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Chapter 7

7.1  CHEMICAL SENSES

The chemical senses generally fall into three categories: 
chemesthesis (irritation and pain), olfaction (smell), and 
gustation (taste). Traditionally, the emphasis in describing 
responsiveness to chemical stimuli has been placed on taste 
and smell. The reality is more complex. For example, the 
sensory afferents for chemesthetic perception are in close 
proximity with olfactory receptors in the nasal cavity and 
with gustatory receptors in the oral cavity. Because external 
chemical stimuli can be processed by multiple sensory sys-
tems, there has been a great deal of confusion in the literature 
on the importance of individual sensory modalities. Gener-
ally, the principal mediating sensory modality may be related 
to stimulus type, concentration, and presentation. However, 
when perception of external chemical stimuli occurs via the 
integrated perception across modalities, the combined per-
ceptual quality is commonly referred to as flavor.

7.2  CHEMESTHESIS

Chemesthesis is the perception of chemically induced pain. 
The first neural mediator of noxious stimuli is the nocicep-
tor (Woolf and Ma, 2007). These primary sensory neurons 
are the interface between the internal and external environ-
ments. Nociceptors have cell bodies located in the dorsal 
root ganglion, a peripheral axon that innervates tissues, and 
a central axon that enters the spinal cord to transfer infor-
mation to the central nervous system. Nociceptors have 
three functions: (1) detection of potentially damaging exter-
nal noxious stimuli, which is useful in warning an animal 

to the risk of injury; (2) detection of endogenous inflam-
matory stimuli, which is useful in initiating and promoting 
behaviors conducive to healing and repair; and (3) detection 
of neural damage and ectopic firing. This latter function is 
a pathological condition of chronic pain. Nociceptors have 
high thresholds for exogenous stimuli, presumably because 
it would be maladaptive to defensively respond to every 
external assault. Nociceptors have low thresholds for endog-
enous stimuli. This is an adaptive response to promote heal-
ing once damage has occurred (Patapoutian et al., 2009).

A major component of the chemesthetic system is the 
trigeminal nerve (TN). The TN is the principal somatic sen-
sory nerve of the head, and its primary function is the cod-
ing of mechanical and thermal stimuli. However, the TN 
also contains chemoreceptive fibers that mediate the detec-
tion of chemical irritants (Silver and Maruniak, 1981). The 
somatosensory system is the primary somatic sensory sys-
tem of the rest of the body. Like the TN, the somatosensory 
system primarily codes for mechanical and thermal stimuli, 
but it does have sensory afferents that are chemosensory 
(Gentle, 2011; Necker, 2000; Wild, 1985).

7.2.1  Trigeminal and Somatosensory Nerves

The morphological organization of the peripheral TN in 
birds is not very different from that found in mammals 
(Dubbeldam and Karten, 1978; Dubbeldam and Veenman, 
1978; Gottschaldt, 1985). The TN is the fifth cranial nerve 
in birds, arising from the rostrolateral medulla near the cau-
dal surface of the optic lobe (Getty, 1975; Schrader, 1970). 
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The TN travels along the trochlear nerve (IV), entering a 
fossa in the floor of the cranial cavity where the trigemi-
nal ganglion (TG) is found. The TG is subdivided into a 
smaller medial ophthalmic region and a larger lateral maxil-
lomandibular region, from which the nerve splits into three 
branches. In the chicken (Gallus gallus domesticus) the 
ophthalmic branch innervates the frontal region, the eyeball, 
upper eyelid, conjunctiva, glands in the orbit, the rostrodor-
sal part of the nasal cavity, and the tip of the upper jaw. 
The ophthalmic branch as a communicating ramus with the 
trochlear nerve serves for motor control of the eye region. 
This aspect can provide for reflexive response to irritat-
ing stimuli to the ocular region. The larger medial ramus 
accompanies the olfactory nerve into the nasal fossa via the 
medial orbitonasal foramen. The maxillary branch provides 
sensory input from the integument of the crown, temporal 
region, rostral part of the external ear, upper and lower eye-
lids, the region between the nostrils and eye, conjunctival 
mucosa, the mucosal part of the palate, and the floor of 
the medial wall of the nasal cavity. The mandibular branch 
provides sensory input from the skin and rhamphotheca of 
the lower jaw, intermandibular skin, wattles, oral mucosa of 
rostral floor of the mouth, and the palate near the angle of 
the mouth (Getty, 1975; Schrader, 1970).

7.2.2  Performance Characteristics  
of Nociceptors

Pain and irritation perception begin with activation of pri-
mary sensory nociceptors. In birds, chemosensitive fibers 
in the TN and somatosensory nerves are similar to mam-
malian afferents. Most are unmyelinated C-type polymodal 
nociceptors with conduction velocities of 0.3–1 m/s. How-
ever, some myelinated A-delta high-threshold mechanore-
ceptors with conduction velocities of 5–40 m/s also respond 
to chemical stimuli. The discharge patterns and conduction 
velocities for the chicken, mallard (Anas platyrhyncos), 
and pigeon (Columba livia) are similar to those observed in 
mammals (Gentle, 1989; Necker, 1974).

Although birds have slightly different neural architec-
ture relative to mammals, the underlying functions of neu-
ral connections have been evolutionarily preserved (Butler 
and Cotterill, 2006; Dugas-Ford et al., 2012; Güntürkün, 
2012). This also applies to the underlying physiological 
and biochemical processes of chemically induced pain. 
Generally, birds have the same classes of neuropeptides as 
mammals, but their structures are not totally homologous. 
Avian endogenous pain-promoting substances such as sub-
stance P, 5-HT, histamine, bradykinin, and acetylcholine 
evoke inflammation and pain-related behaviors in chickens, 
pigeons, rats, dogs, and guinea pigs (Szolcsanyi et al., 1986; 
Gentle and Hill, 1987; Gentle and Hunter, 1993; Koda et al., 
1996; Hu et al., 2002; Ohta et al., 2006). Prostaglandins 
that modulate the pain response in mammals also serve this 

function in birds, and their effects can be abolished by pros-
taglandin biosynthase inhibitors such as aspirin-like analge-
sics (Clark, 1995).

Despite these physiologically mediated similarities, 
there are profound differences in how birds and mammals 
respond to exogenous chemical stimuli. In mammals, chem-
icals such as capsaicin are potent trigeminal irritants. These 
irritants deplete substance P from afferent terminals and 
the dorsal root ganglion, producing an initial sensitization 
followed by desensitization to further chemical stimulation 
(Szolcsanyi, 1982). In contrast, birds are insensitive to cap-
saicin (Mason and Maruniak, 1983; Szolcsanyi et al., 1986). 
Peripheral presentation of capsaicin to pigeons and chick-
ens does not cause release of substance P in avian sensory 
afferents (Pierau et al., 1986; Szolcsanyi et al., 1986; Sann 
et al., 1987). These taxon-specific responses to exogenous 
chemical stimuli underscore taxonomic differences in both 
endogenous neuropeptides and receptors, whose signifi-
cance has been implicated in the evolutionary ecology of 
the taxa (Mason et al., 1991; Clark, 1998; Tewksbury and 
Nabhan, 2001).

7.2.3  Receptor Mechanisms

Nonselective transient receptor potential (TRP) cation 
channels are involved in sensory neuron activation events, 
neurotransmitter release, release of inflammatory media-
tors, and other aspects of pain transduction (Cortright 
et al., 2007; Figure 7.1). Most of what is known about TRP 
channels is derived from work done on mammals (Holzer, 
2011). However, increasingly more comparative evolution-
ary similarities and differences are being characterized for 
other taxa (Saito and Shingai, 2006; Saito et al., 2011). 
TRPV1 (initially called VR1) was first cloned in mammals 
and found to respond to the exogenous vanilloid, capsaicin 
(Caterina et al., 1997), as well as endogenous agonists, 
anandamide, and 12-HPETE, which are structurally similar 
to capsaicin (Zygmunt et al., 1999; Hwang et al., 2000). 
TRPV1 is also activated by heat (>43 °C) and acid (pH ≤ 6). 
The sensation that TRPV1 activation evokes in humans via 
these polymodal nociceptors is one of tingling and burn-
ing, like the sensation produced by capsaicin found in chili 
peppers. Like its mammalian counterpart, the TRP receptor 
in birds (cTRPV1, chick dorsal root ganglion) responds to 
high temperatures (≥45 °C) and extracellular acid solution 
(pH ≤ 4). However, cTRPV1 is different, showing a 68% 
identity and 79% similarity to rat TRPV1. These differences 
in receptor composition manifest as a poor response to cap-
saicin (Jordt and Julius, 2002) and explain the behavioral 
differences in capsaicin sensitivity between birds and mam-
mals; mammals are behaviorally sensitive to capsaicin and 
birds are not (Mason et al., 1991; Norman et al., 1992).

Currently, 28 TRP channels, grouped into six functional 
subfamilies, have been characterized. The subfamilies are 
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responsive to exogenous compounds that code for qualita-
tive perceptual similarities (e.g., the “hotness” of capsaicin, 
the “burn” of cinnamon oil, the “coolness” of menthol, the 
irritation of mustard oil; Holzer, 2011). Although the spe-
cific homologies for other TRP channels in birds are gen-
erally not known, based on behavioral responsiveness to a 
variety of mammalian irritants, it is anticipated that TRP 
channel receptor molecules in birds would be structurally 
similar and/or have similar expression in nociceptors to that 
found in mammals for cinnamon oil, allicin (garlic/onion), 
and menthol and divergent for mustard oil and anthranilate 
(grape) compounds (Clark, 1998; Stucky et al., 2009).

Digital fluorescence imaging of intracellular calcium 
[Ca2+]I in vitro preparations of chicken and rat trigemi-
nal dorsal root ganglia show that there are separate and 
overlapping populations of neurons that are sensitive to 

the well-described avian irritant, methyl anthranilate, and 
capsaicin (Kirifides et al., 2004). In the chicken, 48% of 
neurons responded to methyl anthranilate, whereas only 
16% responded to capsaicin. Moreover, there was a greater 
change in [Ca2+]I to equimolar concentrations of methyl 
anthranilate (78%) relative to capsaicin (43%). Increases 
in [Ca2+]I were dependent upon extracellular calcium for 
both methyl anthranilate and capsaicin. However, responses 
to methyl anthranilate, but not capsaicin, were dependent 
on extracellular sodium. This suggests different transduc-
tion mechanisms for the two compounds. Together, these 
observations provide further rationale for the observed 
behavioral differences in birds to these two compounds. 
Starlings (Sturnus vulgaris) demonstrate congenital avoid-
ance to methyl anthranilate but not capsaicin, although 
they could be trained to avoid capsaicin in conditioned 
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avoidance paradigms, and that avoidance was contingent 
upon an intact ophthalmic branch of the TN (Mason and 
Clark, 1995). These observations also suggest that while 
birds can perceive capsaicin, although somewhat poorly, it 
is not coded as pain, highlighting the importance of cen-
tral processing in the perceptual interpretation of peripheral 
signals.

7.2.4  Chemical Structure–Activity 
Relationships to Irritants

Despite the apparent insensitivity of birds to capsaicin, they 
can respond to other vanilloid compounds (Figure 7.2). Aro-
matic compounds that are considered aversive by birds are 
qualitatively characterized as having an aromatic heterocy-
clic core, high degree of basicity, high degree of lipophi-
licity, and a high degree of electronegativity (Figure 7.3). 
The core aromatic heterocycle of a repellent compound is 
enhanced by substitutions that affect electron donation: 
 amino > methoxy > methyl > hydroxyl groups. Resonance of 
lone pairs of electrons enhances repellency as a function 
of substituent position: ortho > para > meta. Acidic substitu-
ents in the electron withdrawing group detract from aver-
sive qualities of the compound. Steric effects and extreme 

delocalization of lone pairs of electrons, as might occur in 
meta isomers and aromatic structures with multiple substi-
tuted electron donating groups, tend to interfere with repel-
lency (Mason et al., 1989; Clark, 1991a; Clark and Shah, 
1991, 1994; Clark et al., 1991; Shah et al., 1991).

Quantitative structure–activity relationships of aro-
matic compounds and repellency are consistent with earlier 
qualitative studies. The aversive properties of 14 derivatives 
of cinnamic acid compounds are characterized by heat of 
formation (DH(f)), polarizability (XY and YY), and super-
delocalizability (Sr). All of these descriptors are electronic 
(Watkins et al., 1999). These findings generally align with 
a reanalysis of the quantitative structure–activity relation-
ships of the 117 compounds described above (Clark, 1997). 
Canonical analysis of the relationship of physicochemical, 
topological, and electrostatic descriptors and the response 
shape of the four-parameter fluid intake curve showed that 
94% of variance in the response profile could be accounted 
for by five parameters: polarizability, ES2, ANC, KAPPA2, 
and CHI2. Polarizability is the relative susceptibility of 
the electron cloud of a molecule to be distorted by pres-
ence of an external electric field. Owing to distortion, an 
induced electric dipole moment appears. Temporary dipoles 
induce dipoles in other molecules, resulting in van der 
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Waals intermolecular forces by orienting the temporary and 
induced dipoles with each other. ES2 is an electrotopologi-
cal descriptor that describes electronic interactions between 
molecules. ANC is a partial negative electronic charge 
descriptor of electrostatic potential that influences molecu-
lar interactions. CHI2 and KAPP2 are valence connectivity 
and shape descriptors that may describe the rigidity of the 
molecule and accessibility of the molecule to receptor sys-
tems. The importance of electronic features of molecules 
is consistent with studies of TRPA1 channel modulation 
and activation of cysteine-reactive chemicals. TRP chan-
nel activation was found to be more dependent on chemical 
reactivity relative to molecular shape (Hinman et al., 2006; 
Macpherson et al., 2007). However, the importance of gain-
ing access to proximity of the TRP channels owing to influ-
ences of molecular flexibility and shape still remains to be 
more fully explored.

7.2.5  Responses to Respiratory Stimuli

Changes in carbon dioxide concentration in the nasophar-
ynx region can cause species-specific changes in reflexive 
breathing in birds (Hiestand and Randall, 1941). How-
ever, concentrations of carbon dioxide that are sufficiently 
high to be irritating to mammals have no effect on blood 

pressure, heart rate, tidal volume, breathing frequency, 
upper airway resistance, or lower airway resistance in geese 
(Anser anser) and chickens. Geese and chickens respond 
differently than mammals to exposure to sulfur dioxide, but 
in a similar manner when exposed to ammonia and phenyl 
diguanide (Callanan et al., 1974; McKeegan et al., 2005).

7.2.6  Nasal and Respiratory Irritation and 
Interaction of Olfaction and Chemesthesis

The TN is important in the perception of odors (Tucker, 
1971; Silver and Maruniak, 1981; Keverne et al., 1986). 
Electrophysiological evidence shows that the TN responds 
to odors, although it is generally less sensitive than the 
olfactory nerve (Tucker, 1963). Behavioral assays yield 
similar results. Pigeons trained to respond to odors fail to 
respond after olfactory nerve transections. However, odor 
responding can be reinstated if the odor concentration is 
increased (Michelsen, 1959; Henton, 1969; Henton et al., 
1966). Odor sensitivity of pigeons decreased by 2–4 log 
units (vapor saturation) after olfactory nerve transaction 
(Walker et al., 1979).

Although olfaction can modulate responding to chemi-
cal irritants, it is relatively unimportant (Clark, 1995). In 
European starlings, avoidance of anthranilate compounds 
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was partially a consequence of olfactory cues. When the 
olfactory nerves were transected, avoidance was only 
mildly diminished. When the ophthalmic branches of the 
TN were transected, the starlings became insensitive to the 
aversive properties of the anthranilates (Mason et al., 1989).

7.2.7  Behavioral Responses to Irritants

Many aromatic molecules are aversive to birds (Kare, 1961; 
Mason et al., 1989; Crocker and Perry, 1990; Clark and 
Shah, 1991, 1993; Crocker et al., 1993). Several lines of 
evidence suggest that a variety of compounds have intrin-
sic properties that cause them to be aversive on a purely 
sensory basis. First, the aversive quality is unlearned; that 
is, avoidance occurs upon initial contact (Clark and Shah, 
1991). Second, there is no evidence that consumption is 
altered by gastrointestinal feedback; intake of fluid treated 
with those sensory stimuli is constant over time (Clark and 
Mason, 1993). Third, unlike mammals, birds seem unable 
to associate the aversive quality of the stimulus with other 
chemosensory cues, suggesting that conditioned flavor 
avoidance learning does not occur (Clark, 1996; Clark and 
Avery, 2013). Fourth, birds do not habituate to the stimulus; 
avoidance persists in the absence of reinforcement (Clark 
and Shah, 1994).

7.2.8  Applications

Current interest in chemesthetic function and properties in 
birds is largely focused in four areas: (1) the evolutionary 
phylogenetic relationships of receptor mediated perception 
of noxious stimuli and its consequence to the foraging ecol-
ogy of birds (Clark, 1998; Tewksbury and Nabhan, 2001); 
(2) the applicability of using aversive compounds in modu-
lating feeding behavior of birds to develop repellents for 
prevention of crop damage or otherwise mitigating against 
damage caused by birds (Mason and Clark, 1997; Clark 
and Avery, 2013); (3) efforts to gain a better understanding 
of pathologic pain caused by “debeaking” and promotion 
of animal welfare in domestic chicken production through 
better management methods or development of appropriate 
analgesics (Kuenzel, 2007; Gentle, 2011); and (4) discovery 
of better analgesics for management of pain in veterinary 
clinical settings.

7.3  OLFACTION

7.3.1  Morphology of Olfactory System

Air entering a bird’s nasal cavity passes through a series 
of mucous-covered, invaginated chambers called nasal 
conchae. Nasal conchae influence air flow dynamics and 
direct odors to the caudal-most chamber, which contains 
the chemically sensitive olfactory epithelium (reviewed in 

Roper, 1999; see also: Bang, 1960, 1961, 1963, 1964, 1965, 
1966; Bang and Cobb, 1968). The surface of the olfactory 
epithelium is composed of receptor cells, which detect 
odorous compounds and occur at the ends of olfactory nerve 
dendrites. Each receptor cell is surrounded by a cluster of 
supporting cells and ends in a knob bristling with 6–15 cilia 
that extend into the lumen. The length of cilia varies by spe-
cies. Black vultures, for example, have cilia of 40–50 μm, 
whereas domestic fowl have cilia of 7–10 μm (Shibuya and 
Tucker, 1967). To gain access to the cilia of receptor cells, 
odor molecules must diffuse through a mucous membrane. 
Cilia themselves provide no transport function. Rather, 
secretions covering cilia provide rapid flow for odor mol-
ecules. Olfactory gland secretions must be removed and 
replaced to maintain diffusion and avoid receptor habitu-
ation to odorant molecules. Traction of nearby respiratory 
cilia facilitates removal of secretions.

The extent of scrolling of caudal conchae correlates 
with the surface area of olfactory epithelium and the rela-
tive size of the olfactory bulb, which is the region of the 
brain that processes odor input (Bang and Cobb, 1968; 
Bang, 1971; Bang and Wenzel, 1985; reviewed in Roper, 
1999; Hagelin, 2007a). Avian orders with relatively larger 
olfactory bulbs have lower detection thresholds, indicat-
ing they are more sensitive to certain odorous compounds 
than those with relatively small olfactory bulbs (Clark et al., 
1993; Table 7.1, Figure 7.4). Elaborated olfactory systems 
typically belong to species with demonstrated reliance on 
odor cues in the field (Stager, 1964; Hutchison and Wenzel, 
1980; Hagelin, 2004) and, in some species, correlate posi-
tively with the number of olfactory receptor genes (Steiger 
et al., 2008). Fossil evidence also indicates olfactory bulb 
size was relatively large early in bird evolution, revealing 
a previously unrecognized emphasis on smell (Zelenitsky 
et al., 2011).

Although a larger olfactory bulb size or greater scrolling 
of receptor epithelium likely indicates greater functional 
capacity (e.g., more cells and neural circuits; Meisami, 
1991), it is important not to dismiss avian species with rela-
tively “unelaborate” olfactory systems (Hagelin, 2007b). 
Both field and laboratory tests indicate that several taxa 
with relatively small olfactory bulbs can discriminate 
between and/or adaptively employ certain odors, such as 
those related to breeding and nesting (e.g., crested auklets 
(Aethia cristatella) Hagelin et al., 2003; European starlings 
Clark and Mason, 1985; Gwinner and Berger, 2008; Corsi-
can Blue Tit (Parus caeruleus ogliastrae) Petit et al., 2002).

7.3.2  Innervation of Olfactory Receptors

Olfactory receptor cells from each nasal cavity transmit 
information via the olfactory nerve to the olfactory bulb, 
located in the anterior region of each brain hemisphere. 
Each olfactory bulb is composed of concentric cell layers. 
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Incoming olfactory nerve fibers constitute the outer layer. 
Branching nerve terminals penetrate into the adjacent, glo-
merular layer, where they connect with dendrites of mitral 
and tufted cells in spherical arborizations called glomeruli. 
The perikarya of these cells are in the deeper mitral cell 
layer, where their axons leave to project to many areas of 
the forebrain.

Like other vertebrates, the olfactory bulbs of birds are 
bilaterally symmetrical; each is associated with its own 
(ipsilateral) brain hemisphere. The layering of different cell 
types within avian olfactory bulbs is qualitatively similar to 
reptiles, in that well-defined cell layers (like those of mam-
mals) are lacking (Allison, 1953; Andres, 1970). However, 
there are many interneuron connections in the cell layers 

TABLE 7.1 Summary of Mean Ratios of Ipsilateral Olfactory Bulb Diameter to Cerebral Hemisphere Diameter and 
Their Standard Errors (SE) for Several Orders of Birds

Order N Ratio SE Order N Ratio SE

Anseriformes 4 19.4 1.5 Psittaciformes 2 8.0 1.4

Apodiformes 8 12.3 1.9 Falconiformes 5 17.4 2.6

Apterygiformes 1 34.0 0.0 Charadriiformes 9 16.4 0.9

Caprimulgiformes 3 23.3 0.7 Galliformes 3 14.2 1.4

Columbiformes 2 20.0 1.4 Piciformes 5 11.4 1.3

Cuculiformes 4 19.5 0.6 Passeriformes 25 13.3 0.7

Gruiformes 14 22.2 0.9 Pelecaniformes 4 12.1 1.6

Gaviformes 1 20.0 0.0 Coraciiformes 5 14.5 1.6

Podicipediformes 2 24.5 1.8 Sphenisciformes 1 17.0 0.0

Procellariiformes 10 29.1 1.4

Sample sizes indicate the number of species (N).
Source: Data adapted from Bang and Cobb (1968).
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between the mitral and glomerular regions. There are no 
direct connections between the two (contralateral) olfactory 
bulbs (Rieke and Wenzel, 1978).

Although birds clearly have olfactory bulbs, they appear 
to lack an accessory olfactory system (Rieke and Wenzel, 
1974, 1978). Both olfactory and accessory olfactory struc-
tures commonly occur in other vertebrates. The accessory 
olfactory system is frequently linked to conspecific scent 
stimuli that modulate social behavior (e.g., reproduction, 
aggression). However, there is good evidence for mammals 
that both the main olfactory and accessory olfactory sys-
tems can detect and process overlapping sets of odor stimuli 
(Keller et al., 2009). Accessory olfactory structures include 
the vomeronasal organ and accessory olfactory bulb. It is 
possible that accessory olfactory bulbs in birds occur dur-
ing early embryonic development only, but are lost later on 
(Matthes, 1934). This idea, however, has received little sci-
entific attention.

7.3.3  Olfactory Neuronal Response

Electrophysiological responses to odor stimuli are taken 
as definitive evidence of olfactory capacity. These can be 
recorded from a single “unit” (neuron) or multiunit nerve 
fibers. Recordings of black vultures indicate that the elec-
tro-olfactogram appears primarily during inspiration, which 
coincides with peak spike activity (Shibuya and Tucker, 
1967). Electrophysiological recordings of mammals, 
amphibians, reptiles, and birds all show similar responses, 
irrespective of the size of a species’ olfactory apparatus 
(Tucker, 1965; Shibuya and Tonosaki, 1972).

Single-unit responses from within the olfactory bulb 
of domestic chickens show widely variable rates of spon-
taneous firing (mean 4.9 spikes/s, range 0.1–32.4 spikes/s) 
prior to odor exposure (McKeegan, 2002). Odor stimula-
tion modifies spontaneous firing via excitation or inhibition. 
Avian firing rates appear to fall in between rates reported for 
mammals and reptiles (McKeegan, 2002, 2009). Single units 
of chickens responded to two or more odors and revealed 
surprising sensitivity to biologically relevant scents associ-
ated with captivity (e.g., hydrogen sulfide). Responses to 
extremely low (<0.5 ppm) stepwise changes in concentra-
tion to hydrogen sulfide revealed a level of fine-tuning not 
previously reported for other vertebrates (McKeegan et al., 
2002). Continuous presentation of a stimulus can result in 
physiological adaptation of both single-unit (McKeegan and 
Lippens, 2003) and nerve-unit recordings, like mammals. 
Recovery can be achieved within a few minutes of rest.

Olfactory nerve fibers are unmyelinated, which produces 
slow conduction velocities of about 1.5 mJ/s (Macadar et al., 
1980). Interestingly, transected olfactory nerves (which 
experimentally inhibit olfaction) can repair and recover full 
physiological capacity within 30 days (Tucker et al., 1974). 
Although healed nerves are scarred and smaller, recordings 

and autonomic reflexes to odorants did not differ between 
controls and nerves that had been cut at least 6 months ear-
lier (Tucker, 1971; Tucker et al., 1974).

Another means of quantifying olfactory neural responses 
involves calcium imaging (Restrepo et al., 1995). This 
method uses fluorescence to quantify changes in the flux of 
calcium ions associated with neural activation (i.e., signal 
transduction) of a single olfactory receptor neuron (ORN). 
Jung et al. (2005) tested responses of acutely dissociated 
ORNs from olfactory epithelium of embryonic domestic 
chicks. Avian ORNs were placed in Ringer’s solution con-
taining liquid solutions of odorants. The fluorescence pat-
terns, which correspond to increases or decreases in Ca2+ 
concentration, were remarkably similar to those of other 
vertebrates (mammals and fish) that had been tested with 
the same set of odorants (Jung et al., 2005).

7.3.4  Laboratory Detection Thresholds, 
Discrimination, and Seasonal Change

Physiological responses (e.g., change in respiration or heart 
rate) to novel odor stimuli have been observed (Wenzel 
and Sieck, 1972). Habituation to the stimulus under this 
paradigm, however, is problematic. Operant and classical 
conditioning paradigms that use positive or negative rein-
forcement (Michelsen, 1959; Henton et al., 1966; Henton, 
1969) are usually poor at determining olfactory thresholds 
or discrimination (Calvin et al., 1957). However, two pro-
cess learning paradigms, such as cardiac conditioning, 
have proven to be a successful technique for detection, dis-
crimination, and threshold testing (Rescorla and Solomon, 
1967; Walker et al., 1986; Clark and Mason, 1989; Clark 
and Smeraski, 1990; Clark, 1991a; Clark et al., 1993). Dur-
ing cardiac conditioning, an odor (the conditional stimulus) 
is paired with an aversive experience, such as a shock (the 
unconditional stimulus). Heart rate is compared before and 
after stimulus presentation during training until a level of 
cardiac acceleration is reliably achieved, indicating a bird 
has learned to associate the odor in anticipation of a shock. 
Thereafter, tests of detection or odor discrimination can 
proceed. Most birds tested with this paradigm have shown 
olfactory capabilities comparable to mammals (Davis, 
1973). Even passerines, with the least developed olfactory 
system, demonstrate behavioral responsiveness to odors 
(Clark and Mason, 1987; Clark and Smeraski, 1990; Clark, 
1991a; Clark et al., 1993) (Table 7.2).

European starlings offer an interesting case study of 
olfactory structure, function, and seasonality. Male starlings 
incorporate green plants that are rich in aromatic volatiles 
into nests, some of which act as a fumigant against parasites 
and pathogens (Clark and Mason, 1985, 1987, 1988; Clark, 
1991b; Gwinner, 1997; Gwinner et al., 2000; Gwinner and 
Berger, 2005). Starlings are most sensitive to, and can dis-
criminate between, plant odors during spring only, rather than 
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TABLE 7.2 Summary of Selected Behavioral Olfactory Threshold Data for Different Species of Birds

Species Ratio1 Stimulus

Threshold (ppm)

SourceMin Max

Rock dove (Columba livia) 18.0 n-Amyl acetate 0.31 29.8 Henton (1969), Henton et al. 
(1966), Walker et al. (1979), Walker 
et al. (1986)

Benzaldehyde 0.47 00.75 Walker et al. (1986)

Butanethiol 13,820 – Snyder and Peterson (1979)

Butanol 0.17 – Walker et al. (1986)

n-Butyl acetate 0.11 2.59 Henton (1969), Walker et al. (1986)

Butyric acid 2.59 – Henton (1969)

Ethanethiol 10,080 – Snyder and Peterson (1979)

Heptane 0.29 0.38 Stattelman et al. (1975)

Hexane 1.53 2.98 Stattelman et al. (1975)

Pentane 16.45 20.76 Stattelman et al. (1975)

Chicken (Gallus gallus) 15.0 Heptane 0.31 0.57 Stattelman et al. (1975)

Hexane 0.64 1.00 Stattelman et al. (1975)

Pentane 1.58 2.22 Stattelman et al. (1975)

Northern bobwhite (Colinus 
virginianus)

– Heptane 2.14 3.49 Stattelman et al. (1975)

Hexane 3.15 4.02 Stattelman et al. (1975)

Pentane 7.18 10.92 Stattelman et al. (1975)

Black-billed magpie (Pica 
pica)

– Butanethiol 13,416 – Snyder and Peterson (1979)

Ethanethiol 8400 – Snyder and Peterson (1979)

European starling (Sturnus 
vulgaris)

9.7 Cyclohexane 2.50 – Clark and Smeraski (1990)

Cedar waxwing (Bombycilla 
cedrorum)

– Cyclohexane 6.80 86.46 Clark (1991a)

Tree swallow (Tachycineta 
bicolor)

15.0 Cyclohexane 73.42 – Clark (1991a)

Brown-headed cowbird 
(Molothrus ater)

7.0 Ethyl butyrate 0.76 – Clark and Mason (1989)

Catbird (Dumetella carolin-
ensis)

– Cyclohexane 35.14 – Clark et al. (1993)

Eastern phoebe (Sayornis 
phoebe)

– Cyclohexane 35.61 – Clark et al. (1993)

European goldfinch (Carduelis 
carduelis)

– Cyclohexane 13.05 – Clark et al. (1993)

Great tit (Parus major) – Cyclohexane 34.10 – Clark et al. (1993)

Black-capped chickadee 
(Parus atricapillus)

3.0 Cyclohexane 59.95 – Henton (1969)

1The ratio of the longest axis of the olfactory bulb to that of the ispsilateral cerebral hemisphere.
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in summer and fall. Spring is coincident with nest building and 
suggests a hormonal influence (Clark and Smeraski, 1990).

Birds treated with testosterone (T), a hormone that 
enlarges song-learning nuclei of the brain and alters 
behavior, exhibited enlarged olfactory bulbs year-round, 
indicating a proximate effect on bulb structure. However, 
perception of plant odor in T-implanted males was great-
est during spring only, indicating that perception was inde-
pendent of T-treatment and olfactory bulb volume. One 
hypothesized but untested mechanism is that an increase in 
receptor cell density in starling olfactory epithelium occurs 
in spring (DeGroof et al., 2010).

7.3.5  Development

Volatile compounds diffuse through avian eggshell (Rahn 
et al., 1979), providing an opportunity for odor exposure 
within the egg (Tolhurst and Vince, 1976; Sneddon et al., 
1998). Many vertebrates, including birds, detect and learn 
chemical information as embryos (e.g., humans: Schaal 
et al., 2000; Mennella et al., 2001; other mammals: Hepper, 
1988; Bilko et al., 1994; amphibians: Mathis et al., 2008; 
birds: Porter and Picard, 1998; Bertin et al., 2012). Early 
exposure can cause changes in neuroanatomy, which alters 
chemosensory perception in a way that can adaptively shape 
responses later in life (e.g., to food, mates, etc.) (Todrank 
et al., 2011).

Studies of domestic chickens, the avian model for devel-
opment, indicate that odor detection can occur before or 
after young pierce the egg’s air sac and begin breathing air 
(Tolhurst and Vince, 1976; Bertin et al., 2012; Hagelin et al., 
2013). ORNs are functional 6 days prior to air-breathing 
(on embryonic developmental day 13; Lalloué et al., 2003), 
when nasal passages are full of amniotic fluid. Embryos 
at this stage swallow frequently, facilitating fluid move-
ment, similar to mammals in utero (Sneddon et al., 1998).  
Airbreathing begins approximately 2 days prior to hatch-
ing, on embryonic developmental day 19 (Tolhurst and  
Vince, 1976).

The magnitude of embryonic response varies relative to 
stimulus concentration and timing of exposure (Bertin et al., 
2010). Later developmental stages show relatively greater 
responses to odors (Gomez and Celli, 2008; Bertin et al., 
2012). Detectable stimuli include artificial odors (Sneddon 
et al., 1998), as well as naturally occurring scents, such as 
nest materials (Gwinner and Berger, 2008), food-related 
odors (Burne and Rogers, 1999; Cunningham and Nevitt, 
2011), and compounds found in plumage scent of at least 
one alcid species (Hagelin et al., 2013).

7.3.6  Field Studies and Behavioral Ecology

Like other vertebrates, birds detect and respond adap-
tively to odors (reviewed in Roper, 1999; Hagelin, 2007a; 

Balthazart and Taziaux, 2009; Caro and Balthazart, 2010). 
Hagelin (2007a) made a distinction between environmen-
tally derived odors (e.g., food, predators) and those pro-
duced by birds themselves (e.g., body odors, fecal odor, 
preen gland secretions). The latter can have social and 
reproductive implications. This section considers examples 
of adaptive olfactory responses to environmental odors as 
well as bird-derived scents.

The use of olfactory cues for locating food has been 
documented for numerous species, such as procellariids, 
vultures, corvids, hummingbirds, honeyguides, parrots, and 
kiwis (Roper, 1999). Turkey vultures (Cathartes aura), for 
example, are attracted to ethyl-mercaptan, a volatile associ-
ated with decomposed carcasses (Stager, 1964, 1967), and 
locate food without visual cues (Houston, 1986). Procel-
lariiforms also forage over considerable distances. Black-
footed albatrosses (Diomedea nigripes) respond to bacon 
grease over 31 km away (20 miles; Miller, 1942), whereas 
Leach’s storm petrel (Oceanodroma leucorhoa) home to 
scent targets at a distance of 1–12 km (Clark and Shah, 
1992). Some procellariiformes also respond to a compound 
that is correlated with prey called dimethyl-sulfide (DMS) 
(Nevitt et al., 1995). DMS smells like rotten seaweed 
and results from the breakdown of metabolic products of 
marine algae (phytoplankton). Petrels, however, do not feed 
on phytoplankton. Rather, DMS concentrates in locations 
where a bird’s prey (zooplankton, such as krill) is actively 
grazing on phytoplankton. Grazing by zooplankton lyses 
phytoplankton cells and thereby creates a DMS odor plume, 
which some birds follow to locate food (Nevitt, 2011).

With regard to predators, the scent of urine and/or 
feces has an aversive effect on some avian species (blue 
tits (Cyanistes caeruleus), Amo et al., 2008; house finches 
(Carpodacus mexicanus), Roth et al., 2008; red junglefowl 
(Gallus gallus), Zidar and Løvlie, 2012), but not all (eastern 
blue birds (Sialia sialis), Godard et al., 2007; house wren 
(Troglodytes aedon), Johnson et al., 2011). Application of 
predator odor can also deter breeding ducks and songbirds 
(Eicholz et al., 2012; Forsman et al., 2013). Responses 
appear to be innate rather than learned (Amo et al., 2011b), 
although sleeping birds are unreactive (Amo et al., 2011a).

Odors are also germane to avian orientation and navi-
gation (reviewed in Wallraff, 2005; Gagliardo, 2013). 
Homing pigeons, for example, exhibit larger olfactory 
bulbs than nonhoming breeds (Rehkämper et al., 1988, 
2008). Investigators have also altered pigeon homing 
behavior via experimental disruption of the olfactory sys-
tem. Manipulations include olfactory nerve transection 
(Papi et al., 1971; Gagliardo et al., 2006, 2009), anesthesia 
of olfactory mucosa (Wallraff, 1988), ablating the central 
piriform cortex of the brain (Papi and Casini, 1990), and 
nostril plugging. The last of these manipulations indicates 
that pigeons rely more on their right nostril for olfactory 
information (Gagliardo et al., 2007, 2011). ZENK, an 
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immediate early gene expressed in olfactory neurons, also 
implicates the use of olfaction during the process of hom-
ing (Patzke et al., 2010).

Emerging evidence for passerine species further sup-
ports olfaction during migration. For example, adult gray 
catbirds (Dumetella carolinensis) rendered temporarily 
anosmic (by washing the olfactory tissues with zinc sul-
fate) oriented differently from adult controls but similarly 
to juvenile birds, which were migrating for the first time 
and therefore unable to navigate (Holland et al., 2009). 
With regard to cellular mechanisms, black-headed buntings 
(Emberiza melanocephala) increase activation of olfac-
tory tissues (as measured by c-fos immunoreactivity) dur-
ing migration. These birds exhibit a seasonally enhanced 
emphasis on olfaction while migrating, compared to visual 
systems (Rastogi et al., 2011).

Many birds produce a variety of odorous compounds 
(Table 7.3; reviewed in Campagna et al., 2011). For exam-
ple, a seabird colony, with its dense numbers of birds, 
burrows, and feces, makes for a potent chemosensory expe-
rience. Pioneering work by Grubb (1974) on Leach’s storm 
petrel showed differential return rates to nest sites after sur-
gical manipulation, indicative of olfactory-based homing: 
91% for controls, 74% for sham surgery, and 0% for olfac-
tory nerve section. Several petrel species have since been 
shown to discriminate between the odor of their own nest 
and conspecific burrows (Mínguez, 1997; De León et al., 
2003; Bonadonna et al., 2003a,b). Attraction to home nest 

odor is also reported for passerines (Caspers and Krause, 
2010; Krause and Caspers, 2012).

Avian chemical substances are linked with a variety 
of social contexts (reviewed in Hagelin, 2007a; Hagelin 
and Jones, 2007; Balthazart and Taziaux, 2009; Caro and 
Balthazart, 2010). Uropygial gland secretions, for example, 
show some level of hormonal control and exhibit individ-
ual, sex, and age-specific patterns (e.g., Procellariiformes: 
Mardon et al., 2010, 2011; Anseriformes: Kolattukudy 
et al., 1987; Galliformes: Karlsson et al., 2010; passerines: 
Whittaker et al., 2010; Whelan et al., 2010; Shaw et al., 
2011; Amo et al., 2012a). Pioneering work by Balthazart 
and Schoffeniels (1979) indicated male mallards decreased 
social displays and sexual behavior toward females when 
their olfactory nerves were sectioned, suggesting that 
intact olfactory system is critical to courtship and mat-
ing. Crested auklets produce a seasonally elevated scent 
associated with a stereotyped behavior that focuses on the 
scented region of the body (the nape). Auklets are attracted 
to natural feather odor, a chemical cocktail of odor com-
pounds, and scented decoys, which suggests odor has a 
social function (Hagelin et al., 2003; Jones et al., 2004; 
Hagelin, 2007a). Odorous compounds of crested auklets 
can also negatively impact ectoparasites in experimental 
tests (Douglas, 2008, 2013).

Procellariiform seabirds show a surprising level of body 
odor discrimination, in that they are attracted to mate odors 
and avoid self-odor (Antarctic petrel (Pachyptila desolata) 
Bonadonna and Nevitt, 2004; blue petrels (Halobaena cae-
rulea), Mardon and Bonadonna, 2009). Furthermore, pref-
erence for the odor of unrelated individuals over those of 
kin was recently discovered (European storm petrel (Hydro-
bates pelagicus), Bonadonna and Sanz-Aguilar, 2012). Such 
results suggest that body odors could provide a mechanism 
for inbreeding avoidance, known as self-referent phenotype 
matching (Mateo and Johnston, 2000). This may be par-
ticularly important in petrels which are a long-lived philo-
patric species that mates for life. Petrels are also likely to 
encounter kin on their natal breeding grounds that they have 
never met before (Bonadonna and Nevitt, 2004; Bonadonna 
and Sanz-Aguilar, 2012). Recent evidence for passerines 
suggests that conspecific odor may provide relevant social 
information. Bird responses to scent correlated with social 
rank (house finch, Amo et al., 2012b), sex (European star-
ling, Amo et al., 2012a), and body size (dark-eyed junco 
(Junco hyemalis), Whittaker et al., 2011).

7.3.7  Summary

Every bird tested has exhibited a functional sense of smell 
(Bang and Wenzel, 1985). The extent of olfactory devel-
opment also is on par with that found in mammals. How-
ever, ornithologists have largely overlooked the role of 
olfaction in avian biology. Many birds adaptively employ 

TABLE 7.3 Some Avian Orders Considered To Be Very 
Odorous by Ornithologists

Order Common Name
Number of 
Species1

Procellariiformes Petrels, shearwaters, diving 
petrels

16

Ciconiiformes Herons, storks, new world 
vultures

12

Anseriformes Ducks, geese, swans,  
screamers

49

Charadriiformes Sandpipers, gulls, auks 23

Psittaciformes Parrots 14

Cuculiformes Cuckoos 16

Coraciiformes Kingfishers, rollers, hoopoes, 
woodhoopoes

14

Piciformes Woodpeckers, barbets, 
tucans

33

Passeriformes Grackles, starlings, ravens, 
finches, honeycreepers

46

1Data compiled from Weldon and Rappole, 1997.
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environmental odors; they also produce and respond to con-
specific scents. Although passerines have a relatively poorly 
developed olfactory anatomy, they nonetheless show some 
degree of olfactory acuity. Other species, such as procel-
lariiformes, have olfactory systems that are acutely sensitive 
to odor cues and capable of a surprisingly detailed level of 
conspecific odor discrimination. Given the broad range of 
contexts that implicate avian olfaction, future interdisciplin-
ary research that compares olfactory mechanisms in birds 
to better-known vertebrate systems, such as mammals and 
fish, holds exciting promise.

7.4  GUSTATION

7.4.1  Taste Receptors

Relative to other vertebrates, birds have fewer taste recep-
tors and taste receptor genes (Berkhoudt, 1985; Shi and 
Zhang, 2005) (Table 7.4). Notwithstanding these obser-
vations, birds have a well-developed system for gustation 
with functional significance for their behavior, ecology, and 
evolution. Taste receptors are located in taste buds through-
out the oral cavity. The greatest concentration of avian 
taste receptors is found around salivary glands in the soft 
epithelium of the palate, the posterior tongue, and the oro-
pharynx (Bath, 1906; Lindenmaier and Kare, 1959; Saito, 

1966; Ganchrow and Ganchrow, 1985). Afferent taste sig-
nals in birds are carried in the glossopharyngeal nerve (cra-
nial nerve IX; Duncan, 1960). The glossopharyngeal nerve 
innervates the posterior buccal and pharyngeal areas (Kare 
and Mason, 1986). Unlike mammals, the facial nerve (VII) 
does not innervate the avian tongue (Wenzel, 1973). Rather, 
glossopharyngeal afferents in birds enter the medulla and 
join fibers from the facial (including chorda tympani) 
and vagus nerves (X) to form a well-developed fasciculus  
 solitarius (Lindenmaier and Kare, 1959). The chorda 
 tympani innervates taste buds adjacent to the anterior 
 mandibular salivary glands, situated in the buccal  epithelium 
of the lower jaw (Kare and Mason, 1986).

7.4.2  Response to Sweet

Birds have a well-developed sense of taste that gener-
ally corresponds to their feeding habits. Frugivorous and 
omnivorous birds tend to perceive and prefer sweet more 
so than species in other foraging guilds. For example, 
European starlings prefer 0.5–5% d-fructose solutions 
(w/v) to distilled water (Espaillat and Mason, 1990). 
Sugar detection thresholds of cockatiels (Nymphicus hol-
landicus) is 0.36 M sucrose, 0.40 M fructose and 0.16 M 
glucose (Matson et al., 2000, 2001). The sugar detec-
tion thresholds of broad-billed hummingbirds (Cynan-
thus latirostris) is between 1.31 and 1.54 mM sucrose, 
0.87–1.31 mM fructose, 1.54–1.75 mM glucose and 
1.75–3.5 mM of a 1:1 mixture of fructose and glucose 
(Medina-Tapia et al., 2012). Interestingly, the sweet 
taste receptor gene Tas1r2 is absent in all bird genomes 
sequenced thus far, irrespective of their diet (Zhao and 
Zhang, 2012), suggesting that additional avian receptors 
may exist for sweet.

The order of preference among nectivorous passerines 
is sucrose = glucose + fructose = fructose > glucose > xylose 
(Lotz and Nicolson, 1996). Lesser double-collared sun-
birds (Nectarinia chalybea) and Cape sugarbirds (Prome-
rops cafer) absorb sucrose, glucose, and fructose from 
ingested food at nearly 100% efficiency, but xylose 
was excreted (Lotz and Nicolson, 1996; Jackson et al., 
1998a,b). Although nectar composition and concentration 
are often considered independently, these characteristics 
may have a synergistic effect on the sugar preferences of 
nectar-feeding birds (Schondube and Martinez del Rio, 
2003).

Sugar preferences among nectarivorous and frugivorous 
birds are concentration-dependent. Although nectarivorous 
birds in Africa prefer sucrose when offered a choice of 
0.25 M solutions of glucose, fructose, and sucrose, no pref-
erence among these sugars was observed when their concen-
tration was increased to 0.73 M; the dietary choices in these 
species indicate the birds had either reached a limit where 
they had sufficient energy intake or they were affected by 

TABLE 7.4 Abundance of Taste Buds among Vertebrate 
Species1

Species
Taste  
Buds Source

Domestic chick (day-old)

Domestic chicken  
(3 months)

5–12

24

Lindenmaier and Kare 
(1959)
Lindenmaier and Kare 
(1959)

Blue tit
Bullfinch

24
41–42

Gentle (1975)
Duncan (1960)

Pigeon
Japanese quail
European starling
Parrot
Domestic cat (juvenile)
Lizard
Bat
Domestic cat (adult)
Human
Rabbit
Pig
Ox
Catfish

59
62
200
300–400
473
550
800
2755
6974
17,000
19,904
35,000
100,000

Moore and Elliot (1946)
Warner et al. (1967)
Bath (1906)
Bath (1906)
Elliot (1937)
Schwenk (1985)
Moncrieff (1946)
Robinson and Winkles (1990)
Miller and Reedy (1990)
Moncrieff (1946)
Chamorro et al. (1993)
Moncrieff (1946)
Hyman (1942)

1Modified from Kare and Mason (1986) and Mason and Clark (2000).
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postingestion constraints (Downs and Perrin, 1996; Downs, 
1997). House finches demonstrated no preference for equi-
caloric, 2% solutions of hexoses (1:1 mixture of fructose 
and glucose) and sucrose, and strong preference manifest 
for hexoses but not sucrose at 4, 6, and 10% concentrations; 
energetics, rather than sucrase deficiency, may determine 
finches’ sugar preferences (Avery et al., 1999).

Studies of unrelated, nectarivorous birds (including a gen-
eralist, nonpasserine nectarivore) have demonstrated a distinct 
switch from hexose preference at low concentrations to sucrose 
preference at higher concentrations (Lotz and Schondube,  
2006; Fleming et al., 2008; Brown et al., 2010a,c). Sucrose 
preference at higher concentrations may possibly be 
explained by taste perception due to differences in solution 
osmolality or a degree of imprinting due to experience with 
natural nectar compositions. Village weavers (i.e., generalist 
passerine nectarivores; Ploceus cucullatus) preferred hexose  
solutions at 5% and 10% sucrose equivalents (SE), yet 
no sugar preference was observed at 15, 20, and 25% SE 
(Odendaal et al., 2010). In contrast, dark-capped bulbuls  
(Pycnonotus tricolor), an opportunistic nectarivore, signifi-
cantly preferred hexose solutions, irrespective of concentration 
(5–25%), when given a choice between equicaloric hexose 
and sucrose solutions (Brown et al., 2010b). Interestingly, 
malachite sunbirds (Nectarinia famosa) demonstrated either 
sucrose preference, no preference, or hexose preference when 
offered equimolar, equiweight, or equicaloric paired solutions 
of sucrose and hexose, respectively (Brown et al., 2008).

The bananaquit (Coereba flaveola) strongly prefers 
the most concentrated sucrose solution when the low-
est concentration ranged from 276 to 522 mM. From 522 
to 1120 mM sucrose concentrations, bananaquits adjust 
their volumetric food intake to maintain constant energy 
intake. At a sucrose concentration of 276 mM, however, 
bananaquits did not maintain their rate of energy intake by 
increasing food consumption (Mata and Bosque, 2004). 
Although nectarivorous birds generally prefer concentrated 
over dilute sugar solutions, the concentration difference 
that they can discriminate is smaller at low concentrations 
relative to high concentrations; this pattern may be a conse-
quence of the functional form of intake responses that often 
results in decelerating sugar intakes with increasing sugar 
concentration (Martinez del Rio et al. 2001; Leseigneur  
and Nicolson, 2009). With regard to gender-specific food 
intake among nectarivorous birds, males take longer to 
digest than females when fed on sucrose-rich nectars as 
opposed to hexose-rich nectars; therefore, they can allow 
themselves a relatively lower digestive capacity (Mark-
man et al., 2006). The digestive transit rates of Cape white-
eyes (Zosterops virens) fed artificial fruit were faster for 
glucose- than sucrose-based diets, irrespective of concen-
tration; increased food intake with decreasing glucose con-
centration and no significant differences in food intake with 
differing sucrose concentrations were observed (Wellmann 

and Downs, 2009). Indeed, nectar ingestion rate is deter-
mined by viscosity, and total food intake is primarily modu-
lated by sugar concentration (Köhler et al., 2010).

Sugar preference and selection among nectarivorous 
and frugivorous birds are likely to have coevolutionary 
effects on flowering and fruit-bearing plants. Among 58 
wild fruits studied in Hong Kong, all fruit species contained 
glucose, all but one contained fructose, and only 11 spe-
cies contained sucrose; birds are known to eat 29 of these 
species without detectable sucrose and four with sucrose 
(Ko, 1996). From a comparative analysis of glucose, fruc-
tose, and sucrose in the nectar and fruit juice of 525 tropical 
and subtropical plant species, passerine nectars and fruits 
had low sucrose and high hexose content, respectively; the 
nectar of hummingbird flowers had very high sucrose con-
tent; microchiroptera nectars showed hexose richness and 
microchiropteran fruits had a sucrose content similar to 
passerine fruits; and megachiroptera nectars and fruits were 
sucrose-rich (Baker et al., 1998). The dichotomy between 
sucrose-rich nectars in hummingbird-pollinated plants and 
predominantly hexose-rich nectars in sunbird-pollinated 
plants appears to have little to do with bird physiology 
and may rather reflect patterns of nectar secretion or plant 
physiology and opportunist nectar feeders (Nicolson and 
 Fleming, 2003; Fleming et al., 2004).

The hummingbird-passerine dichotomy was strongly 
emphasized until the discovery of South African plants 
with sucrose-dominant nectars, which are pollinated by 
passerines that demonstrate sucrose digestion and prefer-
ence (Lotz and Schondube, 2006). Flowers adapted for 
specialized passerine nectarivores have nectar similar to 
that of hummingbird flowers in terms of volume (approx. 
10–30 mL), concentration (15–25% w/w) and sucrose con-
tent (40–60% of total sugar). In contrast, flowers adapted 
to generalized bird pollinators are characterized by large 
volumes (approximately 40–100 mL) of extremely dilute 
(8–12%) nectar with minimal sucrose (0–5%; Johnson and 
Nicolson, 2008).

Rufous hummingbirds (Selasphorus rufus) preferred 
50% sucrose to higher and lower concentrations, and 
they could distinguish solutions differing by only 1% 
sucrose (Blem et al., 2000). Sucrase activity is 10 times 
higher in hummingbirds than in passerines (Schondube 
and  Martinez del Rio, 2004). Neither sex nor tempera-
ture affected sugar preferences among green-backed 
firecrown hummingbirds (Sephanoides sephaniodes; 
Chalcoff et al., 2008). Patterns of hummingbird sugar 
preference can be affected by different mechanisms, both 
pre- and postingestive. At low concentrations, gustatory 
thresholds may play an important role in sugar selection. 
At intermediate and high concentrations, however, sugar 
selection can be explained by sugar assimilation rates 
and velocity of food processing generated by osmotic 
constraints (Medina-Tapia et al., 2012).
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Species belonging to the Sturnidae–Muscicapidae 
lineage do not express intestinal sucrase, despite having 
generalist diets comprising fruits with sugars of diverse 
kinds (Gatica et al., 2006). Members of the Sturnidae- 
Muscicapidae lineage are intolerant of solutions or fruit 
above 11–15% sucrose (Brown et al., 2012). Consider-
ing the phylogenetic constraint hypothesis for sucrose 
digestion in the Muscicapoidea superfamily, the lack of 
sucrase activity is a shared, derived character only for the 
 Cinclidae–Sturnidae–Turdinae lineage (Gatica et al., 2006).

Within an experimental meal with varying sucrose con-
centration, captive whitebellied sunbirds (Cinnyris talatala) 
demonstrated a measurable increase in feeding frequency 
and food intake within 10 min after a decrease in sucrose 
concentration (Köhler et al., 2008). Similarly, Knysna tura-
cos (Tauraco corythaix) preferred an artificial sucrose diet 
to an equicaloric glucose diet at low concentrations, whereas 
purple-crested turacos (Gallirex porphyreolophus) showed 
no preference for either diet. Both turacos species preferred 
a sucrose diet to an equimolar glucose diet at low concen-
trations. At high concentrations, neither species showed a 
preference for either equicaloric or equimolar diets; thus, 
energy requirements influence food preferences more than 
sugar type and birds will select fruit that is higher in energy 
irrespective of sugar type (Wilson and Downs, 2011).

7.4.3  Response to Salt

A comparison of the sodium chloride rejection thresholds 
among 58 bird species illustrated rejection thresholds rang-
ing from 0.35% NaCl in a parrot to 37.5% NaCl in the pine 
siskin (Carduelis pinus; Rensch and Neunzig, 1925). Red-
winged blackbirds (Agelaius phoeniceus) and  European 
starlings preferred 0.1–1% NaCl solutions (w/v) to dis-
tilled water (Espaillat and Mason, 1990). The salt detec-
tion threshold of cockatiels is 0.16 M NaCl (Matson et al.,  
2000) and 0.16 M potassium chloride (Matson et al., 
2001). With regard to the mechanism of salt perception,  
sodium in the oral cavity can cross the taste sensory cell 
membrane through the epithelial Na+ channel (ENaC), thus 
triggering an action potential (Roura et al., 2012). Pigeons 
(C. livia domestica) learned to discriminate a safe 0.06 M 
NaCl solution and a toxic equimolar LiCl solution. Because 
the pigeons avoided the LiCl solution within a short pre-
sentation period of 5 minutes, it is unlikely that the birds 
were using an interoceptive stimulus of faint, postingestive 
malaise as a conditioned cue; thus, the pigeons’ discrimina-
tion performance between the two chloride solutions was 
attributed to gustation (Nakajima and Onimaru, 2006).

7.4.4  Response to Sour

Sourness is related to the acidity of food, which is often 
caused by bacterial fermentation and typically evokes a 

rejection response. With regard to the mechanism of sour 
perception, the receptors for sour taste are thought to be 
transmembrane channels that are selective for hydrogen 
ions (Roura et al., 2012). Red-winged blackbirds and female 
starlings preferred distilled water to 0.01–0.1 M citric acid 
solutions (Espaillat and Mason, 1990). For the purpose of 
investigating sour detection thresholds, Matson et al. (2000) 
defined sourness as a pH, and they achieved sourness by 
varying the pH of a 0.05 M citrate buffer system. The sour 
detection threshold of cockatiels is pH 5.5 citric acid.

7.4.5  Response to Bitter

Bitter taste perception likely evolved as a protective 
mechanism against the ingestion of harmful compounds 
in food (Davis et al., 2010). Red-winged blackbirds and 
European starlings preferred distilled water to 0.5–5% 
tannic acid solutions (w/v; Espaillat and Mason, 1990). 
The bitter detection thresholds of cockatiels is 100 μM 
quinine, 1000 μM gramine, 500 μM hydrolysable tannin 
and 10,000 μM condensed tannin (Matson et al., 2004). 
Compared with pigs, chickens showed a lower sensitivity 
to glucosinolates (i.e., bitter plant metabolites); compared 
to ruminants, however, chickens showed a higher aversion 
to glucosinolates (Roura et al., 2012).

Bitter detection thresholds indicate that a birds’ rejec-
tion of quinine occurs at lower concentrations than phy-
tophagic mammals (Matson et al., 2004). White Leghorn 
and Rhode Island Red chickens were able to detect 2.0 mM 
quinine hydrochloride; broiler chickens detected 0.5 mM 
quinine hydrochloride (Kudo et al., 2010). Domestic chicks 
(14 days old) can discriminate between an untreated diet 
and a diet treated with 0.2% quinine hydrochloride (Ueda 
and Kainou, 2005).

Johnson et al. (2006) explored the functional signifi-
cance of the phenolic compounds that impart a dark brown 
color to the nectar of the South African succulent shrub, 
Aloe vryheidensis. Dark-capped bulbuls were more likely 
to probe model flowers containing dark nectar than those 
containing clear nectar, suggesting a potential signaling 
function of dark nectar. The main effect of the phenolics, 
however, appears to be repellency of ‘‘unwanted’’ nectari-
vores that find their bitter taste unpalatable. Nectar-feeding 
honey bees and sunbirds are morphologically mismatched 
for pollinating A. vryheidensis flowers and strongly reject 
its nectar. Thus, the dark phenolic component of the nec-
tar appears to function as a floral filter by attracting some 
animals visually and deterring others by its taste (Johnson 
et al., 2006).

The taste receptor type 2 (Tas2r) gene family encodes the 
chemoreceptors that are directly responsible for the detec-
tion of bitter compounds. The Tas2r cluster encodes up to 18 
functional bitter taste receptors in the white-throated spar-
row (Zonotrichia albicollis; Davis et al., 2010). Although 
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the tens to hundreds of taste buds observed among birds 
pales in comparison to the hundreds to thousands of taste 
buds found in other vertebrates (Table 7.4), this relative 
deficit does not preclude birds from detecting bitter com-
pounds as effectively as those species with more taste buds. 
Future biochemical and genetic studies will be needed to 
identify the natural ligands for avian Tas2r gene clusters, 
and the intra- and inter-specific differences in these genes 
with variation in bitter taste perception (Davis et al., 2010).

7.4.6  Response to Umami

Male starlings preferred 0.7–1% l-alanine solutions to dis-
tilled water (Espaillat and Mason, 1990). The T1R1 umami 
receptor gene and the T1R3 sweet/umami receptor gene 
have been identified in chickens (Shi and Zhang, 2005). 
Moreover, the expression of T1R1 has been reported in 
hypothalamus, liver, and abdominal fat (Byerly et al., 2010). 
Thus, avian taste receptors and umami receptor genes may 
be involved in the orchestration of postingestive and meta-
bolic events (Roura et al., 2012). Further research is needed 
to comparatively investigate avian feeding responses to 
umami tastants.

7.4.7  Response to Calcium

Calcium-deprived chickens preferred calcium-rich diets 
when offered a choice (Wood-Gush and Kare, 1966; 
Hughes and Wood-Gush, 1971). Similarly, consumption 
of supplementary calcium was inversely related to chick-
en’s dietary calcium content (Taher et al., 1984). Further 
research is needed to distinguish the behavioral responses 
of birds to calcium as a tastant (i.e., sensory cue) versus 
the pre- and postingestive attributes of calcium-rich supple-
ments. Although it is clear that animals can detect calcium 
in micromolar or low millimolar concentrations, it is less 
clear what they detect or how they detect it (Tordoff, 2001). 
The notion that calcium is a distinct taste quality is an 
anathema to many psychophysicists, who argue that there 
are very few basic taste qualities (sweet, sour, salty, bitter, 
and umami). To them, calcium taste is a complex of basic 
tastes, such as bitterness, sourness, and saltiness (Tordoff, 
2001).

Calcium taste varies with both the form and the con-
centration of salt tested, but it nearly always includes sour 
and bitter components (Tordoff, 2001). The extracellular 
calcium-sensing receptor (CaR) is a multimodal sensor 
for several key nutrients, notably Ca2+ and l-amino acids, 
and is expressed abundantly throughout the gastrointestinal 
tract in humans (Conigrave and Brown, 2006). Although the 
T1r3 receptor gene in mice (Tordoff et al., 2008) and the 
CaR have been identified as calcium sensors, it is yet uncer-
tain if they mediate calcium appetite or taste (Roura et al., 
2012) in birds.

7.4.8  Taste Behavior and Applications

Deterrents based merely on offensive flavors are not likely to 
be effective in the absence of aversive postingestive effects 
(Provenza, 1995). In this context, flavor is the perceptual 
integration of chemesthetic, olfactory, and gustatory stimuli. 
Red-winged blackbirds conditioned with sodium chloride 
paired with an intraperitoneal injection of a gastrointesti-
nal toxin (lithium chloride) or a free choice of a postinges-
tive, cathartic purgative (anthraquinone) or a postingestive, 
cholinesterase inhibitor (methiocarb) subsequently avoided 
the flavor (NaCl; Figure 7.5) and color of food experienced 
during conditioning. In contrast, blackbirds conditioned 
with sodium chloride paired with an intraperitoneal injec-
tion of an opioid antagonist (i.e., chemesthetic; naloxone 
hydrochloride) or a free choice of a preingestive, trigeminal 
irritant (methyl anthranilate) subsequently avoided only the 
color (not flavor; Figure 7.5) of food experienced during 
conditioning. Thus, red-winged blackbirds reliably inte-
grate gustatory (and visual) experience with postingestive 
consequences to procure nutrients and avoid toxins (Werner 
and Provenza, 2011).

Avian taste behavior has been investigated in context 
of agricultural production, chemical defenses of insects 
and plants, coevolution in predator-prey and pollination 
systems, chemical ecology, conservation biology, and 
comparative physiology and taxonomy. For example, 
although avian feeding responses to secondary metabo-
lites are species-specific (Saxton et al., 2011; Rios et al., 
2012), increased sugar concentrations (not decreasing acid 
concentrations) are a functional cue for the onset of bird 
damage to ripening grapes (Saxton et al., 2009). Although 
increased sucrose content may deter sucrase-deficient birds 
from damaging commercial fruit (Brugger and Nelms, 
1991), increased sucrose may also lead to increased crop 
damage by other species obligated to consume more of 
the less-digestible fruit to meet their energy requirements 
(Lane, 1997). This compensatory feeding hypothesis not-
withstanding, McWhorter and Martinez del Rio (2000) 
observed a physiological constraint on sugar consumption 
among nectarivorous hummingbirds; the rate of intestinal 
sucrose hydrolysis can limit sugar assimilation and reduce 
sucrose preference. Indeed, the intake responses of nectar-
feeding birds manifest from the integration of a behavioral 
response with the physiological processes that shape it 
(Martinez del Rio et al., 2001).

Several tastants have been used to condition aversions 
among birds associated with agricultural production. The 
risk of accidental poisoning of birds may be reduced by 
adding an aversive tastant (e.g., d-pulegone, quinine hydro-
chloride) to granular pesticides (Mastrota and Mench, 
1995; Clapperton et al., 2012). Garlic oil was identified as 
an effective chemical repellent for European starlings (Hile 
et al., 2004) and quinine sulfate (bitterant) was used to 
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condition taste aversions and thus reduce destructive feather 
pecking among laying hens (Harlander-Matauschek et al., 
2009, 2010).

Relative preference for specific tastants has been used 
to enhance feeding for poultry production. The preference 
of chickens for oily diets (i.e., long-chain versus medium-
chain triacylglycerol) is mediated by gustation (Furuse 
et al., 1996; Mabayo et al., 1996), not satiety (Vermaut 
et al., 1997). In contrast, the avoidance of a saponin-rich 
diet is not mediated by taste in domestic chicks (Ueda and 
Shigemizu, 2001); rather, crop distension causes decreased 
feed intake associated with tea saponin (Ueda et al., 2002).

Domestic chicks can use unpalatable taste (e.g., qui-
nine) to adapt their visual foraging decisions (Rowe and 
Skelhorn, 2005; Skelhorn et al., 2008). Moreover, European 
starlings and domestic chicks can learn to use bitter taste 
cues to regulate consumption of toxic prey (Skelhorn and 
Rowe, 2010; Barnett et al., 2011). Similarly, red-winged 
blackbirds use affective processes (flavor-feedback rela-
tionships) to shift preference for both novel and familiar 
flavors (Werner et al., 2008).

7.4.9  Summary

The conventional notion regarding the “limited ability of 
birds to taste” (Kassarov, 2001) was shaped by a historic 
paradigm of taste research (i.e., elementary structure and 

function). Avian taste perception is currently investigated 
in context of ontogenetic and phylogenetic relationships 
within ever-changing environments. Birds use taste cues 
to select nutrients and avoid toxins; thereby, they affect the 
distribution, diversity, and coevolution of their prey. Thus, 
taste cues and postingestive consequences have behavioral, 
ecological, and evolutionary implications for domestic and 
wild birds. Future avian gustation research will develop our 
understanding of comparative biochemistry, molecular biol-
ogy, and ethology—from an emphasis on anatomical struc-
ture to the physiological bases of behavior and performance.
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