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Introduction

Recent advances in global positioning system (GPS) technol-
ogy (i.e., satellite tracking) have allowed more frequent, con-
sistent sampling of the positions of birds and mammals than 
was possible before the past decade (Sawyer et al. 2009, Avery 
et al. 2011, Prosser et al. 2011).  Satellite tracking may produce 

thousands of temporally autocorrelated locations per unit 
time, which is not feasible with very-high-frequency (VHF) 
technology. Consequently, researchers are increasingly using 
satellite-tracking data to estimate the size and shape of ani-
mals’ home ranges (Hemson et al. 2005, Bamford et al. 2007, 
Kie et al. 2010). Satellite-tracking data have also been used to 
quantify habitat use (Nielson et al. 2009), identify stopover 
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Abstract.  A Brownian bridge movement model (BBMM) is a relatively new concept that estimates the path of 
an animal’s movement probabilistically from data recorded at brief intervals. A BBMM assumes that locations are 
not independent, whereas the “classical” kernel-density estimator (KDE) assumes they are. We estimated BBMM 
home ranges for 11 Black Vultures (Coragyps atratus) and 7 Turkey Vultures (Cathartes aura) equipped with sat-
ellite transmitters near Marine Corps Air Station Beaufort, South Carolina, from October 2006 to November 2008. 
The 95% BBMM home ranges (95% BBMM) of the two Black Vultures that traveled >100 km from the capture 
site were 833 and 2111 km2; of the nine that did not travel as far, 95% BBMM ranged from 33 to 778 km2 and av-
eraged (± SE) 243 ± 76 km2. The majority of Turkey Vultures (n = 6) traveled >100 km from the capture site with 
95% BBMM ranging from 923 to 7058 km2 and averaging 3173 ± 1109 km2. We also estimated KDE home ranges, 
using newer satellite technology for comparison with previous studies. Overall 95% KDE ranged from 17 to 16066 
km2 for the Black Vulture and 988 to 36257 km2 for the Turkey Vulture. The concept of an animal’s home range has 
evolved over time, as have home-range estimators. With increasing use of satellite telemetry, application of BBMM 
can greatly enhance our understanding of home ranges, migration routes, seasonal movements, and habitat-use 
patterns of wild birds over large and often remote areas.
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Modelos de Movimiento de Puente Browniano para Caracterizar el Rango de Hogar de las Aves 

Resumen.  Un modelo de movimiento de puente browniano (MMPB) es un concepto relativamente nuevo que 
estima la probabilidad de la trayectoria de movimiento de un animal a partir de datos registrados en intervalos 
breves. Un MMPB asume que las localizaciones no son independientes, mientras que el estimador de densidad de 
núcleo (EDD) “clásico” asume que sí lo son. Estimamos rangos de hogar MMPB para 11 individuos de Coragyps 
atratus y siete de Cathartes aura equipados con transmisores satelitales cerca de la Estación Aérea del Cuerpo 
de Marines Beaufort, Carolina del Sur, desde octubre de 2006 hasta noviembre de 2008. El 95% de los rangos de 
hogar MMPB (95% MMPB) de dos individuos de C. atratus que viajaron >100 km desde el sitio de captura fue 
833 y 2111 km2; de los nueve que no viajaron tan lejos, el 95% MMPB osciló entre 33 y 778 km2 y promedió (± EE) 
243 ± 76 km2. La mayoría de los individuos de C. aura (n = 6) viajaron >100 km desde el sitio de captura con 95% 
MMPB oscilando entre 923 y 7058 km2 y promediando 3173 ± 1109 km2. También estimamos rangos de hogar 
EDD, usando nueva tecnología satelital para comparar con estudios previos. En total, el 95% EDD osciló entre 17 
y 16066 km2 para C. atratus, y entre 988 y 36257 km2 para C. aura. El concepto del rango de hogar de un animal 
ha evolucionado a lo largo del tiempo, así como los estimadores del rango de hogar. Con un aumento en el uso de 
la telemetría satelital, la aplicación de MMPB pude aumentar enormemente nuestro entendimiento del rango de 
hogar, las rutas migratorias, los movimientos estacionales y los patrones de uso del hábitat de las aves silvestres a 
través de áreas usualmente remotas.
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areas (Sawyer et al. 2009, Kochert et al. 2011), delineate mi-
gration routes (Takekawa et al. 2010, White et al. 2010), and 
reconstruct movement paths (Witt et al. 2010). 

Methods available to assess movements and home ranges 
were developed and refined with VHF technology (Mohr 
1947). Home-range estimates with VHF were based on cre-
ating polygons surrounding the outermost points at which an 
animal was recorded (minimum convex polygon; Mohr 1947), 
on estimates of a bivariate normal home range for circular 
and noncircular ranges (bivariate normal models; Jennrich 
and Turner 1969), on the harmonic mean over an animal’s 
area of use of arbitrary-sized grids (harmonic mean; Dixon 
and Chapman 1980), or on kernel density estimators (KDE) 
with locations presumed independent (kernels; Seaman et al. 
1999). Although the size of areas occupied can be estimated, 
methods using locations recorded by VHF typically over- or 
underestimate this size, fail to differentiate between areas 
of high and low use, or fail to identify paths between heav-
ily used portions of the home range (White and Garrott 1990, 
Kernohan et al. 2001). 

Horne et al. (2007) investigated a method using temporally 
correlated locations recorded by satellite tracking that creates a 
utilization distribution quantifying the probability of use along 
a route. The Brownian bridge movement model (BBMM) uses 
locations recorded over brief intervals with known estimates of 
location error to predict trajectories of movement between suc-
cessive locations (Horne et al. 2007). BBMMs have been applied 
to identify sites where black bears (Ursus americanus) cross 
highways (Lewis et al. 2011), “stopover” habitats used by migrat-
ing mule deer (Odocoileus hemionus) (Sawyer et al. 2009), and 
migration routes followed by caribou (Rangifer tarandus) (Horne 
et al. 2007). Among birds, BBMM has been applied to waterfowl 
movements in east Asia (Takekawa et al. 2010, Prosser et al. 2011) 
and to monitoring of the Osprey (Pandion haliaetus) population 
in North America (Farmer et al. 2010).

While equal intervals between successive relocations 
are not a requirement of BBMM, the method uses a Brown-
ian bridge and a variance parameter to estimate the probabil-
ity density that the animal used any particular grid cell, given 
its relocations, on the basis of time and distance (Horne et al. 
2007). A variance parameter aids in this interpretation of shape 
in the resulting BBMM in that, for a given distance moved, the 
parameter will be large if points deviate from a straight line but 
will be small if points are exactly along a straight line. Use of a 
variance parameter thus provides an index of sinuosity of move-
ment to be incorporated into the BBMM and estimate of home 
range not provided by methods strictly devoted to estimates 
of movement paths (i.e., correlated random walk; Kareiva and 
Shigesada 1983). Variability in distance and time lag between 
successive locations is not incorporated into most estimators of 
home range (i.e., KDE) but can be addressed in BBMM.

Although new estimators of home range, such as plug-
in smoothing for KDE (Jones et al. 1996), local convex hull 
(Huck et al. 2008), and biased random bridge (Benhamou 

et al. 2011), have been explored for use in mammals, the long 
distances many birds travel in a short time have not been 
quantified with these methods. Use of satellite telemetry on 
large birds is integral to understanding their use of resources, 
movement corridors, and critical habitats, but no studies 
applying to birds the current home-range estimators tested 
on terrestrial mammals (Getz et al. 2007, Huck et al. 2008, 
Benhamou et al. 2011) have been published. Birds often range 
widely, as in the facultative migrations of mammals (Nelson 
1995, Brinkman et al. 2005), which can last for a week or 
several months, making home-range estimation problematic 
because the birds may not migrate seasonally. During a study 
of the flight behavior and daily activity patterns of vultures, 
we documented short- and long-distance movements of Black 
Vultures (Coragyps atratus) and Turkey Vultures (Cathartes 
aura) equipped with GPS satellite transmitters (Avery et al. 
2011). Here, using these vultures as model species, we explore 
the use of GPS satellite telemetry with BBMM to estimate 
individuals’ home ranges. Using current fine-scale satellite-
tracking data, we also estimated these vultures’ home ranges 
by KDE for comparisons with previous research that relied on 
VHF data or limited GPS data.

Methods

Study area and data collection

Our study took place in and around Marine Corps Air Station 
Beaufort in Beaufort, South Carolina (32.4735° N, 80.7194° W; 
Fig. 1). The vegetation around Beaufort is predominately tidal 
marsh, upland conifer forest, and mixed conifer–hardwood 
forest (Beason et al. 2010). From September 2006 to September 
2007, we captured 84 Black Vultures and 53 Turkey Vultures 
in a baited walk-in trap (9.3 × 3.1 × 1.8 m; Humphrey et al. 
2000). We marked each vulture for visual identification with 
a uniquely coded white tag designed for cattle ears (Allflex, 
Inc., Dallas, TX) attached to the patagium of the right wing 
(Wallace et al. 1980, Sweeney et al. 1985). All birds were re-
leased where captured. We equipped 11 Black Vultures and 11 
Turkey Vultures with 70-g solar-powered GPS satellite trans-
mitters (PTT-100, Microwave Telemetry, Columbia, MD) with 
Teflon tape and a backpack harness (Humphrey et al. 2000). 
We set the transmitters’ duty cycle to record latitude/longi-
tude, altitude, speed, and direction every hour from dawn to 
dusk. The transmitters operated from 5 to 24 months (Fig. 2). 
We defined movements of >100 km from the capture site as 
long distance, those of <100 km as short distance. 

Brownian bridge movement model

Using the BBMM, we estimated home ranges as all areas a 
vulture occupied during the entire period GPS data were re-
corded, for comparisons to home ranges of the Black and Tur-
key Vultures estimated by DeVault et al. (2004). The BBMM 
requires (1) sequential location data, (2) estimated error as-
sociated with location data, and (3) grid-cell size assigned for 
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the output utilization distribution. The BBMM is based on 
two assumptions: (1) location errors correspond to a bivar-
iate normal distribution and (2) movement between suc-
cessive locations is random, conditional on the starting and 
ending location. Normally distributed errors are common 
for GPS data, and 1 hr between locations likely ensured that 
movement between successive locations was random. The 
assumption of conditional random movement between paired 
locations, however, becomes less realistic as the time in-
terval increases (Horne et al. 2007). For example, ensuring 
temporal and spatial autocorrelation of locations minimizes 
the likelihood that the random movement is anything other 
than random (e.g., directed towards a high-use area). The 
horizontal spatial accuracy of the GPS receiver, based on the 
manufacturer’s technical specifications, was 15 m. We used 
this estimate of location error because we did not have an in-
dependent estimate for these data. Preliminary investigations 
revealed that size of home ranges according to the BBMM dif-
fered by <1.5% when we changed the GPS error from 15 m to 

30 m and finally to 50 m. Using the BBMM package (http://
cran.opensourceresources.org), we calculated BBMM in the 
R language for statistical computing (R Foundation for Statis-
tical Computing, Vienna, Austria). We prepared 50% BBMM 
and 95% BBMM to represent the core area of use and the 
standard home-range size, respectively. Values reported are 
means ± SE.

Fixed-kernel home range

For comparisons of satellite-telemetry movement data to re-
sults of previous studies in which KDE was calculated primar-
ily from VHF data, we report 50% and 95% KDE to estimate 
the core area and overall home range (i.e., 50% KDE and 95% 
KDE), respectively, for each vulture. To address autocorrela-
tion between points for KDE, we randomly subsampled 1000 
locations for each vulture prior to estimating its home range 
(Swihart and Slade 1985, but see Fieberg 2007) because some 
smoothing parameters for KDE are not possible with the large 
volume of data that can be used in estimating BBMM (Walter 
et al. 2011). We used the fixed-KDE method because the fixed 
kernel incorporates the density of locations and has been con-
sidered more accurate at determining outer boundaries than 
the adaptive kernel (Worton 1995, Seaman et al. 1999). The 
amount of smoothing was determined by the reference band-
width (href) in Home Range Tools (Rodgers and Kie 2010) in 
ArcGIS 9.3 (Environmental Systems Research Institute, Red-
lands, CA). We were unable to use biased cross-validation or 
least-squares cross-validation (hLSCV) bandwidths for KDE 
because of the large number of duplicate locations and the pro-
pensity of numerous points to cluster, all of which potentially 
caused Home Range Tools’ smoothing parameter to default to 
href. Previous studies have reported that href may oversmooth 
and that hLSCV may undersmooth KDE home ranges (Wor-
ton 1995, Seaman et al. 1999, Hemson et al. 2005). The lack 
of software to calculate KDE from GPS data with hLSCV and 
large sample sizes should be considered prior to use of hLSCV 
and was a further impetus for this study (Hemson et al. 2005, 
Walter et al. 2011).

Results

We identified and removed erroneous data points (e.g., 
2-dimensional fixes, negative altitudes) and the four Turkey 
Vultures that were tracked for <5 months. We calculated 
home ranges for 11 Black Vultures and 7 Turkey Vultures with 
48 498 and 60 145 locations, respectively. Home ranges esti-
mated by BBMM for the Black Vulture (50%, 38 ± 12 km2; 
95%, 467 ± 183 km2) were six times smaller than those for the 
Turkey Vulture (50%, 227 ± 104 km2; 95%, 2854 ± 990 km2; 
Fig. 3). Similarly, mean home ranges estimated by KDE for the 
Black Vulture (50%, 363 ± 214 km2; 95%, 2545 ± 1517 km2) 
were four and five times smaller than those of the Turkey Vul-
ture (50%, 1621 ± 834 km2; 13 011 ± 5644 km2, respectively; 
Fig. 3). The BBMM’s mean variance was 15 025 ± 2971 σ2

m 

Figure 1.  Locations of Black Vultures (white circles) and Tur-
key Vultures (dark circles) tagged at the Marine Corps Air Station 
Beaufort, South Carolina, showing movement of the Turkey Vulture 
to central Florida, 2006−2008.

http://cran.opensourceresources.org
http://cran.opensourceresources.org
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Figure 2.  Lifetimes of GPS satellite transmitters attached to Black Vultures and Turkey Vultures at the Marine Corps Air Station Beau-
fort, South Carolina.

Figure 3.  Mean home ranges of Black Vultures (dark gray bars; 
n = 11) and Turkey Vultures (light gray bars; n = 7) as estimated by 
Brownian bridge movement models (BBMM) and kernel density es-
timates (KDE) for 50% and 95% utilization distributions, from birds 
monitored from 5 to 24 months by GPS satellite telemetry. Capped 
vertical bars denote 1 standard error. P-values associated with one-
way analyses of variance between the species are shown above each 
pair of bars.

for the Black Vulture and 59 595 ± 8929 σ2
m for the Turkey 

Vulture.
For the nine Black Vultures and single Turkey Vulture 

that traveled <100 km from the trap site, the 50% (28 ± 7 km2) 
and 95% (313 ± km2) BBMM home-range estimates were two 
and three times smaller than the 50% (80 ± 39 km2) and 95% 
(523 ± 243 km2) KDE estimates, respectively (Fig. 4). Among 
the two Black Vultures and six Turkey Vultures that made 

long-distance movements (>100 km from the trap site), the 
50% (215 ± 91 km2) and 95% (2748 ± 867 km2) BBMM home-
range estimates were eight times and five times smaller than 
the 50% (1818 ± 700 km2) and 95% (14 230 ± 4666 km2) KDE 
estimates, respectively (Fig. 4). Turkey Vultures that made 
long-distance movements included four that made round trips 
to southern Georgia or central Florida and one that remained 
around Beaufort except in July 2007 and July 2008, when it 
traveled 110–115 km north before returning to Beaufort 5–6 
days later.

Discussion

Our study design and methods resulted in more reliable 
estimates of the sizes of the home ranges of both species of 
vultures than previously reported on the basis of KDE tech-
niques. Our estimates were based on >1000 GPS locations per 
bird, our sampling protocol was independent of environmental 
conditions, and a greater number of vultures were monitored 
(Avery et al. 2011). Previous home-range estimates were 
based on fewer than 1000 locations for any vulture (Coleman 
and Fraser 1987, Arrington 2003, DeVault et al. 2004). Large 
birds can cover long distances in periods as short as 1 week 
to 1 month, which complicates comparison of the sizes of the 
birds’ home ranges based on the traditional KDE or newer 
local convex hull (Getz et al. 2007, Huck et al. 2008). Alter-
natively, home range could be estimated by season, but large 
birds often move long distances within a season. BBMM in 
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KDE attempts to “fill in” or predict the space between kernels 
without any information on the temporal lag between them. 
Numerous studies have concluded that because of the conser-
vative nature of the technique, href oversmooths KDE home 
ranges, leading to overestimation of space use and the size of 
home ranges (Worton 1995, Seaman et al. 1999, Hemson et al. 
2005). This difference may have resulted in the home ranges 
we estimated by KDE being larger. 

Both KDE and BBMM projected home ranges extend-
ing over the Atlantic Ocean, sometimes by several kilome-
ters, where the vultures were never actually recorded. This 
was more apparent in the 50% and 95% KDE (oversmoothing; 
Fig. 5a) than in the 50% and 95% BBMM for the same vulture 
(Fig. 5b). These observations and the propensity of KDE to 
undersmooth (plug-in smoothing parameter) or oversmooth 
(href smoothing parameter) raise serious doubts about use of 
KDE with satellite-tracking data (Walter et al. 2011). Getz 
et al. (2007) suggested using a nonparametric kernel method, 
the local convex hull, to generate utilization distributions and 
home ranges where a species’ movements are constrained by 
hard boundaries (i.e., ridges, steep cliffs, fences), which for 
vultures is the ocean shoreline. The local convex hull may be 
able to account for hard boundaries within a home range, but it 
has not been documented to reliably estimate the size of home 
ranges in species covering large distances in short periods 
(Huck et al. 2008).

Advances in satellite tracking technology can yield an 
animal’s location almost continuously and with greater spa-
tial and temporal precision than can traditional VHF technol-
ogy. Locations recorded at frequent intervals over the wide 
areas typical of large birds are ideal for BBMM and with 
highly correlated satellite tracking data probably estimate 
home ranges more accurately than KDE (Walter et al. 2011). 
Use of BBMM combines kernel-based estimates of utilization 
distributions (Worton 1989, Millspaugh et al. 2006), desired 
by many researchers, with the concept of correlated random 
walk and first-passage time (Kareiva and Shigesada 1983) to 
identify an animal’s directed movements at the spatial scale 
required for resource selection by birds and mammals to be 
measured (Nams and Bourgeois 2004, Le Corre et al. 2008). 
Furthermore, BBMM may be able to identify important com-
ponents of a species’ biology such as migration routes (Hake 
et al. 2001, Meyburg et al. 2004, Farmer et al. 2010), sites of 
rookeries (King and Anderson 2005) and feeding (Bamford  
et al. 2007), and communal roosts (Avery et al. 2002). 
BBMMs define an area for analysis of these components of 
a species’ biology that measures of directed movements (i.e., 
correlated random walk) do not. 

In our study, BBMM enabled comparisons of estimates 
of the home ranges of individual vultures with varying pro-
pensity for long-distance movement. Although estimates of 
home ranges with KDE enabled comparisons with previous 
studies (but see Kernohan et al. 2001), KDE may not be 

conjunction with satellite tracking has not been applied previ-
ously to the home range of any North America bird, although 
Farmer et al. (2010) identified corridors of movement of the 
Osprey with BBMM. 

The concept of BBMM is based on a Brownian bridge in 
which the probability of an animal’s being in an area depends 
upon the time elapsed between the starting and ending loca-
tions, the animal’s rate of movement, and the animal’s tendency 
to wander away from a straight-line path (Bullard 1999, Horne 
et al. 2007). Larger variations in movement trajectories or in-
creasing the scale of movement from local to continental be-
cause of the species’ behavioral differences will result in 
changes in BBMM variance. For example, this variance re-
vealed that patterns of the Turkey Vulture’s movement are more 
complex than those of the Black Vulture. This may have been 
due to most Turkey Vultures moving >100 km from the trap 
site, with some traveling to central Florida and back.

The ability of BBMM to predict paths of movement 
between sequential locations intuitively appears best suited for 
species that travel long distances within a season or over sev-
eral months (Farmer et al. 2010, Takekawa et al. 2010, Prosser 
et al. 2011). The BBMM “fills in” the space between sequential 
locations. The resulting estimate is a function of the density 
of locations or paths in an area. For KDE, a kernel or bump is 
placed over each location, and the probability density at any 
point in space relies on summing all the kernels at each point 
(Horne and Garton 2006). The density of and distance between 
kernels directly influences the amount of smoothing, regard-
less of selection of smoothing parameter, often resulting in this 
method oversmoothing or undersmoothing surfaces. In short, 

Figure 4.  Mean home ranges of vultures that made short-dis-
tance (<100 km; n = 10) or long-distance (>100 km; n = 8) move-
ments from their trap site. Vultures were monitored from 5 to 24 
months by GPS satellite telemetry. Home range were estimated by 
Brownian bridge movement models (BBMM) and kernel density es-
timates (KDE) for 50% and 95% utilization distributions. Capped 
vertical bars denote 1 standard error.
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suitable for some species and datasets (i.e., animals that 
travel long distances and voluminous datasets). Further-
more, an important aspect of BBMM is its ability to identify 
“hotspots” and corridors that animals use extensively, as has 
been previously documented in birds and mammals (Sawyer 
et al. 2009, Farmer et al. 2010, Takekawa et al. 2010). Pre-
liminary results revealed several vultures using municipal 
landfills near Beaufort within the 50% BBMM, suggesting 
likely food sources in this area. Perhaps analogous to first-
passage time (Fauchald and Tveraa 2003), space-use paths 
created by BBMM can indicate a focal area of use along cor-
ridors of migration. As technological advances in telemetry 
create new opportunities for data collection, alternatives 
for presenting data on large birds in the most useful manner 
should continue to be explored.
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