Anthraquinone-based repellent for horned larks, great-tailed grackles, American crows and the protection of California's specialty crops

Scott J. Werner*, Shelagh T. DeLiberto, Anna M. Mangan, Susan E. Pettit, Jeremy W. Ellis, James C. Carlson

United States Department of Agriculture, Animal and Plant Health Inspection Service, Wildlife Services, National Wildlife Research Center, 4101 LaPorte Avenue, Fort Collins, CO 80521-2154, USA

Abstract

Specialty crops include fresh and dried fruits, vegetables, tree nuts, and horticultural and nursery crops. California accounts for 28% of the specialty crop acreage in the United States of America, including 72% of U.S. lettuce production (Lactuca sativa L.), 27% of U.S. melon production and 100% of U.S. almond production (Prunus dulcis L.). We conducted controlled feeding experiments to evaluate an anthraquinone-based repellent for horned larks (Eremophila alpestris L.), great-tailed grackles (Quiscalus mexicanus Gmelin) and American crows (Corvus brachyrhynchos Brehm) associated with the depredation of California’s lettuce, melon and almond crops, respectively. We observed 38–100% feeding repellency among horned larks offered wheat seeds (Triticum spp. L.) treated with 168–3010 ppm anthraquinone during the concentration-response experiment. Great-tailed grackles exposed to rice seeds (Oryza sativa L.) treated with 2060–35,400 ppm anthraquinone exhibited 90–100% repellency. We observed 80–100% repellency among American crows offered almonds treated with 2980–31,500 ppm anthraquinone. We predicted a threshold concentration of 5200 ppm anthraquinone for American crows offered treated almonds. Our laboratory efficacy data provide a reliable basis for planning future field applications of anthraquinone-based bird repellents for the protection of specialty crops. Supplemental field efficacy studies are necessary for the registration of avian repellents and the management of agricultural depredation caused by wild birds.

1. Introduction

Within the United States of America, the designation of commodity and specialty crops is intended to highlight the differences between non-perishable crops such as grains (e.g. corn, Zea mays L.; soybeans, Glycine max L.) and the foods people eat directly (http://www.ucsusa.org/publications/ask/2011/fruits-and-veg.html#.VDcA03KKBMw). The value of farm-level specialty crop production in 2012 totaled nearly $60 billion, representing approximately one-fourth of the value of U.S. crop production, yet specialty crops encompass only 3% of harvested cropland in the U.S. (USDA NASS, 2009; Johnson, 2014). In addition to the relatively high value of specialty crops, the production costs per ha are higher for specialty crops than non-specialty crops (GAO/RCED, 1999).

Specialty crop production within the U.S. is mainly located in California, Florida, Washington, Oregon, North Dakota and Michigan (Johnson, 2014). California accounts for 28% of the specialty crop acreage in the U.S. (USDA NASS, 2009), including 72% of U.S. lettuce production (Lactuca sativa L.), 27% of U.S. melon production (cantaloupe and honeydew (Cucumis spp. Naudin), and watermelon (Citrullus lanatus Matsum. & Nakai) and 100% of U.S. almond production (Prunus dulcis L.; USDA NASS, 2014). Several bird species cause monetary losses to agricultural production in California. Gebhardt et al. (2011) identified Alaudidae (larks), Corvidae (crows, jays), Fringillidae (finches) and Turdidae (thrushes) as some of the primary bird families that cause damage to economically important crops in California.

Several birds can cause damage to California’s economically-important lettuce, melon and almond crops (Table 1). Horned larks (Eremophila alpestris L.) uniquely consume lettuce seeds, uproot seedlings, and graze seedling leaves (i.e. cotyledons). Damaged lettuce seedlings are typically stunted or disfigured, and thus disrupt harvest schedules. Great-tailed grackles (Quiscalus

* Corresponding author.
E-mail address: Scott.J.Werner@aphis.usda.gov (S.J. Werner).

http://dx.doi.org/10.1016/j.cropro.2015.03.020
0261-2194/Published by Elsevier Ltd.
Bird damage to young and ripening melons makes the fruit unmarketable (Hamby and Zalom, 2013). Horned larks and American crows were maintained in individual cages, and great-tailed grackles were maintained in a group during quarantine and holding by the NWRC Animal Care Unit. All birds were quarantined for a minimum of five days prior to testing. Water was provided ad libitum to each test subject throughout the study (quarantine, holding, acclimation, testing). A nutrient-complete maintenance diet was provided ad libitum to each test subject throughout quarantine and holding. The maintenance diet for horned larks included 45% millet, 33% crushed poultry feed, 11% wheat and 11% cracked corn. The maintenance diet for great-tailed grackles included equal parts of cracked corn, milo, safflower, small-kibble dog food and rice. The maintenance diet for American crows included dry dog food (i.e. mixed kibble).

For each of three feeding experiments, test subjects acclimated within individual cages for five days subsequent to quarantine and holding. During the acclimation period, one bowl of unadulterated test diet was presented ad libitum within each cage at approximately 0800 h, daily. During the three days subsequent to the acclimation period (i.e. pre-test), one bowl of unadulterated test diet (30 g for horned larks, 75 g for great-tailed grackles and American crows) was presented within each cage at approximately 0800 h, daily. During the three days subsequent to the pre-test, one bowl of repellent-treated test diet was measured for each test subject (±0.1 g) throughout the pre-test (including spillage and desiccation; Werner et al., 2009).

We ranked birds based upon average pre-test consumption and assigned them to one of several test groups such that each group was similarly populated with birds that exhibited high-low daily consumption. We randomly assigned test treatments (i.e. Avipel® Shield-treated test diet) among groups. Test treatments were formulated by applying aqueous suspensions to test diets (60–100 ml/kg) using a rotating mixer and household spray equipment (Werner et al., 2009). A 100-g sample of each formulated test diet was collected within 24 h of each feeding experiment and then submitted the NWRC Analytical Chemistry Unit for their quantification of anthraquinoine residues among test treatments (i.e. high performance liquid chromatography; Werner et al., 2011, 2014a,b).

The dependent measure of our feeding experiments was calculated as test consumption of repellent-treated test diet relative to average pre-test consumption of untreated test diet (i.e. percent repellency = [one – (group-average test consumption/group-average pre-test consumption)] × 100). Logarithmic regression procedures (Proc Reg, SAS v9.2) were used to analyze repellency as a function of anthraquinoine concentration. Repellent dose (mg anthraquinone/kg body mass) and threshold repellent concentration (ppm anthraquinone) were estimated for bird species that exhibited significant concentration-response relationships including ≤80% and >80% repellency (Werner et al., 2009).

2. Methods

The anthraquinone-based repellent used for each of three feeding experiments included 50% 9,10-anthraquinone (Avipel® Shield, Arkion Life Sciences, New Castle, DE, USA). Horned larks and American crows were maintained in individual cages, and great-tailed grackles were maintained in a group during quarantine and holding by the NWRC Animal Care Unit. All birds were quarantined for a minimum of five days prior to testing. Water was provided ad libitum to each test subject throughout the study (quarantine, holding, acclimation, testing). A nutrient-complete maintenance diet was provided ad libitum to each test subject throughout quarantine and holding. The maintenance diet for horned larks included 45% millet, 33% crushed poultry feed, 11% wheat and 11% cracked corn. The maintenance diet for great-tailed grackles included equal parts of cracked corn, milo, safflower, small-kibble dog food and rice. The maintenance diet for American crows included dry dog food (i.e. mixed kibble).

For each of three feeding experiments, test subjects acclimated within individual cages for five days subsequent to quarantine and holding. During the acclimation period, one bowl of unadulterated test diet was presented ad libitum within each cage at approximately 0800 h, daily. During the three days subsequent to the acclimation period (i.e. pre-test), one bowl of unadulterated test diet (30 g for horned larks, 75 g for great-tailed grackles and American crows) was presented within each cage at approximately 0800 h, daily. During the three days subsequent to the pre-test, one bowl of repellent-treated test diet was measured for each test subject (±0.1 g) throughout the pre-test (including spillage and desiccation; Werner et al., 2009).

We ranked birds based upon average pre-test consumption and assigned them to one of several test groups such that each group was similarly populated with birds that exhibited high-low daily consumption. We randomly assigned test treatments (i.e. Avipel® Shield-treated test diet) among groups. Test treatments were formulated by applying aqueous suspensions to test diets (60–100 ml/kg) using a rotating mixer and household spray equipment (Werner et al., 2009). A 100-g sample of each formulated test diet was collected within 24 h of each feeding experiment and then submitted the NWRC Analytical Chemistry Unit for their quantification of anthraquinoine residues among test treatments (i.e. high performance liquid chromatography; Werner et al., 2011, 2014a,b).

The dependent measure of our feeding experiments was calculated as test consumption of repellent-treated test diet relative to average pre-test consumption of untreated test diet (i.e. percent repellency = [one – (group-average test consumption/group-average pre-test consumption)] × 100). Logarithmic regression procedures (Proc Reg, SAS v9.2) were used to analyze repellency as a function of anthraquinone concentration. Repellent dose (mg anthraquinone/kg body mass) and threshold repellent concentration (ppm anthraquinone) were estimated for bird species that exhibited significant concentration-response relationships including ≤80% and >80% repellency (Werner et al., 2009).

2.1. Horned larks and anthraquinone seed treatment

The purpose of this experiment was to develop an anthraquinone-concentration-response relationship for horned larks in captivity. Rather than a foliar repellent application to emergent lettuce seedlings under field conditions (York et al., 2000; Cummings et al., 2006), wheat seeds were selected as the test seed based upon our previous observations of seasonal food selection and energetic requirements of horned larks under captive and field conditions. Thus, this experiment involved concentration-response testing among individually-caged horned larks (N = 54) offered whole wheat seeds treated with the Avipel® Shield repellent.

On the day subsequent to the pre-test (i.e. test), one bowl (30 g...
of repellent-treated wheat) was presented within each cage at approximately 0800 h. Tested anthraquinone concentrations replicated those previously used to develop a concentration-response relationship for red-winged blackbirds offered treated rice (*Oryza sativa* L.) and sunflower seeds (*Helianthus* spp. L.; Werner et al., 2009). Thus, horned larks in treatment groups 1–6 (n = 9 horned larks per group) received one bowl of 0.02%, 0.035%, 0.05%, 0.1%, 0.25%, or 0.5% anthraquinone during the test, respectively (target concentrations, wt/wt). Consumption of treated wheat was measured for each test subject (±0.1 g) at approximately 0800 h on the morning subsequent to the test (including spillage and desiccation).

2.2. Great-tailed grackles and anthraquinone seed treatment

The purpose of this experiment was to develop an anthraquinone concentration-response relationship for great-tailed grackles in captivity. Rather than chemically treating melons under field conditions (Glahn et al., 1997), rice seeds were selected as the test diet based upon our previous observations of seasonal food selection and energetic requirements of great-tailed grackles under captive and field conditions. Thus, this experiment involved concentration-response testing among individually-caged great-tailed grackles (N = 54) offered rice seeds treated with the Avipel® Shield repellent. On the day subsequent to the pre-test, one bowl (75 g of repellent-treated rice) was presented within each cage at approximately 0800 h. Based upon the results from the horned lark feeding experiment, treatments for test groups 1–5 (n = 10–11 birds per group) included targeted concentrations of 0.25%, 0.5%, 1.0%, 2.0%, and 4.0% anthraquinone, respectively (wt/wt; Werner et al., 2014a). The methods of the previous concentration-response test were otherwise replicated.

2.3. American crows and anthraquinone-treated almonds

This experiment involved concentration-response testing among individually-caged American crows (N = 45) offered Avipel® Shield-treated almonds (raw, shelled). Groups 1–5 (n = 9 American crows per group) received almonds treated with 0% (untreated control), 0.5%, 1.0%, 2.0%, or 4.0% anthraquinone, respectively (target concentrations, wt/wt; Werner et al., 2014a). The methods of the previous concentration-response tests were otherwise replicated with 75 g of repellent-treated almonds.

3. Results

3.1. Horned larks and anthraquinone seed treatment

We observed 38–100% feeding repellency among horned larks offered wheat seeds treated with the Avipel® Shield repellent (Fig. 1). Actual anthraquinone concentrations from our wheat seed treatments ranged from 168 to 3010 ppm anthraquinone (Fig. 1). Lark repellency was not related to actual anthraquinone concentrations (adjusted $r^2 = 0.44; P = 0.0914$). We observed 100% feeding repellency, however, among horned larks offered wheat seeds treated with 3010 ppm anthraquinone; we previously targeted ≥80% repellency for our concentration-response experiments (Werner et al., 2009). Thus, horned larks were effectively repelled from wheat seeds treated with ≥3000 ppm anthraquinone (Fig. 1).

3.2. Great-tailed grackles and anthraquinone seed treatment

Great-tailed grackles exposed to rice seeds treated with the Avipel® Shield repellent exhibited 90–100% repellency during the concentration-response experiment (Fig. 2). Actual anthraquinone concentrations from our rice seed treatments ranged from 2060 to 35,400 ppm anthraquinone (Fig. 2). Great-tailed grackle repellency (y) was a function of anthraquinone concentration (x): $y = 3.110 \ln(x) + 67.366$ (adjusted $r^2 = 0.71, P = 0.0471$).

3.3. American crows and anthraquinone-treated almonds

American crows exposed to almonds treated with the Avipel® Shield repellent exhibited 80–100% repellency during the concentration-response experiment (Fig. 3). Crows in the untreated control group consumed more untreated almonds during the test than those during the pre-test; –64% repellency (i.e. attraction) was observed in the control group. Actual anthraquinone concentrations from our Avipel® Shield-treated almonds ranged from 2980 to 31,500 ppm anthraquinone (Fig. 3). Thus, American crows exhibited 80% repellency for almonds treated with 2980 ppm concentration.
anthraquinone (Fig. 3), or 4.5 ± 2.3 mg anthraquinone/kg body mass. Crow repellency (y) was a function of anthraquinone concentration (x):

\[y = 17.130 \ln(x) - 66.246 \]

(adjusted \(r^2 = 0.98, P = 0.0006 \)). We therefore predicted a threshold concentration of 5200 ppm anthraquinone for American crows offered treated almonds.

4. Discussion

This study examined the efficacy of an anthraquinone-based repellent for horned larks, great-tailed grackles and American crows in captivity. Avipel® Shield effectively repelled each of these bird species at some concentration during our captive feeding experiments. Although many candidate repellents exist, Cummings et al. (1998) observed no significant difference in horned lark consumption of untreated, clay-coated lettuce seeds and clay-coated lettuce seeds treated with Rejex-it® AG- 145 (active ingredient methyl anthranilate), Mesurol® (a.i. methiocarb), activated charcoal, or lime. The anthraquinone concentration needed for >80% repellency in our study was least for great-tailed grackles and greatest for horned larks. Interestingly, the body mass of wild birds associated with agricultural predation (e.g. range of body mass = 30–45 g for horned larks, 100–250 g for great-tailed grackles, 475–550 g for American crows) is not directly related to anthraquinone concentrations sufficient for threshold repellency (Werner et al., 2009). Moreover, ≥ 80% repellency of Avipel® Shield was observed at lower concentrations for great-tailed grackles (>2060 ppm anthraquinone) than common grackles in captivity (>9000 ppm anthraquinone; Werner et al., 2011). We therefore recommend bird species-specific efficacy testing of avian repellents for the protection of agricultural crops. These laboratory efficacy data provide a reliable basis for planning future field applications of chemical repellents for the protection of specialty crops.

Chemical repellents can be part of an integrated pest management (IPM) strategy for the protection of economically-important specialty crops from avian depredation. The greatest avian pest for California's lettuce production are horned larks (Dr. Roger Baldwin, University of California-Davis, pers. commun.). Most lettuce damage occurs before seedlings have 2–3 true leaves. Lettuce is more tolerant to bird damage after the plant has grown past the three-leaf stage. Thus, preplant seed treatments including chemical repellents and/or foliar applications of chemical repellents to seedlings with 1–2 true leaves (UC IPM Pest Management Guidelines: Lettuce, 2009http://www.ipm.ucdavis.edu/PMG/r44131311.html), or during the two weeks subsequent to seedling emergence (York et al., 2000), are recommended. In addition to candidate repellents, IPM strategies for the protection of lettuce from horned lark damage include the combination of scare tactics (auditory and visual deterrents) and the use of lettuce transplants (i.e. plug planting within wire mesh, bird netting or other types of covering to deter birds; http://www.ipm.ucdavis.edu/PMG/r44131311.html).

For other avian pests for specialty crops (e.g. great-tailed grackles, American crows), IPM strategies might include several damage management techniques used in combination to effectively minimize crop depredation. These techniques include chemical repellents; mechanical, visual and auditory frightening agents; roost and flock harassment; decoy crops; cultural practices; habitat management and lethal damage management (Linz et al., 2011). The ultimate effectiveness of chemical repellents is dependent upon their efficacy under field conditions, cost relative to expected damages of unmanaged crops, environmental impacts, and food and feed safety (Werner et al., 2009). Optimized repellent formulations and application strategies are needed for protection of newly-planted (e.g. lettuce) and ripening crops (melons, almonds) in context of these economic, environmental, and safety thresholds. For example, ultraviolet cues may enhance repellency of cost-effective applications of anthraquinone-based repellents throughout the period of needed repellency (Werner 2009).

Supplemental field efficacy studies are necessary for the registration of avian repellents and the management of agricultural depredation caused by wild birds. Specifically, we recommend field efficacy testing for (1) horned larks exposed to lettuce seeds (i.e. preplant seed treatments, including repellent-treated clay coatings; Cummings et al., 1998) and lettuce seedlings (foliar applications to emergent seedlings) treated with ≥3000 ppm anthraquinone, (2) great-tailed grackles exposed to ripening melons treated with ≥2000 ppm anthraquinone and (3) American crows exposed to ripening almonds treated with ≥3000 ppm anthraquinone. Field efficacy studies for the protection of specialty crops should include independent field replicates with predicted bird damage or bird enclosures within experimental fields (York et al., 2000; Cummings et al., 2006; Werner et al., 2011, 2014b), pre- and at-harvest repellent residues, and bird damage and crop yield measurements. Such field studies are necessary to reconcile efficacy observed under captive and field conditions, and to enable the commercial development of chemical repellents for the protection of agricultural production, including California's specialty crops.

Acknowledgments

This research was supported in part by California Department of Food and Agriculture's Specialty Crop Block Grant to S.J.W. (Grant Agreement SCB10034). Our feeding experiments were conducted with Avipel® Shield repellent (Arkion® Life Sciences, New Castle, DE, USA). Corporate collaborations do not imply endorsement by the United States Department of Agriculture. We appreciate the National Wildlife Research Center animal care staff that provided daily care throughout our feeding experiments. We also thank D.A. Reid for constructive feedback from his review of our manuscript.

References

