meek et al. (2012)

nd bird species Allison and Destefano (2006); Choquenot et al. (1990);
Focardi et al. (2001); McCafferty (2007);
Twigg et al. (1998)
Beard (1999); Caughley (1977)

Anthony and Barnes (1983);
Engeman et al. (1993); Reid et al. (1966)

uirrels, Fagerstone and Biggins (1986); Menkens et al. (1990);
Powell et al. (1994); Robbins et al. (1986);
Servoss et al. (2000); Engeman and Whisson (2003)

ther Hone (1995); Hone (2002); Hone and Martin (1998); Putman
(1984)
Andelt and Andelt (1984); Stoddart et al. (2001)
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counts Yij as follows (Molenberghs et al., 2007):

λij ¼ θij � exp μ þ si þ dj
� �

Yijj λij
� � � Poisson λij

� �
:

ð2Þ

The term θij is a random effect used to model the overdispersion. It
allows departure from the strict mean–variance equality specified by
the Poisson distribution. θij is assumed to follow a gamma distribution
with α=β, such that the expected value E(θij)=1 and so does not
change the expected value of Yij, andVðθijÞ ¼ 1

�
α:This parameterization

yields a negative binomial distribution for Yij conditional on si and dj
which has a known closed form with conditional mean and variance

E(Yij | si, dj)= exp(μ+si+dj)=Mij and VðYijj si; djÞ ¼ Mij þ M2
ij

α . Small-
er values of α give greater overdispersion, and for large values of α this
negative binomial converges to a Poisson distribution. The fixed effect
term μ relates to the overall mean count observed on an average station
and an average day. Other parameters and random effects are defined
analogously to those in the linear model. As described more fully
below, this model provides an effective way to simulate counts as they
are typically observed in the field, but for which population parameters
are known (specified).

2.3. Assumption of non-zero covariance

An important feature of both models is that they allow dependence
across stations and days. In practice, the observations at different sta-
tions are unlikely to be independent geographically, particularly be-
cause stations may be near enough together that an animal might
encounter multiple stations on the same day. Similarly for example,
conditions (and therefore observations) on consecutive days are more
likely to be similar than for days further apart. Since the calculation of
the variance for Yij is used for the calculation of the variance of GI
(which requires sums), an estimate of the assumednon-zero covariance
terms between observations on stations and days was needed.

2.4. Calculation of variances and covariances

In order to evaluate the linear model's estimation of index variance,
it is helpful to know the expected theoretical variance from the simula-
tion model. Molenberghs et al. (2007) presented the derivation of the
mean and variance of overdispersed, correlated count observations
from model (2). They provided the theoretical mean and variance for
such a random variablewith one randomeffect and the general solution
for such a random variable with any number of crossed random effects.
We used their general solution for two crossed random effects and de-
rived the theoretical mean and variance of Yij (each observed count)
based on model (2). In order to calculate the variance of GI, it was also
necessary to derive the covariances between counts for a station on sep-
arate days and between counts from different stations on a single day
(Appendix A). This again was an application of the general formula pre-
sented by Molenberghs et al. (2007).

2.5. Parameter estimation

Engeman (2005) estimated variance components for station (σs
2),

day (σd
2), and error (σε

2) terms in model (1) using restricted maxi-
mum likelihood (REML) in SAS PROC MIXED or PROC VARCOMP
(SAS Institute Inc., Cary, NC). Here, the lme function in the nlme
package (Pinheiro et al., 2015) in R (R Core Team, 2014) was used,
which uses the same estimation method and was free to download
and easy to install, in hopes that this approach would offer a simple
and reproducible method for future use by a wider audience who
may not have access to SAS software (Appendix B). The linear
mixed effects model used REML techniques to estimate station,
day, and error variance terms, which were then used to estimate
V(GI) directly via the equal sample size formula presented
previously by Engeman (2005):

σ2
GI ¼ V GIð Þequal ¼

σ2
s

S
þ σ2

d

D
þ σ2

e

SD
: ð3Þ

2.6. Simulation setup and validation

AMonte Carlo simulation study was conducted where conditionally
Poisson datasets were simulated from model (2) given in Section 2.2.
Recall, themodel includes a fixed effect parameter, μ, and random effect
parameters for θij~Gamma(α,α) , si~N(0,σs

2) , and dj~N(0,σd
2).

Values for μ , α , σs , and σd were specified in the simulation and
1000 data sets were produced for each parameter combination. For re-
sults to be of practical application, it was essential that the model pa-
rameterizations produce simulated data resembling typical field
observations,whichwe based on a greatmanyfield studies fromaround
the world, such as those referenced in Table 1, the 40 indexing studies
referenced in Table 1 of Allen et al. (2013b), the multi-year indexing
data and results for 14 species from nine sites across a wide swath of
Australia described in Allen et al. (2013a, 2014).

All parameters in the simulationswere pre-specified and selected, as
described above, after confirming that the resulting generated counts
were reasonable representations of datasets that might be collected in
field studies inmanyparts of theworld. BecauseMonte Carlo simulation
studies involve the simulation of data by randomly sampling from a
known, pre-specified distribution (or model), datasets were provided
where the “true” or correct answer is known (which is not the case
with observed data collected from the field). Multiple statistical analy-
ses can then be applied to the simulated data and their resulting param-
eter estimates can then be compared to the true parameters used to
generate the data, thereby allowing a clear evaluation estimation per-
formance. Statistical properties such as low bias (estimated parameters
are on average similar to true/input values) and good coverage (true/
input parameters are included in the estimated confidence intervals) in-
dicate the estimation and inference methods are valid.

We first conducted simulations using the 16 parameter combina-
tions of: μ = −0.1 and 0; α = 0.5 and 1.5; σs = 0.10 and 0.35; σd =
0.05 and 0.25. All simulated data sets were given 40 stations of observa-
tion. Simulations using these 16 combinations of parameter valueswere
initially conducted using 4 observation days and then repeated to con-
sider 2 and 8 observation days. Based on what we observed concerning
the influence of σd in those results, we further explored the impact on
estimation quality when increasing the input (true) values for σd.
Thus, simulations considering another 16 parameter combinations
were repeated using the same parameterizations as initially for μ, α,
and σs, but now with σd values of 0.35 and 0.55.

2.7. Evaluation of estimates

For each data set, a 95% CI for the index as GI � 1:96 SEGI was con-
structed, with the standard error calculated as the square root of the
variance of GI in Eq. (3) using the estimated station, day and error var-
iances. The linear mixedmodel estimation was assessed using coverage
rates of the theoretical expected value of GI by the resulting confidence
intervals, based on the input simulation parameters and the derived for-

mula from model (2), EðGIÞ ¼ expðμ þ σ s
2

2 þ σd
2

2 Þ.

3. Results

Simulation results using the initially specified parameter values and
4 observation days demonstrated acceptable estimation for the linear
model in general, with coverage rates ranging from 0.88 to 0.96
(Table 2). One clear trend was that coverage rates were very close to
0.95 with pre-specified input (true) σd values of 0.05, with a mean cov-
erage rate of 0.948. Specifying σd values of 0.25 resulted in coverage
rates consistently lower, near 0.90, with a mean coverage rate of



Table 2
Maximum likelihood estimation results for the linear mixedmodel averaged over 1000 sets of simulated count data for 40 observation stations and four observation days using input pa-
rameter values that produce realistic datasets characteristic of field data. Here E(GI) is the population expected value for abundance index, SE(GI) is the population standard error for abun-
dance index, GI is themedian of the 1000 estimated abundance index values, SD(GI) is the standard deviation of the 1000 estimated GI value, and coverage rate is the percent of times the
95% confidence interval covered the true E(GI).

Data set descriptive statistics Theoretical values Median estimate

Input values
(1000 datasets simulated
for each combination)

Max count (median) Proportion 0 s (median) E(GI) SE(GI) GI SD(GI) Coverage rate for 95% CI

α μ σs σd

1.5 −0.10 0.10 0.05 6 0.494 0.911 0.100 0.900 0.106 0.958
0.25 6 0.494 0.938 0.156 0.925 0.136 0.886

0.35 0.05 7 0.494 0.963 0.118 0.956 0.121 0.952
0.25 7 0.494 0.993 0.174 0.975 0.157 0.893

0 0.10 0.05 7 0.469 1.006 0.107 1.000 0.114 0.960
0.25 7 0.469 1.037 0.170 1.019 0.151 0.890

0.35 0.05 8 0.469 1.064 0.128 1.063 0.132 0.942
0.25 8 0.466 1.097 0.190 1.075 0.169 0.883

0.5 −0.10 0.10 0.05 9 0.600 0.911 0.130 0.894 0.138 0.941
0.25 10 0.600 0.938 0.179 0.919 0.157 0.908

0.35 0.05 11 0.600 0.963 0.151 0.947 0.155 0.942
0.25 11 0.600 0.993 0.200 0.963 0.176 0.916

0 0.10 0.05 10 0.575 1.006 0.141 1.000 0.152 0.950
0.25 10 0.581 1.037 0.196 1.006 0.173 0.904

0.35 0.05 11 0.575 1.064 0.165 1.050 0.169 0.939
0.25 12 0.581 1.097 0.220 1.075 0.195 0.913

The amount of over-dispersion is affected by theα parameter, the term μ relates to the overallmean count observed on an average station and an averageday and the variance components
for station and day are denoted by σs

2 and σd
2, respectively.
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0.899, and larger values of σd resulted in continued reduction in cover-
age rates.With only two days of observation, coverage ranged from0.85
to 0.95, a slight loss in coverage compared to four days (Table 3). Eight
days of observation increased overall coverage slightly, ranging from
0.90 to 0.97 (Table 4). As the number of observation days
increased, the magnitude of σd had less of an effect on coverage rates
(Tables 2, 3, 4).

Simulations using larger input values for σd of 0.35 and 0.55 (with
other original input values unchanged) resulted in mean coverage
rates of 0.868 and 0.819, respectively (Table 5). While coverage rates
near 0.80 would be a cause for concern for the practitioner, the data
Table 3
Maximum likelihood estimation results for the linear mixedmodel averaged over 1000 sets of s
rameter values that produce realistic datasets characteristic of field data. Here E(GI) is the popul
dance index, GI is themedian of the 1000 estimated abundance index values, SD(GI) is the stand
95% confidence interval covered the true E(GI).

Data set descriptive statistics

Input values
(1000 datasets simulated
for each combination)

Max count (median) Proportion 0 s (med

α μ σs σd

1.5 −0.10 0.10 0.05 5 0.488
0.25 6 0.500

0.35 0.05 6 0.494
0.25 6 0.500

0 0.10 0.05 6 0.463
0.25 6 0.463

0.35 0.05 6 0.469
0.25 7 0.463

0.5 −0.10 0.10 0.05 8 0.600
0.25 8 0.600

0.35 0.05 9 0.600
0.25 9 0.600

0 0.10 0.05 8 0.575
0.25 9 0.575

0.35 0.05 9 0.575
0.25 10 0.575

The amount of overdispersion is affected by theα parameter, the term μ relates to the overall me
for station and day are denoted by σs

2 and σd
2, respectively.
sets simulated from such large input values for this parameter did not
correspond to those typically seen in the field, as the counts generated
from these values were unusually higher than those typically observed
in practice (median highest count per dataset ranged from 7 to 14, as
compared to the data seen in references listed in Table 1, the references
in Table 1 of Allen et al. (2013b), the multi-year indexing data and re-
sults for 14 species in Allen et al. (2013a, 2014).

Themagnitude ofσdwas found to have a greater impact on coverage
rates than the magnitude of σs. Coverage rates decreased substantially
for larger σd but only slightly for larger σs (Tables 2–5). In fact, coverage
rates were quite consistent for constant σd, even as σs is varied.
imulated count data for 40 observation stations and two observation days using input pa-
ation expected value for abundance index, SE(GI) is the population standard error for abun-
ard deviation of the 1000 estimated GI value, and coverage rate is the percent of times the

Theoretical values Median estimate

ian) E(GI) SE(GI) GI SD(GI) Coverage rate for 95% CI

0.911 0.140 0.900 0.148 0.946
0.938 0.220 0.900 0.167 0.853
0.963 0.158 0.950 0.163 0.937
0.993 0.240 0.950 0.188 0.857
1.006 0.150 0.988 0.157 0.948
1.037 0.240 1.000 0.182 0.850
1.064 0.171 1.038 0.174 0.939
1.097 0.262 1.063 0.200 0.858
0.911 0.183 0.894 0.193 0.925
0.938 0.253 0.913 0.217 0.891
0.963 0.206 0.938 0.216 0.935
0.993 0.278 0.963 0.238 0.883
1.006 0.199 0.988 0.216 0.943
1.037 0.277 1.013 0.231 0.884
1.064 0.225 1.038 0.234 0.940
1.097 0.305 1.063 0.255 0.892

an count observed on an average station and an average day and the variance components



Table 4
Maximum likelihood estimation results for the linear mixed model averaged over 1000 sets of simulated count data for 40 observation stations and eight observation days using input
parameter values that produce realistic datasets characteristic of field data. Here E(GI) is the population expected value for abundance index, SE(GI) is the population standard error
for abundance index, GI is the median of the 1000 estimated abundance index values, SD(GI) is the standard deviation of the 1000 estimated GI value, and coverage rate is the percent
of times the 95% confidence interval covered the true E(GI).

Data set descriptive statistics Theoretical values Median estimate

Input values
(1000 datasets simulated
for each combination)

Max count (median) Proportion 0 s (median) E(GI) SE(GI) GI SD(GI) Coverage rate for 95% CI

α μ σs σd

1.5 −0.10 0.10 0.05 7 0.494 0.911 0.071 0.903 0.074 0.965
0.25 7 0.491 0.938 0.111 0.928 0.103 0.914

0.35 0.05 8 0.494 0.963 0.092 0.956 0.092 0.936
0.25 9 0.491 0.993 0.129 0.978 0.122 0.910

0 0.10 0.05 7 0.466 1.006 0.077 1.000 0.079 0.955
0.25 8 0.463 1.037 0.121 1.025 0.113 0.913

0.35 0.05 8 0.466 1.064 0.100 1.059 0.100 0.945
0.25 9 0.469 1.097 0.142 1.081 0.132 0.903

0.5 −0.10 0.10 0.05 11 0.597 0.911 0.093 0.909 0.098 0.957
0.25 11 0.597 0.938 0.127 0.928 0.118 0.899

0.35 0.05 13 0.597 0.963 0.114 0.950 0.115 0.939
0.25 13 0.597 0.993 0.147 0.981 0.134 0.923

0 0.10 0.05 12 0.578 1.006 0.101 1.002 0.107 0.950
0.25 12.5 0.578 1.037 0.139 1.025 0.132 0.933

0.35 0.05 14 0.575 1.064 0.124 1.063 0.127 0.940
0.25 14 0.581 1.097 0.162 1.072 0.149 0.910

The amount of overdispersion is affected by theα parameter, the term μ relates to the overall mean count observed on an average station and an average day and the variance components
for station and day are denoted by σs

2 and σd
2, respectively.
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4. Discussion

Accurate knowledge of absolute animal abundance is near impossi-
ble to acquire in the field (Caughley, 1977; Pollock, 1995; Sutherland,
1996). The primary driving force for applying abundance indexing pro-
cedures is that they are practical or feasiblemethods for tracking animal
populations. When the principles outlined in Engeman (2005) are
strictly applied, researchers can acquire reliable estimates of relative
abundance (indices of abundance). A relative abundance index is max-
imally informative when taken in context with comparative values to
assess trends, changes or differences (Engeman, 2005; Krebs, 2008).
Thus, valid statistical comparison methods among index values are es-
sential. Statistical theory has been developed for a broad class of
indexing approaches (Engeman, 2005) and methods for validating
Table 5
Maximum likelihood estimation results for the linear mixed model averaged over 1000 sets of
input values. Here E(GI) is the population expected value for abundance index, SE(GI) is the pop
dance index values, SD(GI) is the standard deviation of the 1000 estimated GI value, and cover

Data set descriptive statistics

Input values
(1000 datasets simulated
for each combination)

Max count (median) Proportion 0 s (med

α μ σs σd

1.5 −0.10 0.10 0.35 7 0.494
0.55 8 0.491

0.35 0.35 8 0.488
0.55 9 0.494

0 0.10 0.35 7 0.463
0.55 8 0.469

0.35 0.35 9 0.463
0.55 10 0.469

0.5 −0.10 0.10 0.35 10 0.600
0.55 12 0.594

0.35 0.35 12 0.600
0.55 13 0.594

0 0.10 0.35 11 0.581
0.55 12 0.581

0.35 0.35 13 0.581
0.55 14 0.581

The amount of over-dispersion is affected by theα parameter, the term μ relates to the overallm
for station and day are denoted by σs

2 and σd
2, respectively.
indexing procedures have been delineated (Allen and Engeman,
2015). Themissing piece in this picture has concerned the validity of ap-
plying Gaussian-based statistical inference when index values were ob-
tained from count data (i.e., Poisson-distributed data). The present
study has addressed that need.

Themixed effects linearmodel performedwell in estimating indices
and their variances and confidence intervals when simulated counts are
in the range typically obtained in field studies. Two conditions that im-
proved estimation quality were identified. First, estimation improved
with additional observation days. Second, the model performed very
well in terms of confidence interval coverage rates even with few days
when the day-to-day variability (σd) was small. Effective estimation
was observed for a large range of values of station-to-station
variability (σs). From experience, fortunately, day-to-day variability is
simulated count data for 40 observation stations and four observation days using larger σd

ulation standard error for abundance index, GI is themedian of the 1000 estimated abun-
age rate is the percent of times the 95% confidence interval covered the true E(GI).

Theoretical values Median estimate

ian) E(GI) SE(GI) GI SD(GI) Coverage rate for 95% CI

0.967 0.203 0.956 0.169 0.856
1.058 0.335 1.013 0.242 0.807
1.023 0.223 1.000 0.186 0.866
1.119 0.361 1.072 0.266 0.819
1.068 0.223 1.050 0.186 0.843
1.169 0.369 1.125 0.278 0.814
1.130 0.245 1.119 0.205 0.882
1.237 0.397 1.175 0.286 0.822
0.967 0.224 0.938 0.180 0.877
1.058 0.353 1.013 0.263 0.841
1.023 0.246 1.000 0.201 0.872
1.119 0.382 1.066 0.279 0.823
1.068 0.246 1.031 0.196 0.870
1.169 0.390 1.100 0.274 0.827
1.130 0.271 1.103 0.224 0.882
1.237 0.421 1.156 0.296 0.801

ean count observed on an average station and an averageday and the variance components
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most often small in comparison to station-to-station variability
(e.g., Engeman et al., 2000, 2003; Whisson et al., 2005), although there
are instances where the reverse is true (Engeman and Whisson, 2003).

Considering that our results show that small day-to-day variability
and/or increasing the number of observation days improves estimation
quality, while field experience indicates that day-to-day variability
tends to be less impactful than station-to-station variability, leads us
to also consider how to design field studies involving count data. Rather
than be reliant on the likelihood that day-to-day variability would not
be impactful, the conscientious researcher would evaluate design ap-
proaches to promote quality estimation.

The most obvious consideration for assuring estimation quality
would seem to be to maximize the number of observation days in the
field. However, this is not as straight-forward as it seems and there are
constraints to this approach. In reality, logistics and resources often are
the most important influences on sampling designs for wildlife surveys
(Engeman, 2005). Increased observation days can come at a cost in
time or expense in the field that is not practical or obtainable. An excep-
tion to this is the use of camera trapswheremodern high capacitymem-
ory cards and long-lasting batteries allow cameras to remain in the field
for extended periods of time. Even this seemingly idyllic situation has
drawbacks. First, when indexing animal populations, studies can be
invalidated by assuming no changes occur in an extended time frame
(Engeman, 2005). Thus, even if cameras remain installed and working
thewhole time, it might well be reasonable to break that extended peri-
od into smaller segments for population indexing snapshots at different
times. Furthermore, data collection over an extended time period in-
creases the chance that data would be collected during changing weath-
er patterns or during other natural or manmade dynamic events that
affect animal behavior. More than likely, this would increase day-to-
day variability in the data, which in turn decreases estimation quality
and could negate the beneficial impact of maximizing observation days.

The other design consideration from our results whereby improved
estimation quality could be facilitated would be to implement the data
collection such that day-to-day variability is minimized. Environmental
and external factors can affect animal behavior and not all contingencies
can be accounted for in the design of a field study. However, it is possible
to read a weather forecast and plan accordingly for short-term observa-
tion occasions during stable weather. Moreover, not only does inclement
weather tend to increase day-to-day variability, it can also serve to de-
stroy data. For example, precipitation andwind can erase track plots,wa-
terproof trail cameras often turn out to not be trulywaterproof, or water,
snow, ormud gets splashed over the lens, resulting in unintelligible pho-
tographs. It is also possible to identify and avoid time periodswhen there
are significant human disturbances like hunting seasons, cattle
roundups, prescribed burns, infrastructure work on power or gas lines,
and times of increased recreation (i.e., holidays). If datamust be collected
during a period when animal behavior might be changing due to an out-
side influence, then every effort should be made to maximize the num-
ber of observation days. Clearly, a combination of using study resources
to optimize the number of observation days while also avoiding as best
as possible, within the confines of study logistics and resources, circum-
stances that would increase day-to-day variability would offer the best
opportunity for the highest possible estimation quality. By so doing,
the general index and the linear mixed model method using maximum
likelihood estimation is a reliable means of comparing population
index values even though observations may consist of small counts.

Quality estimation leads to quality inferences which in turn support
policy decisions and decisions for management actions. For example, at
a high-density sea turtle nesting beach in Florida where nest losses to
predation sometimes reached as high as 95%, predator removal was
identified as the most important management program at the beach
(e.g. Engeman et al., 2003; U.S. Fish andWildlife Service, 2000). Howev-
er, only limited manpower and resources have been available to carry
out the necessary control work, while too much predator control activ-
ity on the beach could result in disturbances to the sea turtle nesting
activity. Engeman et al. (2003) developed and applied a passive track
plot observation station to monitor predators, with the resulting count
data analyzed according to the GI methodology. The resulting informa-
tion was particularly valuable because it allowed managers to choose a
corrective (real time) control approach over a preventative approach,
which would have resulted in wasted control resources and a failure
to protect the turtle nests (Engeman et al., 2003). Moreover, the data
collection and analytical methodology allowed the impact of restricted
resources for predator removal efforts to be optimized by: 1) optimizing
the timing and strategy for application of predator removal, 2)minimiz-
ing labor by identifying areaswhere predator removalwould havemax-
imal effect, 3) examining beach invasion patterns of predators,
4) assessing predator removal efficacy, 5) providing anticipatory infor-
mation for future turtle nesting seasons, and 6) serving as a detection
method for invasion by additional species known to depredate turtle
nests (Engeman et al., 2003). The resulting success had been unimagin-
able (Engeman et al., 2003), and after many years of this approach the
additional hatchling sea turtles saved from nest predation and entering
the ocean from this beach numbers in the millions.

As another example of the great utility of inference from indices
based on counts, in Australia there has been national debate onwhether
dingo (Canis lupus dingo) control to protect livestock has deleterious ef-
fects on native fauna by releasing populations of invasive red foxes
(Vulpes vulpes), and feral cats (Felis catus), which in turn would hypo-
thetically prey on and threaten small sympatric prey species
(e.g., Allen et al., 2011). Lethal dingo control practices have received in-
creased scrutiny recently for their perceived indirect benefits to fox and
cat populations, culminating in calls to prohibit lethal dingo control
with the expectation that dingoes will then reduce the abundance of
foxes and cats and therefore their impacts on threatened prey (Allen
et al., 2011, 2013a, 2014). To address this issue in a definitive fashion,
Allen et al. (2013a, 2014) used a series of predator manipulation exper-
iments (thosewith the highest level of inference) logistically achievable
in open rangeland areas to determine (1) whether or not sympatric
mesopredator (foxes and cats) abundances were higher, or became
higher in areas subjected to top-predator control, (2) whether or not
sympatric mesopredator activity levels increased immediately after
top-predator control, and (3) how sympatric mesopredator abundance
trends correlated with top-predator abundance trends over time. These
experiments were conducted over a large swath of Australian
rangelands that cover around a third of the continent (Allen et al.,
2013a, 2014). The inferences concerning relationships among 14 spe-
cies of predators and prey were reliant on simultaneously monitoring
the species found in each of the nine study areas. Populationmonitoring
was conducted by indexing each species abundance usingpassive track-
ing plots with observations typically consisting of small counts of track
intrusions that included an over-dispersion of zeroes (Allen et al.,
2013a, 2014), with analyses conducted using general index and the lin-
ear mixed model method using maximum likelihood estimation
coupled with Gaussian-based inference as was evaluated in the current
paper. Their results provided strong, experimental evidence that
contemporary dingo control practices did not produce immediate or
sustained positive overall responses from mesopredators in the beef-
cattle rangelands of Australia, nor did they show that cessation of
dingo control reduced mesopredator abundances. They were led to
assert that proposals to cease dingo control are presently unjustified
on grounds that contemporary dingo control somehow releases
mesopredators and threatens prey fauna through trophic cascade ef-
fects. Contemporary top-predator control might continue to be prac-
ticed for protection of livestock and native fauna in ways compatible
with biodiversity conservation (Allen et al., 2013a, 2014).

There are a vast number of examples from around the world where
valuable information is obtained through indexing animal abundance
with methods involving small counts. Most, probably, are as straight-
forward as assessing whether a particular management action affected
the abundance of a species in an area, although there are also many
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instances, such as the examples above, where much more complicated
relationships and inferences are investigated. Our results provide a
foundational basis for applying the general indexing paradigm to
count data, strengthen the generality of the approach, provide valuable
information for study design, and should reassure practitioners about
the validity of their analytical inferences when using these methods
with count data.

Appendix A. Derivation of V(GI) from model (2), overdispersed
Poisson model with crossed random effects

A.1. Variance of Yij

The variance of Yij can be calculated from Molenberghs et al. (2007)

Eq. (37) applied to model (2). There, E(θij)=1, Eðθ2ijÞ ¼ VðθijÞ þ EðθijÞ2 ¼
1
α þ 1 , and with κij= exp(μ+si+dj), Molenberghs et al. (2007)

Eqs. (41) and (42) give Eðκ ijÞ ¼ expðμ þ σ2
s
2 þ σ2

d
2 Þ and E(κij2)=

V(κij)+E(κij)2= exp(2μ+2σs
2+2σd

2). Eq. (37) then givesVðYijÞ ¼ expðμ
þ σ2

s
2 þ σ2

d
2 Þ þ ð1α þ 1Þ expð2μ þ 2σ2

s þ 2σ2
dÞ− expð2μ þ σ2

s þ σ2
dÞ . Using

EðYijÞ ¼ expðμ þ σ2
s
2 þ σ2

d
2 Þ ≡m this can bewritten asVðYijÞ ¼ mþm2½ð1α þ

1expσs2þσd2−1.

A.2. Variance of GI

The general index GI is calculated as (Engeman, 2005) GI ¼ 1
D

∑D
j¼1

1
Sj

∑S j

i¼1Yij with variance VðGIÞ ¼ ð1D∑
D
j¼1

1
Sj

∑S j

i¼1YijÞ ¼ 1
D2

∑D
j¼1∑

D
k¼1

1
Sj

1
Sk

∑S j

i¼1∑
Sk
n¼1CovðYij; YnkÞ. When Sj=S for all j, as in our

simulations, the variance simplifies to VðGIÞ ¼ ð 1
DSÞ

2½DSCovðYij;YijÞ
þDSS−1CovYij;Ynjþ DSD−1CovYij;Yikþ DSðD−1ÞðS−1ÞCovYik;Ynk .
The covariance terms are

CovðYij;YijÞ ¼ mþm2½ð1α þ 1Þ expðσ2
s þ σ2

dÞ−1�
CovðYij; YnjÞ ¼ m2ðeσ2

d−1Þ
CovðYij; YikÞ ¼ m2ðeσ2

s −1Þ
CovðYij; YnkÞ ¼ 0

for i ¼ n and j ¼ k
for i≠n and j ¼ k
for i ¼ n and j≠k
for i≠n and j≠k:

Appendix B. R code for estimating model (1)

# install.packages(“lme4”).
library(lme4).

# Read Engeman (2005) dingo track data from .csv file of
this form:

# First column Plot = plot number 1, 2, ...
# Next columns are Day1, Day2, ... containing counts on

each day
# Missing values should be coded NA.

dingo.fr b- read.csv("/Users/DingoTracks.csv")
n.days b- ncol( dingo.fr ) - 1

n.plots b- nrow( dingo.fr )
y b- c( dingo.fr$Day1, dingo.fr$Day2, dingo.fr$Day3,

dingo.fr$Day4 )
p.i b- rep( dingo.fr$Plot, n.days )

d.j b- rep( 1:n.days, rep( n.plots, n.days ) )
normal.mle b- lmer(y ~ 1 + (1|p.i) + (1|d.j) )
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