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We  report  here  on a  novel  methodology  in detecting  Mycobacterium  bovis  (M. bovis)  infection  in cat-
tle,  based  on  identifying  unique  volatile  organic  compounds  (VOCs)  or a VOC  profile  in the  breath
of  cattle.  The  study  was  conducted  on  an  M.  bovis-infected  dairy  located  in  southern  Colorado,  USA,
and  on  two  tuberculosis-free  dairies  from  northern  Colorado  examined  as  negative  controls.  Gas-
chromatography/mass-spectrometry  analysis  revealed  the  presence  of 2 VOCs  associated  with  M.  bovis
infection  and  2  other  VOCs  associated  with  the  healthy  state  in  the  exhaled  breath  of  M.  bovis-infected
ovine tuberculosis
ycobacterium bovis

reath analysis
olatile organic compound
hemical sensors array

and  not  infected  animals,  yielding  distinctly  different  VOC  patterns  for  the  two  study  groups.  Based  on
these results,  a  nanotechnology-based  array  of  sensors  was  then  tailored  for detection  of  M. bovis-infected
cattle  via  breath.  Our system  successfully  identified  all  M.  bovis-infected  animals,  while  21%  of  the  not
infected  animals  were  classified  as M.  bovis-infected.  This  technique  could  form  the  basis  for  a  real-time
cattle  monitoring  system  that allows  efficient  and  non-invasive  screening  for new  M.  bovis  infections  on
as-chromatography/mass-spectrometry dairy  farms.

. Introduction

Bovine tuberculosis (bTB), caused by Mycobacterium bovis (M.
ovis), is a serious global disease with an impact on animal health,
ublic health, and international trade [1–3]. The transmission of
uberculosis to humans via infected milk was considered a signifi-
ant cause of morbidity and mortality from Victorian times until
he Second World War  [4,5]. Milk pasteurization and intensive

radication programs led to sharp declines of bTB in domestic live-
tock and humans, especially in developed countries [6].  However,
he challenge of eradication remains, largely due to unauthorized

Abbreviations: bTB, bovine tuberculosis; M.  bovis, Mycobacterium bovis; VOC,
olatile organic compound; CFT, caudal fold test; CCT, comparative cervical test;
C–MS, gas chromatography–mass spectrometry; DFA, discriminant factor analysis;
NP,  gold nanoparticles; TP, true positive; TN, true negative; FP, false positive; FN,
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movement of infected animals and persistent wildlife reservoirs of
the disease [7,8].

Accurate and efficient detection of bTB in animal populations
remains of paramount importance to bTB control programs. Cur-
rently, tuberculosis testing in live cattle in the United States
consists of a caudal fold test (CFT) as a screening test, with a
comparative cervical test (CCT) or interferon gamma  assay test
as supplemental or confirmatory tests [3,9–11].  The CFT and CCT
involve injecting tuberculin(s) intradermally and measuring any
subsequent swelling at the site of injection 72 h later [12]. The
interferon gamma  assay is a confirmatory or supplemental blood
test that relies on quantifying the amount of gamma  interferon
that is produced in animal blood samples cultured in the presence
of tuberculin. The final diagnosis of bovine tuberculosis requires
post mortem laboratory confirmation of disease via histopathology,
polymerase chain reaction, and bacteriological culture [9,10].

Although these combined tests have good specificity and sen-
sitivity depending on the stage of infection (over 80% sensitivity
and over 90% specificity, respectively), conducting these tests at
large dairies is expensive, time-consuming, logistically challeng-
ing, and must be performed by certified veterinarians [13]. Skin

testing requires a second examination, and the interferon gamma
assay is considerably more expensive in comparison with a skin
test [14,15]. Both interferon gamma and skin testing results are
delayed a minimum of 48–72 h [13,15].  The development of a

dx.doi.org/10.1016/j.snb.2012.05.038
http://www.sciencedirect.com/science/journal/09254005
http://www.elsevier.com/locate/snb
mailto:Jack.C.Rhyan@aphis.usda.gov
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Fig. 1. Photo illustrating the system employed for breath sample collection in the
cattle. Inspired air first passes into the mask through three charcoal filters and
one-way valves to remove environmental VOCs. Expired air passes out of the mask
N. Peled et al. / Sensors and Ac

ensitive, specific, non-invasive, and efficient method for detect-
ng M.  bovis infection, which can be performed on the premises,

ould be highly beneficial to both regulators and managers in the
ivestock industry.

An emerging approach for diagnosing, an infectious disease at its
arliest stages relies on volatile organic compounds (VOCs) that are
mitted from the infectious agent and/or the host. The successful
nalysis of infectious disease-related VOCs is based on the follow-
ng principles of cell biology. The bacterial cell membrane consists
rimarily of amphipathic phospholipids, carbohydrates and many

ntegral membrane proteins that are distinct for different cell types.
n disease formation, both host and invading cells can undergo
tructural changes, one example of which would be oxidative stress,
.e., a peroxidation of the cell membrane that causes VOCs to be
mitted [16]. Some of these VOCs appear in distinctively differ-
nt mixture compositions [17–22].  What is particularly significant
bout this approach is that each type of disease has its own  unique
attern of VOCs; therefore, the presence of one disease would not
ask other disease types [23]. These VOCs can be detected directly

rom: (i) cultured cells (i.e., the mixture of VOCs trapped above
he cells in a sealed vessel) [20–22];  (ii) urine [24]; or (iii) exhaled
reath [17–19].

In regard to exhaled breath, the principle is that disease-related
hanges in blood chemistry are reflected in measurable changes
o the breath through exchange via the lungs. In certain instances,
reath testing offers several potential advantages, such as (a) breath
amples are non-invasive and relatively easy to obtain, and (b)
reath testing has the potential for direct, inexpensive and eventu-
lly real-time monitoring.

In this paper, we explore the utility of breath testing for the
etection of M.  bovis infection in cattle. We  analyze breath samples
ollected from cattle using gas-chromatograph/mass-spectrometry
GC–MS) to identify the VOC patterns linked with the disease condi-
ions. Based on the detected VOC patterns, a nanotechnology-based
rray of sensors, termed Nano Artificial NOSE (NA-NOSE) [25–30],
as tailored for the detection of bTB disease from exhaled breath.
A-NOSE is an artificial olfactory system based on an array of cross-

eactive, nanomaterials-based, chemical gas sensors, which can
dentify and separate different gaseous mixtures, even if their con-
tituent analytes are present at very low concentrations and their
ifferences are very subtle. The results obtained indicate that the
A-NOSE could efficiently detect M.  bovis infection from breath

amples of cattle.

. Materials and methods

.1. Breath collection from cattle

Breath samples were collected and tested from 14 cattle from
n M.  bovis-infected dairy in the southern part of the state of Col-
rado, USA. Ten of these animals were identified as bTB-positive
ased on conventional tests. Nine of 10 cattle were culture posi-
ive for M.  bovis at necropsy. One animal was culture negative but
ad gross and microscopic lesions compatible with bTB which were
olymerase chain reaction positive. Nine of 9 animals tested were
ositive on CFT, 9 of 10 animals tested were positive on CCT, 8 of
0 animals tested on interferon gamma  assay were positive and 2
ere suspect; all 10 animals had gross lesions and 8 animals had
icroscopic lesions compatible with bTB. The remaining four ani-
als from the same dairy were deemed bTB-negative based on the

ollowing: none of the animals had gross lesions, three of three

nimals tested were negative on CFT, one of one animal tested was
egative on CCT, and one of one was negative on gamma  interferon.
nly one animal was cultured and it was negative, whereas the oth-
rs were not cultured because they were negative on skin tests and
through two  one-way valves and through the tubing inserted into a hole in the front
of  the mask. Air in the tubing passes through a glass cartridge containing sorbent
material (TenaxTM) and is exhausted through the hand-held suction pump.

gamma  interferon tests and they had no evidence of disease on post
mortem examination. Additionally, breath samples from 13 cattle
from two  bTB-negative dairies located in northern Colorado were
also tested. These animals served as negative controls, as well as
to exclude confounders caused by farm and feed differences. These
animals were not skin tested.

Breath specimens were collected by use of a mask designed
to deliver nebulized medication to horses (Aeromask®, Trudell
Medical International, London, Ontario, Canada) modified so that
inspired air passed through charcoal filter cartridges (North Safety
Products by Honeywell, Cranston, RI, USA) and air in the mask was
pumped via Tygon® tubing (Saint-Gobain Performance Plastics,
Akron, OH, USA) through a glass cartridge containing inert sorbent
material (TenaxTM Catalog No. 226-35-03, SKC Inc. Eighty Four, PA,
USA) by means of a handheld pump (Air Check XR5000, SKC) (Fig. 1).
This approach is necessary to reduce as much as possible any con-
founders or contaminants that occur external to the animals we
are targeting. Air was  sampled from the mask at a rate of 1 L/min
for 2 min. The sorbent material concentrated the VOCs in the 2 L
gas sample that passed through the tube. Following exposure, the
sorbent tubes were sealed and stored at −70 ◦C until shipment to
Israel for GC–MS and NA-NOSE analyses. The experiment was  per-
formed in compliance with the U.S. laws for the humane treatment
of animals and was  done in conjunction with disease management
procedures of the Colorado Department of Agriculture and the U.S.
Department of Agriculture, Animal and Plant Health Inspection Ser-
vice, Veterinary Services.

2.2. Breath analysis using the GC–MS

The chemical composition of the breath samples collected from
all 27 cattle was analyzed employing a Gas Chromatography–Mass
Spectrometry equipment (GC–MS-QP2010; Shimadzu Corporation,
Japan), combined with a thermal desorption system (TD20; Shi-
madzu Corporation, Japan). The GC oven temperature profile used
was  (i) 35 ◦C, hold for 10 min; (ii) ramp of 4 ◦C/min until 150 ◦C;
(iii) ramp of 10 ◦C/min until 300 ◦C; and (iv) hold for 15 min  at

300 ◦C. VOCs were chromatographically separated using an SLB-
5ms, 30m × 0.25 mm,  0.5 �m film thickness, with 5% phenyl methyl
siloxane, capillary column (Sigma Aldrich Ltd., Rehovot, Israel).
The injection port was configured in a splitless injection mode
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Fig. 2. (a) Photo of the NA-NOSE measurement system: 1 – sensors test cham-
ber,  2 – breath sample bag, 3 – tubing to the vacuum pump, 4 – data acquisition
90 N. Peled et al. / Sensors and Ac

t 23.4 kPa for 2 min, resulting in airflow with a constant linear
elocity of 30.0 cm/s and a column flow of 0.70 ml/min. Samples in
he sorbent tubes were desorbed at 250 ◦C. The molecular struc-
ures of the VOCs were determined by spectral library matching,
sing the Automated Mass Spectral Deconvolution and Identifi-
ation System software. Ion profiles (m/z) were processed using
he open source XCMS package version 1.22.1 for R environment
http://metlin.scripps.edu/xcms/).

.3. Breath analysis using the NA-NOSE

Twenty-two breath samples collected from the cattle (8 bTB-
ositive and 4 bTB-negative from the infected dairy, and 10 animals
rom the non-infected dairies) were analyzed with our specif-
cally designed NA-NOSE system (Fig. 2a). Two  sorbent tubes
rom animals confirmed as bTB-positive and three tubes from
he tuberculosis-free dairies were damaged during shipment and
ould not be analyzed with the NA-NOSE. For the NA-NOSE,
n array of six chemiresistive films of gold nanoparticle (GNP)
ensors (GNP with either octadecanethiol (2 items), decanethiol,
-naphthalenethiol, 2-mercaptobenzoazole or 2-nitro-4-trifluoro-
ethylbenzenethiol) was selected from an initial pool of 18 sensors

Fig. 2b) based on the results of the GC–MS analysis, whereby the
rganic functionalities provided broadly cross-selective absorption
ites for the breath VOCs [25–29,31,32]. The sensors were produced
y successively drop casting the molecularly modified GNP solu-
ions onto pre-prepared circular Ti/Au interdigitated electrodes (24
airs of Au electrodes; 5 �m width and 25 �m spacing between the
djacent electrodes) on a silicon wafer with 1000 nm SiO2 film and
y wire-bonding the electrodes to TO5 package holder (National
emiconductor, US) – see Fig. 2c. In these sensing films (Fig. 2d),
he gold particles provide the electric conductivity and the organic
lm component provides sites for the sorption of analyte (guest)
olecules. Details of the sensing materials synthesis have been

escribed elsewhere [25–29,31,32].
For analyzing the breath samples with the NA-NOSE, the breath

amples collected were introduced into a 400 mL  sealed test cham-
er, housing the sensors (see Fig. 2a). Samples were thermally
esorbed at 270 ◦C from the TenaxTM cartridge using a 750 mL  gas
tream into the sample chamber. Sensors output was monitored for

 change in resistance using a custom program (LabView, National
nstruments). All sensors were monitored simultaneously through
n Agilent 34980A multifunction switch. A Stanford Research Sys-
em SR830 DSP lock-in amplifier controlled by an IEEE 488 bus was
sed to supply the AC voltage signal to the sensors (0.2 V at 1 kHz),
nd to measure the corresponding current (<10 �A in the studied
evices). This setup allows for measuring normalized changes in
onductance as small as 0.01%. The sensors system was  degassed
nder vacuum for 5 min  at a pressure of <50 mtorr, prior to analyz-

ng another sample, in order to purge the test chamber.

.4. Data analysis

The GC–MS results for a given identified compound were com-
ared across three treatment groups using the Wilcoxon rank
um test at a significance level of p-value < 0.05 [33]: bTB posi-
ive animals from the infected dairy, bTB negative animals from
he infected dairy, and animals from the tuberculosis-free dairies.
A-NOSE sensors responses, defined as the relative resistance
hange experienced by the sensors immediately after exposure to
he breath sample, were used as inputs for Discriminant Factor
nalysis (DFA) pattern recognition algorithm [34,35]. Data were

elected to be used as training and validation data sets. The clas-
ification prediction was calculated employing the leave-one-out
ross-validation method, as described elsewhere [36]. For this pur-
ose, DFA was computed using a training data set that excluded one
board, 5 – automatically controlled valves, 6 – vacuum meter; (b) photo of the array
of  chemisensors; (c) schematic representation of sensors substrate (not drawn to
scale); (d) tunneling electron micrograph image of the GNP sensing film.

test sample. After the DFA computation, the test sample was pro-
jected onto the DFA model that was  calculated using the training
set. In this way, the test sample was  blind for the DFA model, so that
its class affiliation was  unknown. In a two-group classification case,
the discrimination is obtained through the first canonical variable
(CV1). The classification of the unknow sample was determined

using standard cluster analysis based on the distance to groups cen-
ters on CV1-axis. All possibilities of leaving out one sample were
tested, and the left-out sample was  classified as true positive (TP),
true negative (TN), false positive (FP) and false negative (FN). bTB

http://metlin.scripps.edu/xcms/
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ig. 3. The chemical composition of the breath samples identified by GC–MS: (a) pr
TB  negative cattle.

dentification sensitivity and specificity were calculated from Eq.
1):

ensitivity = TP
TP + FN

;  Specificity = TN
TP + FP

(1)

Features extraction and data classification were conducted
nder the MATLAB® (The MathWorks) environment. Statistical
nalysis was carried out using SAS JMP, Version 8.0 (SAS Institute
nc., Cary, NC, USA, 1989–2005).

. Results

.1. Chemical analysis of the breath samples

The chemical composition of the breath samples analyzed by
C–MS included the following types of compounds: two  ketones,

wo aromatic compounds, one methylated alkane, one cycloalkane,
ne ether compound, one alcohol, one benzene derivative, one
mine, two dienes, two aldehydes, and two  acids. All but six
ompounds were found in the exhaled breath of the majority
f cattle, being present in at least 80% of bTB positive cattle’s
reath samples and in at least 75% of bTB negative cattle’s breath
amples (Fig. 3a). These compounds cannot be associated with

TB infection since the relative concentrations of the 10 ana-

ytes common to both groups, based on differences in peak areas
or an identified compound, were not statistically similar for bTB
egative animals independent of their dairy of origin, whereas
inant VOCs in animals’ breath samples and (b) exclusive VOCs for bTB positive and

statistically different from the bTB infected animals, as resulting
from the Wilcoxon tests performed. The remaining six compounds
were further investigated due to their presence in the breath of
more than 75% of the specimens from one group and in less than 25%
of the specimens from the other group. These compounds were:
one cycloalkane and one diene for bTB, and two aldehydes and two
acids for not infected animals (Fig. 3b). As the two  aldehydes were
found only in the breath of the animals from the tuberculosis-free
dairies, and not in the breath of the bTB negative animals from the
infected dairy, they were excluded from the development of the
GNP sensors array.

3.2. Analysis of breath samples with NA-NOSE

The NA-NOSE ultimately comprised an array of six cross-
reactive GNP sensors which were selected based on their ability
to discriminate the VOC patterns identified by the GC–MS.
The six chemiresistive films of GNP were coated with either
octadecanethiol (2 sensors), decanethiol, 2-naphthalenethiol, 2-
mercaptobenzoazole or 2-nitro-4-trifluoro-methylbenzenethiol.
Although employing the same active material, the two sensors
coated with octadecanethiol were not identical because they pre-

sented different baseline resistance values. Each of the six GNP
sensors of the reservoir responded either to all or to a certain sub-
set of the VOCs found in the samples, because the organic ligands
of the GNPs provided only a moderate chemical selectivity. Each
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Fig. 5. DFA plot showing the discrimination between bTB-negative (circles; n = 14)
and bTB-positive (diamonds; n = 8) cattle. An insight of the bTB-negative animals
from the different dairies shows the complete mixing of the animals from M.  bovis
nimal from the M.  bovis-infected dairy (blue curve). (For interpretation of the ref-

rences to color in this figure legend, the reader is referred to the web version of the
rticle.)

ensor from the array underwent a rapid and fully reversible change
increase) in electrical resistance upon exposure to the samples.
ig. 4 shows a typical response of one of the sensors, whose resis-
ance increased as a consequence of a swelling effect produced
hen its active (sensing) material trapped the VOCs from the breath

amples [37,38].  This figure suggests a higher affinity of the sensor
o the VOC pattern correlated to an uninfected animal.

DFA analysis was then performed with the aim of identifying the
TB-infected cattle from the other animals based on breath analy-
is. The DFA plot obtained employing the features extracted from
ensors responses is shown in Fig. 4. Using a blind leave-one-out
ross-validation procedure, the NA-NOSE system correctly identi-
ed all bTB positive animals, while three out of the 14 bTB negative
ows were misclassified; one from the infected dairy and two  from
he non-infected dairies. The contingency table of samples clas-
ification is shown in Table 1. Overall, based on our small study
f 22 animals, the sensitivity and specificity were 100% and 79%,
espectively.

. Discussion

So far, GC–MS is beneficial for detection of VOCs that are above
he instrument’s limit of detection. For cases where the GC–MS
an detect and identify bTB breath VOCs, several factors impede its
ractical implementation in point-of-care or end-user sites. These

imitations include the need for expensive equipment, the high lev-
ls of expertise required to operate such instruments, the speed
equired for sampling and analysis, and the need for preconcen-
ration techniques. For bTB breath analysis to become a reality,
e have utilized the GC–MS results obtained in the current study
nd designed a tailor-made NA-NOSE that is small, easy-to-use,
nexpensive, and can detect VOCs in the presence of water vapor

ithout the need for preconcentration and/or dehumidification
echniques.

able 1
ontingency table of bTB identification obtained by the NA-NOSE system.

Actual value

Positive Negative

Prediction outcome Positive TP = 8 FP = 3
Negative FN = 0 TN = 11
infected (green filled circles; n = 4) and tuberculosis-free (red open circles; n = 10)
dairies. (For interpretation of the references to color in this figure legend, the reader
is  referred to the web  version of the article.)

With our NA-NOSE system, we were able to correctly identify
cattle naturally infected with M. bovis and 79% of bTB negative ani-
mals in this study. This is the first known report of application of
VOC analysis to detect M. bovis in cattle breath. Previous studies in
cattle have demonstrated different profiles of VOCs in the air over
serum samples (headspace) from Brucella-infected, MAP-infected,
M. bovis-infected, and normal cattle using an e-nose [39,40]. Stud-
ies in humans to detect tuberculosis in breath VOCs have been
performed with some success [41–44].

It remains unknown why  the three negative animals were mis-
classified as positive. Since the negative animals selected from the
southern Colorado dairy did not undergo complete workups such
as the positive animals did, it is possible that these cattle were
exposed to M. bovis and were in very early stages on infection.
There is also the possibility that these cattle, especially the ani-
mals from the bTB-free dairies, are undergoing an infection process
that produces volatiles that “cross-react” in the NA-NOSE system
used in this study. It is important to note that the bTB negative
animals were independent of their dairy of origin, this affirmation
being supported by the complete mixing of the bTB negative ani-
mals (Fig. 5), which indicates that the NA-NOSE was not affected by
confounding factors determined by the dairy of origin. Our results
suggest that the trained NA-NOSE system is responsive to a volatile
biomarkers pattern related to M. bovis infection.

Importantly, the cyclohexane and the pentadiene identified as
exclusive VOCs for M. bovis infection could not be found as preva-
lent in the breath of the bTB negative animals from the infected
dairy, therefore they are not dairy dependent and could indeed
represent tentative biomarkers for M. bovis identification. The two
saturated fatty acids not found in the breath of the bTB infected
animals were found in the breath of all bTB negative animals, also
independent of their dairy location, which indicates that they were
reduced during disease growth, which is in agreement with previ-
ous findings that fatty acids can be taken up by M.  tuberculosis from
the triton–fatty acid complex and utilized as a source of carbon for
growth [45]. The two aldehydes that were excluded from the NA-
NOSE sensor array are probably associated with feed differences

among the different dairies. Most of the VOCs found in this study
are similar in structure to the compounds found in previous studies
done by Phillips et al. both in humans and in vitro [41,42].  However,
there were some compounds found by Phillips et al. which were not
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ound in this study (i.e., more numerous alkane derivatives, alkene
nd ester), while no alcohols, amine and aromatic compounds were
ound in their studies. This difference may  be due to the fact that
revious studies were conducted on humans and on in vitro cultures
nd this study was in cattle.

Identification of the sensors that contributed most to differ-
ntiating bTB positives from negatives was crucial for identifying
he bTB patterns. GNP sensors developed by Haick and cowork-
rs have been shown to be sensitive to typical breath VOCs such
s aldehydes, alkanes, ketones, alcohols, and benzene derivatives,
ith typical detection limits for the separate VOCs of 1–5 parts
er billion (ppb), and showed a very low response to water [27], an

mportant feature because the high background humidity in breath
amples could easily mask the signal to the much lower concentra-
ions of the VOCs that indicate bTB state. Breath specimens from the
TB positive and bTB negative animals were characterized by sub-
le differences in the concentration of a multitude of metabolites.
n the other hand, the concentrations of many other metabolites

emained unaffected. Some of the GNP sensors were especially sen-
itive to the classes of bTB-infected specific VOCs. Nevertheless, the
ajority of the sensors were more sensitive to the VOCs that were

naffected by the bTB state, and mainly added noise, therefore they
ere discarded.

. Conclusions

We report on a new methodology in detecting M. bovis infec-
ion in cattle, based on identifying unique VOCs or a VOC profile
n the breath of cattle. GC–MS analysis revealed the presence of
wo VOCs associated with M.  bovis infection and two  other VOCs
ssociated with the healthy state in the exhaled breath of M.  bovis-
nfected and not infected animals, yielding distinctly different VOC
atterns for the two study groups. Based on these results, a custom-
ade nanotechnology-based array of sensors (NA-NOSE) was  then

ailored for detection of M.  bovis-infected cattle via breath. Our sys-
em successfully identified all M.  bovis-infected animals, while 21%
f the not infected animals were classified as M. bovis-infected.

The NA-NOSE system we present here shows great promise as a
creening technique for bovine tuberculosis in animal populations.
he NA-NOSE has advantages over the GC–MS technique because
t is faster, cheaper, and portable. It could be placed beside the

ilking line or at the barn entrance as a screening tool for bTB
n cattle. This method might also hold potential as a screening test
or other diseases, such as bovine brucellosis and paratuberculosis.
urther studies on experimentally and naturally infected popula-
ions, spread over a larger geographical area, are necessary to fully
erify and/or refine the observed breath biomarker patterns for bTB
iagnosis.
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