Managing Turfgrass to Reduce Wildlife Hazards at Airports

Multiple factors—including safety regulations, economic considerations, location, and attractiveness to wildlife recognized as hazardous to aviation—influence the choice of land cover at airports. The principal land cover at airports within North America has historically been turfgrass, usually cool-season perennial grass species native to Europe. However, recent research has determined that, from a wildlife perspective, not all turfgrasses are alike. Some grasses are more palatable to herbivorous hazardous wildlife (e.g., Canada geese [Branta canadensis]) than others, and thus are more likely to increase the potential for wildlife–aircraft collisions when planted near critical airport operating areas. How turfgrasses are managed (e.g., by mowing or herbicide use) can also influence the degree of use by wildlife. In this chapter we (1) review the role of vegetation in the airport environment, (2) review traditional and current methods of vegetation management on airfields, (3) discuss selection criteria for plant materials in reseeding efforts, and (4) provide recommendations for future research.

Vegetation in the Airport Environment

Airports are large, complex, anthropogenically influenced environments that contain buildings and structures, impervious surfaces (e.g., pavement), and vegetated areas. Vegetation can typically be found at airports in landside areas (e.g., manicured lawns near terminal buildings and roadways), within the air operations area along taxiways and runways, in larger safety areas (e.g., runway protection zones), and on airport property in outlying areas (i.e., adjacent to the airfield). Within the USA alone, airport properties include >330,000 ha of grassland, primarily composed of areas mown at least once annually, and representing ~39–50% of airport property (DeVault et al. 2012).

Green, well-managed turfgrass represents a highly valued landscape within most societies (Ulrich 1986, Casler and Duncan 2003, Casler 2006). Turfgrass areas on the airfield and landside areas of airports add to the aesthetic—and ultimately the economic—value of the airport environment. This is particularly true when the airfield is the first part of an area seen by air travelers arriving in a new destination. An airport in a predominantly dry, desert environment might appear as an "oasis" with areas of green, growing vegetation. Managed turfgrass areas deter the amount of damage to aircraft associated with jet blast and foreign object debris, allow for the passage of aircraft straying from paved areas, and do not inhibit emergency vehicles from responding to aircraft safety incidents and accidents (Federal Aviation Administration 2011). Additionally, airfield vegetation should be relatively inflammable, tolerant to vehicle traffic and to drought, require minimal maintenance for stand persistence, prevent soil erosion, and reduce stormwater runoff. Airfield vegetation, especially near runways and taxiways, should provide limited food resources for hazardous birds (e.g., seeds, insects), provide minimal hid-
Traditional and Current Turfgrass Management at Airfields

Traditional methods of managing wildlife habitat in grassland ecosystems, such as discing, prescribed burning, and planting food plots, benefit wildlife by providing food, cover, water, loafing areas, or other resources (Bolen and Robinson 2002). In contrast, the focus of habitat management efforts at airfields should be to develop and maintain areas that are unattractive to wildlife, particularly those species that pose a hazard to aviation (DeVault et al. 2011).

Government agencies responsible for airfield management around the world have recognized the need to manage habitat and to establish guidelines for vegetation management at airfields. Some organizations or authorities are specific in their recommendations, whereas others are vague and leave on-field management decisions to the local airport authority. The International Civil Aviation Organization (1991) recommends that grass be maintained at a height of ≥20 cm (8 inches). The Civil Aviation Authority (CAA) in the United Kingdom has a policy to maintain grass from 15 to 20 cm (6 to 8 inches) and describes a detailed program of mowing, thatch removal, weed control, and fertilization (CAA 2008).

In the Netherlands, vegetation management involves mowing once or twice each year, followed by thatch removal within 24 hr of mowing and no fertilization of the grassland areas (Royal Netherlands Air Force 2008). This “poor grass” system reduces food for wildlife, maintains turf for erosion control, and lowers maintenance costs (Dekker and van der Zee 1996). Transport Canada does not recommend a single grass height but leaves the decision to each airport based upon the bird species that pose the greatest hazards to that airport (Transport Canada 2002). In the USA, the Federal Aviation Administration does not have a direct policy on grass height but advises airport authorities to develop vegetation management plans based on the airport’s geographic location and the types of hazardous wildlife found nearby (Federal Aviation Administration 2007). The U.S. Air Force maintains a policy on grass height (U.S. Air Force Instruction 91-202, 7.11.2.3) that states, “now airfield to maintain a uniform grass height between 7 and 14 inches [18–36 cm].” The U.S. Air Force recognizes that ex-
ceptions to this policy should occur, and a waiver pro-
cedure is available to allow for varying management
practices.

The aforementioned vegetation management poli-
cies are primarily based on studies conducted in the
United Kingdom in the 1970s (Brough 1977, Mead and
Carter 1973, Brough and Bridgman 1980). Studies con-
ducted at airports in the USA to determine whether tall-
grass management regimens reduce bird activity have
produced conflicting results (Buckley and McCarthy
1994, Seamans et al. 1999, Barras et al. 2000). These
conflicting results might be due to variation in the
ways studies were designed, species-specific responses
of birds to vegetation height management, or variation
in the density or structure of vegetation within vari-
ous study locations. Seamans et al. (2007) and Wash-
burn and Seamans (2007) found that birds exhibited
species-specific responses to management practices of
maintaining a set vegetation height in grasslands areas.
Further, some species of birds using vegetation ≥10 cm
(4 inches) tall have decreased foraging success (Baker
2004, Devereux et al. 2004) and reduced response
times to predators due to the visual obstruction of the
vegetation (Bednekoff and Lima 1998, Whittingham
et al. 2004, Devereux et al. 2006, Whittingham and
Devereux 2008). However, flock size might be posi-
tively correlated with bird use of habitat potentially
hazardous to their survival (Bednekoff and Lima 1998,
Lima and Bednekoff 1999, Fernández-Juricic et al.
2004). For a given species, vegetation height and den-
sity affect escape timing and flight behavior (Devereux
et al. 2008), as well as the perception of vegetation
as protective cover or potential habitat for predators
(Lazarus and Symonds 1992, Lima 1993). European
starlings might prefer shorter vegetation but use taller
vegetation when that is all that is available (Devereux
et al. 2004, Seamans et al. 2007). Studies examining
vegetation height seldom consider vegetation density,
but when density has been presented, some bird spe-
cies and numbers have decreased as vegetation density
increased (Bollinger 1995, Norment et al. 1999, Scott
et al. 2002, Davis 2005). Likewise, information on use
of food resources (e.g. insects, seeds) in airport grass-
lands by birds recognized as hazardous to aviation is
also limited (Bernhardt et al. 2010, Kutschbach-Brohl
et al. 2010, Washburn et al. 2011). There is no pub-
lished work quantifying bird response to airport grass-
land management that exploits visual obstruction and
management of food resources to elevate perceived
predation risk and reduce foraging success (Blackwell
et al. 2013).

With the exception of the CAA, no organizations
provide instruction in airfield vegetation height man-
agement that results in dense, uniform areas of vegeta-
tion. The CAA instructions include the use of mow-
ing with fertilizers, which are suggested as additional
limiting factors for grassland bird populations (Vick-
ery et al. 2001). In our experience, grasslands at most
North American airports present a mosaic of bare
earth and plants of varying species and height, with
some plants going to seed. This is the type of habitat
suggested to improve conditions for survival of grass-
land birds in the United Kingdom (Perkins et al. 2000,
Barnett et al. 2004). Also, airfields in North America
as well as Europe occur within multiple ecosystems,
resulting in a wide range of vegetative conditions (i.e.,
plant communities) and wildlife issues unique to each
area. More research is needed to fully understand how
vegetation height, combined with other plant community
characteristics (e.g., plant species composition, vegeta-
tion density), influences the use of airfield
habitats by hazardous birds (Washburn and Seamans
2007; Blackwell et al. 2009, 2013). When developing
a vegetation management plan for a specific airport,
airfield managers and wildlife biologists should con-
sider the species of hazardous wildlife that typically
use the airfield and manage vegetation height to mini-
imize use by those particular species (DeVault et al.
2011).

Other tools, such as herbicides and plant growth
regulators, might also be applied to control or manage
airfield vegetation (Blackwell et al. 1999, Washburn
and Seamans 2007, Washburn et al. 2011). Depend-
ing on the vegetation management objectives desired,
herbicides allow managers to alter vegetative composi-
tion of the airfield by removing (e.g., killing) or favor-
ing (e.g., by removing competition) certain types of
plants. Broadleaf-selective herbicides, such as 2,4-D or
dicamba, could be used to remove broad-leaved forbs
and legumes (e.g., clovers [Trifolium spp.]) that are an
attractive food resource for certain wildlife species, in-
cluding herbivorous birds (e.g., Canada geese) and cer-
vids (e.g., white-tailed deer [Odocoileus virginianus]).
In addition, grassland plant communities with lower structural and botanical diversity support insect populations with less abundance and diversity (Tscharntke and Greiler 1995, Morris 2000), reducing potential food sources for insectivorous birds. Selective herbicide applications on airfields represent a management option for creating a near monoculture of a desired plant (e.g., seeded turfgrasses) and reducing foraging opportunities for wildlife hazardous to aviation (Washburn and Seamans 2007, Washburn et al. 2011).

Plant growth regulators are commonly used in traditional turfgrass management to reduce growth of vegetation and maintain vegetation at a desired height (Christians 2011). In situations where plant growth regulators might control the growth of vegetation (e.g., turfgrass) as an alternative to mowing, the use of such chemicals may not be cost-effective when compared to mowing only (Washburn and Seamans 2007). Some airports are limited to the number and type of pesticide (chemicals) that can be applied to the airfield; this is especially true of U.S. Department of Defense airfields and installations. Specialized equipment and application licenses also may be required before chemicals can be stored on site or applied to airfield vegetation.

Airfield grassland habitats often contain diverse insect communities that represent a potential attractant to hazardous birds (Kutschbach-Brohl et al. 2010). Laughing gulls (Larus atricilla) use airfield habitats for foraging and prey upon Japanese beetles (Popillia japonica) and other insects as a seasonal food source (Buckley and McCarthy 1994, Caccamise et al. 1994, Bernhardt et al. 2010), Garland et al. (2009) and Washburn et al. (2011) documented that American kestrels (Falco sparverius) struck by aircraft or collected during wildlife control operations at North American airports had eaten grasshoppers. Management of insect pest populations at airports (i.e., turf-damaging true bugs [Hemiptera], grasshoppers [Orthoptera], and beetles [Coleoptera]) identified as a food source (and therefore an attractant to hazardous wildlife) provides an opportunity to reduce the risk of wildlife–aircraft collisions (Washburn et al. 2011). Dietary information from hazardous species using airports (Chapter 8) could be particularly useful in developing effective management options. A variety of insecticides, commonly used to control turf pests, are commercially available for use on airfield grasslands and turfgrass areas (Christians 2011).

Populations of small mammals inhabiting airfield grassland habitats can represent an important attractant (as prey items) for hazardous birds (e.g., hawks and owls) and mammals (e.g., coyotes). Large or dense populations of small mammals at airports can result in increased risk of wildlife–aircraft collisions by bird and mammal predators (see Chapter 8 for a discussion of the confounding issue of abundance versus availability of small mammals to predators). Small mammals can be managed most effectively through an integrated pest management approach, which might involve vegetation management (e.g., mowing), applying toxic rodenticide baits (e.g., zinc phosphide), altering plant communities, or combining various methods (Witmer and Fantinato 2003, Witmer 2011). Numerous studies demonstrate that mowing vegetation reduces small-mammal use of grassland habitats (Grimm and Yahner 1988, Edge et al. 1995, Seamans et al. 2007, Washburn and Seamans 2007).

Prescribed fire (i.e., burning) is one of the most widely used and effective tools for managing grassland habitats (Packard and Mutel 1997, Washburn et al. 2000). Benefits from prescribed fire used within grasslands include removal of encroaching woody vegetation, release of nutrients, and enhancement of native plant populations. Given safety issues related to reduced visibility from smoke and other hazards associated with prescribed burning, this technique has not been frequently used within airport environments. However, burning has potential for assisting with airfield vegetation management goals in situations where the related safety issues could be managed effectively.

Airfield grasslands represent a potential location for biosolids application and a possible source of revenue for airports. Application of municipal biosolids (i.e., treated and stabilized sewage sludge) provides plant nutrition and organic matter inputs to receiving grassland systems. At one military airfield in North Carolina, Washburn and Begier (2011) found that although long-term biosolids applications altered plant communities, the relative hazards posed by wildlife using treated and untreated areas were similar.
Selecting Plant Material for Renovation and Initial Seeding Efforts

Species composition of plant communities (the types of plants) in airfield areas also has the potential to impact the degree of attractiveness of airfields to hazardous wildlife and other bird attractants (e.g., insects, small mammals; Austin-Smith and Lewis 1969, Dekker and van der Zee 1996, Washburn and Seamans 2007). Selecting plant materials (e.g., turfgrasses) that are minimally attractive to hazardous wildlife and avoiding those that are commonly utilized by hazardous birds and mammals are important decisions, and present an important management opportunity for revegetation projects at airports (Fig. 10.2).

Abiotic factors (e.g., climatic conditions, soil nutrient levels) and biotic factors (e.g., weed competition) have strong influence on the rate of establishment of turfgrasses and other plants seeded as part of an airfield renovation or revegetation project. These abiotic and biotic factors can vary greatly among airports, depending on the airport's geographic location, local geology and soils, and regional climatic conditions. Some factors, such as weather, cannot be controlled or predicted and are not under control of airfield managers. In contrast, other factors can be monitored and amended when establishing turfgrasses on airfields by using methods such as soil testing and fertilization, planting good-quality turfgrass seed, and applying appropriate chemical control (e.g., herbicides) to reduce weed competition (Willis et al. 2006). Washburn et al. (2007b) found that tall fescue (Schedonorus phoenix) establishment on airfields was enhanced by the application of mulch during seeding efforts. Specific guidelines for seeding and sodding turfgrasses at airports are available (see Federal Aviation Administration 2009). In addition, many airports and state aviation departments have developed their own airport- and region-specific specifications for seeding and sodding areas within airport environments.

Cover crops are commonly used in seeding efforts following construction projects because they quickly establish vegetative cover to prevent erosion. Use of cover crops, which typically consist of cereal grains (e.g., browntop millet [Panicum ramosum], wheat [Triticum spp.], and cereal rye [Secale cereale]), should not be used for reseeding efforts in airport environments, as they provide food for granivorous birds (e.g., mourning doves [Zenaida macroura] and rock pigeons [Columbia livia]) and other birds recognized as hazardous to aviation (Castellano 1998).

Tall fescue is a cool-season, perennial sod-forming grass that grows well in temperate regions. In recent years, this traditionally agronomic forage grass has been developed as a turfgrass and has become very popular for use in parks, lawns, golf courses, sports fields, and other areas (Casler 2006). Tall fescue is frequently infested with a fungal endophyte (Neotyphodium coenophialum) that forms a mutualistic, symbiotic relationship with the grass. Grasses containing endophytic fungi derive several benefits, such as resistance to both grazing and insect herbivory, increased heat and drought stress tolerance, and increased vigor (Clay et al. 1985, Vicari and Bazely 1993, Malinowski and Belesky 2000). Tall fescue is also extremely competitive and develops into solid stands, crowding out other grasses, legumes, and annual weeds (Barnes et al. 1995, Richmond et al. 2006, Washburn et al. 2007a). Tall fescue grasslands are generally unattractive as a foraging resource to grassland wildlife (Barnes et al. 1995, Washburn et al. 2000), making it a potentially useful ground cover for airfields in some regions of the USA.

The turfgrass industry has recently developed a large number of "turf-type" cultivars of the most common varieties (e.g., tall fescue, perennial ryegrass [Lo-
lum perenne], bermudagrass [Cynodon dactylon]) for lawns, golf courses, parks, and other traditional uses. Turf-type cultivars are bred for horticultural characteristics important to the turfgrass industry, namely deep green color, drought and disease resistance, and shorter growth habits than traditional agronomic tall fescue cultivars. In addition, many of the new tall fescue cultivars have high levels of Neotyphonion endophyte infection (Mohr et al. 2002). Consequently, a diverse variety of plant materials are commercially available for use in airfield and roadside seeding and re-vegetation projects within airport environments. Washburn et al. (2007b) found that high-endophyte turf-type tall fescue cultivars did establish on areas within airports.

The various species of commercially available turfgrass commonly used in North America differ in attractive and utility as food for wildlife hazardous to aviation. Washburn and Seamans (2012) found that Canada goose exhibited clear preferences among commercially available turfgrasses when foraging. Their findings suggest that selected commercial turfgrasses (e.g., zoysiagrass [Zosia japonica], centipedegrass [Eremochloa ophiuroides], and St. Augustinegrass [Stenotaphrum secundatum]) might be preferable in reseeding and vegetation renovation projects within areas where Canada geese are unwanted (e.g., airfields, parks, athletic fields, and golf courses). In contrast, creeping bentgrass (Agrostis stolonifera), Kentucky bluegrass (Poa pratensis), and fine fescues (Festuca spp.) were favored by foraging geese and thus should be avoided when formulating seed mixtures for reseeding areas at airfields and other places where human–goose conflicts might occur (Fig. 10.3).

Grazing Anatidae (including various species of geese) apparently make foraging choices based on the nutritional content and chemical composition of plants (Gauthier and Bedard 1991, McKay et al. 2001, Durant et al. 2004). The concentration of protein within forage plants is an important component in the foraging preferences for a variety of goose species, including barnacle goose (B. leucopsis; Prins and Ydenberg 1985), dark-bellied brent goose (B. bernicla bernicla; McKay et al. 2001), white-fronted goose (Anser albifrons albifrons; Owen 1976), graylag geese (A. anser; Van Liere et al. 2009), and Canada geese (Sedinger and Raveling 1984, Washburn and Seamans 2012). In addition, secondary plant defense compounds, such as alkaloids and tannins, can cause geese to avoid certain plants. Physical characteristics of plants (e.g., leaf tensile strength, hairy leaves) also might influence whether geese (or other wildlife) forage on specific plants (Lieff et al. 1970, Williams and Forbes 1980, Buchsbaum et al. 1984, Conover 1991, Gauthier and Hughes 1995).

In addition to the commercially available turfgrasses, other plants could be appropriate for use on airfields. Linnell et al. (2009) found that wedelia (Wedelia trilobata), a mat-forming composite plant, showed promise for use as a vegetative cover on tropical airfields. Pochop et al. (1999) found several grasses that were locally adapted to Alaska and not favored by Canada geese in captive situations. These studies are limited to specific ecotypes and locations but demonstrate the availability of regionally specific plants that are not desired by wildlife hazardous to aviation. Some caution is warranted when establishing nonnative plant species: doing so can result in the escape of exotic species from the airfield environment (Austin-Smith and Lewis 1969). We recommend consulting state departments of agriculture or natural resources Web sites for lists of invasive plants that are illegal to plant because of their noxious or nonnative status. Native plants that are aesthetically pleasing, legal to plant, and unattractive to hazardous wildlife are the best choices for airfield vegetation, assuming seed is available in sufficient quantities and at reasonable cost.
Summary

Although some research has been conducted on the use of airfield grasslands by wildlife hazardous to aviation, much is still unknown. Field research within active airport environments to determine the most effective tools and techniques to reduce insect resources and small mammal populations, and consequently hazardous wildlife use of airfields, is needed. Research examining the effect of prescribed fire, herbicides, growth regulators, and other airfield vegetation management methods should also be a priority. As with other aspects of managing human-wildlife conflicts in the airport environment, we suggest that future studies focus on those species that are most hazardous to aircraft (Dolbeer et al. 2000, 2010; DeVault et al. 2011). With regard to airfield grasslands, species that use these habitats for foraging and to meet other life history needs should be of a high priority. Information about the influence of unique land uses (such as biosolids disposal and biofuel production, Chapter 11) on the attractiveness of airfields to hazardous wildlife represents an important area for future research, making it beneficial in the formulation and evaluation of effective management practices for airport environments.

LITERATURE CITED


CAA. Civil Aviation Authority. 2008. CAP 772: birdstrike risk management for aerodromes. Safety Regulation Group, Gatwick Airport South, West Sussex, United Kingdom.


for dark-bellied brent goose (Branta bernica bernica) in southern UK coastal areas. Agriculture, Ecosystems, and Environment 84:99–113.


