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Abstract
The double-crested cormorant, Phalacrocorax auritus, is considered the primary depredating bird

species on commercially produced channel catfish, Ictalurus punctatus, in the southeastern USA. We
simulated different levels of cormorant predation on losses at harvest and economic effects on channel
catfish production in a multiple-batch cropping system. We observed significant (P< 0.05) declines in
catfish production at increasing levels of cormorant predation in this study. This decline was mitigated
by increased individual growth of catfish at higher predation rates (i.e., lower catfish densities). This
mitigating effect produced a non-linear relationship with total kg of catfish harvested per pond resulting
in a non-linear incremental increase in breakeven price related to predation. Costs of production
($/kg) increased with increasing predation levels up to very high levels of predation with a cumulative
maximum increase in breakeven price of $0.143/kg. These results indicate that losses at harvest due to
cormorant predation occur immediately but are mitigated in part by compensatory growth of individual
catfish. Losses due to cormorant predation in multi-batch systems can be considerable, but there is not
a 1:1 relationship between losses and kg of catfish harvested due to compensatory factors.

Channel catfish, Ictalurus punctatus, (catfish)
aquaculture is one of the largest dollar value fin-
fish aquaculture industries in the USA (USDA
NASS 2014). The majority of this production
occurs in the southeastern USA and the delta
region of Mississippi in particular (USDA NASS
2014). The double-crested cormorant (Phalacro-
corax auritus, cormorant) is abundant in the
region and is considered the primary depredating
bird species on commercially produced channel
catfish (Glahn et al. 2000; Dorr et al. 2012a).
These factors have resulted in significant con-
cern over the potential economic losses to the
catfish aquaculture industry attributable to cor-
morant. Consequently, there has been consider-
able effort to understand and manage cormorant
depredation issues.

1 Correspondence to: brian.s.dorr@aphis.usda.gov

Most of the research effort to date on cor-
morant impacts to catfish aquaculture has
focused on bioenergetics modeling, delta-wide
population surveys, and extrapolation of these
data to the industry in estimating potential
losses (Stickley et al. 1992; Glahn and Brugger
1995; Glahn and Stickley 1995; Glahn et al.
1996; Dorr et al. 2012b). However, little infor-
mation exists regarding impacts at the pond or
farm level. Glahn and Dorr (2002) addressed
this issue for single-batch production scenario
(Tucker et al. 2004) with alternative prey being
present. Although this study provided insights
on the effects of cormorant predation and alter-
native prey, it does not reflect current practices
in the aquaculture industry. Glahn et al. (2002)
evaluated the effects of cormorant predation
at different levels by adapting research pond
production data and modeling observed mortal-
ities for multiple-batch cropping systems (see
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Tucker et al. 2004 for a description). However,
they acknowledged several shortcomings to this
approach for evaluating effects of cormorant
predation. Chief among these issues is that
other mortality sources (e.g., disease) do not
impact catfish and production in the same way
as cormorant depredation. Few studies have
directly evaluated the potential loss at harvest
due to cormorant predation at the individual
pond level in a multiple-batch production sys-
tem. Multiple-batch production of catfish is
the primary commercial production method for
channel catfish in the USA (Hanson and Steeby
2003).

We used research ponds in a multiple-batch
cropping system to evaluate the effects of cor-
morant depredation on catfish aquaculture that
more realistically represents current production
practices and characteristics of cormorant forag-
ing on catfish aquaculture (Dorr et al. 2012a).
This study can help to better define the eco-
nomic impact of cormorants on commercial cat-
fish ponds, address some of the issues stated
by Glahn et al. (2002), and inform manage-
ment strategies to alleviate depredation impact.
Specifically, our objectives were to (1) determine
the effect of simulating different levels of cor-
morant predation on number and biomass at har-
vest and compensatory growth and mortality of
channel catfish in a multiple-batch cropping sys-
tem, (2) develop models for describing changes
in number and biomass at harvest for varying
levels of cormorant predation, and (3) evaluate
these production losses in term of pond level eco-
nomics.

Materials and Methods

Stocking, Maintenance, and Harvest of Catfish

Forty approximately 0.05-ha catfish ponds
were stocked in April 22–23, 2003, using
standard multiple-batch practices (Tucker and
Robinson 1990) at rates observed in the catfish
aquaculture industry 24,710 head/ha (10,000/
acre; USDA/APHIS 1997; Tucker et al. 2004).
We compressed the time line of this study from
the typical 18-mo cycle by stocking ponds to
mimic ponds at≥ 18 mo into the production
cycle and immediately following a foodfish

harvest cycle. We simulated this point in the
harvest cycle by stocking approximately 50%
of the total number of catfish as 13–18 cm or
stocker size fingerlings for grow-out with the
remainder simulating graded and unharvested
catfish averaging less than 0.34 kg (Tucker and
Robinson 1990). The unharvested catfish repre-
sents catfish from the previous stocking that had
not grown large enough for sale. This procedure
simulated a situation in which a multiple-batch
cropping system has recently been harvested of
approximately 50% of the total head count for
foodfish processing and then restocked with a
similar percentage of stocker size fingerlings,
to replace the foodfish removed (Tucker et al.
2004).

To simulate cormorant predation, the initial
stocking rate of catfish was adjusted based on
a given percentage level of predation. Because
cormorants primarily consume 15–18 cm fin-
gerlings (Glahn et al. 1995), the initial stocking
rate of fingerlings was adjusted based on the
level of cormorant predation to be simulated.
Cormorant predation on understocked finger-
lings in foodfish ponds also occurs primarily in
winter, so impacts are often not realized until
the subsequent growing season. In total, eight
predation levels were evaluated: 0, 15, 30, 45,
60, 75, 90, and 100%. Five ponds were stocked
at each of the five associated levels of predation
(i.e., 40 ponds total). The control (0% preda-
tion) ponds were stocked 50:50 stocker-sized
fingerlings and< 0.34 kg catfish, as described
in the preceding paragraph. All other pond
stocking rates were adjusted based on their
associated predation levels. For example, the
15% predation stocking rate was ((0.50×
24,710/ha))× (1–0.15)= 10,502/ha of stocker
size fingerlings. The 100% predation level
received only< 0.34 kg catfish. Average weight
of individual catfish per pond at stocking was
determined by dividing total weight stocked by
total number stocked per pond.

Weights and counts for each category of catfish
stocked (i.e., <0.34 kg and fingerling catfish)
were recorded to account for the distribution of
initial catfish sizes stocked in each pond.

Catfish were fed a satiation diet of 32% protein
feed daily (Robinson et al. 2004). Feeding rate
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was initiated at a level not to exceed 3% of total
catfish biomass in the pond. Subsequent feed-
ing was adjusted based on the amount of feed
consumed in an approximately 15-min period. If
all the feed was consumed in less than 15 min,
then the amount of feed was increased; if not, it
was reduced. Other factors that may affect feed-
ing are water temperature and health status of
catfish. Temperatures lower than about 18 C can
reduce the amount or period of feeding (Robin-
son et al. 2004). Some disease treatments require
the reduction or elimination of feeding (Robin-
son et al. 2004). Daily records of feeding for
each pond were maintained for the duration of
the study.

After a grow-out period of approximately 7
mo, catfish were harvested and counted from
each pond and removed to holding ponds. Har-
vested catfish were separated into two cate-
gories: catfish< 0.34 kg and catfish≥ 0.34 kg.
This was done to track cohort-specific charac-
teristics regarding growth, survival, and produc-
tion of the two size classes of fish in each pond
(i.e., larger but not harvestable size fish and
stocker size fingerlings) present at the beginning
of the production cycle. Harvesting involved
using seine nets and 1–3 seine hauls per pond
and hand counting 50 fish at a time into bas-
kets and weighing each basket to the nearest
0.01 kg. Following seining, ponds were drained
and all fish missed by seining were hand counted
from the drained ponds. Total counts provided
information on estimates of total mortality, and
compensatory versus additive mortality effects.
Average weight of individual catfish per pond at
stocking and harvest was determined by dividing
total weight stocked or harvested by total number
stocked or harvested. Weight data provided esti-
mates of individual compensatory growth and
additive or compensatory effects on total weight
of catfish harvested for each predation scenario.

Statistical and Economic Analyses

Linear polynomial (first to third order) regres-
sion analysis SAS (version 9.2) PROC REG
(SAS Institute Inc., 2008) was used to model
total weight of catfish harvested from ponds
(response variable) at each predation level

(explanatory variable) and total weight for
each size category harvested (i.e., <0.34 kg and
foodfish). The same regression analysis was
used to model overall average individual weight
of catfish from ponds (response variable) at
each predation level and for each size category
at harvest. Lastly, we standardized total kg of
catfish harvested/pond by survival of remaining
fish to isolate the effects of cormorant predation
relative to other mortality sources (e.g., disease).
We then modeled trends in this standardized
harvest estimates using regression analyses as
described previously. Higher order polynomials
were included for modeling trends in harvest
and individual growth if the partial F statistic
was P< 0.15 and the R2 was maximized (Draper
and Smith 1981). An alpha of 0.05 was used for
all other significance tests.

We used the overall weight of catfish standard-
ized for pond specific survival to calculate the kg
yield of catfish for each predation level. We then
converted these estimates to kg/ha by dividing
by the mean pond size in this study. We modi-
fied an existing catfish enterprise budget (Engle
2012) for a 104-ha farm which is a common size
for a commercial catfish foodfish farm (Engle
2007), and adjusted the stocking rate to 12,355
fingerlings per ha. The feed quantity used in the
budget was based on the observed feed conver-
sion ratio (FCR) in this study, and the average
size of catfish fingerlings at stocking. This base
budget was used for each predation level with the
corresponding yields at each predation level used
for budget determination. The breakeven price
above total cost, which also is the per-kg cost
of production, was used for comparison across
predation levels.

Results

A total of 35 of the 40 ponds initially stocked
were used for analyses (Table 1). Five ponds
were not used as they were inadvertently
stocked at rates greater than 24,710/ha. The
ponds removed included one at the 60% preda-
tion rate, two at the 75% predation rate, and two
at the 90% predation rate (Table 1). A total of
23,500≤ 0.34 kg catfish were stocked at a mean
individual weight (total weight/total stocked per
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pond) of 257 g (N = 35, SD= 9.6 g; Table 1).
A total of 12,320 fingerlings were stocked at
a mean weight of 28 g (N = 30, SD= 2.9 g;
Table 1).

Catfish were harvested November 3–5,
after a grow-out period of 195–198 days. A
total of 19,502 foodfish were harvested at
a mean individual weight (total weight/total
number harvested per pond) of 662 g (N = 35,
SD= 104.7 g; Table 2). A total of 9118≤ 0.34 kg
catfish were harvested at a mean individual
weight of 236 g (N = 33, SD= 64.7 g; Table 2).
Trend in overall weight of catfish harvested
was significant (F2,32 = 17.48, P< 0.001) and
non-linear (R2 = 0.52, Fig. 1A). Trend in
total weight of <0.34 kg catfish harvested
was significant (F1,33 = 157.36, P< 0.001)
and linear (R2 = 0.83, Fig. 1B). Trend in total
weight of foodfish harvested was signifi-
cant (F2,32 = 11.42, P< 0.001) and non-linear
(R2 = 0.42, Fig. 2A). Trend in overall weight
of catfish harvested and standardized for pond
specific survival was significant (F2,32 = 34.05,
P< 0.001) and non-linear (R2 = 0.68, Fig. 2B).
Trend in mean individual weight of all cat-
fish harvested was significant (F2,32 = 27.79,
P< 0.001) and non-linear (R2 = 0.64, Fig. 3A).
Trend in mean individual weight of foodfish
harvested was non-significant. Trend in mean
individual weight of <0.34 kg catfish harvested
was significant (F2,28 = 23.80, P< 0.001) and
non-linear (R2 = 0.63, Fig. 3B). Mean survival
of all catfish in all ponds was 78.8% (min= 44.2,
max= 93.7). There was no significant trend in
survival across predation levels.

Trend in overall weight of catfish harvested
and standardized for pond-specific survival
(Fig. 2B) was used to generate harvest estimates
used in the catfish production enterprise budget.
The incremental increase in breakeven price
($/kg) at each predation level ranged from
−$0.003 to $0.031 (mean= 0.013, SD= 0.013,
n= 7). The cumulative maximum breakeven
price was $0.143/kg. Costs of production ($/kg)
increased with increasing predation levels up to
very high levels of predation (Fig. 4). However,
the incremental rate of increase declined as
predation level increased due to lower total costs

of production caused by lower feeding rates and
increased individual catfish growth (Fig. 4).

Discussion

We observed significant declines in catfish
production at increasing levels of cormorant
predation simulated in this study. However,
this decline was mitigated in part by increased
individual growth of catfish at lower catfish
densities. The mitigating effect of increased
individual catfish growth (Fig. 3) produced a
non-linear relationship with total kg of cat-
fish harvested per pond (Fig. 1A), even when
only considering losses attributable to cormorant
predation (Fig. 2B). The effects of compen-
satory growth resulted in a non-linear incre-
mental increase in price per kg necessary to
break even with respect to production costs
(Fig. 4). Increased predation levels resulted in
lower total costs of production due to lower feed-
ing rates. However, the lower yields that resulted
from increased predation resulted in per-kg costs
of production that increased as predation rates
increased up to very high (90%) rates of pre-
dation. Clearly, profitability, for any given farm
price of catfish, will decrease as per-unit cost of
production increases (Fig. 4).

As in this study, Glahn et al. (2002) found
that cormorant predation had a non-linear rela-
tionship with the simulated number of catfish
consumed by cormorants foraging on individual
ponds. However, the maximum mortality mod-
eled by Glahn et al. (2002) was about 60 and
40% at the 18,500 catfish/ha and 25,000 cat-
fish/ha stocking rates, respectively. Thus, Glahn
et al. (2002) had no samples at higher mortality
rates from which to draw conclusions regard-
ing the relationship between cormorant preda-
tion and effects on harvest. While USDA (2010)
reported catfish farmers’ estimates of losses
from single depredation events, there are no
data from commercial catfish farms that mea-
sure actual, cumulative losses due to preda-
tion. Glahn et al. (2002) also used production
data from experimental ponds that had vary-
ing sources of mortality to estimate cormorant
impacts. The losses modeled by Glahn et al.
(2002) and used to simulate cormorant predation
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Table 1. Number of ponds (N) at each predation level, mean pond size (standard deviation), mean number and weight
(kg) of< 0.34 kg channel catfish, Ictalurus punctatus, and stocker size fingerlings stocked per pond, respectively, and total
number and weight (kg) stocked in ponds using multiple-batch production at different simulated double-crested cormorant,
Phalacrocorax auritus, predation levels in April 2003.

N Mean pond ha

Simulated
predation

level
Mean

number≤ 0.34 kg
Mean number

fingerlings
Total

number
Mean

weight≤ 0.34 kg
Mean weight
fingerlings

Total weight
Stocked

5 0.06 (0.004) 0.00 730 (45) 730 (45) 1460 (89) 193.1 (8.9) 19.2 (1.5) 212.4 (10.2)
5 0.06 (0.003) 0.15 690 (42) 587 (36) 1277 (77) 177.4 (16.0) 16.4 (1.0) 193.8 (16.6)
5 0.05 (0.007) 0.30 660 (82) 462 (58) 1122 (140) 172.6 (20.1) 12.8 (3.4) 185.3 (23.2)
5 0.05 (<0.000) 0.45 600 (0) 330 (0) 930 (0) 152.0 (4.7) 9.0 (0.7) 160.9 (5.3)
4 0.05 (0.005) 0.60 675 (65) 270 (25.8) 945 (90) 172.6 (15.7) 8.1 (1.2) 180.7 (16.9)
3 0.05 (<0.000) 0.75 650 (0) 163 (0) 813 (0) 163.3 (9.1) 5.1 (0.5) 168.4 (8.6)
3 0.06 (0.004) 0.90 700 (50) 70 (5) 770 (55) 178.4 (13.4) 1.9 (0.2) 180.3 (13.3)
5 0.05 (0.002) 1.00 670 (27) 0 (0) 670 (27) 167.9 (6.1) 0.0 (0.0) 167.9 (6.1)

Table 2. Number of ponds (N) at each predation level, mean pond size (standard deviation), mean number and weight
(kg) of foodfish and< 0.34 kg channel catfish, Ictalurus punctatus, harvested per pond, respectively, and total number and
weight (kg) harvested from ponds using multiple-batch production at different simulated double-crested cormorant,
Phalacrocorax auritus, predation levels in November, 2003.

N Pond ha
Predation

level
Mean number

foodfish
Mean weight

foodfish
Mean number
≤0.34 kg

Mean
weight≤ 0.34 kg

Total
number

Total
weight

5 0.06 (0.004) 0.00 684 (26) 587.7 (33.6) 517 (47) 100.4 (9.4) 1200 (69) 688.1 (40.6)
5 0.06 (0.003) 0.15 623 (68) 533.3 (56.5) 438 (76) 83.0 (12.3) 1060 (133) 616.4 (67.5)
5 0.05 (0.007) 0.30 547 (123) 468.6 (95.3) 320 (90) 66.1 (18.4) 867 (187) 535.0 (105.7)
5 0.05 (<0.000) 0.45 427 (87) 368.6 (78.4) 193 (88) 40.0 (9.2) 620 (150) 408.6 (80.1)
4 0.05 (0.005) 0.60 572 (70) 467.4 (51.6) 233 (63) 51.4 (11.4) 805 (130) 518.8 (59.4)
3 0.05 (<0.000) 0.75 441 (170) 353.2 (131.6) 186 (33) 49.3 (4.9) 627 (193) 402.5 (132.6)
3 0.06 (0.004) 0.90 558 (67) 487.3 (40.5) 84 (2) 22.7 (3.3) 642 (65) 510.0 (37.5)
5 0.05 (0.002) 1.00 567 (41) 487.6 (71.5) 5 (10) 1.6 (3.5) 571 (45) 489.1 (72.0)

effects on catfish harvest were caused primar-
ily by disease, which differed from our study.
Disease may affect various size and age classes
differently and therefore effects on final harvest.
Disease also occurs throughout the production
cycle, whereas cormorant predation on catfish
in the southeastern USA occurs primarily dur-
ing the winter months. In addition, disease may
inhibit growth of remaining catfish if they have
symptoms but recovered or if the disease was
chronic.

Conversely, cormorants are relatively specific
in the mortality they cause on catfish in that
they primarily consume 15–18 cm fingerlings
during the winter (Glahn et al. 1995). So losses
of stocker size fingerling generally occur either
before or after the growing seasons for stocked
catfish. The mortality on specific size classes
of catfish modeled in this study differs from

that of Glahn et al. (2002), and better simu-
lates the effects of cormorant predation in the
industry. In addition, Glahn et al. (2002) used
data from catfish cultured in single-batch ponds
not multiple-batch ponds as in this study. The
effects of the presence of larger fish compet-
ing with smaller fish for the same food resource
may influence compensatory growth effects at
varying catfish densities. These differences may
account for the mitigating effect of compen-
satory growth observed in this study.

Glahn et al. (2002) found that higher catfish
stocking densities (25,000 vs. 18,500 catfish/ha)
may mitigate the effects of cormorant preda-
tion on catfish. Glahn et al. (2002) attributed this
finding to compensatory mortality and growth
of surviving fish. They also found that simu-
lated predation did not appear to affect produc-
tion in single-batch systems until it exceeded
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Figure 1. (A) Non-linear trend (R2 = 0.52) in total weight of all channel catfish, Ictalurus punctatus, harvested November
3–5, 2003 from 35 ponds stocked April 2–3, 2003, in Mississippi to simulate various levels of double-crested cormorant,
Phalacrocorax auritus, predation. (B) Linear trend (R2 = 0.83) in weight of< 0.34 kg catfish harvested.

about 15% mortality relative to total stocked in
single-batch systems. We did not find a differ-
ence in survival of remaining catfish across the
various predation levels due to factors other than
predation (e.g., disease) in our study. Therefore,
compensatory factors mitigating losses in our
study appeared to be driven by compensatory
growth of surviving catfish rather than other
mortality sources. In our multiple-batch system,
we described an immediate non-linear drop in
production (Fig. 1A) at a declining rate up to
about 60% predation level. Beyond 60% preda-
tion compensatory growth mitigated losses in the
multiple-batch system but never fully regained
the production at lower predation levels. For data
standardized for survival of remaining catfish (to
isolate cormorant predation effects), the thresh-
old for mitigating losses occurred at about the
75% predation level of stocker size fingerlings

(Fig. 2B). This differs from the findings of Glahn
et al. (2002).

We did observe a linear trend in losses of
0.34 kg size catfish harvested (Fig. 1B). These
fish likely represent smaller fingerlings stocked
or catfish that exhibited slower growth than their
cohorts or some combination of these factors.
This effect of uneven growth of individual
fish is well documented in almost all finfish
aquaculture and certainly in catfish aquaculture
(Tucker et al. 2004). In addition, growth rate
tends to slow as fish get larger. This effect was
observed in our study as there was no trend
in mean weight of food-size catfish harvested
relative to predation level. However, there was
a significant non-linear trend in the individual
growth rates of <0.34 kg catfish harvested. Thus,
some fingerlings stocked grew faster, particu-
larly at higher predation levels. As food should
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Figure 2. (A) Non-linear trend (R2 = 0.42) in weight
of food size channel catfish, Ictalurus punctatus, har-
vested November 3–5, 2003, from ponds stocked in April
2–3, 2003, in Mississippi to simulate various levels of
double-crested cormorant, Phalacrocorax auritus, preda-
tion. (B) Non-linear trend (R2 = 0.68) in overall weight of
catfish harvested standardized for pond specific survival.

not be limiting (fish were fed to satiation), the
individual compensatory growth response may
be due to a density-dependent response caused
by a reduction in competition or overcrowd-
ing at higher predation levels. This increased
growth associated with the lower total numbers
likely produced the mitigating effects on losses
observed in this study at higher predation rates.

To our knowledge, this is the first effort to
model the impacts of cormorant predation on
harvest in a simulated multiple-batch produc-
tion system (Tucker and Robinson 1990; Tucker
et al. 2004). Our findings indicate that losses at
harvest due to cormorant predation occur imme-
diately in a multiple-batch system but are mit-
igated to some degree primarily by compen-
satory growth of individual catfish at higher pre-
dation levels. Glahn and Dorr (2002) found simi-
lar compensatory effects on cormorant predation
in simulated single-batch catfish culture systems.
They attributed this to several factors including
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Figure 3. (A) Non-linear trend in (R2 = 0.64) in mean
individual weight of all channel catfish, Ictalurus puncta-
tus, harvested November 3–5, 2003, from ponds stocked in
April 2–3, 2003, in Mississippi to simulate various levels
of double-crested cormorant, Phalacrocorax auritus, pre-
dation. (B) Non-linear trend in (R2 = 0.63) in mean indi-
vidual weight of< 0.34 kg catfish harvested.

compensatory growth, mortality, and the pres-
ence of a buffer prey. Regardless of whether
cormorant predation occurs in single-batch or
multiple-batch systems, losses due to cormorant
predation can be considerable, but there is not
a one-to-one relationship between losses and kg
harvested due to compensatory factors.

This study evaluated effects of a range of
cormorant predation levels in a simulated
multiple-batch catfish culture system based on
an initial stocking density of 25,000 channel
catfish/ha. However, this range of predation
levels may have different outcomes if initial
stocking levels are much lower (e.g., 12,500 cat-
fish/ha). In addition, this study represents effects
after only one production cycle. If cormorant
depredation on fish stocks occurs over multiple
years, the producer may realize a cumulative
decline in numbers of fish in the pond and
harvested. Lastly, hybrid catfish grow faster
which may reduce vulnerability to predation
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Figure 4. Estimated breakeven price of channel catfish,
Ictalurus punctatus, harvest ($U.S./kg) above total produc-
tion cost specific to losses associated with varying levels of
simulated double-crested cormorant, Phalacrocorax auri-
tus, predation.

(Wolters and Tiersch 2004). Further research
could provide valuable insights on the use of
hybrids and how production at varying stocking
densities and multiple production cycles in a
multiple-batch culture system is affected by
cormorant predation.

Acknowledgments

USDA/WS/National Wildlife Research Center
provided funding to conduct this research under
Quality Assurance protocol QA-1047. We thank
Ed Robinson and staff with the Mississippi State
University Agriculture and Forestry Experiment
Station and the USDA, WS, NWRC Mississippi
Field Station for obtaining catfish and assis-
tance with stocking, seining, and maintenance
of catfish. We also thank K. C. Hanson-Dorr,
S.C. Barras, B. Strickland, and an anonymous
reviewer for their comments and editorial
assistance.

Literature Cited
Dorr, B. S., L. W. Burger, S. C. Barras, and K. C.

Godwin. 2012a. Double-crested cormorant distribution
and abundance on catfish aquaculture in the Yazoo
River Basin of Mississippi. Wildlife Society Bulletin
36:70–77.

Dorr, B. S., L. W. Burger, S. C. Barras, and K. Godwin.
2012b. Economic impact of double-crested cormorant
(Phalacrocorax auritus) depredation on channel catfish
(Ictalurus punctatus) aquaculture in Mississippi, USA.
Journal of World Aquaculture 43:502–513.

Draper, N. R. and H. Smith. 1981. Applied regression
analysis, 2nd edition. John Wiley and Sons, Inc., New
York, New York, USA.

Engle, C. R. 2007. Arkansas catfish production bud-
gets. MP466, Arkansas Cooperative Extension
Program, University of Arkansas at Pine Bluff, Pine
Bluff, Arkansas. Accessed March 25, 2015 at http://
www.extension.org/mediawiki/files/b/ba/Arkansas_Cat
fish_Production_Budgets.pdf.

Engle, C. R. 2012. Catfish Enterprise budgets. Univer-
sity of Arkansas at Pine Bluff, Pine Bluff, Arkansas.
Accessed March 30, 2015 at: http://aqfi.uaex.edu/ext
ension/aquaculture/economics/.

Glahn, J. F. and K. E. Brugger. 1995. The impact of
double-crested cormorants on the Mississippi Delta cat-
fish industry: a bioenergetics model. Colonial Water-
birds 18 (Special Publication 1):168–175.

Glahn, J. F. and B. Dorr. 2002. Captive double-crested
cormorant predation on channel catfish (Ictalurus
punctatus) fingerlings and its influence on single batch
cropping production. Journal of the World Aquaculture
Society 33:85–93.

Glahn, J. F. and A. R. Stickley Jr. 1995. Wintering
double-crested cormorants in the delta region of Missis-
sippi: population levels and their impact on the catfish
industry. Colonial Waterbirds 18 (Special Publication
1):137–142.

Glahn, J. F., P. J. Dixson, G. A. Littauer, and
R. B. Mccoy. 1995. Food habits of double-crested
cormorants wintering in the delta region of Mississippi.
Colonial Waterbirds 18:158–167.

Glahn, J. F., A. May, K. Bruce, and D. S. Reinhold. 1996.
Censussing double-crested cormorants (Phalacrocorax
auritus) at their winter roosts in the delta region of
Mississippi. Colonial Waterbirds 19:73–81.

Glahn, J. F., D. S. Reinhold, and C. A. Sloan. 2000.
Recent population trends of double-crested cormorants
wintering in the delta region of Mississippi: responses to
roost dispersal and removal under a recent depredation
order. Waterbirds 23:38–44.

Glahn, J. F., S. J. Werner, T. Hanson, C. R. Engle. 2002.
Cormorant predation losses and their prevention at
catfish farms: Economic considerations. Pages 138-146
in L. Clark, editor. Human conflicts with wildlife:
economic considerations. United States Department
of Agriculture, Wildlife Services, National Wildlife
Research Center. Proceedings of the 3rd NWRC Special
Symposium, Fort Collins, Colorado, August 2000.

Hanson, T. R. and J. A. Steeby. 2003. Comparison
of multiple-batch and “modular” catfish produc-
tion systems. NWAC News, The Thad Cochran
National Warmwater Aquaculture Center, Stoneville,
Mississippi, USA.

Robinson, E. H. B., B. Manning, and M. H. Li. 2004. Feeds
and feeding practices. Pages 324–328 in C. S. Tucker
and J. A. Hargreaves, editors. Biology and culture of
channel catfish. Elsevier B.V., San Diego, California,
USA.

SAS Institute Inc. 2008. SAS/STAT 9.2 user’s guide. SAS
Institute Inc., Cary, North Carolina, USA.

Stickley, A. R., G. L. Warrick, and J. F. Glahn. 1992.
Impact of double-crested cormorant depredations at



CORMORANT POND LEVEL IMPACTS TO CATFISH 327

channel catfish farms. Journal of the World Aquaculture
Society 23:192–198.

Tucker, C. S. and E. H. Robinson. 1990. Channel catfish
farming handbook. Van Nostrand Reinhold, New York,
New York, USA.

Tucker, C. S., J. L. Avery, and D. Heikes. 2004. Cul-
ture methods. Pages 166–195 in C. S. Tucker and
J. A. Hargreaves, editors. Biology and culture of chan-
nel catfish. Elsevier B.V, San Diego, California, USA.

US Department of Agriculture, Animal Plant Health
Inspection Service. 1997. Catfish NAHMS ’97, Part II:
reference of 1996 U.S. catfish management practices.
USDA/APHIS Centers for Epidemiology and Animal
Health, Fort Collins, Colorado, USA.

US Department of Agriculture, Animal Plant Health
Inspection Service. 2010. Catfish 2010 Part III:
changes in catfish health and production practices
in the United States 2002–2009. USDA-APHIS-
VS-CEAH-NAHMS, Fort Collins, Colorado, USA.

US Department of Agriculture, National Agriculture
Statistics Service. 2014. The 2012 Census of Agricul-
ture. Accessed July 23, 2014 at http://www.agcensus.
usda.gov/Publications/2012/Full_Report/Volume_1,_
Chapter_1_US/st99_1_032_033.pdf.

Wolters, W. R. and T. R. Tiersch. 2004. Genetics and
breeding. Pages 95–128 in C. S. Tucker and J. A.
Hargreaves, editors. Biology and culture of channel
catfish. Elsevier B.V, San Diego, California, USA.


