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Understanding the interplay between exploitation and natural mortality is essential to guiding sustain-
able conservation of wildlife. Exploitation of carnivores by humans has long been thought to result in
compensatory reductions of natural mortality among survivors. If rates of human exploitation exceed
natural mortality, however, such actions will ‘add’ to overall mortality and could imperil the sustainabil-
ity of such actions. We applied competing risk analyses to P16 years of data for heavily harvested and
semi-protected cougar populations in Utah to test the additive and compensatory mortality hypotheses,
while accounting for parameter uncertainty. We additionally tested for presence of the two primary
mechanisms by which compensatory mortality can arise: density dependence and individual heteroge-
neity in mortality risks. Despite an opportunity for compensation in the heavily harvested population,
we could not reject the additive mortality hypothesis when uncertainty in parameter estimates was
accounted for. In the semi-protected population, however, we detected evidence for partial compensation
of increased anthropogenic exploitation via reductions in natural mortality. As may be common in carni-
vore studies, we found that ignoring uncertainty in estimates of cause-specific mortality systematically
led to biased conclusions regarding additive and compensatory mortality hypotheses. Efforts should be
made to address and minimize this uncertainty in demographic studies of carnivores in order to avoid
flawed management recommendations. To attain the necessary sample sizes for making sound inference,
this may require that the spatial extent of management units be extended for territorial species with
large home-range requirements.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The interaction between predation and other causes of mortal-
ity has long been of interest to ecologists and is of central impor-
tance to the sustainable management of wild species (Caughley,
1977). The concept of compensatory mortality with respect to
wildlife management emerged largely as an extension of ideas
advanced by Errington and Hamerstrom (1935). The core of his
hypothesis was that in populations existing above a seasonal carry-
ing capacity (‘‘security threshold’’), mortality from human exploi-
tation (or predation) simply removes a ‘‘doomed surplus’’ that
would otherwise perish from other natural causes. Populations
existing below this threshold of security were thought to be pro-
tected from over-exploitation via density dependent processes
and the ability to increase in number (Errington and
Hamerstrom, 1935). This hypothesis, and its more intuitive alter-
native that predation and exploitation ‘add’ to other sources of
mortality, have since generated a large body of research (e.g.
Anderson and Burnham, 1981; Burnham and Anderson, 1984;
Nichols et al., 1984; Bartmann et al., 1992; Sinclair and Pech,
1996; Boyce et al., 1999). Beyond the simple dichotomy of com-
pensatory versus additive mortality, these concepts have devel-
oped into a spectrum of alternative hypotheses including partial
compensation, over-additivity, and overcompensation (Fig. 1;
Servanty et al., 2010).

Although exploitation and predation can be compensated at the
population level via subsequent, density-dependent improvements
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in reproductive success or the balance between immigration and
emigration, the additive and compensatory ‘mortality’ hypotheses
refer specifically to the effects of exploitation or predation on lev-
els of cause-specific mortality (Anderson and Burnham, 1976). This
dichotomy is important for guiding research, and for understand-
ing the sustainability of hunting and other forms of exploitation
(Runge and Johnson, 2002). As such, the spectrum of additive
and compensatory mortality hypotheses per se have become the
subject of active carnivore management research (e.g. Sparkman
et al., 2011; Creel and Rotella, 2010; Murray et al., 2010;
Robinson et al., 2014), but could benefit from insight on a number
of issues being addressed in other taxa.

For example, exploitation in carnivores is commonly thought to
lower the seasonal density of a population, thereby freeing up
resources and relaxing competition among survivors (e.g.
Knowlton et al., 1999) with the underlying rationale being that
for every life taken, a life is saved (Boyce et al., 1999). These find-
ings have served as a virtual sine qua non for carnivore manage-
ment through the 1970s and 1980s (Frank and Woodroffe, 2001;
Festa-Bianchet, 2003). But compensatory mortality can also occur
when exploitation simply changes the cause of death for ‘frail’ indi-
viduals that would have likely died from other causes (i.e. the
notion that certain individuals are intrinsically predisposed to a
higher risk of death than others; Lebreton, 2005; Péron, 2013).
Indeed, a variety of genetic, maternal and environmental factors
can produce individual heterogeneity in survival abilities (Wilson
and Nussey, 2010), as well as susceptibility to either wild predators
or humans (e.g. Koons et al., 2014a, b). In fact, density dependence
in mortality has to reach almost unrealistically high levels to allow
for complete compensation of exploitative mortality, whereas
compensatory mortality can more easily occur via intra-annual
selection on the distribution of individual heterogeneity in survival
abilities (Lebreton, 2005). This latter mechanism has been identi-
fied as an important determinant of partial compensation in geese
(e.g. Lindberg et al., 2013). Regardless of the mechanism, compen-
satory mortality can broaden the spectrum of sustainable harvest,
but also hinder a manager’s ability to control a population via har-
vest management.

Anderson and Burnham (1976) formalized statistical approaches
to distinguishing between additive and compensatory harvest mor-
tality (Fig. 1). In commonly used discrete time Capture-Reencounter
(CR) models, however, estimates of hunting and non-hunting mor-
tality are intricately linked through sampling covariance. In
Fig. 1. Possible functional relationships between non-harvest and harvest mortal-
ity, such as total compensation (sold line), partial compensation (long dash line),
additivity (short dash line), and over-additivity (dotted line).
addition, a process bias can arise because the hunting season is often
nested between discrete sampling occasions, affecting the sample of
individuals at risk of non-hunting mortality in subsequent seasons
(Lebreton, 2005; Péron, 2013; Cooch et al., 2014). The issues of sam-
pling covariance and process bias can both obscure the underlying
relationship between the net rates of hunting and non-hunting mor-
tality (e.g. Nichols and Hines, 1987). Modern CR models with ran-
dom effects can be used to account for the issue of sampling
covariance (e.g. Schaub et al., 2004; Sedinger et al., 2010; Koons
et al., 2014a, b), but the implications of process bias in CR studies
of additive and compensatory mortality can only be examined
through sensitivity analyses (Servanty et al., 2010; Péron, 2013).

Radio-telemetry data are well suited to attaining unbiased esti-
mates of net source-specific mortality rates using known-fate com-
peting risk analyses that immediately censor individuals from the
at-risk sample once they die of a given cause (Heisey and Fuller,
1985; Heisey and Patterson, 2006). Such data and methods allow
for robust inference into the compensatory and additive mortality
hypotheses (e.g. Sandercock et al., 2011). There are nevertheless
sampling variances and uncertainty in the estimated net rates of
mortality that need to be acknowledged when testing these
hypotheses with competing risk models. Moreover, when substi-
tuting spatial replicates for temporal replicates in tests of the addi-
tive and compensatory mortality hypotheses (e.g. Robinson et al.,
2014), care must be taken to control for equivalence of environ-
mental conditions, which could otherwise confound insight into
the underlying relationship between competing risks of mortality.
These issues underscore the need for a better understanding of the
relationship between anthropogenic mortality (i.e. harvest, road
kill, agency removals, and poaching) and other sources of natural
mortality in carnivores such as disease, intra-specific strife, death
from injuries sustained during prey capture, and starvation
(Quigley and Hornocker, 2009).

The history of cougars (Puma concolor) in North America offers a
particularly interesting example for testing the additive and com-
pensatory mortality hypotheses in a carnivore. Cougars were once
persecuted as a ‘‘bountied predator’’ because of their predation on
domestic livestock and indigenous ungulates (Gill, 2009). Begin-
ning in the mid 1960’s, however, most states elevated the species’
status to that of a protected game animal. Cougars are now man-
aged primarily through regulated sport hunting to maintain viable
populations (Keefover-Ring, 2005; Anderson et al., 2009), and
reduce impacts of predation on their principal prey species, mainly
mule deer (Odocoileus hemionus), elk (Cervus elaphus), as well as other
high profile prey species such as bighorn sheep (Ovis canadensis)
(Pierce and Bleich, 2003). Levels of cougar exploitation neverthe-
less vary widely among management jurisdictions, and may not
be sustainable in some areas (Cooley et al., 2011). Management
agencies often face the difficulty of opposing demands for more
effective cougar control to protect human safety, big game popula-
tions, and domestic livestock, as well as the demand for additional
cougar-hunting opportunities by sportsmen and outfitters and
even societal demands for outright protection from exploitation
(Lindzey et al., 1992, 1994). Identification of the degree of compen-
satory mortality is thus important for guiding the management of
cougar exploitation.

Here we examine whether anthropogenic cougar mortality is
compensated by changes in natural mortality while accounting
for the uncertainties mentioned above by analyzing longitudinal
data from two cougar populations that have been intensively mon-
itored in Utah over 17 and 16 years, respectively. The first study
population inhabits the Monroe Mountains, a remote location
in south-central Utah where cougars are subjected to varying
levels and sources of exploitation. The second is a semi-protected
population in the Oquirrh Mountains, on the periphery of Salt Lake
City and exposed to lower and different forms of anthropogenic
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mortality (Stoner et al., 2006). This natural experiment offers the
unique opportunity to assess whether compensatory mortality is
the mechanism at play when harvest is (i.e. Monroe population),
or is not (i.e. Oquirrh population) the main driver of overall mortal-
ity, in two locations that are subjected to differences in land own-
ership and associated levels of human access.
2. Methods

2.1. Study areas and harvest regimes

2.1.1. Oquirrh Mountains: protected population, near urban location
The Oquirrh-Traverse Mountains (hereafter the Oquirrhs) are

located in north-central Utah on the eastern edge of the Great
Basin (40.5�N, 112.2�W; Fig. 2). The Oquirrhs measure >950 km2,
but we focused fieldwork on 500 km2 encompassing the northeast-
ern slope on properties owned and managed by the Utah Army
National Guard (Camp Williams) and the Kennecott Utah Copper
Corporation. The site was bounded on the north by the Great Salt
Lake and on the east by the Salt Lake Valley. Approximately 55%
of the entire mountain range is under the jurisdiction of the Bureau
of Land Management (BLM), with the remainder privately held by
individuals, grazing associations, the Utah National Guard, and
mining companies. The study area was situated within the Utah
Division of Wildlife Resources (UDWR) Oquirrh-Stansbury Wildlife
Management Unit, but private properties were closed to the public
and cougar hunting was prohibited. Although radio-instrumented
cougars leaving those properties were legally protected within
the management unit, they were susceptible to harvest and other
causes of death within the vicinity of the management unit, which
was encompassed within our study area. In this sense the popula-
tion was ‘‘quasi-protected.’’ Human density adjoining the study
area varied from 232/100 km2 in rural Tooele County to 47,259/
100 km2 in urban Salt Lake County (Stoner et al., 2006).
2.1.2. Monroe Mountains: exploited population, rural location
The Monroe Mountains comprise part of the Sevier Plateau in

the Southern Mountains eco-region of south-central Utah
Fig. 2. The Oquirrh (north) and Monroe (so
(38.5�N, 112�W; Fig. 2). The study site measured �1300 km2, and
formed the central unit of the Fishlake National Forest. Other land-
holders included the BLM, the state of Utah, and various private
interests. The study site was within the UDWR Monroe Mountains
Wildlife Management Unit, where deer, elk, and cougars were
managed for sustainable hunting opportunities. Other carnivores
present included bobcats (Lynx rufus) and coyotes (Canis latrans),
which were both subject to trapping pressure. Resource use
included livestock grazing (cattle, sheep), logging, fossil fuel explo-
ration, and off-highway vehicle recreation. Human densities
around the site varied from 73 to 382/100 km2 (Stoner et al.,
2006), with most of the population distributed among small agri-
cultural communities in the Sevier Valley on the northwestern
boundary of the study site. Additional information on the study
sites can be found in Appendix A.

2.2. Data collection

2.2.1. Capture, marking, and radio-telemetry
From January 1996 to June 2012, we conducted intensive cap-

ture efforts during winter (December to April). We used hounds
to trail cougars of all age classes. Pursuit and immobilization tech-
niques are detailed in Stoner et al. (2006). We aged cougars using
the tooth-wear criteria of Ashman et al. (1983) and the regressions
of Laundré and Hernández (2002) for estimating kitten ages.
Regardless of age, all animals captured were tattooed and all
sub-adults (1.0–2.5 years) and adults (>2.5 years) were equipped
with VHF radio-collars (Advanced Telemetry Solutions, Isanti,
MN). Cougar locations were acquired at least once per month from
aerial or ground telemetry (Mech, 1983). Each year, 3–4 cougars
were fitted with a global positioning system (GPS) collar (Televilt
Simplex or LoTeck 4400S) that acquired a location every 3 h. Kit-
tens were marked with an ear transmitter, ear tag, or a drop-off
radio-collar (n = 33). We considered sub-adults as either yearling
kittens still accompanying their mother, or transients initiating
or in the act of dispersal. Animal capture and handling procedures
were conducted in accordance with Utah State University
Institutional Animal Care and Use Committee standards (approval
no. 937-R).
uth) Mountain study locations in Utah.
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Data analysis (see below) was restricted to the radio-telemetry
information collected between the 1st of January 1996 and 31st of
June 2012 in the Monroe study area, and between the 1st of Janu-
ary 1997 and 31st of June 2012 in the Oquirrh-Stansbury study
area. Agency removal of problematic individuals, poaching, road
kill, legal harvest, intra-specific strife, sickness, starvation, infec-
tion, and injury (including death at capture, or resulting from inju-
ries sustained while capturing prey) were all possible causes of
death. Causes of mortality were determined through visual inspec-
tion and necropsy of carcasses. When cause of death could not be
determined in the field, the carcass was submitted to the Utah
Veterinary Diagnostics Lab for detailed analysis. Precision of
mortality dates varied; death dates were known to within one
day for GPS-collared and hunter-harvested individuals, whereas
dates for animals wearing conventional VHF radio-collars were
estimated using the midpoint between the last live signal and
the detection date of the first mortality signal (up to ±15 days;
Sandercock et al., 2011).

2.3. Statistical analyses

2.3.1. Drivers of variation in survival
Classical survival models used in human demography (e.g.

Kleinbaum and Klein, 2005) are appropriate for estimating survival
trajectories when individual fates are known, which is often the
case in radio-telemetry studies of wildlife (e.g. Murray et al.,
2010). Various extensions to the non-parametric Kaplan–Meier
(Kaplan and Meier, 1958) estimator, such as the semi-parametric
Cox Proportional Hazard model (CPH; Cox, 1972), further allow
identification of the measurable (observed) covariates associated
with patterns in survival trajectories. We used CPH models because
they do not require assumptions about the shape of the underlying
mortality hazard (a.k.a., the force of mortality) over life. Rather,
each covariate within the model is assumed to act multiplicatively
(proportionally) on the time-specific baseline mortality hazard and
across covariate levels (Bradburn et al., 2003), such as hi(t) =
h0(t) � exp (biXi) where h0 refers to the baseline hazard (i.e. the
hazard’s value when all covariate values are null), and X denotes
a vector of covariates such as X = (X1, X2,. . ., Xi), and t denotes time
(in our case, time elapsed since marking; Murray and Patterson,
2006).

Using CPH models, we examined support for hypothesized driv-
ers of variability in survival, such as sex, location, and age (sub-
adults and adults), where sub-adults encompassed both individu-
als that made it to their first birthday, as well as individuals that
were marked and released for the first time between ages 1 and
2; data for kittens were excluded from the analysis. Exact age
was not always known, which is why we focused on age categories
rather than true age per se. Because harvest is disproportionately
focused on males, we would expect female survival to be superior
to that of male survival, especially within the Monroe study area
where harvest pressure is far greater than that on the Oquirrh-
Stansbury management unit.

To address whether or not density dependence could poten-
tially serve as a mechanism for compensatory mortality, we tested
for the effects of estimated population density on survival. As
described in Choate et al., 2006, we derived reference population
estimates from the combination of captured animals marked or
equipped with radio-collars, unmarked hunter- or depredation-
killed animals, and evidence based on intensive tracking efforts
of unmarked individuals. Specifically, these assessments were con-
ducted between 1996 and 2012, which served as the minimum
abundance index covariate at time t in CPH analyses of mortality
from t to t + 1 (app. B). We considered single, additive, and interac-
tive effects of the aforementioned variables on survival chances
over time using the ‘coxph’ function (R library ‘survival’;
Therneau and Grambsch, 2000) available in R (version 2.15.0,
Development Core Team, 2012).

A variety of genetic, maternal and environmental factors can
lead to variation in survival abilities among individuals of the same
population (Wilson and Nussey, 2010). When difficult or impossi-
ble to measure directly, these unobserved differences in survival
abilities across individuals (commonly called ‘frailty’; Vaupel and
Yashin, 1985) lead to underlying changes in the composition of a
sample population. When ‘frailty’ is related to both succumbing
to natural causes of mortality and anthropogenic causes, these
intra-generational selective forces can also lead to compensatory
mortality (or partial compensation). For example, hunting might
simply change the cause of death for a frail individual, but not
change the overall rate of mortality when such individuals are also
more likely to die from another cause (Lebreton, 2005). Therefore,
we used frailty models to estimate the amount of unobserved indi-
vidual heterogeneity in survival chances not accounted for by
covariates in the best performing CPH model (Aubry et al., 2011).
To define such a model we used the ‘coxme’ package in R
(Therneau, 2012), which allows one to fit a CPH model containing
mixed (fixed and random) effects, and assumes a Gaussian distri-
bution for the random effects.

Model selection of fixed effects was based on Akaike’s Informa-
tion Criterion (Akaike, 1973) corrected for sample size (AICc) and
associated metrics such as differences in AICc values between com-
peting models and AICc weights (DAICc, wi respectively; Burnham
and Anderson, 2002). To test the validity of using CPH models, we
used the ‘coxzph’ procedure (R library ‘survival’; Therneau and
Grambsch, 2000) to assess whether each covariate modality within
each CPH model acted proportionally on the mortality hazard
(Therneau and Grambsch, 2000). If so, the p-value associated with
each covariate’s proportionality test should be >0.05. We also
assessed the statistical precision of each estimated regression coef-
ficient (age class, location, sex) by verifying whether associated
90% confidence intervals for exp(b) (i.e. mortality coefficients)
overlapped 0, and by reporting associated p-values.

2.3.2. Cause-specific mortality in the hunted and semi-protected study
populations

Competing risk analysis is an extension of classic survival anal-
ysis except that the survival function considers a pair of random
variables, T, the survival time, and K, the cause of death; cause-spe-
cific mortality is the joint probability of death before time t from
cause k (Heisey and Patterson, 2006; e.g. Murray et al., 2010). Note
that because cause-specific mortality probabilities are mutually
exclusive, they sum to the total mortality probability. Conditional
on the variables identified as affecting survival from above, we
examined differences in cause-specific mortality between these
variables using a competing risk framework (‘csm’ function, R
library ‘wild1’, Sargeant, 2011) as described in Heisey and
Patterson (2006). We additionally used Cumulative Incidence
Functions ‘CIF’ (akin to cumulative mortality risk or cumulative
hazard) to visualize patterns of cause-specific mortality over time.

2.3.3. Testing compensatory and additive mortality hypotheses
To test the additive and compensatory mortality hypotheses,

we defined the cougar year to begin immediately after the end of
the harvest season (1st of March 1996 and 1st of March 1997 for
the Monroe and Oquirrh-Stansbury study sites, respectively) to
avoid having to cut the harvest season in half. We then collapsed
causes of mortality into harvest and non-harvest, or anthropogenic
and natural categories, and estimated cause-specific mortality
probabilities on an annual basis using the same methods as
described above. Next, we used linear regression (‘lm’ function
available from R library ‘stats’; Chambers, 1992) to examine the
relationship between cause-specific annual mortalities for either
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(i) human harvest versus all other causes of death, or (ii) overall
anthropogenic mortality versus natural mortality after applying
an arcsin-square-root transformation to each set of mortality esti-
mates (Murray et al., 2010). We applied our analyses to each loca-
tion separately, but had to exclude sex from the analysis because of
limited sample size (see results) within years. When imprecision
(e.g. 90% CI) in the estimated slope of relationship between annual
cause-specific mortality probabilities overlaps zero, one would
conclude that, given the data, there is insufficient evidence to
reject the null hypothesis of fully additive effects of exploitation
on overall mortality (Lebreton, 2005). On the other hand, if esti-
mated slopes are negative, one would conclude that at least some
compensation of exploitation occurs via changes in non-anthropo-
genic causes of mortality (Fig. 1).

Fortunately, we did not need to address possible sources of bias
induced by substituting spatial replicates (e.g. habitat differences)
for temporal replicates in our analyses because the studies provide
some of the longest time series of data for estimating cause-spe-
cific mortality in felids. Separate tests were therefore performed
for each study area with differing environmental conditions (see
descriptions above). However, a crucial step that is often over-
looked in tests of the additive and compensatory mortality hypoth-
eses is the need to account for sampling error when estimating
uncertainty in the relationship between competing risks of mortal-
ity. Often times, point estimates of cause-specific mortality proba-
bilities are regressed against each other, and the standard error in
the estimated slope coefficient is used to assess uncertainty in the
relationship between competing risks of mortality. This practice is
not valid because cause-specific mortality probabilities are esti-
mates, not data, and the respective degrees of uncertainty in these
estimates are often ignored in carnivore studies. Ideally, one would
use a bootstrapping approach (Efron and Tibshirani, 1994) to
account for uncertainty in each parameter associated with the
study sample.

For example, one could iteratively fit thousands of regressions
to parameter estimates from each boot-strapped sample to more
rigorously measure uncertainty of tests regarding the additive or
compensatory hypotheses (see Murray et al., 2010). Alternatively,
one could fit a complicated hierarchical model to the data in order
to separate sampling covariance from process covariance (e.g.
Koons et al., 2014a, b). Despite the longevity of both studies,
annual sample sizes in each study area were too small to attain
robust results from a bootstrapping procedure (Efron and
Tibshirani, 1994). As an alternative, we used a Monte Carlo simula-
tion approach (Kroese et al., 2011) to sample 1000 observations
from within the estimated bounds of error in annual cause-specific
mortality probabilities using beta distributions, an appropriate dis-
tribution for probabilities (i.e. numbers bounded between 0 and 1).
For each iteration, we estimated both the intercept and slope of the
relationship between transformations of annual cause-specific
mortality probabilities. This allowed us to estimate the mean slope
of relationship between competing risks of mortality, as well as
confidence intervals that fully acknowledged the associated uncer-
tainty in annual estimates of cause-specific mortality probabilities.
Fig. 3. Mean annual survival estimates for female and male cougars in the Oquirrh
and Monroe study populations. Estimates were attainted from the best performing
CPH model (Table 2).
3. Results

Across study sites, overall sample size included 148 individuals
(82 females and 66 males) in the Monroe study area and 87 indi-
viduals (55 females and 32 males) in the Oquirrh-Stansbury study
area. The fate of most individuals that died was known, with the
exception of 11 cases. Overall, we were able to determine the cause
of death for 156 cougars; an additional 79 cougars were right-cen-
sored either because they were still alive at the end of the study or
because they emigrated from the respective study areas.
3.1. Drivers of variability in survival

The best performing CPH model of variation in cougar survival
retained the effects of sex and location, as well as an interaction
between the two variables (Table 2). When interpreting a CPH
model, covariate levels are always compared to a baseline hazard,
here representing the sample of females belonging to the Monroe
study population (b = 0, exp(b) = 1). Males had a much lower sur-
vival probability on average than females and a higher mortality
rate (Fig. 3; exp(bmale,Monroe) = 3.932, s.e. = 0.200, p < 0.001), but
this result was somewhat tempered within the Oquirrh study site
(Fig. 3; exp(bmale,Oquirrh) = 0.481, s.e. = 0.355, p = 0.039). A less par-
simonious model included an additional effect of population den-
sity on survival, but this model led to a higher AICc (Table 2) and
the effect was not statistically significant (exp(bdensity) = 1.037,
s.e. = 0.153, p = 0.81). P-values associated with each covariate’s
proportionality test were >0.05, indicating no sign of departure
from the proportionality assumption underlying CPH models.
Using frailty models to estimate the amount of unobserved indi-
vidual heterogeneity in survival that was not accounted for by
the covariates, we found that the best performing model structure,
with and without frailty, yielded similar results with estimated
coefficients that were <0.0001 units different and indicated rela-
tively little random variation in survival among individuals
(s.d. = 0.0199).

3.2. Cause-specific mortality

For the sample of individuals that died during the study period,
84% of cougars from the Monroe study area died from anthropo-
genic causes, mainly harvest (73.6% of all documented fatalities).
Within the sample of cougars that succumbed to anthropogenic
causes of death, 61.2% were males. In contrast, anthropogenic
causes only accounted for 44.0% of fatalities in the Oquirrh study
area, where natural mortality was the main cause of death (56%),
specifically disease and intra-specific strife (24% and 22% respec-
tively). Of the 34% of individuals harvested, 62.5% were males. Of
the 56% individuals dying a natural death in the Oquirrh study site,
63.3% were females. However, fatality frequencies provide biased
insight into cause-specific mortality because they do not account
for right censoring, staggered entry, and exposure time to various
risks of death.

Our more robust cause-specific mortality analyses indicated
that Monroe males experienced the highest levels of annual
harvest mortality and Oquirrh females the lowest. Annual rates
of non-harvest mortality were highest for Oquirrh males and
lowest for Monroe males and females (Table 1). Similar patterns
were observed when comparing anthropogenic versus natural



Table 2
Cox proportional hazard model selection based on DAICc and AICc weights (wi),
where ‘‘+’’ and ‘‘⁄’’ denote additive and interactive models, respectively, and np
denotes the number of parameters.

Models np AICc DAICc wi

Sex ⁄ pop 3 1777.067 0 0.394
Sex ⁄ pop + density 4 1779.037 1.97 0.147
Sex + pop 2 1779.414 2.347 0.122
Sex ⁄ pop + pop ⁄ density 5 1780.014 2.947 0.090
Sex + pop + age 3 1780.014 2.947 0.090
Sex ⁄ age 3 1781.312 4.245 0.047
Sex 1 1781.366 4.299 0.046
Sex + age 2 1782.056 4.989 0.032
Sex + pop + age + density 4 1782.107 5.04 0.032
Age + pop 2 1815.894 38.827 0.000
Age 1 1816.741 39.674 0.000
Age ⁄ pop 3 1817.012 39.945 0.000
Pop 1 1819.985 42.918 0.000
No effect 0 1820.609 43.542 0.000
Density 1 1821.69 44.623 0.000
Pop ⁄ density 3 1821.808 44.741 0.000
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mortality among sexes and locations (Table 1). Although the total
rate of mean annual mortality was similar between locations for
females, males in the Monroe study area experienced higher over-
all mortality than males in the Oquirrh study area (Fig. 3 and
Table 1) because of the high hunting pressure (Appendices C1
and C2).

3.3. Compensatory versus additive mortality

Without accounting for uncertainty in mortality estimates, one
might conclude that years with high harvest mortality were par-
tially compensated by reductions in non-harvest mortality for
the Monroe population (Fig. 4, top-left, slope parameter = �0.33,
p < 0.001, R2 = 0.28), and that a similar partially compensatory rela-
tionship occurred between anthropogenic and natural mortality
(Fig. 4, bottom-left, slope parameter = �0.28, p = 0.04, R2 = 0.26).
In the Oquirrh population, one might conclude nearly complete
compensatory relationships between harvest and non-harvest
mortality (Fig. 4, top-right, slope parameter = �0.91, p = 0.03,
R2 = 0.35), and between anthropogenic and natural mortality
(Fig. 4, top-right, slope parameter = �1.03, p = 0.006, R2 = 0.5). Such
conclusions would however be inappropriate because of the poten-
tially large type II error associated with ignoring sampling error in
the respective mortality estimates (see Section 2).

After accounting for such uncertainty using a Monte Carlo sim-
ulation approach, results pertaining to the functional relationships
between competing risks of cougar mortality were largely incon-
clusive (Fig. 5). Despite an estimated negative relationship
between harvest and non-harvest mortality for the Monroe study
area, the estimate was imprecise and of lesser magnitude (Fig. 5
top-left panel) relative to the analysis that ignored uncertainty in
mortality estimates (Fig. 4 top-left panel). Similar results were
attained when examining the relationship between anthropogenic
and natural mortality (Figs. 4 and 5 bottom-left panels). In both
cases, 90% confidence intervals estimated from Monte Carlo simu-
lations largely overlap 0, indicating that there was insufficient evi-
dence to reject the null hypothesis of fully additive effects of
exploitation on overall mortality (Lebreton, 2005). We were never-
theless able to detect partially compensatory relationships
between harvest and non-harvest mortality at the Oquirrh study
site (Fig. 5 top-right panel), and between anthropogenic and natu-
ral mortality (Fig. 5 bottom-right panel). However, the intensities
of these estimated relationships were much less severe (Fig. 5 right
panels) compared to the fully compensatory relationships attained
when not accounting for uncertainty in mortality estimates (Fig. 4
right panels).
4. Discussion

There is a long tradition of studying the relationship between
exploitation and natural mortality in game species (starting with
Table 1
Sex-specific mean annual mortality estimates for the Oquirrh-Stansbury and Monroe popul
all other causes of death, and for anthropogenic versus natural causes of death.

Monroe females 95% Confiden

Harvest mortality 0.1727 0.1231–0.222
Non-harvest mortality 0.1628 0.1139–0.211
Anthropogenic mortality 0.2613 0.2024–0.320
Natural mortality 0.0744 0.0373–0.111

Oquirrh-Stansbury females 95% Confiden

Harvest mortality 0.0677 0.0312–0.104
Non-harvest mortality 0.2644 0.1929–0.335
Anthropogenic mortality 0.1418 0.0825–0.201
Natural mortality 0.1868 0.1180–0.255
Errington and Hamerstrom, 1935) because of the relevance of such
studies to wildlife management (e.g. Burnham and Anderson,
1984). As expected, we found that anthropogenic sources were
the leading drivers of mortality in the Monroe population, with
hunting being the leading cause of death (harvest mortality
rate = 0.304 ± 0.051), especially in males (0.532 ± 0.098). Despite
room for compensation between exploitation and natural mortal-
ity in the Monroe study area, we could not reject the additive mor-
tality hypothesis when uncertainty in parameter estimates was
accounted for. In the Oquirrh study area, the relative proportion
of mortalities was almost equally divided between anthropogenic
(0.173 ± 0.054) and natural mortality (0.209 ± 0.061). When ignor-
ing uncertainty in parameters estimates, rates of anthropogenic
exploitation were fully compensated by changes in natural mortal-
ity. When accounting for parameter uncertainty, however, the esti-
mated relationship was either additive or only partially
compensatory. Importantly, the data suggested that neither den-
sity nor unobserved heterogeneity (i.e. frailty) significantly con-
tributed to changes in cougar survival and mortality in either
study population, which could have clouded our conclusions
regarding functional relationships between competing mortality
risks (Koons et al., 2014a, b). Our most important finding was the
observed uncertainty in the functional relationship between
exploitation and natural mortality in both populations, which sys-
tematically led to biased conclusions when not accounted for, and
could lead to the improper management of harvested carnivores.

Studies of compensation and additive mortality are typically
focused on ungulate prey species to assess whether cougar preda-
tion is additive or not to other sources of mortality (e.g. Boyce,
1989; Bartmann et al., 1992; Bowyer et al., 2005; Hurley et al.,
2011). Recently, a number of studies have attempted to address
ations. Estimates and 95% confidence intervals are presented for harvest mortality and

ce interval Monroe males 95% Confidence interval

3 0.5327 0.4342–0.6311
7 0.1679 0.0787–0.2572
2 0.6062 0.5117–0.7007
5 0.0957 0.0218–0.1696

ce interval Oquirrh-Stansbury males 95% Confidence interval

2 0.2028 0.0966–0.3090
8 0.2893 0.1622–0.4163
0 0.2165 0.1043–0.3288
6 0.2768 0.1475–0.4061



Fig. 4. Functional relationships between competing risks of mortality for the Monroe and Oquirrh Mountain study populations when uncertainty in annual estimates of
cause-specific mortality was not accounted for, yielding inappropriately tight 90% confidence intervals (dashed lines) and potentially excessive type II error (‘t’ denotes the
arcsine square root transformation).

Fig. 5. Functional relationships between competing risks of mortality after uncertainty in mortality estimates was accounted for. Sets of mortality estimates were
transformed using an arcsine square root transformation as symbolized by ‘t’ (e.g. t(non-harvest mortality). Measures of uncertainty in annual estimates of cause-specific
mortality analysis are shown by the error bars denoting 90% confidence intervals, and 90% confidence intervals for the estimated relationships between competing risks of
mortality are denoted by the dashed lines, which were attained trough Monte Carlo simulations.
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the same question by assessing the human–carnivore interaction
as a predator–prey relationship (Cooley et al., 2009; Creel and
Rotella, 2010; Sparkman et al., 2011; Robinson et al., 2014); yet,
only one of these studies has addressed the problem of sampling
variance in competing mortality risks (Murray et al., 2010). By
adopting a similar approach to that of Murray et al. (2010) in
cougars, a carnivore with a completely different social structure
(i.e. solitary versus pack-living species), we were unable to reach
definitive conclusions regarding the additive and compensatory
mortality hypotheses when accounting for sampling variance in
cause-specific mortality estimates.

Given parameter uncertainty (Lebreton, 2005), we found that
lower rates of harvest allowed for partial compensation between
anthropogenic and natural mortality in the quasi-protected
Oquirrh study site where hunting pressure was less intense, which
has also been concluded in other carnivore studies (e.g. Sterling
et al., 1983; Sparkman et al., 2011). This population is situated
within an area of high human population growth and residential
development, and is therefore characterized by habitat loss and
fragmentation (Stoner et al., 2006, 2013a), which can predispose
individuals to increased anthropogenic threats. Given the role of
highways as a mortality agent within the female segment of this
population (10.7%), on top of harvest (17.9%), managers should
account for additional causes of anthropogenic death (Quigley
and Hornocker, 2009), and progressive land-use planning and pub-
lic education in the future could be important to the conservation
of cougars and their prey in this rapidly developing landscape
(UDWR, 2011).

We could not reject the null hypothesis of additivity in the
Monroe population once parameter uncertainty was accounted
for, a finding that has been supported by other carnivore studies
(Cooley et al., 2009; Creel and Rotella, 2010; Robinson et al.,
2014). Indeed, Cooley et al. (2009) observed that although immi-
gration compensated for hunting mortalities, they found like us
that compensation via other vital rates (e.g. natural mortality)
was not present. Recovery from harvest could depend on nearby
source populations; justifying the need for cougar management
at the scale of meta-populations, rather than single populations.
Similarly, Robinson et al. (2014) estimated that total survival of
adults and juveniles linearly declined as hunting mortality
increased, and further observed that non-harvest mortality (i.e.,
illegal, natural, depredation, vehicle, and unknown) was lower in
a non-hunted population when compared to a hunted population,
with both findings supporting the additive mortality hypothesis.
Although neither study accounted for uncertainty in parameter
estimates, we echo the finding that ‘‘the compensatory mortality
hypothesis may not be appropriate for modeling hunter harvest
of cougars and other large carnivores that exhibit long-distance
dispersal’’ (Cooley et al., 2009).

As expected in the heavily hunted Monroe population, a high
proportion of cougars died of anthropogenic causes, especially har-
vest. A metapopulation approach to cougar management is often
cited as the most promising since immigration and emigration
may have the power to replenish harvested cougar populations
(Stoner et al., 2006, 2013b; Cooley et al., 2009; Robinson et al.,
2008, 2014). Immigration in response to vacated home ranges
freed via the removal of harvested individuals could likely provide
some additional grounds for population-level compensation
(Cooley et al., 2009; Stoner et al., 2013a). Previous work indicated
that the Monroe population exhibited sink-like mortality (i.e. low
productivity and high immigration rates), whereby despite low kit-
ten production, new animals immigrated every winter, primarily
sub-adult males (Stoner et al., 2006). We caution that given the
potential for additive mortality at high harvest rates in the Monroe
population, over-exploitation may override the potential for the
replenishment of this heavily harvested sink population, especially
when considering that most of the potential source populations
surrounding the site are exploited at similar levels (Stoner et al.,
2013b). More recent data on cougar movement in and out of the
study site would need to be collected to quantify influx (see
Stoner et al., 2006, for data collected up to 2004) and the role
immigration could play in maintaining stable dynamics in the
Monroe population (e.g. Sweanor et al., 2000; Stoner et al.,
2013b). Harvest mortality can also be compensated at the popula-
tion level by density-dependent increases in reproduction (i.e.
compensatory natality) (Boyce et al., 1999; Turgeon and Kramer,
2012; Robinson et al., 2014). Unlike similar studies on monoga-
mous carnivores (Knowlton, 1972; Frank and Woodroffe, 2001),
however, previous research on the Monroe study site indicated
that compensatory reproduction did not occur with increased har-
vest pressure; conversely, per-capita reproductive output declined
as harvest rates increased (Stoner et al., 2006). While social canids
are able to reproductively compensate for increased exploitation,
solitary felids are restricted by reproductive capacity and longer-
term dependence of offspring.

When used as predictors of life history traits, fluctuating
uncertainty in indices of abundance (i.e. sampling error) will
attenuate the estimated slope of relationship toward 0, and thus
conclusions of no effect. Thus, the estimated lack of density
dependence in survival may have been due to a lack of
density-dependence, or our inability to detect the effect given
the index of density. A number of other recently developed
estimators might also be useful for estimating the abundance of
large carnivores such as cougars; e.g., mark-resight (McClintock
and White, 2012) and genetic capture-reencounter extensions to
the Lincoln estimator (Lukacs and Burnham, 2005), but these
are often cost prohibitive or require capturing and handling a
large number of individuals.
5. Conclusions

For species that occur in low densities and have large spatial
requirements such as cougars, the sample sizes needed to ade-
quately test the compensatory and additive mortality hypotheses
cannot be attained at the spatial scale of hunting units commonly
used in the West. If managers want to reach unambiguous conclu-
sions regarding the degree to which harvest mortality is compen-
satory or additive, the spatial scale of harvest prescriptions may
have to be calculated across larger regions than those currently
in favor, and should preferentially encompass metapopulations
rather than isolated populations, so that estimates of emigration
and immigration can be attained. Further, relationships between
competing mortality risks have proven difficult to estimate in
long-lived carnivores due to challenges in determining known
fates of large samples of cougars (Quigley and Hornocker, 2009).
The functional form of these relationships, however, is fundamen-
tal to our understanding of carnivore population dynamics, and if
appropriately quantified, could considerably improve sustainable
management of cougars. Despite best attempts, the difficulty in
capturing numerically rare and behaviorally elusive species with
an affinity for rugged terrain resulted in small to moderate sample
sizes of marked individuals each year (Stoner et al., 2006). Given
the paucity of equivalently long and thorough carnivore demo-
graphic studies, we suspect that this constraint is likely wide-
spread in the carnivore literature (but see Murray et al., 2010).
Uncertainty is a natural part of all biological studies and should
be acknowledged as such (Møller and Jennions, 2011). Considering
our findings, we advocate that carnivore studies be designed to
address and minimize this uncertainty. Both bootstrapping and
Monte Carlo situations could be considered to address issues of
uncertainty. Herein, we use Monte Carlo simulations because of
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their versatility and possibility to sample from a statistical distri-
bution rather than to rely on an empirical distribution (Caswell,
2001). For large sample size, the bootstrap is preferred, but for
small to moderate sample size (our case), the bootstrap can yield
biased estimates of uncertainty. Neither approach, however,
accounts for sampling ‘covariation’ in the competing risks. Most
likely, the use of a competing risk analysis that continually
updates the ‘at-risk’ sample should minimize effects of sampling
covariation on estimated compensation between competing risks
(Cooch et al., 2014). In the future, Bayesian analyses could more
directly account for both sampling variation and covariation
when testing the additive and compensatory mortality hypothe-
ses (Koons et al., 2014a, b). Collection of longitudinal data on
large carnivores, over broader spatial scales, may also help
overcome such limitations. Such has been the case in wildlife
management of other taxa for decades, where the development
of state-of-the-art statistical models to account for such
uncertainty (e.g. Burnham and Anderson, 1984; Nichols et al.,
1984; Schaub et al., 2004; Schaub, 2009; Servanty et al., 2010),
has likely been driven by the availability of large samples of
harvested individuals.

5.1. Management implications

Agencies responsible for cougar management face ongoing
social and political pressure to implement harvest prescriptions
that range from aggressively targeting predation impacts on native
and domestic ungulate species, to offering near-complete protec-
tion, or providing trophy hunting opportunities (Anderson et al.,
2009; Hurley et al., 2011). Given that we could not reject the addi-
tive mortality hypothesis at the Monroe study site, we recommend
a conservative management approach be adopted to preclude
potential over-harvest in future years. Similarly in the Oquirrh
study site, even though exploitation was partially compensated
by changes in natural mortality, land-use change is the prevailing
factor potentially affecting this population, and as such, it is
exposed to anthropogenic pressures beyond sport harvest, and
therefore we suggest that managers monitor all anthropogenic
causes of death. Further, our results underscore the value of
long-term data sets and suggest the possibility of expanding the
scope of such comparisons to additional management units.
Because the Oquirrh-Stansbury and Monroe management units
were subjected to contrasting mortality regimes, results herein
could potentially be expanded to additional management units
with similar environmental, jurisdictional, or land-use
characteristics.
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