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ABSTRACT: In aquatic bird populations, the ability of avian influenza (AI) viruses to remain
infectious in water for extended periods provides a mechanism that allows viral transmission to
occur long after shedding birds have left the area. However, this also exposes other aquatic
organisms, including freshwater invertebrates, to AI viruses. Previous researchers found that AI
viral RNA can be sequestered in snail tissues. Using an experimental approach, we determined
whether freshwater snails (Physa acuta and Physa gyrina) can infect waterfowl with AI viruses by
serving as a means of transmission between infected and naı̈ve waterfowl via ingestion. In our first
experiment, we exposed 20 Physa spp. snails to an AI virus (H3N8) and inoculated embryonated
specific pathogen–free (SPF) chicken eggs with the homogenized snail tissues. Sequestered AI
viruses remain infectious in snail tissues; 10% of the exposed snail tissues infected SPF eggs. In a
second experiment, we exposed snails to water contaminated with feces of AI virus–inoculated
Mallards (Anas platyrhynchos) to evaluate whether ingestion of exposed freshwater snails was an
alternate route of AI virus transmission to waterfowl. None of the immunologically naı̈ve Mallards
developed an infection, indicating that transmission via ingestion likely did not occur. Our results
suggest that this particular trophic interaction may not play an important role in the transmission of
AI viruses in aquatic habitats.

Key words: Anas platyrhynchos, avian influenza, Mallards, Physa snails, transmission,
environmental persistence, water.

INTRODUCTION

Wild birds, especially species in the
orders Anseriformes (waterfowl such as
ducks and geese) and Charadriiformes (gulls
and terns), are considered the natural
reservoirs for avian influenza (AI) viruses
(Stallknecht and Shane, 1988; Webster et al.,
1992). Avian influenza (family Orthomyx-
oviridae, genus Influenzavirus A) viruses are
transmitted among aquatic birds primarily
through an indirect fecal-oral route involving
contaminated water in aquatic habitats
(Webster et al., 1992). Avian influenza virus
infections in these birds are generally
subclinical, but the birds can shed infectious
virus into the environment for several weeks
(Webster et al., 1978; Hinshaw et al., 1980;
Alexander, 1993).

Avian influenza viruses can remain
infectious in water for weeks to months;
viral persistence in water is influenced by

temperature, pH, salinity, and AI virus
subtype (Stallknecht et al., 1990a, b;
Brown et al., 2007). In addition, AI viruses
have an affinity for suspended solids in the
aquatic environment, and viruses that bind
to these solids can remain viable longer
and may accumulate in the sediment
(Bitton, 1980). This environmental persis-
tence of AI viruses in water allows
transmission among waterfowl without
direct contact (VanDalen et al., 2010;
Lebarbenchon et al., 2011), but it also
exposes other animals that share the
aquatic environment to AI viruses.

Bioaccumulation refers to the accumu-
lation of substances (e.g., viruses, bacteria,
toxicants) in an organism through any
exposure route, including respiration, in-
gestion, or absorption (Farris and Van
Hassel, 2007). Freshwater aquatic inver-
tebrates are likely exposed to infectious AI
viruses, not only while waterfowl are
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shedding, but as long as the virus remains
viable in the environment. Bioaccumula-
tion of virus by aquatic invertebrates may
impact the ecology of AI viruses by
creating a ‘‘reservoir’’ for the virus, there-
by extending the infectious period beyond
the seasonal shedding period by water-
fowl. Zebra mussels (Dreissena polymor-
pha) bioaccumulated and maintained
infectious AI virus (low pathogenic
H5N1) in their tissues for 14 days (Stumpf
et al., 2010). Similarly, Asiatic clams
(Corbicula fluminea) bioaccumulated
LPAI viruses in their tissues (Faust et al.,
2009; Huyvaert et al., 2012), but ingestion
of the tissues failed to transmit AI virus to
Wood Ducks (Aix sponsa; Faust et al.,
2009). No investigators have examined the
potential role of aquatic snails in AI virus
persistence and transmission via ingestion
of infected invertebrates.

Tadpole snails (Physa acuta and Physa
gyrina) are found throughout North Amer-
ica in virtually all freshwater habitats
(Dillon et al., 2005; Turner and Montgom-
ery, 2009). These snails feed exclusively on
algae and detritus on the sediment (Dillon,
2000; Vaughn, 2009), and accumulate
hepatotoxins through ingestion of cyano-
bacteria, which they likely transmit to
predators (Zurawell et al., 1999). Physa
spp. are prey for several aquatic bird
species, including Black-bellied Tree
Ducks (Dendrocygna autumnalis) and
Mottled Ducks (Anas fulvigula; Bolen and
Forsyth, 1967; Bielefeld et al., 2010). In
addition, at least 51 species of aquatic bird,
including Mallards (Anas platyrhynchos),
Northern Shovelers (Anas clypeata), Rud-
dy Ducks (Oxyura jamaicensis), Red Knots
(Calidris canutus), Herring Gulls (Larus
smithsonianus), Great Black-backed Gulls
(Larus marinus), and Glaucous Gulls
(Larus hyperboreus) consume gastropods
(Tinbergen, 1961; Ingolfsson, 1976; Sieg-
fried, 1976; Swanson et al., 1985; Thomp-
son et al., 1992; Cornell Laboratory of
Ornithology, 2004).

Physa spp. share the aquatic environ-
ment with waterfowl, and it is likely that

these snails are exposed to AI viruses that
have been shed into the water by infected
birds. Preliminary studies demonstrated
that Physa spp. snails have sialic acid
receptors capable of binding AI viruses on
the intestinal epithelium, and that these
snails can bioaccumulate AI viral RNA
(Oesterle, 2011). We exposed tadpole
snails (P. acuta and P. gyrina) to an AI
virus to determine whether 1) AI viruses
remain infectious after bioaccumulation
in snail tissues and 2) AI viruses can be
transmitted from infected Mallards to
naı̈ve Mallards via ingestion of snails
harboring infectious virus.

MATERIALS AND METHODS

Experiment preparation

Snail collections: Tadpole snails (P. acuta and
P. gyrina, n5300) were collected by hand
from a private lake in Loveland, Colorado, USA
on two occasions during August 2010. Snails
were placed in 20-L buckets with lake water,
transported to the National Wildlife Research
Center in Fort Collins, Colorado, USA, and
transferred to four 50-L aquaria (Marineland,
Cincinnati, Ohio, USA). The snails were
maintained for 8 mo and fed algae wafers
(Hikari, Himeji, Japan) and leafy greens
(lettuce or spinach) supplied ad libitum. Adult
snails in the colony repeatedly laid eggs and
numerous eggs hatched. Subsequently, the
offspring of captive snails were retained and
we used these offspring in our experiments.

Virus preparation: An AI virus isolate (A/
H3N8/mallard/C0/2008) from a cloacal swab
of an experimentally infected Mallard (origi-
nally collected from wild bird feces A/H3N8/
mallard/CA/187718/2008) was propagated in
embryonated specific pathogen–free (SPF)
chicken eggs, resulting in a viral stock of 107

median egg infectious dose (EID50)/mL. The
inocula used in the following experiments
were made by diluting the viral stock in BA-
1 (M199-Hanks’ salts, 0.05 M Tris, pH 7.6, 1%
bovine serum albumin, 0.35 g/L sodium
bicarbonate, 100 U/mL penicillin, 100 mg/mL
streptomycin, and 1 mg/mL amphotericin B) to
a final concentration of 106 EID50/mL.

Snail experiment

Preinoculation: One day prior to inoculation,
25 large (shells 9–11 mm in length) adult snails
were transferred to three 4-L glass beakers
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(two exposure beakers, n510 snails/beaker,
and n55 snails in a single control beaker) and
these were partially filled with 2 L of well
water (collected from Colorado State Univer-
sity Foothills Fisheries Laboratory, Fort Col-
lins, Colorado, USA). A spinach leaf and algae
wafers were provided as food. The beakers
were moved into a biosafety cabinet, and the
snails were allowed to acclimate to this new
environment for 24 hr.

Exposure and depuration: The two exposure
beakers were inoculated with 2 mL of diluted
AI virus stock (106 EID50/mL) such that the
beaker water had a final virus concentration
of approximately 103 EID50/mL (based on AI
viral concentrations found in water of exper-
imentally infected Mallards; VanDalen et al.,
2010) and the control beaker was inoculated
with 2 mL of BA-1 to serve as a negative
control. The water in all three beakers was
thoroughly stirred to create a homogeneous
mixture.

Snails were maintained in these beakers for
72 hr. After this exposure period, individual
snails were removed from the aquaria, rinsed
by pipetting 10 mL fresh well water over them
with an automatic pipette, and transferred to
three clean glass beakers with 2 L of fresh well
water and new food items. The transferred
snails were allowed to depurate for 24 hr.

Sample collection: Water samples (two 1-mL
samples/beaker) were collected at three time
points: immediately after inoculation (‘‘start-
exposure water’’), at the end of the exposure
period (72 hr; ‘‘end-exposure water’’), and at
the end of the depuration period (‘‘depuration
water’’). Additionally, snail tissues were har-
vested, and any egg sacs laid during depura-
tion were opportunistically collected. The
start-exposure and end-exposure water sam-
ples were stored at 280 C until testing and the
depuration water, snail tissues, and egg sacs
were stored at 220 C for 24 hr before testing.

Snails collected at the end of the depuration
period were removed from the shell by cutting
along the inner spiral of the shell until the
body was freed from the shell. The shell-less
snail tissue was placed in a microcentrifuge
tube (Fisher Scientific, Pittsburgh, Pennsylva-
nia, USA) with 1 mL BA-1 and a single 4-mm
stainless steel ball bearing (Grainger, Fort
Collins, Colorado, USA). The samples were
stored on wet ice until processing. Once in
the lab, tissues were placed in chilled racks
(TissueLyser Adapter Set, Qiagen, Valencia,
California, USA) and agitated for 10 min at
25 Hertz using a Mixer Mill homogenizer
(MM301, Retsch, Newton, Pennsylvania,

USA), followed by centrifugation at 10,000 3
G for 3 min. The supernatant was then
transferred to cryovials.

Sample testing: Samples (n537) from the snail
experiment, including aquarium water (start-
and end-exposure [n51/beaker]), depuration
water (n52/exposure beaker, n51 negative
control), snail tissues (n510/exposure beaker,
and n55 negative control) and egg sac (n51
from an exposure beaker) were tested for
exposure to AI viruses. Assays (described
below) included virus isolation (VI) in chicken
eggs, hemagglutination assay (HA) on harvest-
ed allantoic fluid, and quantitative reverse
transcriptase PCR (qRT-PCR).

Mallard experiment

Thirty day-old Mallard ducklings were
purchased in April 2011 (Stomberg’s Chicks
and Game Birds, Pine River, Minnesota,
USA). The birds were raised indoors for 4–
8 wk (room size 3.833.732.6 m), fed com-
mercially available chick starter feed, and
provided with water enhanced with an elec-
trolyte/vitamin powder (Durvet, Blue Springs,
Missouri, USA) ad libitum in poultry waterers;
pools for bathing were added to the pens when
Mallards were 10 days old for enrichment. A
pre-experiment blood sample (0.6 mL) and
cloacal swabs (placed in 1.0 mL BA-1) were
collected from each individual when the
ducklings were 20 days old.

Inoculated group: Twelve Mallards were ran-
domly selected to serve as the inoculation
group. This cohort was divided into four
subgroups of three birds each (three inoculat-
ed subgroups and one negative-control sub-
group) and housed in four separate pens
(2.632.232.1 m). A temporary wall (ZipwallH,
Arlington, Massachusetts) was used to parti-
tion a portion of the room to house the
negative-control birds. Each pen included a
60-L stock tank, a poultry waterer, and food
bowls.

Simultaneously, four 45-L aquaria (200–300
snails/aquarium) were placed adjacent to the
treatment pens, and the entire volume of
water in each snail aquarium was replaced
with fresh well water and food items. In
addition, each pen/aquarium combination had
a 200-L storage tank filled with fresh well
water to be used to replenish ponds (Fig. 1).
To facilitate water transfer from the ponds to
the snail aquaria and from the storage tanks to
the ponds, 12-volt pumps (LVM, Hoddesdon,
Herts, UK) were placed in each Mallard pond
and water storage tank.
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Two days after being moved into the
building, the treatment Mallards (n59 in
three pens) were inoculated with 1 mL of
approximately 106 EID50/mL of AI virus
inoculum. The inoculum for each bird was
divided between routes of exposure: each bird
received a portion of the inoculum orally
(0.6 mL), intranasally (0.2 mL), and intraocu-
larly (0.2 mL). The three Mallards serving as
negative controls were sham inoculated with
1 mL of BA-1 (Fig. 2).

Oropharyngeal and cloacal swabs were
collected from all 12 Mallards on days
postexposure (DPE) 2–7; swabs were placed
in BA-1 and stored at 280 C. Water samples
(1 mL) were collected from the Mallard ponds
and aquaria daily during this period. After
sample collection on DPE 7, all 12 Mallards
were euthanized with an intravenous injection
of BeuthanasiaH-D Special (1 mL/kg; Scher-
ing-Plough, Summit, New Jersey, USA). The
duck pens were then disinfected and remained
empty for 4 days.

Snail exposure to virus: During the period the
inoculated Mallards were being sampled, the
snails were exposed to water from the Mallard
ponds. On the Mallards’ 2nd DPE, approxi-
mately 40 L of water was siphoned out of each
aquarium. The aquaria were refilled with
water pumped directly from the Mallard
ponds. The Mallard ponds were refilled with
clean well water from the storage tank. A
similar process was repeated daily on DPE 3–7
except the water that was transferred into the
aquaria was a 5:1 mixture of fresh well water
and Mallard pond water. This adjustment was
made because snails were observed moving

out of the aquarium water to the rim of the
aquaria, which was likely caused by the high
concentration of nitrogen compounds in the
Mallard pond effluent.

Snails were exposed in this way to the
Mallard pond water for 8–9 days and then
removed from the aquaria and rinsed with fresh
well water. The food items were removed and
the aquaria were disinfected with a 10% bleach
solution, rinsed thoroughly, and refilled with
fresh well water. The snails were placed back
into the aquaria, fresh food was added, and the
snails were allowed to depurate 24–36 hr.

Snail-exposure mallards: Twelve more Mallards
(6 wk old) were randomly selected to serve as
the snail-exposed group. As with the first
cohort, these Mallards were separated into four
sets of three animals each (three inoculated sets
and one negative-control set) and housed in the
same pens as the inoculated ducks.

Twelve hours after these Mallards were
placed in the new pens, each was caught,
restrained, hand fed 1 g of virus-exposed
snails, and released back into the pen. The
following day, 6–7 g of virus-exposed snails
was offered in a bowl in each pen and the
Mallards were allowed to free feed until the
snails were consumed. At the time of feeding,
10 snails from each aquarium were retained to
assess tissue concentrations of virus in the
snails offered to Mallards. These snails were
processed as described earlier.

Oropharyngeal and cloacal swabs were
collected from all 12 Mallards on DPE 2–7;
swabs were placed in BA-1 and stored at
280 C. At 14 DPE, blood was collected from
all 12 Mallards (0.6 mL) and they were
euthanized with an intravenous injection of
Beuthanasia-D Special (1 mL/kg).

Sample testing: Oral and cloacal swabs, water
samples, and snail tissues were temporarily

FIGURE 1. Mallard pen configuration with aquar-
ium, duck pond, and water storage tank. After
Mallards (Anas platyrhynchos) were inoculated with
avian influenza virus, a portion of aquarium water
was drained, pond water was pumped into the
aquarium to replace the drained water, and water
was pumped from the storage tank into the Mallard
pond (2–7 days postexposure).

FIGURE 2. Experimental design of a Mallard
(Anas platyrhynchos) snail-exposure experiment to
test for transmission of avian influenza virus between
Mallards via ingestion of Physa spp. snails. Timelines
are for both groups of Mallards and snails.
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stored on wet ice and then frozen at 280 C
prior to testing. These samples were tested by
qRT-PCR for the influenza A virus matrix gene.
To conserve resources, inoculated Mallard
swab samples (n59) were tested on alternating
days; swab samples collected from four Mal-
lards on DPE 2, 4, and 6 were tested, and swab
samples collected from the remaining five
Mallards on DPE 3, 5, and 7 were tested. All
swabs collected from the snail-exposed Mal-
lards, water samples from both Mallard cohorts,
and snail tissue samples were tested by qRT-
PCR. Blood samples (prescreen n530, snail-
exposed n512) were centrifuged (10,000 3 G
for 5 min), and stored at 220 C for 24 hr until
testing. Sera were evaluated for influenza A
virus antibodies using a commercial blocking
enzyme-linked immunosorbent assay (bELISA,
FlockCheck AI MultiS-Screen antibody test kit,
IDEXX Laboratories, Westbrook, Maine, USA)

Assays

We used published protocols (Szretter et al.,
2006) for VI. In brief, embryonated SPF
chicken eggs were incubated 10 days. Water
and snail samples were diluted 1:1 in TBTB-
33T (tris-buffered tryptose broth with antibiot-
ics [kanamycin, gentamicin, nystatin, penicillin,
and streptomycin]) and inoculated into eggs
(100 mL/egg) in replicate (five eggs/sample).
Positive (inoculate diluted 1:1 in TBTB-33T)
and negative (TBTB-33T) controls were also
inoculated into eggs. The eggs were incubated
for an additional 5 days. Each day, eggs were
inspected for signs of infection such as unre-
sponsive embryo or degraded blood vessels.
Allantoic fluid was harvested from dead or
dying eggs 2–4 days postinoculation (DPI), and
all eggs on 5 DPI (eggs that were dead by 1 DPI
were discarded). The allantoic fluid was tested
by HA using chicken blood (Rockland Immu-
nochemicals, Gilbertsville, Pennsylvania, USA)
and by qRT-PCR for AI virus RNA.

We used a qRT-PCR protocol developed at
the National Veterinary Services Laboratories
(United States Department of Agriculture,
Ames, Iowa, USA). All samples were tested
in duplicate. RNA was extracted using the
MagMAX-96 AI/ND Viral RNA Isolation Kit
(Ambion, Austin, Texas, USA). Primers and
probe specific for the influenza type A matrix
gene developed by Spackman et al. (2003)
were used in conjunction with the ABI One-
Step RT-PCR master mix and run on an ABI
7900 Real Time PCR Thermocycler (Life
Technologies Corp., Carlsbad, California,
USA) with thermocycler conditions developed
by Agüero et al. (2007). Calibrated controls
with known viral titers (102–105 EID50/mL, or

0.5, 5, 50, and 500 EID50 per RT-PCR
reaction) were included on each plate to
construct four-point standard curves. Sample
viral RNA quantities were interpolated from
the standard curves and presented as PCR
EID50 equivalents/mL. Samples were consid-
ered positive if both replicate results were
.101 PCR EID50 equivalents.

The bELISA was performed according to
the manufacturer’s instructions. The absor-
bance values for the bELISA were read with
a Benchmark Microplate Reader (Bio-Rad
Laboratories, Hercules, California, USA) at
650 nm. The sample result to negative control
(S/N) values were calculated for each sample;
samples with S/N values $0.50 were consid-
ered negative for antibodies to AI virus, and
samples with S/N values ,0.50 were consid-
ered positive. The bELISA is designed so the
color development is inversely proportional to
the anti-AI antibody titer in the sample and an
S/N value that is close to 1 will be most similar
to the negative control.

RESULTS

Snail experiment

Tissue from 10% (2/20) of the virus-
exposed snail samples caused egg death,
and these tissues were positive by HA and
by qRT-PCR (Table 1). All of the start-
exposure (2/2) and end-exposure (2/2)
water samples from both exposed beakers
were positive by both VI and qRT-PCR.
The mean titer of the start-exposure water
was 103.0 PCR EID50/mL equivalents, and
declined to 102.0 PCR EID50/mL equiva-
lents in the second water samples. Only
50% (2/4; one sample from each exposed
beaker) of the depuration water samples
were VI and HA positive and none were
qRT-PCR positive, suggesting the snails
were possibly defecating AI virus at titers
detectable by VI, but undetectable by qRT-
PCR. All of the negative control samples
were negative by VI and by qRT-PCR.

Mallard experiment

Prior to the experiment, all 30 Mallards
were negative for AI virus antibodies by
bELISA. All 12 inoculated Mallards became
infected with AI virus as indicated by oral
and cloacal shedding. Oral and cloacal swabs
from the inoculated Mallards (2 and 7 DPE)
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had high titers of influenza A virus by qRT-
PCR (Fig. 3 and Table 1). All pond water
samples taken from pens of inoculated
Mallards were positive for AI virus by
qRT-PCR. Aquarium water samples were
positive for AI virus RNA for all days
between 2 DPE and 11 DPE. In addition,
13% (4/30) of the snail tissues exposed to the
duck pond water were positive for AI viral
RNA by qRT-PCR.

The swabs collected from snail-exposed
Mallards were all negative by qRT-PCR and
blood samples from these birds were
negative by bELISA. However, two Mal-
lards had an S/N change .0.25 between the
pre- and postexposure blood samples, sug-
gesting possible serologic activity in response
to AI virus infection in these snail-exposed
Mallards. The negative control Mallards had
changes in S/N ratios of ,0.05.

DISCUSSION

The prevalence of AI virus infection in
North American waterfowl often follows

TABLE 1. Results of samples tested for two experiments. In the snail experiment, Physa spp. snails were
directly expose to avian influenza (AI) virus. In the Mallard experiment, the inoculated Mallards were exposed
directly to AI virus, the snails were exposed to the virus shed into the Mallard pond water, and the snail-
exposed Mallards were fed the exposed snails.a

Sample type

No.

Tested qRT-PCR+ VI+

Snail experiment
Snail tissue 20 2 2
Aquaria water

Start-exposure 2 2 2
End-exposure 2 2 2
Depuration 4 0 2

Mallard experiment

Inoculated mallards

Oropharyngeal swabs 27 27 NT
Cloacal swabs 27 27 NT
Pond water 18 18 NT

Aquaria water 30 30 NT
Snail tissue 30 4 NT
Snail-exposed mallards

Oropharyngeal swabs 54 0 NT
Cloacal swabs 54 0 NT

a Negative control samples were excluded from this table. qRT-PCR 5 quantitative reverse transcriptase PCR; VI 5 virus
isolation; NT 5 not tested.

FIGURE 3. Avian influenza (AI) viral RNA de-
tected in cloacal swabs from Mallards (Anas platy-
rhynchos) inoculated with AI virus via oropharyngeal
cavity and in aquarium water transferred from the
exposed Mallard ponds. Samples from two groups of
Mallards were tested for AI virus on alternating days
(group 1 on odd days and group 2 on even days, 95%

confidence interval [mean61.96SE] shown for
aquarium water).
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an annual cycle, peaking in late summer
and declining throughout migration (Hin-
shaw et al., 1985; Stallknecht et al., 1990c).
It is likely that multiple factors influence
this cyclical pattern, including the differ-
ences in timing of migration among
waterfowl species (Stallknecht and Brown,
2007). Early-migrating species, such as
Blue-winged Teal (Anas discors), may
help perpetuate transmission across sea-
sons because they migrate prior to peak AI
virus prevalence, leaving a significant
portion of the Blue-winged Teal popula-
tion unexposed and therefore susceptible
to AI viruses during their northward
migration (Stallknecht et al., 1990c; Han-
son et al., 2005). Environmental persis-
tence of the virus may allow transmission
to these immunologically naı̈ve waterfowl
(Stallknecht et al., 1990b). However, other
factors, such as the persistence of virus in
aquatic invertebrates, may enhance envi-
ronmental persistence, thereby contribut-
ing to the seasonal prevalence patterns of
AI virus infection.

For aquatic invertebrates to play a role
in AI virus transmission, these organisms
need to retain infectious virus through
bioaccumulation. The preliminary event in
AI virus infection of a susceptible host is
the binding of the virus to the host’s
cellular surface (Suarez, 2008); the hem-
agglutinin of AI viruses binds with cellular
surface glycoproteins known as a2,3 sialic
acid receptors (Wan and Perez, 2006).
Previous research has demonstrated that
Physa spp. snails have these sialic acid
receptors, suggesting that Physa spp.
snails are physiologically capable of bioac-
cumulating AI viruses (Oesterle, 2011).

Avian influenza virus persistence in
water likely enhances viral transmission
among waterfowl, but it also exposes other
animals to the virus, including aquatic
invertebrates. Bioaccumulation of AI virus-
es by these invertebrates could provide an
additional route of exposure, particularly
through ingestion of them as prey. Prelim-
inary experiments showed that Physa spp.
snails are capable of bioaccumulating AI

viruses and maintaining infectious virus at
low titers for at least 48 hr (Oesterle, 2011).
Work reported here provides additional
data suggesting that bioaccumulated AI
viruses remain infectious in snail tissues
and that Mallards will readily eat these
snails. However, the quantity of snails fed
to the Mallards may have been too low to
produce viral shedding or a significant
antibody response.

Mallards are important AI virus reser-
voirs and likely have a significant impact
on the seasonal variation of AI virus
prevalence in aquatic habitats like mar-
shaling and breeding areas (Stallknecht
and Shane, 1988). Mallards consume
snails throughout the year, but snail
consumption increases in spring, prior to
the breeding season; 25% of the female
Mallard diet consists of snails during this
period (Swanson et al., 1985). The quan-
tity of snails we fed to the Mallards was
likely smaller than what some waterfowl
consume regularly. Although no published
data exist describing the volume of food
consumed by wild Mallards, the recom-
mended volume of feed for captive
Mallards is 120 g/day (Ash, 1969). Assum-
ing that wild Mallards eat as much food as
captive Mallards, they may consume as
much as 30 g of snails/day. The consump-
tion of a larger quantity of virus-exposed
snails, even at low viral titers, may increase
the likelihood of transmission of AI virus
among Mallards via ingestion of snails.

Although transmission via ingestion of
AI-exposed snails did not occur in this
study, two Mallards that fed on exposed
snails demonstrated apparent serologic
activity, whereas the Mallards fed on
negative-control snails did not. All serum
samples were considered negative for
antibodies to influenza A virus, but the
difference in the change of S/N value for
two of the fed Mallards suggests that the
concept of AI virus transmission by
consumption of freshwater snails may be
worth exploring further.

These experiments demonstrated that
infectious AI virus is maintained briefly in
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snail tissues, long enough for tissue
samples to be infectious to embryonated
eggs. However, transmission of an AI virus
(H3N8) to Mallards through ingestion
failed to occur. This study, along with
previous experiments, demonstrates that,
although snails may be capable of serving
as a transmission conduit of AI viruses
between infected and naı̈ve waterfowl, the
window of opportunity is likely short
(Oesterle, 2011). This brief period of
infectiousness would not likely have a
substantial impact on transmission or
maintenance of AI viruses. Nevertheless,
snails may play a minor role in the
maintenance of AI virus infections in wild
waterfowl through waterfowl ingestion of
large quantities of exposed snails. These
questions and others regarding the opti-
mal environmental conditions for virus
persistence and transmission in aquatic
environments warrant additional careful
study under both laboratory and natural
conditions.
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