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The objective of our analysis is to develop a model of damage costs that arise from colli-
sions between aircraft and birds, based on data drawn from the Federal Aviation
Administration National Wildlife Strike Database (NWSD). We develop a two-part model,
composed of two separate statistical models, that accounts for the effects of aircraft mass
category, engine type, component of the aircraft struck, and the size and number of birds
struck. Our results indicate the size of bird, number of birds, and engine ingestions are the
largest determinants of strike-related costs. More generally, our result is a model that pro-
vides a better understanding of the determinants of damage costs and that can be used to
interpolate the substantial amount of missing data on damage costs that currently exists
within the NWSD. A more complete accounting of damage costs will allow a better under-
standing of how damage costs vary geographically and temporally and, thus, enable more
efficient allocation of management resources across airports and seasons.

Published by Elsevier Ltd.
Introduction

Costs associated with bird–aircraft collisions affect commerce and safety and are widely acknowledged by the aviation
community (Blackwell et al., 2009; Dolbeer, 2013). The annual direct costs (aircraft repair costs) associated with bird strikes
in the US have been estimated at US$155 million (Dolbeer et al., 2013). This number, however, is likely a substantial under-
estimate of the magnitude of the problem. A number studies have indicated substantial underreporting of strikes. Dolbeer
(2009) estimated that reporting rates at larger airports may approach 40%, and several other studies have suggested report-
ing rates of less than 20% (Cleary and Dolbeer, 2005; Wright and Dolbeer, 2005). Thus, the true cost of bird strikes in the US is
likely substantially higher, especially if indirect costs (e.g. aircraft downtime) are considered. Globally, conservative esti-
mates of the total monetary costs of bird strikes range from US$1.21 to US$1.36 billion annually (Allan and Orosz, 2001).
The recognition of the high cost of strikes has led authorities in many developed countries to impose some form of wildlife
management requirement on commercial airports (Dolbeer and Wright, 2009; DeVault et al., 2013). Wildlife hazard manage-
ment regulations in the US (14 Code of Federal Regulations part 139) focus largely on addressing and mitigating wildlife haz-
ards immediately upon detection, regulating land use on or around airports, and conducting wildlife hazard assessments
(Cleary and Dolbeer, 2005; FAA, 2007; Blackwell et al., 2009; Dolbeer and Wright, 2009).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.trd.2015.04.027&domain=pdf
http://dx.doi.org/10.1016/j.trd.2015.04.027
mailto:Aaron.M.Anderson@aphis.usda.gov
http://dx.doi.org/10.1016/j.trd.2015.04.027
http://www.sciencedirect.com/science/journal/13619209
http://www.elsevier.com/locate/trd


50 A. Anderson et al. / Transportation Research Part D 38 (2015) 49–58
A number of previous studies have analyzed the risks posed by different bird species. Zakrajsek and Bisonette (2005), for
example, report that vultures, geese and pelicans are the most hazardous birds to US Air Force aircraft. Dolbeer et al. (2000)
presents similar findings and conclude that a better understanding of species-specific risk can guide the allocation of man-
agement resources at airports. However, efficient allocation of management resources to mitigate the risk and cost of bird
strikes also requires assigning management resources to the airports where the problem is relatively severe. Thus, an accu-
rate understanding of how strike costs vary by airport and over time is beneficial. Unfortunately, fully understanding the
geographic and temporal variation in costs is difficult because many reported strikes do not provide cost information.
Dolbeer et al. (2013), for example, found that only 16% of reported strikes that indicated an adverse effect reported a damage
cost. The estimate of $155 million in annual direct costs accounted for underreporting of damage costs by assuming that
reported damage costs were representative of reported strikes that failed to report an estimate of damage costs. While this
is a reasonable procedure for estimating damages at a national level, important differences might be missed if applied at an
airport level. If the underreporting of costs varies by airport, then assigning a mean damage cost to missing data points is
problematic. Some airports will suffer damage costs that are above or below average due to the type and number of aircraft
and birds present. Thus, a method of assigning damage costs to strike reports that accounts for the characteristics of the par-
ticular strike would be beneficial.

To this end, our objective is to develop a model of damage costs, based on data drawn from the Federal Aviation
Administration National Wildlife Strike Database (NWSD). In future analyses, our model will allow estimation and interpo-
lation of strike costs based on certain other characteristics of the strike that have been reported. In addition to its use as an
interpolation tool, the model allows the contribution of specific strike characteristics to the cost of the strike to be examined
and quantified. In particular, we hypothesize that phase of flight (affecting airspeed and altitude of encounters with birds),
aircraft mass, engine type, and component struck would be relevant explanatory variables in a model of strike-related costs.

Our results will be useful for two reasons. First, its use to interpolate missing cost data in the NWSD will provide for a
better understanding of how costs vary across airports and over time. This will enable managers to more accurately target
airports and seasons with the highest damage costs. Furthermore, it provides a better understanding of the relative contri-
butions of different strike characteristics to the cost of the strike. Such findings are important to understand how vulnera-
bility to strikes varies across aircraft designs and how damage to specific components contributes to costs. The manuscript
proceeds by discussing the NWSD and the particular variables that were used in our analysis. Details of the statistical models
and estimation procedures are then presented before a detailed discussion of the results. Finally, we offer some concluding
remarks regarding the limitations of our analysis and implications of our findings.
Materials and methods

Data

At the time of download, the NWSD included 145,846 reported wildlife strikes from 1990 through 2013. The NWSD
reflects only the voluntary reports of wildlife strikes to the FAA from airlines, airports, pilots, and other sources (http://wild-
life.faa.gov/). Detailed descriptive statistics regarding the broad dataset are published annually and are publicly available
(Dolbeer et al., 2013). The full NWSD contains information on over 90 different variables associated with each strike. Two
types of costs are reported in the NWSD: strike-related damage costs and other indirect costs (e.g. flight schedule disrup-
tions, aircraft downtime). However, the indirect costs are reported far less frequently in the NWSD and less is known about
the comprehensiveness of existing reports of the indirect costs. Therefore, our focus is limited to modeling direct,
strike-related damage costs. It should be noted, however, that some of the reported strike-related damage costs are likely
underestimated because they are sometimes reported before the aircraft has been fully evaluated (Dolbeer et al., 2013).

Of the remaining variables in the NWSD, only a subset was appropriate for our analysis. We hypothesize that phase of
flight, aircraft mass, engine type, and component struck would be determinants of strike-related costs. We also include mea-
sures for the size and numbers of birds involved in a strike. Our research efforts are focused on wildlife strikes between civil
and/or commercial aircraft and birds; our analysis excludes strikes with military aircraft and any collision between an air-
craft and non-bird wildlife. We focus our attention on those variables which were related to the expected value of damages
given that a strike has occurred, and omitted all those variables which are related predominantly to the probability of a strike
occurring (e.g. season of year, time of day, geographic region, etc.).1

There are also data series that suffer the dual problems of high correlation with other relevant explanatory variables, as
well as substantial numbers of missing observations across the NWSD. For example, height and speed are two data series
that are relevant, but both are highly correlated with the phase of flight during which the strike occurred. Including both
the phase of flight categories as well as the combination of the available height and speed variables would introduce con-
siderable difficulties with inference. In addition, there are tens of thousands of observations for which height and/or speed
are unreported, and including these variables in the model would substantially reduce our sample size. In each case where
discretion is required regarding including a variable, we opt for the specification which offers the largest possible sample size
1 It is true that strike costs vary according to region, season, and time. However, costs vary in response to these because the types of birds and aircraft
involved in strikes tend to vary by them. Thus, it is preferable to focus on the proximate causes of the variation rather than the indirect causes.
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Fig. 1. Distribution of 1928 non-zero costs.
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of observations with complete information. Given the suspected multicollinearity issues within the reported variables, esti-
mating our model with the largest available sample size and most parsimonious set of variables seems to be an appropriate
strategy for addressing any remaining multicollinearity (Greene, 2003).

It should also be noted that not all strike reports contain sufficiently complete information to include in our sample. Over
90% of the reported strikes in the raw database do not include a direct repair cost. For some of these observations, another
available data series indicates whether the strike resulted in no damage. We therefore assume a $0 direct repair cost for
those observations. However, there are also observations which indicate by categorical variable that some damage resulted
from the bird strike, but provide no explicit report of the cost of that damage. As we cannot interpolate a repair cost from
these strike reports, we exclude all such observations, as well as any observation for which the entry was incomplete across
our included variables. For example, due to incomplete information across strike reports, observations involving gliders, tur-
boshaft engines for helicopters, and mixed-engine aircraft are absent from our sample. Thus, our analysis is applicable to
strikes involving the following forms of propulsion: (1) traditional gas turbine jet engines using exhaust for thrust (turbo-
jets); (2) gas turbine jet engines powering a ducted fan for thrust (turbofans); (3) gas turbine jet engines powering a pro-
peller for thrust (turboprops); and (4) reciprocating piston engines powering a propeller for thrust. After all such
exclusions, the sample consists of 60,289 records, 1928 of which involve a non-zero dollar repair cost. The mean cost is
US$7,219. Of the non-zero costs, the mean is US$225,739 and the maximum is just over US$40 million (Fig. 1).

Strikes to nearly any part of an aircraft can cause damage and necessitate expensive inspection or repair procedures.
However, anecdotal evidence suggests that ingesting birds into one or more engines is a major determinant of the extent
of damage and probability of a catastrophic outcome. As such, a set of categorical interaction terms is created, denoting
for a given observation whether one engine or multiple engines were struck, and whether or not a bird was ingested by
at least one of the struck engines. Note that ingestion is a concern regardless of engine type. While such events are rarer with
propeller based propulsion systems, engine ingestion still occurs with reciprocating or turboprop aircraft and a number of
these events appear in our sample.

The variables we include are organized into sets of categorical variables indicating different potential determinants of the
damage cost resulting from a bird strike. These groupings include the size and number of birds struck, phase of flight during
which the strike occurred (parked aircraft, taxiing, take-off runs, climb out, en route to destination, descent, final approach to
destination, and landing roll), mass category and engine type of the aircraft involved, the component(s) struck on the aircraft,
and whether or not the strike involved ingestion into an engine (Table 1).
Table 1
Variables used in the analysis with counts in parentheses.

Mass category Engine type Phase of flight Components struck
<2250 kg (3014) Turbofan (51031) Approach (26466) Radome (10326)
2251–5700 kg (2765) Turbojet (3403) Climb (10250) Windshield (13878)
5701–27,000 kg (12387) Reciprocating (136) Descent (2156) Nose (11765)
27,001–272,000 kg (41668) Turboprop (5719) En route (859) Propeller (1578)
>272,000 kg (455) Landing roll (10441) Wing (7094)

Birds struck Take-off run (9920) Fuselage (9826)
Ingestion 1 (50820) Parked (28) Landing gear (3142)
Ingested – 1 Engine (2594) 2–10 (8900) Taxi (169) Tail (616)
Ingested – >1 Engine (186) 11–100 (550) Lights (216)
Not injest. – 1 Engine (3050) >100 (19) Size of birds Other (3871)
Not injest. – >1 Engine (144) Small (34688) Unknown (5032)

Medium (22292)
Large (3309)
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Models

Our two-part model contains two separate statistical models. The cost data we relied on contains a large number of zer-
oes, but there are also a substantial number of non-zero damage costs. This type of data would be a natural application of a
tobit model for censored data, but for this application it was important to allow variables to have different effects on the
probability of a non-zero damage cost and the magnitude of the damage cost (McDonald and Moffitt, 1980). For example,
we expect that a bird strike to a light would likely break or destroy the light, such that we have a greatly increased likelihood
of observing some positive cost as a result. However, the non-zero repair costs associated with replacing the damaged light
would be relatively small. Since a tobit model does not allow this type of flexibility, we model the two processes separately.

Specifically, we apply a binary-choice, heteroskedastic probit model to estimate the probability of a strike generating a
non-zero repair cost. As a dependent variable, this model relies on a data series we construct that is zero when cost is zero
and a one when the reported cost is non-zero. Separately, we employ a log-linear model to estimate the cost of a strike con-
ditioned on the occurrence of a non-zero repair cost. Thus, the log-linear model only includes those observations that report
a non-zero cost. Note that we are somewhat limited in terms of functional form choices because of the categorical nature of
our variables. As a result, investigating the use of quadratic terms or logarithmic transformations is not possible. The only
plausible alternative in the binary-choice model is to use a logit specification, but binary-choice probit and logit models pro-
vide very similar results. For modeling the magnitude of the costs, we choose a log-linear model rather than a linear model
because such a specification avoids the problem of negative values for predicted damage costs and provides a substantially
better fit.

All variables included in both of our models are categorical, such that excluding one variable within each category to
serve as a reference group is necessary to correctly estimate the model.2 The reference variables within each category are
(1) aircraft mass less than 2250 kg, (2) turbofan type engines, (3) large birds (defined subjectively by the strike reporter, relative
to ‘‘medium’’ or ‘‘small’’ birds), (4) no engines struck with no ingestion, and (5) one bird struck. No category is omitted within
the ‘‘components struck’’ group; unlike the other groups which contain mutually exclusive categories, each of the components is
its own independent categorical variable relative to the alternative ‘‘this component was not struck’’.

A homoskedastic probit model is described mathematically by stating the likelihood of observing a non-zero cost of
repairs conditioned on the available empirical data as
2 We
3 As a

cost is u
more v
ProbðCosti > 0jxiÞ ¼ Uðx0ibÞ; ð1Þ
where xi is a vector of explanatory variables, b is a vector of parameters to be estimated, and Uð�Þ is the cumulative distri-
bution function of the standard normal distribution, which has a constant variance of one. However, estimation of a
homoskedastic model in the presence of non-constant variance across observations results in biased and inconsistent

parameter estimates.3 To allow for heteroskedasticity in our model, we use a common specification of r2
i ¼ exp z0ic

� �� �2, where
zi is a vector of explanatory variables (which may contain some or all of the variables in xi), and c is a vector of parameters to be
estimated (Greene, 2003).

Therefore, under the heteroskedastic probit model, the probability of observing a non-zero repair cost for a particular
strike is given by
ProbðCosti > 0jxi; ziÞ ¼ U
x0ib

exp z0ic
� �

 !
: ð2Þ
The likelihood function for this model is
LðbÞ ¼
Y60289

i¼1

U
x0ib

expðz0icÞ

� �� 	ðyiÞ

1�U
x0ib

expðz0icÞ

� �� 	ð1�yiÞ

; ð3Þ
where yi = 1 if Costi > 0 and yi = 0 if Costi = 0. With the parameter estimates b̂ and ĉ in hand, the estimated probability of a

damaging strike is given by U
x0

i
b̂

expðz0
i
ĉÞ


 �
.

In constructing the specification for the heteroskedastic variance term, we want to include as much relevant information
as possible in the z vector. As a first attempt, we estimate the model using the full x vector of explanatory variables for both
the probability and variance portions of the model (i.e. x = z). Beginning with the entire set of explanatory variables is a rea-
sonable starting point because the source of non-constant variance was unknown. Thus, it is desirable to include all variables
in the variance model to capture all potential sources of variation. However, this specification fails to achieve convergence
using any common method. We then opt to build z category by category. We start from an initial assumption of homoskedas-
ticity, and proceed to add broad categorical groupings to the variance vector one at a time, confirming in each case that the
also investigated the inclusion of the year the strike occurred, but the associated coefficient was near zero and insignificant in all cases.
n example of a source of non-constant variance, consider a strike to a light. There little variation in the outcome because damage is very likely and its
sually limited. Alternatively, consider a strike to an engine. It could cause no damage, or it could destroy the aircraft. This implies there will be much

ariation in some types of observations.
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specification converged. Ultimately, this process leads us to include the following categories in: mass category, engine type,
size and number of birds, and aircraft component(s) struck into the final specification for the variance term.

The other component of our two-part model is a log-linear model used to predict the repair costs resulting from a strike,
given that the strike generated a non-zero repair cost. The model is described by lnðyiÞ ¼ x0iaþ ti, where xi is the same vector
of explanatory variables as in the probit model, a is a vector of parameters to be estimated, and t is a zero-mean, normally
distributed disturbance term. Note that by specifying both the probit model and log-linear model with same sets of explana-
tory variables, we are assuming that factors that affect the probability of damage occurring also affect the magnitude of dam-
age. For example, we believe that the size and number of birds struck would affect both the likelihood of damage and its
magnitude.

In order for the log-linear model to account for the heteroskedasticity present in the data, we estimate the standard errors
of the parameters using White’s correction (White, 1980). After obtaining estimates of the parameters, the expected cost of a
strike with a non-zero strike cost is given by expðx0iâÞ. Finally, the expected cost of strike conditioned only on xi and zi is given
by
E Costi xij ; zi½ � ¼ Prob Costi > 0 xi; zijð Þ � E Costi Costi > 0;xij½ � ¼ U
x0ib̂

expðz0iĉÞ

 !
� expðx0iâÞ: ð4Þ
Although the coefficients of the log-linear model can be interpreted as the partial effect of each variable on
E logðCostiÞ Costi > 0j½ �, none of the coefficient estimates are directly interpretable in terms of each variable’s marginal impact
on E[Costi] because E[Costi] is a nonlinear function of the variables. Calculation of the more useful average partial effects of
each variable on the expected cost of a strike requires several steps. To calculate the average partial effect of a particular
variable xj, two x vectors were constructed. The first (x0) contains a zero for x0j, zeros for all variables in the same category
as xj, and the sample mean of each variable not in the same category as xj. The second vector (x1) only differs in that x1j = 1.
After constructing z0 and z1 in an identical manner, the average partial effect of xj on the expected cost of a strike is calculated
as
Average Partial Effectj ¼ U
x01jb̂

expðz01jĉÞ

 !
� exp x01jâ


 �
�U

x00jb̂

expðz00jĉÞ

 !
� expðx00jâÞ: ð5Þ
Note that each of the large terms ½Uð�Þ � expð�Þ� in Eq. (5) return the expected cost of a strike since Uð�Þ is the probability of a
non-zero cost and exp ( � ) is the expected cost of a strike conditional on it being non-zero. Thus, the first of the large terms in
Eq. (5) returns the expected cost of a strike when some particular characteristic of the strike is true (e.g. strike to engine),
while the second large term returns the expected cost of strike when that characteristic is not present (e.g. no strike to
engine). The difference between these two values is then interpreted as the contribution of that particular strike character-
istic or variable to the expected cost.
Results

Estimation results

Convergence is achieved for the probit model after 15 iterations of Newton’s method; the likelihood ratio test against a
null hypothesis of homoskedasticity has a p-value near zero, confirming the appropriateness of estimating a heteroskedastic
model for this sample. The log-linear model fits the data well, generating an adjusted R-squared value of 0.9687. Coefficient
estimates along with standard errors are reported in Table 2.

Average partial effects

Average partial effects represent the expected change in costs associated with a strike involving a particular variable, rel-
ative to a strike involving the excluded variable for each category (Table 3). For example, the entry of 19.64 for mass category
2251–5700 kg is interpreted as the increase in repair costs we would expect to see relative to the costs of an identical strike
to an aircraft less than 2250 kg, while the negative values observed for all aircraft larger than 5701 kg represent reductions in
expected costs relative to that same reference group of excluded aircraft.
Discussion

Mass category

With respect to the mass of an aircraft, the excluded category is the lightest category of the sampled aircraft (less than
2250 kg). Our results imply that, all else equal, heavier aircraft tend to sustain smaller repair costs from a damaging strike
than do smaller aircraft (Table 3). There are several possible explanations for this estimated outcome. There may be



Table 2
Coefficient estimates from probit model and log-linear model

Probit Variance Log-linear Probit Variance Log-linear
Estimate Estimate Estimate Estimate Estimate Estimate
(S.E.) (S.E.) (S.E.) (S.E.) (S.E.) (S.E.)

Intercept Components struck
�0.581⁄⁄⁄ – 9.512⁄⁄⁄ Radome 0.3⁄⁄ 0.08 0.452⁄⁄⁄

(0.092) (0.213) (0.102) (0.044) (0.13)
Mass category
<2250 kg reference reference reference Windshield 0.075 �0.163⁄⁄⁄ 0.128

(�) (�) (�) (0.072) (0.039) (0.126)
2251–5700 kg 0.148 _ �0.101 0.174 Nose �0.036 �0.016 �0.454⁄⁄⁄

(0.079) (0.072) (0.15) (0.081) (0.039) (0.133)
5701–27,000 kg �0.636⁄⁄⁄ 0.03 0.179 Propeller �0.319⁄⁄ 0.092 �0.035

(0.151) (0.084) (0.18) (0.106) (0.072) (0.183)
27,001–272,000 kg �1.625⁄⁄⁄ 0.199⁄ 0.142 Wing 0.607⁄⁄⁄ 0.024 0.225⁄

(0.236) (0.086) (0.19) (0.073) (0.037) (0.102)
>272,000 kg �0.852⁄⁄ 0.15 0.368 Fuselage �0.019 �0.086⁄ 0.184

(0.268) (0.152) (0.315) (0.081) (0.042) (0.139)
Engine type Landing gear �0.199 _ 0.133⁄ �0.394⁄⁄

Turbofan Reference Reference Reference
(�) (�) (�) (0.11) (0.055) (0.15)

Reciprocating 0.181 _ �0.121 �1.614⁄⁄⁄ Tail 0.385⁄⁄ 0.273⁄⁄⁄ 0.376⁄⁄

(0.097) (0.081) (0.181) (0.12) (0.083) (0.144)
Turbojet 0.74⁄⁄⁄ �0.253 �0.342 Lights 1.782⁄⁄⁄ 0.812⁄⁄⁄ �0.908⁄⁄⁄

(0.197) (0.189) (0.366) (0.292) (0.17) (0.207)
Turboprop �0.073 �0.01 �0.66⁄⁄⁄ Other 0.331⁄⁄⁄ 0.095⁄ �0.236

(0.097) (0.057) (0.153) (0.095) (0.048) (0.151)
Phase of flight Unknown �1.489⁄ 0.017 0.21
Approach Reference – Reference

(�) (�) (0.637) (0.209) (0.868)
Climb 0.305⁄⁄⁄ – 0.337⁄⁄ Engine strikes & ingestion

Ingested – 1 engine 1.805⁄⁄⁄ – 2.112⁄⁄⁄

(0.048) (0.104) (0.166) (0.126)
Descent 0.474⁄⁄⁄ – 0.48⁄⁄ Ingested – >1 engine 1.9⁄⁄⁄ – 2.565⁄⁄⁄

(0.079) (0.166) (0.233) (0.35)
En route 0.791⁄⁄⁄ – 0.395⁄⁄ Not ingest. 1 engine 0.428⁄⁄⁄ – 0.51⁄⁄

(0.099) (0.147) (0.07) (0.167)
Landing roll �0.582⁄⁄⁄ – �0.035 Not ingest. >1 engine 0.258 – 0.564

(0.079) (0.192) (0.249) (0.86)
Take-off run �0.092 – 0.289⁄ # of birds struck

1 reference reference reference
(0.051) (0.138) (�) (�) (�)

Parked �0.436 – �1.588⁄⁄⁄ 2–10 0.209⁄⁄ �0.009 0.535⁄⁄⁄

(0.633) (0.186) (0.072) (0.037) (0.115)
Taxi �0.664 _ – �0.124 11–100 0.413 _ 0.008 0.772⁄

(0.346) (1.042) (0.224) (0.122) (0.357)
Bird size >100 0.257 0.251 2.235⁄

Small �1.912⁄⁄⁄ 0.109⁄ �1.275⁄⁄⁄ (1.02) (0.596) (1.095)
(0.202) (0.051) (0.121)

Medium �0.986⁄⁄⁄ 0.035 �0.694⁄⁄⁄

(0.114) (0.044) (0.091)
Large Reference Reference Reference

(�) (�) (�)

Note: ⁄⁄⁄indicates significance at the .1% level, ⁄⁄at 1%, ⁄at 5%, and at 10%.
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differences in aircraft design and structure or type and placement of engines, which are particular to aircraft of a certain pur-
pose and therefore size, which would then be highly correlated with aircraft mass.

As such, it may be the case that our mass category grouping is capturing fundamental differences between aircraft of dif-
ferent types, and therefore sizes. In addition, it is possible that smaller aircraft may simply be more prone to catastrophic
failures stemming from a strike; of the 24 strikes in our sample resulting in destroyed aircraft, 20 of these involved smaller
planes from mass categories 1 and 2.
Engine type

Results suggest that there are modest reductions in expected repair costs associated with any of the included engine types
relative to the repair costs associated with turbofan engines. Turbofans appear to be the most costly of the engine types to
inspect and repair after a cost, and turbojets the least costly (Table 3). Also, reciprocating and turboprop engines tend to be
less mechanically prone to experience catastrophic engine damage from a bird strike, due to the smaller air inlets and engine



Table 3
Average partial effects: estimated changes in repair costs.

Partial Partial
Effect Effect

Mass category Components struck
Intercept – Radome 103.98
<2250 kg Reference Windshield �25.51
2251–5700 kg 19.64 Nose �17.86
5701–27,000 kg �146.31 Propeller �2.12
27,001–272,000 kg �195.27 Wing 121.86
>272,000 kg �109.06 Fuselage �15.05
Engine type
Turbofan reference Landing gear �2.05
Reciprocating �34.91 Tail 387.91
Turbojet �8.73 Lights 872.54
Turboprop �23.75 Other 60.14
Phase of flight Unknown �41.26
Approach Reference
Climb 57.41 Engine strikes and ingestion

Ingested – 1 engine 5970.17
Descent 116 Ingested – >1 engine 10726.25
En route 224.47 Not ingest. – 1 engine 78.21
Landing roll �24.64 Not ingest. >1 engine 49.98
Take-off run 2.16 # of birds struck
Parked �29.27 1 reference
Taxi �26.48 2–10 22.94
Bird size 11–100 103
Small �1257.51 >100 1553.77
Medium �1166.72
Large Reference

Note: All entries are expressed in dollars.
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intakes, as well as the propeller blades deflecting bird debris away from the interior of the engine. Although we include indi-
cators for engine ingestion events, it is likely to be the case that our engine types are correlated with ingestion, such that the
engine type coefficients may be partially capturing the different likelihoods of ingestion inherent to each engine type. This
suggests that our ingestion effect variables are not perfectly controlling for the event of engine ingestion, and that some
uncontrolled correlation remains between variables.
Phase of flight

First, consider those phases in which the vehicle is on the ground (i.e. parked, taxi, and landing roll), which all involve the
aircraft traveling at low or no speed. These lower speeds will translate into much lower impact force generated from any
given strike, and because birds will be striking the plane with less total force, the reductions in expected repair costs of a
damaging strike are consistent with our initial expectations regarding the average partial effects (Table 3, Fig. 2).
However, we do observe increases in expected repair costs associated with several phases relative to approach. A strike
which occurs during any of the three phases of flight in which the aircraft is at a substantial altitude (i.e. climb, descent,
or en route) is associated with an increase in the expected costs of repairing any damages. This is consistent with our expec-
tations; a plane at cruising altitude and speed will be traveling at a very high speed, and any midair collision with a foreign
object will result in tremendous impact force. Any such impact would be highly likely to result in an adverse effect on the
plane, necessitating some direct repair costs via inspection to verify or correct any resultant damages. In addition, we see an
increase in repair costs stemming from strikes occurring during a take-off run, perhaps because of the critical nature of this
phase of the flight and the fact that engines typically produce relatively high power at this time (Dolbeer et al., 2013).
Struck components

Interpreting our ‘‘components struck’’ coefficients requires some care, in that each of these components is in relation to
‘‘this component was not struck.’’ We see substantial increases stemming from strikes to several easily damaged compo-
nents, such as the plane’s radome (nose cone), wing, tail, and lights (Fig. 3). In each case, any strike requires inspection
and maintenance, as well as a large likelihood that the part will need repair or replacement. We also note that our two cat-
egories indicating that a strike occurred to an uncertain or unknown component (other and unknown) are not directly inter-
pretable. Additionally, although several of the estimated partial effects associated with struck components were negative,
the standard errors of the associated coefficients in the probit and log-linear models were quite large, preventing strong
inferences from being made about the true impact of those struck components.



Fig. 2. Average partial effects associated with strikes during phases of flight. Each is measured relative to a strike during approach.

Fig. 3. Average partial effects associated with a strike to each component.
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Ingestion effects

The baseline for these categorical variables is ‘‘no engines struck and no ingestion has occurred’’; each of the reported
coefficients is adjusting the estimated repair costs of a damaging strike in a logical fashion. That is, when ingestion has
occurred, we see very large increases in the expected costs of repair, whereas we see much more modest increases when
ingestion is not a factor but an engine has been struck, regardless of whether the strike involved one or more than one
engine. This is consistent with the fact that a bird entering an engine represents a potentially catastrophic engine failure,
which is a very costly event. Not only is the engine itself damaged, but there is a relatively high probability that such an
event will result in other forms of repair costs to other parts of the aircraft (especially if the engine failure results in a
crash-related event).

Bird size

Our reference category in this group is strikes involving large birds, which would be expected to generate larger repair
costs than strikes involving a small or medium sized bird. This is consistent with our understanding of how the impact force
of a bird strike is calculated (see MacKinnon et al., 2001); because impact force is proportional to a bird’s mass, a larger bird
will generate a larger impact force than will a smaller bird, all else equal. This expectation is borne out in our results, in that
we see substantial decreases in the estimated repair costs associated with either small or medium sized birds relative to
strikes involving large birds (see also Dolbeer and Wright, 2009; DeVault et al., 2011).

One point worth mentioning is that there is some imprecision and embedded measurement error regarding the size of
birds struck. Although some estimates of bird size are corrected at a later stage based on the particular species involved, esti-
mates of bird size within some strike reports are based upon the subjective measure of the bird’s size drawn from the strike
reporter’s best guess about the size of the involved wildlife, which may vary considerably between different reporters and
therefore different observations. Many reported strikes do list the specific species involved and, in principle, it is possible to
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include a measure of species mass rather than the categorical size variables. However, a substantial number of observations
do not include the specific species, and the size of the sample would be limited as a result. Additionally, inclusion of the cat-
egorical size variables allows a very flexible relationship between bird size and damage, whereas the including a single, con-
tinuous mass variable would impose a more restrictive relationship.
Number of birds

When considering the number of birds involved in a strike event, recall that our reference group is a strike between an
aircraft and a single bird. The average partial effects calculated for striking more than one bird during a single event indicate
that striking a larger number of birds directly increases the estimated costs of repair stemming from a damaging bird strike.
In particular, we see modest increases in repair costs for strikes involving more than one bird but less than ten birds, more
sizable increases when between 11 and 100 birds are involved, and a substantial hike in costs for strikes with large flocks of
greater than 100 individual birds (see also DeVault et al., 2011).
Conclusions

In broad terms, the purpose of our research is to more accurately measure the scope and magnitude of the bird strike
problem in monetary terms, with an eye towards providing better information for wildlife damage cost-benefit analyses
and damage mitigation strategies. We estimate the probability of a non-zero damage cost, as well as the expected magnitude
of damage cost given that a damaging strike has occurred. We then assemble a composite expected cost of the strike for
those observations that indicate damage, which could be used in the future to interpolate strike costs for strike reports that
do not report a cost. The current voluntary strike reporting system is known to underreport both the occurrence of strikes as
well as the explicit damage or repair costs (Dolbeer et al., 2013). Therefore, any method which may be able to improve the
data quality is valuable for decisions or analyses that rely upon the data. Given that wildlife management resources are finite,
anything which allows them to be directed more effectively will improve efficiency of operations throughout the US aviation
system. In addition, because there are a number of different stakeholders involved in wildlife damage mitigation efforts at
airports, improving the quality of shared information available to the various decision makers will result in more effective
collaborations.

There are several limitations to our analysis. We have assumed very simple functional forms for each component of our
model, using only categorical variables, and it may be the case that there are aspects of the behavior of repair costs that this
categorical approach fails to capture. There are also measurement problems associated with estimates of bird size and bird
numbers. As they appear in the NWSD data, bird size is sometimes a subjective measure and estimates of the number of
birds struck are subject to the inherent difficulties of such estimates. Additionally, strikes are sometimes reported based
on feathers and other residue left from the strike. In such cases, it can be difficult to properly identify the number of birds
struck. There are also many choices to be made about which variables should be included in the models. When there is a
choice to include additional variables that were correlated with already-included variables but that were also missing for
many observations, we favor exclusion to minimize issues with multicollinearity and maximize the sample size. We
acknowledge that there is some degree of subjectivity to this approach, but more formal methods of model selection are
not fully capable of considering these tradeoffs. Finally, although we suggest that the model can be used to interpolate miss-
ing data, this should be done with caution. The models appear to fit the sample data well, but as more data becomes avail-
able, forecasting performance should be carefully evaluated based on new, out-of-sample data.

The framework we provide is ultimately useful for two reasons. First, it provides a better understanding of how the prob-
ability and extent of damage are affected by the characteristics of a strike. Second, the model can be used to estimate the cost
of the substantial number of strikes for which the actual cost is unreported. Thus, the goal of future work will be to better
assess how the cost of bird strikes varies across airports and over time by using our model to alleviate the problem of under-
reporting of strike costs that is present in the current data. Ultimately, this will allow research and management resources to
be devoted where and when the highest costs occur and the potential benefits of mitigation efforts are the greatest.
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