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Human-dominated landscapes offer spatially concentrated and reliable food resources that attract wild-
life and lead to human–wildlife conflicts. Conflict management is often directed at humans (e.g., educa-
tion) to reduce attractants, or foraging benefits to wildlife, or at wildlife (e.g., hazing) to increase foraging
costs; but strategies can be expensive and ineffective. Because a key driver of conflict is the pursuit of
food by wildlife, we used patch selection models, a dynamic, state-dependent modeling approach based
on foraging theory, to assess how benefit reduction and cost increase resulting from conflict mitigation
affect wildlife foraging decisions. We applied the patch selection models to a system in which American
black bears (Ursus americanus) forage in urban and urban-interface patches and conflicts are common. We
used survival as a fitness currency and body fat reserves as a state variable. We incrementally reduced
availability of anthropogenic foods (benefit reduction) and increased energetic costs of movement in
response to aversive conditioning treatments (cost increase) to search for thresholds resulting in avoid-
ance of human-dominated patches. Benefit reduction P55% in urban patches and P70% in urban-inter-
face patches resulted in avoidance by bears of almost all states. Cost increases achieving similar results
exceeded 1100% and 400% in urban and urban-interface patches respectively, and are likely unrealistic to
implement. Given modeling results and that control strategies targeting wildlife are unpopular with con-
stituencies, we suggest allocating management resources to strategies that reduce availability of anthro-
pogenic food.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Human–wildlife interactions, and subsequently conflicts, are
increasing worldwide (Conover, 2001; Woodroffe et al., 2005). Hu-
man-dominated landscapes offer spatially concentrated, predic-
able, and reliable food sources, e.g., livestock, crops, or refuse,
which can serve as major attractants to wildlife and lead to hu-
man–wildlife conflict (Shochat, 2004; Baker et al., 2008). Whether
the resultant conflict occurs due to depredation of livestock in
South America (e.g., Michalski et al., 2006), raiding of agricultural
corps in Europe (e.g., Geisser and Reyer, 2004), or use of refuse in
urban centers in North America (e.g., Beckmann and Berger,
2003), a key driver of conflict is the pursuit of food resources by
wildlife. Thus, understanding how to best mitigate human–wildlife
conflict requires an understanding of how management affects
wildlife foraging decisions.
Two major management strategies aimed at humans and wild-
life are commonly employed to resolve conflicts. Human-dimen-
sions tools are implemented in conflict communities to change
human behavior to reduce the availability of attractants, or forag-
ing benefits, to wildlife. For example, improving husbandry
through education reduced livestock depredation by snow leop-
ards (Panthera uncia) in India (Jackson and Wangchuk, 2004), and
proactively enforcing refuse disposal laws reduced availability of
garbage to American black bears (Ursus americanus) in Colorado,
USA (Baruch-Mordo et al., 2011). Wildlife management tools are
also implemented to either eliminate (lethal control) or deter
(non-lethal control) wildlife from attractant sites (Fall and Jackson,
2002; Treves and Karanth, 2003). Lethal control can be unpopular
with wildlife managers (e.g., Fall and Jackson, 2002; Baker et al.,
2005; Spencer et al., 2007), often motivated by the unpopularity
of such management actions by the general public (Manfredo,
2008; Messmer, 2009). Therefore, wildlife agencies are increas-
ingly using non-lethal aversive conditioning treatments, including
hazing, and chemical or physical deterrents, with the goal of mod-
ifying the long-term behavior of wildlife due to the learning
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process of aversive conditioning (Hopkins et al., 2010). Aversive
conditioning treatments offer a source of discomfort or pain to
wildlife that often invokes a flight response (Shivik et al., 2003;
Mazur, 2010) and consequently increases the energetic costs of for-
aging in human-dominated areas. Examples include hazing of Afri-
can elephants (Loxodonta africana) with fire and noise to reduce
crop raiding in Kenya (Sitati et al., 2005), and using chemical repel-
lents to deter badgers (Meles meles) from crops in Europe (Baker
et al., 2005). Put in the context of foraging decision making by
wildlife, conflict management strategies targeting humans and
wildlife aim to either decrease wildlife foraging benefits, or con-
versely, increase wildlife foraging costs that are associated with
human-dominated areas.

Conflict management can be expensive and ineffective, and it is
generally believed that management cannot successfully eliminate
all attractants or deter all individuals (Linnell et al., 1997; Treves
and Karanth, 2003; Mazur, 2010; Baruch-Mordo et al., 2011). Con-
sequently, there is a need to determine which management strat-
egy, or which combinations, are most effective in altering wildlife
foraging decisions. Patch selection models (Mangel and Clark,
1986) provide a framework to test how benefit reduction and cost
increase influence wildlife foraging decisions. Under this approach,
patches can be considered as human-dominated or not, and patch
selection by wildlife can be optimized based on patch-specific ben-
efits and costs given the energy reserves of the animal (Mangel and
Clark, 1986). One can evaluate the effects of conflict management
on wildlife foraging decisions by using sensitivity analysis where
benefits and costs in human-dominated patches are systematically
varied and the impacts on foraging choices are determined. One
can also search for thresholds of benefit reduction and cost in-
crease beyond which wildlife no longer select human-dominated
patches, thus providing guidelines for conflict mitigation.

In this paper we demonstrated the application of patch selec-
tion models in conservation management. We examined how
changes in foraging costs and benefits incurred from the manage-
ment of human–bear conflicts can influence the foraging decisions
of black bears in human-dominated areas. Bears are an ideal organ-
ism to use as an example because of the high energetic costs of
hibernation, which can lead to conflict with humans over food re-
sources. Bears enter a state of hyperphagia, or intense feeding, in
late summer and fall to gain sufficient fat reserves for hibernation
(Nelson et al., 1983). If factors such as weather or disease cause the
natural food production to fail during hyperphagia, bears will use
alternative anthropogenic food sources and forage near human
development (Mattson et al., 1992). Consequently, human–bear
conflicts increase in poor natural food production years (Zack
et al., 2003; Ryan et al., 2007; Baruch-Mordo et al., 2008), and wild-
life managers mitigate conflicts by more intensely applying strate-
gies such as education aimed at humans (Baruch-Mordo et al.,
2011) or aversive conditioning treatments aimed at bears (Spencer
et al., 2007; Honeyman, 2008). We evaluated the effects of such
strategies on bear foraging decisions using a patch selection model
parameterized from literature and field data. We used the model to
search for thresholds of benefit reduction and cost increase beyond
which bears would not forage in human-dominated patches to in-
form the allocation of resources for the management of human–
bear conflicts.
2. Materials and methods

2.1. Study system

We used Aspen, Colorado, USA, located in the central mountains
of Colorado, as the model system. The human-dominated area of
Aspen consists of a downtown business district and high human
density residential areas (urban patch) that are surrounded by low-
er density residential neighborhoods (urban-interface patch;
Fig. 1). Residential neighborhoods are dispersed within moun-
tain-shrub and forest communities that are adjacent to large na-
tional forest and wilderness areas (wildland patch). Hyperphagia
season in Aspen lasts from approximately 1 August–15 October
(total of 75 days), a period when fruit ripens providing important
local natural food sources for bears including Gambel oak (Quercus
gambelii), serviceberry (Amelanchier alnifolia), and chokecherry
(Prunus virginiana). From 2005 to 2010 we deployed GPS collars
on bears to better understand their movement patterns and re-
source use in the urban environment (Baruch-Mordo, 2012). Bears
used urban and urban-interface areas extensively during hyper-
phagia season in years of poor natural food production, a time
when conflicts with humans flared. We backtracked to GPS loca-
tions in Aspen and identified garbage as the main anthropogenic
attractant.

Management strategies applied in Aspen to reduce availability
of garbage to bears included targeting humans with education,
and the enforcement of local refuse disposal laws. We experimen-
tally evaluated both management tools and found proactive
enforcement to be most effective in changing human behavior to
better secure garbage (Baruch-Mordo et al., 2011). However, de-
spite observing a reduction in garbage availability following treat-
ment, we did not observe a complete elimination of garbage
resources, and in fact, found garbage to be readily available to
bears throughout Aspen at all times. Alternative management
strategies applied in Aspen to prevent bear use of garbage and
therefore reduce human–bear conflicts included non-lethal meth-
ods of aversive conditioning treatment. While we did not measure
bear response to aversive conditioning treatments as applied in As-
pen, the most common response by bears is running away from the
source of discomfort (Mazur, 2010), a behavior we commonly ob-
served when treatments were applied.

2.2. Patch selection model

Mangel and Clark (1986, 1988) developed a general patch selec-
tion model based on optimal foraging theory using a state-depen-
dent modeling approach that is solved by dynamic programming.
The patch selection model optimizes a fitness function F(x, t), or
the maximum fitness from time step t = 1 to terminal time step T
given that the organism was alive at time t and had a state variable
value of X(t) = x. At each time step fitness is updated as detailed in
Eq. (1) below, and the selected patch that maximizes fitness is re-
corded in a patch decision matrix. We applied the patch selection
model to our system using two human-dominated patches (urban
and urban-interface) and one nonhuman-dominated patch (wild-
land). We used survival as the fitness currency, body fat reserves
(kg fat) as the state variable (Section 2.3), and maximized fitness
over the hyperphagia season using day as a discrete time unit
(t = 1, 2, . . . ,75).

The dynamic state variable X(t) in patch selection models can be
constrained between a critical value of xc and cap value of C, and
the terminal fitness at time T is known and represented by a func-
tion /(x) such that F(x, T) = /(x). We used critical and cap values for
kg fat reserves that were converted from minimum and maximum
values reported for body mass (M) of Aspen bears, and we quanti-
fied survival as a function of body mass at time T based on an allo-
metric relationship (Section 2.3). Once fitness is known at terminal
step T, the model can be solved for maximum fitness by backwards
iteration using a Markovian decision process (Mangel and Clark,
1986). At each time step fitness is calculated as the probability of
survival in period t times the probability of survival from period
t to t + 1, where the latter is composed of survival when food is
found plus survival when food is not found. Fitness is maximized



Fig. 1. Study area of Aspen, Colorado, USA overlaid by polygons representing urban (enclosed in dashed line), urban-interface (dotted, enclosed in solid line), and wildland
(crossed-hatched) patches. Patches were defined using natural breaks in the distribution of address density per 1-km2 (Appendix C).
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across i patches (human-dominated or not) given patch-specific
survival (si; 1 � bi in Mangel and Clark, 1986, 1988) and the prob-
ability of finding food (ki) according to the equation:

Fðx; tÞ ¼max
i
½sifkiFðx0i; t þ 1Þ þ ð1� kiÞFðx00i ; t þ 1Þg� ð1Þ

where x0i ¼ x� ai þ Yi and x00i ¼ x� ai are functions updating the
state variable based on patch-specific foraging costs (ai) and yields
(Yi) if food is found (x0i), or costs only if food is not found (x00i ). We
quantified foraging costs as the loss of kg fat from energetic expen-
diture on patch-specific movement, and foraging yields as the gain
of kg fat from food found in each patch. If the resultant values of x0i
or x00i are lower than a critical value xc or exceed a cap value C, then
they were set to the critical or cap value, respectively.

We used an adaptation of the patch selection model in Eq. (1)
to consider foraging on j different food types in each ith patch.
In this approach, the probability of finding food becomes patch-
and food type-specific (kij), and the probability of not finding
food in a patch is inclusive of all food types. Fitness can be max-
imized using:

Fðx; tÞ ¼max
i

si

X
j

kijFðx0ij; t þ 1Þ þ ð1�
X

j

kijÞFðx00ij; t þ 1Þ
( )" #

ð2Þ

with the functions specified in Eq. (3) updating the state variable
according to whether the animal found food or not. Additional
expansion of the simple patch selection model is the inclusion of
state-dependent costs, ai(x). If cost is defined as energy lost due
to basal metabolic rate, which is a function of body mass M, then
aiðxÞ ¼ 57:2M0:716for mammalian species (Robbins, 1993). Redefin-
ing yield to be food type-specific and incorporating state-depen-
dency to patch-specific costs, the organism’s state can be updated
using equations:

x0ij ¼ x� aiðxÞ þ Yj ð3Þ
x00ij ¼ x� aiðxÞ:

We used the adaptations developed in Eqs. (2) and (3) to model
bear foraging in Aspen. We defined three patches, urban (u), urban-
interface (ui), and wildland (w), and two food types, anthropogenic
and natural, with an implicit assumption that bears always find
and consume both food types according to their availability in each
patch (i.e., no food preferences).
2.3. Model parameterization

We focused model parameterization on adult females because
their survival and reproductive output is necessary to bear popula-
tion growth (Freedman et al., 2003; Mitchell et al., 2009). We addi-
tionally focused on poor natural food production years in which
bears are most likely to forage in the urban environment and con-
flict management strategies are likely to be applied. We note that
such conditions might present a worst-case scenario in some sys-
tems; however our study system experienced two major natural
food failures in the 6-year duration of our field study, making this
a more common management scenario. A detailed description and
justification for each parameter is provided below and summarized
in Table 1.

We used fat reserves as the state variable because fat is crucial
for bear winter survival and reproductive success (Belant et al.,
2006; Robbins et al., 2007). Bears can lose up to 50% of their body
weight during hibernation (Beecham and Rohlman, 1994) with loss
consisting primarily of fat (Farley and Robbins, 1995; Harlow et al.,
2002); therefore adequate fat reserves are important for over-win-
ter survival. Additionally, bears reproduce via delayed implanta-
tion, where females without adequate fat reserves will not
implant the blastocyst and consequently forgo reproduction (Eiler
et al., 1989). Finally, females with poor fat reserves can have lower
milk production to support cubs, resulting in increased intra-litter



Table 1
Default parameter values used in patch selection models to test effects of human–bear conflict management on female bear foraging decisions in the human-dominated
environment of Aspen, Colorado, USA. Patches included were urban (u), urban-interface (ui), and wildland (w).

Symbol Interpretation Description and default values Source

X State variable of
value x at time t

kg of body fat scaled from female body mass assuming 30% body fat. Critical (xc)
and cap (C) values of 20 and 35 kg fat based on data from Aspen study bears

Baruch-Mordo, unpublished data,
Belant et al. (2006)

si Probability of daily survival
period t given patch choice i

Calculated based on range of adult female survival in poor natural food production
year in Aspen as su = 0.75, sui = 0.87, and sw = 0.92, and later converted to daily
survival by raising to power of 1/228

Baruch-Mordo (2012),
Appendix B

/(x) Terminal fitness function
at time T

Calculated based on allometric equation: expð�0:61M�0:25Þwhere M is body mass,
or kg fat times 3

McCarthy et al. (2008)

kij Probability of finding food of
type j in patch i

A product of patch-specific food availability (aij) and composition (cij).
Anthropogenic food aij obtained from field sampling and was: 0.45 in u, 0.26 in ui,
and 0 in w patches. Natural food aij in poor natural food year estimated from local
observations and was: 0 in u, 0.1 in ui and w patches. Anthropogenic food cij

estimated as: 1 in u, 0.5 in ui, and 0 in w patches. Natural food cij estimated as: 0 in
u, 0.5 in ui, and 1 in w patches. Multiplying composition and availability generated
the following kij values:

Baruch-Mordo et al. (2011)

Natural Anthropogenic
Urban 0 0.45
Urban-interface 0.05 0.13
Wildland 0.1 0

ai(x) State-dependent cost of
movement in patch i

Body fat lost (kg/day) based on state-dependent basal metabolic rate, daily
distance moved in each patch (Appendix C), and kcal energy needed to lose 1 kg of
fat. Sample calculations available in Appendix D

Baruch-Mordo, unpublished data,
Robbins (1993); Rode and Robbins
(2000); Tøien et al. (2011); Watts et al.
(1991)

Yij Yield from food
type j in patch i

Body fat gained (kg/day) from natural (0.5) and anthropogenic (1.5) food sources Baruch-Mordo and Noyce,
unpublished data, McLellan (2011)
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competition that can lead to cub malnutrition and mortality (Rob-
bins et al., 2012).

Range of female body mass for Aspen bears, 55–110 kg, was
within the range reported for black bears in Colorado (Beck,
1991). Because body mass of free-ranging black bears consists of
approximately 30% fat at the end of hyperphagia season (Belant
et al., 2006), we calculated the range of state variable X(t) as the
specified range in body mass divided by three, and used critical
and cap values of 20 and 35 kg fat, respectively. We note that we
conducted post hoc tests and found results to be robust even when
setting the critical value equal to zero kg fat (Appendix A). We used
methods of linear interpolation with n = 100 as suggested by Clark
and Mangel (2000), thus we incremented the state variable kg fat
by 0.15 when evaluating the model.

We parameterized the terminal fitness function /(x) using a
log-linear allometric relationship between survival and body mass
as: exp(�aMbt), where t is time interval and a and b are taxa-spe-
cific scaling parameters (McCarthy et al., 2008). We calculated /(x)
over a time interval of 1 day and converted the state variable value
of kg fat (x) back into total body mass (M) by multiplying by three.
We used the mean predicted values for a (0.61) and b (�0.25) re-
ported for mammals, and conducted sensitivity analyses to exam-
ine model behavior given different values (Section 2.4). To guide
parameterization of patch-specific survival, we used adult female
survival in Aspen in poor natural food production years
(ŝ ¼ 0:718, SE = 0.117; Baruch-Mordo, 2012); we note that this sur-
vival estimate reflects both natural and human-caused mortality.
We used exploratory analyses to identify a parameter space for
patch-specific survival (Appendix B), and assigned default patch-
specific survival as 0.75, 0.87, and 0.92 in urban, urban-interface,
and wildland patches, respectively. We assessed uncertainty with
sensitivity analysis detailed below (Section 2.4).

We calculated the probability of finding food as a function of the
composition (compij) and availability (availij) of food type j in patch
i, such that kij = compij � availij. We assumed wildland patches were
composed only of natural foods and urban patches were composed
only of anthropogenic foods. We used aerial photos to visually esti-
mate, based on the ground cover of residential areas, the composi-
tion of natural and anthropogenic food sources as 50% each in the
urban-interface patches. We assigned zero availability to anthro-
pogenic food sources (i.e., garbage) in wildland patches and to nat-
ural food sources in urban patches. Because we tested
management scenarios occurring in poor natural food production
years, we assumed natural food availability in urban-interface
and wildland patches to be 10% (but see Section 2.4). We parame-
terized availability of garbage in urban and urban-interface
patches using pre-treatment data collected in education and
enforcement experiments (Baruch-Mordo et al., 2011), where
mean garbage availability was 0.45 in downtown areas (urban
patches) and 0.26 in residential neighborhoods (urban-interface
patches). The resultant default probabilities of kij based on avail-
ability and composition values are presented in Table 1.

We calculated state-dependent foraging costs ai(x) based on the
amount of energy expended on movement in each patch converted
into kg of fat loss. Watts et al. (1991) reported that polar bears (Ur-
sus maritimus) used 12 times the energy of their basal metabolic
rate (BMR) to run at a speed of 2.2 m/s. We calculated BMR as
33.12 times body mass M based on an oxygen consumption for-
mula for black bears (0.276 ml g�1 h�1; Tøien et al., 2011), which
we converted to kcal using a factor of 5 (5 kcal obtained from 1 L
O2; Robbins, 1993). To obtain body mass M, we converted the state
variable of kg fat back to body mass by multiplying by three. We
converted the speed of 2.2 m/s to km/day and divided 12BMR by
the result to provide a state-dependent estimate of the amount
of kcal needed to move 1 km (kcal/km). To obtain the daily energy
expenditure on movement (kcal/day), we multiplied the energy ex-
pended per km by the mean daily distance moved in each patch as
estimated from GPS data collected from Aspen bears (3.82, 3.67,
and 6.16 km/day in urban, urban-interface, and wildland patches,
respectively; Appendix C). Lastly to estimate kg of fat lost per
day, we divided the daily energy expenditure by a conversion fac-
tor of 9110 kcal, which is the expected energy in 1 kg of bear fat
(Rode and Robbins, 2000). Sample calculations for a bear with a
state of 20 kg fat are provided in Appendix D.

Foraging benefits were based on the amount of kg fat gained
from natural and anthropogenic foods. In British Columbia, wild
black bears gained between 0.42 and 0.86 kg/day from natural food
sources during summer (McLellan, 2011), which was within range
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of similar estimates reported for captive grizzly bears (Ursus arctos)
fed on natural diets (Robbins et al., 2007). We found no published
data of weight gain for bears feeding on anthropogenic resources;
however unpublished data from Minnesota suggested free-ranging
black bears that fed on anthropogenic food sources gained up to
2.3 kg/day in late summer and fall (K. Noyce, Minnesota Dept. of
Natural Resources, personal communication), and in the Aspen
study, one bear gained 1.5 kg/day in summer when feeding almost
exclusively on garbage resources. Using the mid-point of the above
reported ranges, we assumed a gain in body mass of 0.64 kg/day
from natural food sources and of 1.9 kg/day from anthropogenic
foods. Given that in captive trials grizzly bears gained 0.79 g fat
for each 1 g of body mass on low protein diets (Felicetti et al.,
2003), we converted yields from kg/day to kg fat/day using a factor
of 0.79. Yield was therefore 0.5 kg fat/day from natural and 1.5 kg
fat/day from anthropogenic foods, and we tested uncertainty in
yield values selected (Section 2.4).

2.4. Model implementation and sensitivity analyses

The goal of this study was to find thresholds of benefit reduc-
tion and cost increase beyond which bears did not select urban
and urban-interface patches. We tested effects of management
strategies by incrementally reducing benefits or increasing costs
in human-dominated patches. For benefit reduction we reduced
availability of anthropogenic foods (availanthro) in urban and ur-
ban-interface patches. For cost increase we assumed as mentioned
above that the key response to aversive conditioning treatments of
bears is flight behavior, thus we increased the km moved per day in
each patch which subsequently increased the state-dependent
energetic cost ai(x). We note that under this approach the default
cost parameter values (i.e., status quo with current management
actions) reflected movement for foraging activity, and interactions
with conspecifics and humans. We acknowledge that additional fit-
ness costs due to aversive conditioning treatments may occur, but
to the best of our knowledge no additional energetic data exist to
parameterize our model. We also acknowledge that fitness costs
due to lethal control are implicit in the lower survival in human-
dominated patches, but we focused our evaluation here on the
energetic costs of aversive conditioning treatments.

We ran benefit reduction and cost increase scenarios and con-
secutively incremented parameter values by 5% of the previous va-
lue up to 100% reduction or increase of default value. For example,
a 10% reduction in anthropogenic food availability (default values
of 0.45 in urban and 0.26 in urban-interface patches) resulted in
availability of 0.405 and 0.234 in human-dominated patches and
reduced ki_anthro. A 10% increase in cost resulted in movements of
4.20, 4.04, and 6.78 km/day in urban, urban-interface, and
wildland patches (default values of 3.82, 3.67, and 6.16) and in-
creased ai(x). For each benefit reduction and cost increase iteration,
we solved Eq. (2) across all time steps and kept records of patch
selection. We defined threshold of benefit reduction and cost in-
crease as the minimum percent reduction or increase that resulted
in no selection of human-dominated patches, and we searched for
state-dependent thresholds under each scenario. We implemented
all analyses in program R (R Development Core Team, 2011).

We conducted sensitivity analyses to assess impacts of uncer-
tainty in the following default parameters: (1) scaling parameters
a and b for the terminal fitness function /(x), (2) availability of nat-
ural food sources in a poor natural food production year (availnatu-

ral), (3) yield from anthropogenic foods (Yanthro), and (4) patch-
specific survival (su, sui, and sw). We used Latin hypercube sampling
(LHS) to sample random sets of parameter combinations following
methodologies of Blower and Dowlatabadi (1994). We sampled
from a normal distribution for the scaling parameters a and b,
where we estimated mean and SD for each using the reported pos-
terior distribution for mammals in McCarthy et al. (2008). We used
uniform distributions for all other parameters where we set the
lower and upper distribution limits as: 0.05 and 0.25 for availnatural,
1.2 and 1.8 for Yanthro, and 0.5 and 1.0 for su. Limits for availnatural

were chosen to mimic a poor natural food year with only 5–25%
of natural food availability based on personal observations of
authors and local wildlife managers (K. Wright, Colorado Parks
and Wildlife, personal communication). Limits for Yanthro were
based on data obtained from literature and the field, i.e., Yanthro

bound between the lowest and highest reported weight gain from
anthropogenic foods, and multiplied by a kg weight to kg fat con-
version factor of 0.79 (Section 2.3). We used limits for su based on
the range of adult female survival in poor years and using combi-
nations of patch-specific survival values that resulted in realistic
model behavior (Appendix B). Hence, we randomly drew a value
between 0.03 and 0.21 for the difference sui � su to calculate sui,
and conditional on that we randomly drew a value between 0.01
and 0.09 for the difference sw � sui to calculate sw. We tested
whether drawing first the difference between sui � su or between
sw � sui changed sensitivity results and found results to be robust,
hence we show only results for drawing difference of sui � su first.
We generated a total of 150 LHS sets, but we ran only 115 sets after
limiting sui and sw to 61.0.

We assessed the influence of each parameter on model output
by comparing the partial-rank correlation coefficients (PRCC) for
the seven parameters (a, b, availnatural, Yanthro, su, sui, and sw). PRCC
allow evaluation of the relationships between the input parame-
ters and response variable while accounting for any correlations
between the input parameters (Hamby, 1995). A positive or nega-
tive PRCC value respectively indicated an increase or decrease in
threshold value with an increase in the parameter values. We eval-
uated PRCC for thresholds in urban and urban-interface patches
under both benefit reduction and cost increase scenarios and for
each state.
3. Results

At default parameter values (i.e., no benefit reduction or cost in-
crease), bears with high fat reserves foraged exclusively in wild-
land patches and bears with low fat reserves foraged exclusively
in urban patches (Fig. 2A). The optimization strategy for all other
bears was to stay in the safer patches with higher survival until la-
ter in the hyperphagia season when selection shifted to riskier
patches with lower survival but higher yield (e.g., from wildland
to urban-interface patch, or from urban-interface to urban patch).

When default availability of anthropogenic food sources was re-
duced by at least 55% in urban patches and 70% in urban-interface
patches, all bears with fat reserves of P22.7 kg foraged exclusively
in the wildland patch and thus avoided human-dominated patches
(Fig. 2B and Fig. 3 top panels). Results varied by state where fatter
bears had lower thresholds compared with bears of low fat re-
serves, and where bears with fat reserves >34.4 kg, which never
foraged in human-dominated patches to begin with, had zero
threshold values (Fig. 3). While reduction in anthropogenic food
availability in urban and urban-interface patches did not eliminate
use of urban patches by bears with <22.7 kg fat, over-all selection
of the urban patch decreased. Additionally, timing of selection of
also changed; bears selected the urban patch early in the hyper-
phagia season, then switched to wildland patch after a few weeks,
and finally selected the urban patch again towards the end of the
season (Fig. 2B). Completely eliminating anthropogenic food avail-
ability in urban and urban-interface patches resulted in selection
of only the urban-interface patches by bears of lower fat reserves.

We ran the cost increase scenarios for up to a 100% increase in
costs due to movement in human-dominated patches and identi-
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fied thresholds only for bears with a state P33.95 kg fat reserves.
At cost increases of 100% in both urban and urban-interface
patches, selection of human-dominated patches consisted only of
urban patches (Fig. 2C). We continued to increase movement by
100% intervals and found that when cost increased by >1100% of
default value in the urban patch and >400 % in the urban-interface
patch, cost increase thresholds had similar exclusion properties as
the benefit reduction thresholds, i.e., bears of P22.7 kg fat reserves
did not select human-dominated patches (Fig. 3 bottom panels).
Similar to patterns observed with the benefit reduction scenarios,
dynamics changed to selection of human-dominated patches ear-
lier in the hyperphagia season at those thresholds (Fig. 2D). Exclu-
sion of all bears, including those with lowest fat reserves, occurred
only when costs increased by 2750% in the urban patch and 2000%
in the urban-interface patch.

Sensitivity of thresholds to parameter uncertainty varied by
state, with bears of very low (e.g., <22.7) or very high (e.g.,
>34.4) fat reserves being relatively less sensitive because they
mostly had no or zero threshold values at default parameter val-
ues. We therefore focused result interpretation on bears with
states P22.7 and 634.4 (Appendix E). Benefit reduction thresholds
were more sensitive to changes in the scaling parameter a rather
than b of the terminal fitness function (Fig. E1 panels A–C). In gen-
eral, threshold values increased with an increase in a and Yanthro

and decreased with an increase in availnatural. Threshold values in
urban and urban-interface patches were more sensitive to their
own patch-specific survival with a positive correlation, and thresh-
olds in both patches were inversely correlated to survival in wild-
land patch. Sensitivity results for cost increase thresholds had
similar trends as the benefit reduction thresholds (Fig. E1 panels
D–F).
4. Discussion

Structured decision making is called for when evaluating the
efficacy of mitigation strategies for human–wildlife conflict (Bar-
low et al., 2010). A crucial component is the understanding of eco-
logical mechanisms that lead wildlife to conflict with humans.
Acquiring such knowledge through field studies can be expensive,



Fig. 3. Thresholds of percent reduction in benefits (top panels) or percent increase in costs (bottom panels) in urban (left) and urban-interface (right) patches as a function of
bear state. For each state (kg fat), threshold values represent % reduction or increase beyond which bears of that state did not select human-dominated patches.
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and results are often not available in a timely manner to guide the
mitigation of pressing conflicts, especially when managing species
of conservation concern (e.g., tiger [Panthera tigris]). In this study
we used patch-selection models to understand wildlife response
to management aimed at reducing benefits and increasing costs
of foraging in human-dominated areas. Implementing the model
for black bear foraging in an urban system, we identified potential
thresholds beyond which most bears should avoid human-domi-
nated patches and gained insights on shifts in selection dynamics
that can result from management. We therefore demonstrated
how patch selection models can be a valuable decision making tool
to study the effects of management on wildlife behavior and pro-
vide guidelines for conflict mitigation. Predictions from such mod-
els can also serve as hypotheses to be tested in an adaptive
management framework (Grantham et al., 2010).

In our model system we found that benefit reduction thresholds
of at least 70% excluded all bears from human-dominated patches
except those with the lowest body fat reserves. The direct manage-
ment implication is that the identified thresholds can provide
guidelines for management in developing objectives to reduce
anthropogenic attractants to bears in the study system. We also
found that even when anthropogenic attractants are successfully
eliminated, bears with low fat reserves continued to select hu-
man-dominated patches, specifically the urban-interface patch
that provided a mix of natural and anthropogenic food sources.
However, this result was an artifact of the fact that we reduced
anthropogenic food availability but did not simultaneously in-
crease the patch-specific distance needed to move in order to find
food. Because the daily movement distances were lower in urban-
interface compared to wildland patches, bears used the urban-
interface patch even when no anthropogenic food was available,
and the observed results were an artifact of lower movement costs
in that patch. When we adjusted the movement parameter to equal
that of wildland patch, all bears foraged exclusively in wildland
patches when anthropogenic food sources were eliminated, sug-
gesting that such management strategy has the potential to suc-
cessfully exclude bears from foraging in human-dominated
patches.

Cost increase thresholds were at times an order of magnitude
higher than default values, requiring an increase of bear movement
in the urban and urban-interface patch by approximately 15 and
45 km/day to achieve similar exclusion results as the benefit
reduction thresholds. While a detailed economic cost-benefit anal-
ysis for each management strategy is warranted (Hughey et al.,
2003), it is likely not feasible to implement such high level costs
using aversive conditioning treatments. Therefore, in this study
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system we would predict that implementing benefit reduction
management strategy would be more effective than cost increase
strategies. We note that we did not test the effects of various com-
binations of these strategies (e.g., 50% cost increase and 50% benefit
reduction), which may prove more efficient than only implement-
ing benefit increase strategies and that future studies should ex-
plore. Also, it is possible that the cost increase parameters used
in our models, i.e., the energetic costs of movement resulting from
flight behavior, failed to incorporate other energetic costs associ-
ated with aversive conditioning treatments such as stress and in-
creased vigilance behavior (Frid and Dill, 2002). However, those
responses are difficult to quantify energetically, especially in a wild
setting, and we were not aware of any data that allows incorpora-
tion of such parameters. Additionally field evaluations that likely
included all behavioral responses by bears suggested that aversive
conditioning treatments can be ineffective in deterring bears from
human-dominated areas (Beckmann et al., 2004; Mazur, 2010).

Some authors advocate that preventative management, i.e., the
reduction in benefits from anthropogenic attractants, should be the
primary goal of conflict mitigation over reactive management, i.e.,
the lethal or non-lethal control of wildlife (Dorrance, 1983; Fall and
Jackson, 2002). A key argument is that reactive management with-
out an effective elimination of attractants can perpetuate the prob-
lem (Hristienko and McDonald, 2007). Others suggest that
regardless of the food type consumed, wildlife that forage in hu-
man-dominated patches are habituated, pose danger to human
safety, and therefore should be removed (Hristienko and McDon-
ald, 2007). While resolving this philosophical difference in man-
agement views is beyond the scope of this paper, we
demonstrated the advantages of patch selection models as a plan-
ning tool to assess impacts of each strategy in that they: (1) allow
flexibility in model adaptations to address system-specific proper-
ties, e.g., the inclusion of multiple food types, (2) provide outputs
that can serve as management objectives and research hypotheses,
(3) allow measures of uncertainly using sensitivity analyses there-
fore compare the uncertainty resulting from each strategy, and (4)
provide ecological insights on the mechanisms and dynamics of
wildlife foraging decisions in response to human–wildlife conflict
mitigation. Coupled with a socio-economic cost-benefit analysis,
patch selection models can be a useful tool in the conservation
managers’ toolbox.
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