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ABSTRACT Knowledge of factors influencing animal abundance is important to wildlife biologists
developing management plans. This is especially true for economically important species such as blackbirds
(Icteridae), which cause more than $100 million in crop damages annually in the United States. Using data
from the North American Breeding Bird Survey, the National Land Cover Dataset, and the National
Climatic Data Center, we modeled effects of regional environmental variables on relative abundance of 3
blackbird species (red-winged blackbird, Agelaius phoeniceus; yellow-headed blackbird, Xanthocephalus
xanthocephalus; common grackle, Quiscalus quiscula) in the Prairie Pothole Region of the central United
States. We evaluated landscape covariates at 3 logarithmically related spatial scales (1,000 ha, 10,000 ha, and
100,000 ha) and modeled weather variables at the 100,000-ha scale. We constructed models a priori using
information from published habitat associations. We fit models withWinBUGS usingMarkov chainMonte
Carlo techniques. Both landscape and weather variables contributed strongly to predicting blackbird relative
abundance (95% credibility interval did not overlap 0). Variables with the strongest associations with
blackbird relative abundance were the percentage of wetland area and precipitation amount from the year
before bird surveys were conducted. The influence of spatial scale appeared small—models with the same
variables expressed at different scales were often in the best model subset. This large-scale study elucidated
regional effects of weather and landscape variables, suggesting that management strategies aimed at reducing
damages caused by these species should consider the broader landscape, including weather effects, because
such factors may outweigh the influence of localized conditions or site-specific management actions. The
regional species distributional models we developed for blackbirds provide a tool for understanding these
broader landscape effects and guiding wildlife management practices to areas that are optimally beneficial.
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Avian habitat studies are commonly used to assess the
influence of environmental factors on species presence and
abundance, which can be used to inform management
decisions. In the past, results from small-scale habitat studies
that focus on microhabitats (e.g., Clark and Weatherhead

1986, Murkin et al. 1997, Vierling 1999) were often
extrapolated to a regional level, because little information
about bird-habitat relationships was available at larger scales
(Thogmartin 2007, Thogmartin and Knutson 2007).
Although small-scale habitat studies are still common, the
number of large-scale (or regional) habitat studies and
models is growing because of the wide availability of readily
accessible data via the internet, powerful geographic
information system (GIS) software, and software for
Bayesian analysis (Calder et al. 2003, Link and Sauer
2002, Thogmartin et al. 2004b). Regional spatial models and
their abundance predictions can be used to identify
important geographic areas where management efforts can
be focused to be optimally beneficial (Thogmartin et al.
2014). This spatial targeting is especially important when
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allocating scarce management resources across the landscape.
Although spatial modeling will not replace traditional
management approaches, models can be developed and
applied in a repeatable and scientific manner (Thogmartin
and Rohweder 2008, LeBrun et al. 2012).
An additional benefit of regional spatial modeling is the

ability to evaluate the influence of scale on relative
abundance. Scale of covariate analysis can affect the degree
to which a given environmental variable affects the presence
or abundance of a bird, and its influence can vary widely
among studies (Tozer et al. 2010). For example, Saab (1999)
found strong bird–habitat relationships at multiple scales
including landscape, microhabitat, and macrohabitat; vari-
ables measured the landscape level were the most influential
factors on abundance. Thogmartin et al. (2004b, 2006, 2007)
found that cerulean warblers (Setophaga cerulea), grassland
songbirds, and American woodcock (Scolopax minor) were
also influenced differently by landscape factors at varying
scales. Despite the strong influences found in these studies,
other research has found little influence of the spatial scale of
variables on the abundance of birds (e.g., Forcey et al. 2011,
2014). The wide-ranging influence of spatial scale on bird-
habitat relationships underscores the importance of consid-
ering the analysis scale of landscape covariates in modeling
efforts (Thogmartin 2007).
Understanding the hierarchical nature of the environmental

influences on animal abundance is especially important for
species that can have deleterious economic impacts. For
example, blackbirds collectively cause more than $100 million
in crop damages in the United States each year, with most of
this damage occurring in thePrairie Pothole region (Linz et al.
1996, 2011; Klosterman et al. 2013). The economic costs of
blackbird damage have led to a variety of management
programs including the development of perennial sunflower
for foodsplots (Hagyetal.2008,Linzet al.2014)andherbicide
treatments of blackbird nesting vegetation (Linz and Homan
2011), which mostly occur at smaller scales. To date, there is
little information on landscape-level influences on blackbird
populations. An understanding of how environmental factors
are associatedwith blackbird abundancebeyond the local scale,
or how such factors behave across scales, could aid in the
managementof these species.Minimizing cropdamage caused
by blackbirds also has additional benefits for wildlife
management, because agricultural crops are widely used by
other species of conservation interest such as migratory
songbirds (e.g., Hagy et al. 2010).
We evaluated the influence of landscape composition and

configuration along with weather variables on red-winged
blackbird (Agelaius phoeniceus), yellow-headed blackbird
(Xanthocephalus xanthocephalus), and common grackle
(Quiscalus quiscula) relative abundance in the Prairie Pothole
Region of the United States, where these species are
responsible for the majority of the sunflower crop damage
(Peer et al. 2003). Our objectives were to 1) identify the most
important attributes of landscape composition and configu-
ration, and weather factors influencing blackbird relative
abundance and determine how these factors relate to relative
abundance across a gradient of spatial scales, and 2) use the

derived spatial models to produce maps predicting the
relative abundance of blackbirds across the study region so
that the most optimal areas for management can be
identified.

STUDY AREA

The Prairie Pothole Region (Bird Conservation Region 11;
BCR11), covers over 715,000 km2 across 5 states and 3
provinces (North American Bird Conservation Initiative
2005). We examined only the portion of BCR11 within the
United States because of a lack of continuous and
thematically consistent land use data across international
boundaries. Vegetation is highly variable across BCR11
because of large differences in hydrology across the region.
The economy in BCR11 is largely driven by agriculture,
which has greatly affected the region ecologically (Euliss
et al. 1999). Historically BCR11 consisted of around 10%
wetland (Mitsch and Gosselink 2000); however, over half of
preexisting wetlands have been drained for agriculture
(Leitch 1989). Although farms are continuing to increase
in size and urban areas are expanding, the human population
is generally sparse (Leitch 1989).
The climate of BCR11includes precipitation and temper-

ature extremes with the area being typically colder and
wetter to the north and east and warmer and drier to the
west and south (Kantrud 1989); however, all locations
within BCR11 have a negative water balance. Mean daily
temperatures in BCR11 remain at or below 08C for
5 months of the year. Air temperatures can drop below
�608C in the winter and can exceed 408C during the
summer (Euliss et al. 1999). Annual average precipitation
nearly triples from 300mm/year to 900mm/year from west
to east in the region (Millett et al. 2009).

METHODS

We focused our study on 3 species: red-winged blackbird,
yellow-headed blackbird, and common grackle. We chose
these species because they represent a variety of blackbird
taxa, their behaviors are conducive to representation by the
North American Breeding Bird Survey (NABBS), and
because they are the 3 species most responsible for
agricultural damage in BCR11.

Data Acquisition and Processing
Because of the spatial extent of the study, and the
impracticality of collecting field data over BCR11, we
used data from existing large-scale datasets to model relative
blackbird abundance as a function of landscape and weather
variables with the goal of predicting relative abundance
across BCR11. We used bird abundance data from NABBS
routes within BCR11 (Sauer et al. 2014; Fig. 1), land use
data from the United States Geological Survey National
Land Cover Dataset (NLCD; U.S. Department of the
Interior 1992, Vogelmann et al. 2001), and weather data
from the National Climatic Data Center (National Climatic
Data Center 2014).
The NABBS monitors bird population trends at an

international scale (Sauer et al. 2014). Breeding bird survey
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routes are randomly assigned along roadsides across North
America and are surveyed every year during late May and
June. Each route is 39.4 km in length, and an observer
performs 50 counts approximately every 0.8 km along the
route. Each count consists of a 3-minute point count, and all
birds seen or heard within a 402-m radius are recorded. The
same observer surveys each route every year, when possible,
with the same method and only under ideal weather
conditions (i.e., low wind and minimal precipitation), so
there is minimal impact to bird detection rates. The NABBS
survey is designed to minimize sampling and detection error
so that variance in trends can be detected over time. Despite
efforts to maximize detection probabilities within and among
NABBS counts, detection probabilities of<1 are present and
thus abundance data should be considered relative in nature.
We used data from 95 routes in BCR11 for this study; we fit
models using data from 77 routes and withheld data from 18
randomly selected routes for model evaluation. We used
NABBS data collected from each year between 1980–2000
because this period overlaps the early 1990s when land use
data were derived fromNLCD satellite imagery (Vogelmann
et al. 2001). The long 20-year period (as opposed to shorter
periods) allowed us to smooth over the annual variability in
the changing landscape and better estimate average effect of
land use, much in the same way that a longer time period
allows for estimation of an average effect of climate (Hurrell
and Loon 1997).
The 1992 NLCD data represent conditions in the United

States in the early 1990s and are available in 30-m resolution
(Vogelmann et al. 2001).We evaluated landscape variables at
3 spatial scales by creating 3 sizes of buffers—0.1 km
(1,000 ha), 1 km (10,000 ha), and 10 km (100,000 ha)—
around each 39.4-km NABBS route (Brennan and Schnell
2007). We reclassified the NLCD from Anderson Level II
into a modified Anderson Level I (Anderson et al. 1976) to
smooth small-scale variation in land use and reduce potential
errors in land use classifications that may occur at finer levels.
We calculated landscape variables within each buffer zone
using FRAGSTATS 3 (McGarigal et al. 2002). Although
habitat preferences vary among the 3 blackbird species, the

metrics that characterize habitat were similar across species
and included the percentage of relevant habitats, edge
density, interspersion of a particular habitat with other
habitats, and the size of the largest contiguous habitat patch
(Table 1). Land use types surrounding NABBS routes have
been shown to be generally similar to land use within BCRs
as a whole (Niemuth et al. 2007, Veech et al. 2012), so the
sampling methodology should be representative of habitats
within BCR11.
We used weather data from 245 recording stations across

BCR11 in both the United States and Canada.We used data
from Canada with those from the United States as part of
another study to evaluate bird-environment relationships in
the Canadian region of BCR11 (Forcey et al. 2007). We
calculated total precipitation as follows (Akinremi et al.
1999):

Total precipitation¼Rainfallþ (0.1� Snowfall)

We used the Spatial Analyst extension of ArcGIS 9.1
(Environmental Systems Research, Inc. [ESRI] 2005) along
with the kriging function to create a continuous surface for
each weather variable for each year from 1980 to 2000 over
BCR11. This allowed us to estimate weather variables
around NABBS routes from the information at nearby
weather stations. Within each 10-km buffer surrounding
each NABBS route, we averaged the grid cell values to
compute a value for each weather variable for each route for
each year. Resolution of weather interpolations was 1,000m.

Abundance Modeling
Wemodeled total blackbird relative abundance per route per
year from 1,212 NABBS counts (surveyed by 145 observers
from 1980–2000) as a function of nuisance effects associated
with the survey design, landscape variables, and weather
variables. We used a hierarchical Poisson regression model
for several reasons. Hierarchical models can be crafted to
acknowledge correlation among multiple observational units,
which are present in the survey design. Poisson regression
counts are typically discrete positive values. In a Bayesian
framework, all unknown quantities are treated as random
variables and therefore they provide a natural approach to
this type of analysis (Link and Sauer 2002). Modeling in a
Bayesian framework simultaneously accommodated the
Poisson-distributed counts, nuisance effects associated
with the NABBS, and spatial autocorrelation present in
the data.
We fit models usingMarkov chainMonte Carlo (MCMC)

techniques using Gibbs sampling (Link et al. 2002, Gelman
et al. 2004). We computed 3 MCMC chains for each
simulation with different starting values for each chain to
allow computation of the Gelman-Rubin test for conver-
gence (Brooks and Gelman 1998). We ran MCMC
simulations for 25,000 iterations, including a 20,000-
iteration burn-in period required for convergence. Conver-
gence represents the point beyond which the data do not
substantively influence the posterior distribution and
dependence on the prior distribution is minimized. We

Figure 1. Distribution and tessellation of 95 North American Breeding
Bird Survey routes in the United States region of Bird Conservation 11,
1980–2000.

1024 The Journal of Wildlife Management � 79(6)



fitted the spatial Poisson models using WinBUGS 1.4.1
(Spiegelhalter et al. 2003).
We included temporal, spatial, and observer variables to

account for nuisance effects in the variation among counts so
we could look at unbiased trends in relative abundance.
Temporal correlation in bird counts was present among
years, spatial correlation was present among routes, and
observers have varying degrees of birding acumen, which can
influence detections. We included a year effect and a
trending term to account for temporal variation in bird
relative abundance that occurs as populations naturally
fluctuate over time. We included a spatial conditional
autoregressive (CAR) prior distribution on the route effect to
account for spatial autocorrelation present in the data
(Banerjee et al. 2004). We derived an adjacency matrix
(Lawson et al. 2003) within BCR11 by using a tessellation of
NABBS routes within BCR11 and creating an irregular
lattice (Hooge and Eichenlaub 2000; Fig. 1). We accounted
for spatial autocorrelation when routes shared a common
boundary in the tessellation; we did not consider distances
among routes, although this is possible in other applications
(Thogmartin et al. 2004b).We included 2 observer covariates
in the model. The first observer variable accounted for
differences in surveying abilities among observers (Sauer
et al. 1994) as well as improvements in observer bird
identification over time through experience, increased
surveying efficacy, and associating certain species with
individual stops (Kendall et al. 1996). The second observer

effect was a 0 or 1 and accounted for inexperience (a first-
time observer effect).
Because little information is known about how environ-

mental variables influence blackbirds at the regional level, we
assigned vague prior distributions to parameters in the model
(Link and Sauer 2002). Counts, environmental covariates
(vk), and nuisance effects all occurred across space (s).
Lambda (l) represents the expected or mean count of a
species on a route for a given year (sample size k¼ 1 to n).We
gave year (gk), observer (vk), and overdispersion (ɛk) effects
in counts mean zero normal distributions; we gave beta
parameters (bk), and spatial effects (Zk) normal distributions
with mean of 0 and variance equal to 1,000. The first-time
observer effect (h) was an indicator variable (0 or 1; Link and
Sauer 2002, Thogmartin et al. 2004b). The final model
equation used was

log½lðsÞ� ¼
Xn

k¼1

vkðsÞ þ ZkðsÞ þ vkðsÞ þ hI ðsÞ þ gkðsÞ þ ek

Given the large number of environmental variables that can
be measured through remote sensing and concomitant risks
associated with finding spurious effects when examining a
large number of covariates, we selected variables that we
thought to be important descriptors of each blackbird species
a priori before fitting models. We reviewed published habitat
associations and life histories for blackbirds to determine
which environmental variables would be likely to have the

Table 1. A priori weather and landscape variables included in suites of candidate models for predicting relative abundance of red-winged blackbirds
(RWBL), yellow-headed blackbirds (YHBL), and common grackles (COGR) in the United States region of Bird Conservation Region 11 in the Prairie
Potholes based on survey data from 1980 to 2000. All covariates were standardized with a mean of 0 and standard deviation of 1.

Type of
variable Variable Variable description

Species that
variable was
modeleda

Weather Previous year precipitation Total precipitation from the year prior to when bird abundance was measured All species
Previous spring temperature Mean spring temperature from the spring prior to when bird abundance was

measured
All species

Yearly precipitation Total precipitation from the same year bird abundance was measured All species
Yearly temperature Mean yearly temperature from the same year bird abundance was measured YHBL
Spring temperature Mean spring temperature from the same year bird abundance was measured All species

Patch-level
landscape

Developed (%) Percentage of developed area in the landscape (includes roads, buildings, etc.) YHBL, COGR

Forest edge density Amount of forest edge per hectare YHBL, COGR
Herbaceous planted (%) Percentage of herbaceous planted in the landscape (includes cropland, fallow,

and, pasture)
RWBL

Herbaceous upland (%) Percentage of herbaceous planted in the landscape (includes grasses and forbs) RWBL
Wetland (%) Percentage of vegetated wetland in the landscape All species
Wetland largest patch index Percentage of total landscape comprised by the largest patch of wetland YHBL
Wetland interspersion and
juxtaposition indexb

Percentage of land use types that are adjacent to vegetated wetland RWBL, YHBL

Total
landscape

Contagionc Aggregation of different patch types in the landscape (low contagion indicates
many land uses in the landscape)

All species

Patch richness density Number of different land uses present per 100 ha All species
Simpson’s diversityd Diversity of land uses in the landscape RWBL, COGR

a Detailed review of life history and justification for including variables for each species can be found in Forcey (2006).
b Interspersion and juxtaposition is approximately 0 when a particular land use type is adjacent to only 1 other land use type. Interspersion and juxtaposition
equals 100 when a particular land use type is equally adjacent to all other land use types.

c Contagion is approximately 0 when every grid cell is a different land use type. The contagion index equals 100 when the landscape consists of a single land use
type. This metric is similar to interspersion and juxtaposition except that contagion is based on cell adjacencies and not land use type adjacencies.

d Simpson’s diversity index represents the chance that any 2 grid cells selected at random would be different land use types.
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most effect on relative abundance (Table 1); a detailed review
of life history for each species can be found in Forcey (2006).
We used these variables to construct a candidate set of
models at each spatial scale for each species. We constructed
all candidate model sets at a common scale because
sufficient a priori information was not available to warrant
constructing multi-scale models. We standardized all
environmental variables to have a mean of 0 and a standard
deviation of 1. This not only improves MCMC convergence
(Gilks and Roberts 1996) but also allows comparison of the
slopes in the model to assess the relative importance of each
variable. We created a Spearman’s rank correlation matrix
for our environmental covariates and excluded covariates
from the same a priori model that had a correlation
coefficient of >0.5.
We ranked models as to how well they were supported by

the data by comparing the Deviance Information Criterion
(DIC) among models (Spiegelhalter et al. 2002). We
constrained our inferences to models within 4 DIC units of
the best model, which approximates a 95% confidence set of
best models (Burnham and Anderson 2002:170). We
calculated model weights to assess the relative importance
of each model and determined the strength of each variable
by evaluating its credibility interval. We considered a variable
as having a strong effect if its 95% credibility interval did not
overlap 0. We also fitted null models (which contained no
environmental variables, only nuisance variables) to compare
to models with environmental covariates to determine the
extent that model fit was improved.
We compared abundance information from the withheld

routes with predicted relative abundances from the best
model. Estimated counts from the best model were based on
prior information, information in the data, and the value of
the beta parameters in the model. We compared abundance
values from withheld routes to predicted values using simple
linear regression. We evaluated model performance using
calibration and discrimination. We evaluated the each
model’s ability to predict abundance by comparing the
slopes of the regression line to a 1:1 correspondence line
(calibration) and by examining theR2 values of the regression
line (discrimination). We performed all regression analyses
using R (R Development Core Team 2012).
We created maps of relative predicted bird abundance

across BCR11 for each blackbird species in this study by
calculating output grids based on the model-averaged beta
parameters in each model within the subset of best models
(Burnham and Anderson 2002:151). We standardized all
data layers in the GIS before calculating the modeled
prediction, because the same covariates were standardized
prior to MCMC simulation. Standardization also made all
the layers dimensionless thereby providing consistent units
across variables. We created 3 sizes of fishnet grids over
BCR11 corresponding to the spatial extents examined in
the study (1,000 ha, 10,000 ha, and 100,000 ha). For each
bird species, we calculated the values of environmental
covariates in a lattice size equaling the scale(s) at which it
was determined to be important. Final maps of avian
relative abundance had a 1,000-m resolution and were

computed using the Spatial Analyst extension of ArcGIS
9.1 (ESRI 2005).

RESULTS

Landscape and weather variables were both important in
predicting spatial patterns of blackbird abundance. Counts of
red-winged and yellow-headed blackbirds were both
positively associated with precipitation in the previous
year and the amount of wetland habitat (Table 2). A 1
standard deviation increase (207mm) in previous year
precipitation increased red-winged blackbird abundance by
2.6% and yellow-headed blackbirds by 7.9%. A 1 standard
deviation increase in the percentage of wetland habitat at the
finest scale (2.7%) increased red-winged blackbird abun-
dance by 2.9%. The percentage of wetland in the landscape
was even more influential for yellow-headed blackbirds with
a 1 standard deviation increase in the finest (2.7%),
intermediate (3.4%), and coarsest scales (7.2%) increasing
abundance by 12%, 11%, and 82.5% respectively.
Conversely, common grackles were not associated with

precipitation or the amount of wetland habitat but were
strongly associated with warmer spring temperatures
(Table 2). A 1 standard deviation increase in spring
temperature (2.18C) increased common grackle abundance
by 3.3%. Forest edge density was negatively associated with
abundance for yellow-headed blackbirds at the finest and
intermediate scales and common grackles at the coarsest
scale. A 1 standard deviation increase in the percentage of
forest at the finest (11.6%) and intermediate scales (11.5%)
decreased yellow-headed blackbird abundance by 7.7% and
6.7%, respectively. Similarly a 1 standard deviation increase
in the percentage of forest at the coarsest scale (10.9%)
decreased common grackle abundance by 6.5%. The majority
of parameter estimates for each species were equivocal and
consistent across spatial scales, suggesting little scale
dependence in habitat associations (Table 2). Spatial patterns
in blackbird abundance were also strongly mediated by the
spatial structure of the data, as represented by the strong
effects of the conditional autoregressive term in our models
(Table 2).
Model uncertainty was high for all 3 species, with the most

supported models exhibiting DIC weights of 0.059, 0.197,
and 0.093 for red-winged blackbirds, yellow-headed black-
birds, and common grackles respectively (Table S1). For each
species, there were at least 14 models within 4 DDIC units of
the best model, each of which contained weather and
landscape variables (Table S1). For red-winged blackbirds
and common grackles, little pattern was evident among the
best-supported models with regards to the spatial scale at
which the models were developed. However, for yellow-
headed blackbirds, the top 6 models were all developed at the
100,000-ha scale and collectively contained 0.657 of the total
model weight (Table S1).
Geographical patterns in relative abundance varied among

species. Red-winged blackbirds were predicted to be
abundant across BCR11, with high predicted relative
abundance in northwest Minnesota and lower elsewhere
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Table 2. Posterior distributions of explanatory variable associations in the best subset of models for explaining blackbird abundance in the United States
region of Bird Conservation Region 11, 1980–2000. We present means, 95% credibility intervals (lower [LCL] and upper credibility limits [UCL]); strong
effects are those variables whose 95% credibility interval does not overlap 0.

Species Variablea Meanb 95% LCL 95% UCL

Red-winged blackbird Spring temperature �0.003 �0.029 0.023
Yearly precipitation 0.009 �0.003 0.021
Previous year spring temperature 0.001 �0.005 0.007
�Previous year precipitation 0.026 0.006 0.046
Herbaceous planted (%) 1,000 0.006 �0.002 0.014
Herbaceous planted (%) 10,000 0.006 �0.002 0.014
Herbaceous planted (%) 100,000 0.006 �0.004 0.016
Herbaceous upland (%) 1,000 �0.006 �0.018 0.006
Herbaceous upland (%) 10,000 �0.007 �0.017 0.003
Herbaceous upland (%) 100,000 �0.006 �0.018 0.006
Wetland interspersion juxtaposition index 1,000 0.006 �0.014 0.026
Wetland interspersion juxtaposition index 10,000 �0.002 �0.024 0.020
Wetland interspersion juxtaposition index 100,000 �0.022 �0.046 0.002
�Wetland area (%) 1,000 0.029 0.005 0.053
Wetland area (%) 10,000 0.026 0.000 0.052
Wetland area (%) 100,000 0.009 �0.023 0.041
Contagion 1,000 0.005 �0.003 0.013
Contagion 10,000 0.002 �0.004 0.008
Contagion 100,000 0.002 �0.004 0.008
�Patch richness density 1,000 0.028 0.004 0.052
�Patch richness density 10,000 �0.025 �0.049 �0.001
Patch richness density 100,000 �0.002 �0.018 0.014
Simpson’s diversity index 1,000 �0.003 �0.011 0.005
Simpson’s diversity index 10,000 0.000 �0.010 0.010
Simpson’s diversity index 100,000 0.002 �0.008 0.012
�Spatial conditional autoregressive 4.602 4.480 4.724

Yellow-headed blackbird Spring temperature 0.003 �0.013 0.019
Yearly temperature �0.010 �0.082 0.062
�Yearly precipitation 0.086 0.002 0.170
Previous year spring temperature 0.004 �0.010 0.018
�Previous year precipitation 0.076 0.026 0.126
Developed area (%) 1,000 �0.042 �0.088 0.004
Developed area (%) 10,000 �0.006 �0.038 0.026
Developed area (%) 100,000 �0.052 �0.462 0.358
�Forest edge density 1,000 �0.080 �0.144 �0.016
�Forest edge density 10,000 �0.069 �0.117 �0.021
Forest edge density 100,000 �0.298 �0.746 0.150
Wetland interspersion juxtaposition index 1,000 0.007 �0.041 0.055
Wetland interspersion juxtaposition index 10,000 0.029 �0.017 0.075
Wetland interspersion juxtaposition index 100,000 �0.338 �0.702 0.026
�Wetland area (%) 1,000 0.114 0.048 0.180
�Wetland area (%) 10,000 0.108 0.056 0.160
�Wetland area (%) 100,000 0.602 0.192 1.012
Wetland largest patch 100,000 0.029 �0.007 0.065
Patch richness density 100,000 �0.029 �0.081 0.023
Contagion 100,000 �0.076 �0.156 0.004
�Spatial conditional autoregressive 1.320 1.052 1.588

Common grackle �Spring temperature 0.032 0.012 0.052
Yearly precipitation 0.002 �0.004 0.008
Previous year precipitation �0.005 �0.027 0.017
Previous year spring temperature 0.030 0.000 0.060
Developed area (%) 1,000 0.084 �0.002 0.170
Developed area (%) 10,000 0.115 �0.001 0.231
Developed area (%) 100,000 �0.013 �0.099 0.073
Forest edge density 1,000 �0.051 �0.111 0.009
Forest edge density 10,000 �0.072 �0.144 0.000
�Forest edge density 100,000 �0.067 �0.121 �0.013
Wetland area (%) 1,000 0.015 �0.025 0.055
Wetland area (%) 10,000 0.000 �0.040 0.040
Wetland area (%) 100,000 �0.020 �0.052 0.012
Patch richness density 1,000 �0.011 �0.033 0.011
Patch richness density 10,000 �0.003 �0.043 0.037
Patch richness density 100,000 0.003 �0.009 0.015
Contagion 1,000 0.014 �0.006 0.034
Contagion 10,000 0.002 �0.030 0.034

(Continued)
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Table 2. (Continued)

Species Variablea Meanb 95% LCL 95% UCL

Contagion 100,000 0.004 �0.006 0.014
Simpson’s diversity index 1,000 �0.019 �0.041 0.003
Simpson’s diversity index 10,000 �0.017 �0.055 0.021
Simpson’s diversity index 100,000 �0.014 �0.034 0.006
�Spatial conditional autoregressive 3.567 3.415 3.719

a A starred (�) variable had strong effects (95% credibility intervals do not overlap 0) for predicting blackbird abundance. Numbers after variables indicate scale
in hectares.

bMean represents a model-averaged value of the beta parameter based on the values of the beta parameters in eachmodel and the corresponding weight (wi) of
each model (Burnham and Anderson 2002:152).

Figure 2. Predicted relative abundance for red-winged blackbird (a), yellow-headed blackbird (b), and common grackle (c) in the United States region of Bird
Conservation Region 11, the Prairie Potholes based on survey data from 1980 to 2000. Different color shades should only be treated as a difference in predicted
relative abundance within a species.
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(Fig. 2). Yellow-headed blackbirds were predicted to exhibit
locally high numbers throughout North Dakota and eastern
South Dakota and lower relative abundances elsewhere, with
very little area predicted to have intermediate densities
(Fig. 2). Common grackles were predicted to be most
abundant in western Minnesota and southeastern South
Dakota, with lower densities throughout the northern
portion of the study area (Fig. 2).
In general, model evaluation indicated models predicting

blackbird abundance had moderate fit (R2¼ 0.23–0.49,
P< 0.001). Red-winged blackbirds and common grackles
were accurately predicted but with poor precision at
intermediate levels of predicted abundance, whereas yel-
low-headed blackbirds were precisely predicted but biased
high relative to observed counts (Fig. 3).

DISCUSSION

Hierarchical modeling elucidated relationships between
blackbird relative abundance and large-scale landscape and
weather variables at all 3 spatial extents, although the level of
influence varied among species, scales, and variable types
(landscape vs. weather). Overall, no particular spatial extent
had a predominant effect on bird relative abundance,
although models at the coarsest scale did garner a large
amount of the overall model weights for yellow-headed
blackbird. However, even for this species there were
multiple models from each spatial scale receiving some
support (DDIC <4). Much of the model selection
uncertainty we observed was due to models with the
same variables at different scales occurring in the best subset,
indicating a weak influence of spatial scale on our focal
species. Although spatial scale at which covariates were
measured has been shown to be important in other studies
(Pribil and Picman 1997, Saab 1999, Holland et al. 2004),
it may be unimportant for most blackbirds in BCR11
because the scales used in the analyses do not correspond to
the scales that influence blackbirds or because of other
limitations (see below).

Landscape Effects
We included wetland area as a variable in all a priori
candidate models because all 3 blackbird species use wetland
areas to some extent in BCR11. Our hypotheses regarding
positive relationships with wetland area were largely
confirmed with red-winged blackbirds and yellow-headed
blackbirds, showing a positive relationship with this variable
at 1 or more scales. Although red-winged blackbirds were
positively associated with this variable, the strength of this
variable was weak compared to yellow-headed blackbirds.
We attribute this to the red-winged blackbird’s ability to
occupy upland and agricultural habitat in addition to wetland
areas (Yasukawa and Searcy 1995). Another explanation is
that some dominant wetland vegetation such as cattail
(Typha spp.) is not distinctly identified in the NLCD. Cattail
density is an important influence on the presence of
blackbirds and other wetland-dwelling birds in the prairie
landscape (Twedt and Crawford 1995, Yasukawa and Searcy
1995, Linz et al. 1996), but this vegetation was not classified

as a separate land use type and therefore could not be
modeled. Red-winged blackbirds have also been shown to
greatly benefit from the presence of land set aside by the
Conservation Reserve Program (CRP; Johnson and Igl
1995). Although cattail density and CRP likely have some

Figure 3. Simple linear regression plots used to evaluate the validity of
spatial models for predicting bird relative abundance in the United States
region of Bird Conservation Region 11, 1980–2000. The solid line
represents the regression line, the dotted line represents a 1–1 correspon-
dence line, and the shaded areas represent the 95% confidence interval on the
regression line. The units on both the x and y axes represent the number of
birds per Breeding Bird Survey route.
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effect on blackbirds in BCR11, the lack of spatial data on
these variables limited our ability to reveal these relation-
ships.
Counts of yellow-headed blackbirds showed strong positive

relationships with wetland area, indicating the importance of
this habitat during the breeding season (Twedt and
Crawford 1995). Although Fairbairn and Dinsmore
(2001) found percentage of marsh to be an important
predictor of common grackle density, we did not find a
similar result in our study. The negative relationship with
wetland area and common grackle relative abundance can be
explained by this species’ preference for woody vegetation
rather than strictly wetland habitat (Peer and Bollinger
1997). Another potential reason could be interpretation
errors that can occur when images are classified into discrete
land use types. Uncommon land use types and small
ephemeral wetlands are especially prone to being incorrectly
classified or completely overlooked when digitizing The-
matic Mapper data (Thogmartin et al. 2004a,Gallant 2009).
Successfully classifying smaller continuous areas of habitat is
often dependent on the output resolution. In Canada, where
land use data resolution is 100m, Forcey et al. (2007) found
little influence of landscape variables on bird abundance,
whereas many strong relationships occurred in our study in
the United States with 30-m resolution land use data. We
attribute this finding to differences in land use data
resolution and classifications between the United States
and Canada and not to ecological differences between
countries. Despite having access to 30-m land use data, we
attempted to minimize classification errors by reclassifying
the NLCD 1992 into broader land use categories similar to
the Anderson level 1 classification system (Anderson et al.
1976).
Our a priori hypothesis of a negative relationship between

both developed area and forest edge density and yellow-
headed blackbird relative abundance was confirmed only at
the finest scale for forest edge density and not at any scale for
the amount of developed area, although parameter estimates
for each variable were negative. Naugle et al. (1999) did not
find any strong associations between yellow-headed black-
birds and woody vegetation, which partially supports our
inconsistent findings with respect to forest edge density.
Yellow-headed blackbirds generally prefer large continuous
areas of habitat with little interspersion of other cover types
during the breeding season (Twedt and Crawford 1995).
Twedt and Crawford (1995) also supports our finding of a
negative relationship between relative abundance and forest
edge density for yellow-headed blackbird; however, the
influence of the amount of wetland area appears to
overwhelm the negative influence of habitat fragmentation
in this case. Forest edge density was negatively associated
with common grackle relative abundance, which was
unexpected for this species given that it is frequently
associated with woody vegetation for nesting (Peer and
Bollinger 1997). Conflicting results from our study are likely
due to the land use data, which represent only larger
continuous areas of forest and overlooks small patches of
trees that surround wetlands.

There was little evidence of an association between red-
winged blackbird abundance and herbaceous planted
vegetation, which was unexpected because strong associa-
tions between red-winged blackbirds and crop production
have been previously reported (Clark et al. 1986). Murkin
et al. (1997) found positive relationships between the number
of vegetation interfaces in wetlands and bird abundance;
however, we found little support for wetland juxtaposition
being an important predictor of red-winged blackbird
relative abundance. However, we did find evidence that
patch richness density was positively associated with relative
abundance at the smallest spatial scale, although it was
negatively associated with red-winged blackbird relative
abundance at the intermediate scale. This discrepancy shows
an unclear relationship among scales for patch richness
density.

Weather Effects and Implications for Climate Change
Weather variables were also important predictors of bird
relative abundance, and all candidate models for each species
in the best subset included at least 1 weather variable. Red-
winged blackbirds and yellow-headed blackbirds were
positively associated with precipitation variables and
common grackles were positively associated with warmer
temperatures. The lack of a relationship between precipita-
tion variables and common grackle abundance is likely
because they are less wetland dependent (Peer and Bollinger
1997) than red-winged blackbirds and yellow-headed
blackbirds (Twedt and Crawford 1995, Yasukawa and
Searcy 1995) or potentially because of issues with the weather
data interpolations. Interpolations of weather data are
imperfect and may limit our ability to find specific
temperature and precipitation relationships with blackbirds.
Areas of imperfection would be largest in areas with few
weather stations and at small scales. Because our inter-
polations are based on a large sample of weather stations
(n¼ 245), we suggest that large-scale errors over BCR11 are
unlikely and that micro variation in weather variables at small
scales is not relevant for landscape-scale models.
The importance of weather in our study concurs with other

studies including Venier et al. (2004), who found that adding
weather variables to models with landscape covariates
improved fit for forest songbirds and Cotgreave (1995) also
noted strong relationships between temperature and precipi-
tation variables and bird abundance patterns. Cerulean
warblers and 5 grassland bird species were also shown to be
associated with weather variables, though the strength of the
associations varied among species (Thogmartin et al. 2004b,
2006).Weather associations found in our studymay have been
more pronounced because of additional information present in
multi-year timeseriesdata asopposed toameanof>10yearsof
data used in several of the previously mentioned studies.
Conflating time series weather data with static land use data
still precludes anevaluationofhowbirdpopulations respondto
land use change over time. This issue might be more
pronounced in BCR11 because of the addition of CRP land
in this area from 1980 to 2000; however, changes in land use
over timewouldbeaccommodated inourmodel by the random
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effect associated with years. Despite the absence of time series
land use data, we were able to show effects of land use on
blackbirds in BCR11. Those effects were, in some cases,
greater than weather influences. This finding is likely due to
land use, which directly dictates foraging and nesting
suitability during the breeding season more than weather
variables.
The positive association of previous-year precipitation with

abundance of red-winged blackbirds and yellow-headed
blackbirds was expected given the strong effects of wetland
area on these species. Annual precipitation directly influences
wetland availability (Johnson et al. 2010), which is also a
strongly influential covariate for predicting abundance of
these species. These results suggest the presence of
interactive effects of weather and landscape variables in
BCR11 and underscores the importance of understanding
weather change and its influence on temporal land use
changes. The majority of models predicting future climate
conditions in BCR11 suggest an increased mean temperature
of nearly 48C but only small shifts in mean annual
precipitation (�5% to þ10%; Johnson et al. 2010). This
suggests that red-winged blackbirds and yellow-headed
blackbirds will largely be unaffected by a changing climate,
but that common grackles could be more strongly affected.
Conversely, the hydrologic cycle is expected to have
increased variation between wet and dry years, leading to
an increased frequency of drought and floods (Ojima et al.
2002, Johnson et al. 2004). These large precipitation swings
would have ramifications for red-winged blackbirds and
yellow-headed blackbirds because of their dependence on
wetland availability. Our models could be used in conjunc-
tion with climate models to forecast the magnitude of these
potential consequences.

Model Evaluation
Results from calibration and discrimination model evalua-
tion show that models generally predicted the withheld data
fair to moderately well (R2¼ 0.23–0.49). Generally, models
under-predicted bird abundance when observed abundance
was high. Low to intermediate abundance within each
species was generally accurately predicted or over-predicted.
Models grossly over-predicted abundances for yellow-
headed blackbirds for 9 counts on route 18 in north-
central North Dakota. This route is surrounded by a
disproportionate amount of wetland area at the finest and
intermediate scales compared to other routes in BCR11.
Given the strength of association of these variables with
yellow-headed blackbirds (Table 2), the model over-
predicted abundance of this species on this NABBS route.
However, the observed numbers on this route were in the
upper range of abundances recorded for this species during
the NABBS (>500 birds). This suggests that although
estimated raw numbers of birds may be unreliable for
certain species, the models still predicted patterns in
abundance well. Despite a lower R2 value for common
grackle, mapping model predictions may still be useful as
long as the results from model evaluation are considered
when interpreting the maps.

We suggest that over- or under-prediction of observed
abundance is not fatal to valid inferences for 2 reasons, First,
managers will concentrate decision-making on the patterns
in the relative predictions rather than the magnitude of
the prediction at any single location; in this regard, the
models predicted higher expected counts where observed
numbers were also higher and vice-versa. Second, the model
evaluation exercise identified how the models perform under
a range of input values; this knowledge can be applied when
interpreting the outputs or when being used as a predictive
tool. Relative abundance maps for blackbirds in BCR11
should be interpreted with this consideration and should not
be used to evaluate absolute abundance. Before any blackbird
management decisions are made, abundance maps should be
supplemented with ancillary field data to validate presence
and relative abundance of the species of interest (LeBrun
et al. 2012).

MANAGEMENT IMPLICATIONS

Increased agricultural production fosters wetland loss and
increases the chances of human-blackbird conflicts due to
crop depredation. Application of hierarchical spatial count
models to blackbird conservation and management can serve
2 purposes: 1) models provide information on how blackbirds
are associated with weather and landscape patterns at
different spatial scales, and 2) maps of predicted relative
abundance indicate locations where management efforts
should be focused so that they are optimally effective.
Although weather is not a factor that can be managed, it is
possible to manage landscape patterns to aid in the
management of blackbirds in BCR11. Understanding the
influences of weather on blackbirds may allow researchers to
assess the magnitude of climatic influences on future patterns
of distribution and abundance and adjust management
planning accordingly. For example, managers interested in
reducing blackbird damage to crops may wish to focus their
efforts on areas with high levels of precipitation, as our results
suggest that such areas may harbor greater numbers of red-
winged blackbirds and yellow-headed blackbirds. An
understanding of regional variability in weather and climate
could greatly aid in the management of species that respond
in a consistent and predictable manner to climate and
weather patterns.
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