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Land use and climate influences on
waterbirds in the Prairie Potholes
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William J. Bleier1 and Patrick C. McKann2

INTRODUCTION

Avian habitat studies are commonly used to assess how one or

more species of birds respond to different environmental

factors. Most previous studies examined bird–habitat relation-

ships at small scales, focusing on microhabitats (e.g. Clark &

Weatherhead, 1986; Murkin et al., 1997; Vierling, 1999).

Results from these site-intensive bird–habitat studies are

sometimes extrapolated to a regional level because there is a

paucity of larger-scale studies addressing these relationships

(Thogmartin & Knutson, 2007). Thus environmental effects on

bird abundance that are present at larger scales can be

overlooked or misattributed (Thogmartin, 2007).

While small-scale habitat studies are still common, the

number of larger-scale habitat studies is growing because of the

growing availability of readily accessible data. For example,
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ABSTRACT

Aim We examined the influences of regional climate and land-use variables on

mallard (Anas platyrhynchos), blue-winged teal (Anas discors), ruddy duck

(Oxyura jamaicensis) and pied-billed grebe (Podilymbus podiceps) abundances to

inform conservation planning in the Prairie Pothole Region of the United States.

Location The US portion of Bird Conservation Region 11 (US-BCR11, the

Prairie Potholes), which encompasses six states within the United States:

Montana, North Dakota, South Dakota, Nebraska, Minnesota and Iowa.

Methods We used data from the North American Breeding Bird Survey

(NABBS), the National Land Cover Data Set, and the National Climatic Data

Center to model the effects of environmental variables on waterbird abundance.

We evaluated land-use covariates at three logarithmically related spatial scales

(1000, 10,000 and 100,000 ha), and constructed hierarchical spatial count models

a priori using information from published habitat associations. Model fitting was

performed using a hierarchical modelling approach within a Bayesian framework.

Results Models with the same variables expressed at different scales were often in

the best model subset, indicating that the influence of spatial scale was small. Both

land-use and climate variables contributed strongly to predicting waterbird

abundance in US-BCR11. The strongest positive influences on waterbird

abundance were the percentage of wetland area across all three spatial scales,

herbaceous vegetation and precipitation variables. Other variables that we

included in our models did not appear to influence waterbirds in this study.

Main conclusions Understanding the relationships of waterbird abundance to

climate and land use may allow us to make predictions of future distribution and

abundance as environmental factors change. Additionally, results from this study

can suggest locations where conservation and management efforts should be

focused.
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large-scale data sets, such as the North American Breeding Bird

Survey (NABBS) (Sauer et al., 2006), the National Land Cover

Dataset (NLCD) (Vogelmann et al., 2001), and climate data

from recording stations across the world (National Climatic

Data Center, 2002) are freely available to those with internet

access. Geographic information system software enables

scientists to collect and analyse data across broad geographic

areas that are necessary for large-scale habitat studies (Green-

berg et al., 2002). High-speed computers have given research-

ers the capability of using powerful, but computationally

intensive, Bayesian methods to create population-based mod-

els (Link & Sauer, 2002; Calder et al., 2003; Thogmartin et al.,

2004a). Bayesian approaches offer powerful tools to fit spatial

habitat models over large scales because they can simulta-

neously account for Poisson overdispersion in count data,

random effects associated with observer and year, and spatial

autocorrelation (Thogmartin et al., 2004a).

Recent research examining landscape-level environmental

influences on avian communities in North America found that

birds are highly influenced by patterns in the landscape

(Cushman & McGarigal, 2002; Lichstein et al., 2002). Saab

(1999) compared the influences of habitat variables at different

scales and found that surrounding landscape features (the

landscape matrix) were the most important predictors of bird

presence. Neotropical migrant birds are especially sensitive to

landscape features relative to temperate migrants and resi-

dents. Flather & Sauer (1996) noted that Neotropical migrants

were found in landscapes with a greater percentage of natural

habitats and were negatively affected by increases in landscape

diversity and edge. Abundances and distributions of wetland

breeding birds have also been shown to be affected by large-

scale habitat variables. Fairbairn & Dinsmore (2001) found

landscape habitat variables to be important predictors of bird

abundance for seven waterfowl and passerine species. Addi-

tionally, Naugle et al. (2000, 2001) identified total grassland

and wetland area as important predictors of waterbird

occurrence. Mallard (Anas platyrhynchos Linnaeus) abundance

has also been shown to be affected by landscape influences,

with abundance positively related to area of wetlands and rice,

and negatively related to area of orchards and urban lands in

the Central Valley of California (Newbold & Eadie, 2004).

Birds can be affected differently by environmental factors at

varying scales. Pribil & Picman (1997) noted that the density of

cattail (Typha spp., a common herbaceous wetland plant that

often occurs at high densities) immediately around the nest,

but not at broader scales, was an important factor in red-

winged blackbird (Agelaius phoeniceus Linnaeus) nest site

selection. Saab (1999) found strong bird–habitat relationships

at landscape, microhabitat and macrohabitat scales, with

landscape features the most important. The influence of scale

in landscape analyses underscores the importance of examin-

ing landscape effects at multiple scales so that important

relationships are not overlooked (Urban, 2005).

A relatively new approach to avian habitat studies is to

examine environmental influences beyond the landscape scale

to a regional (in the United States, multi-state) level. Because

political boundaries are not ecologically meaningful, biologists

often evaluate multi-state bird–environment relationships

within one or more Bird Conservation Regions (BCRs).

Within North America, BCRs are ecologically unique areas

that have similar avian communities and are used to foster a

large-scale approach to bird conservation and management

(NABCI, 2005). Sauer et al. (2003) examined NABBS data over

North America and found BCRs to be useful strata for analyses

of avian population trends. Thogmartin et al. (2004a) mod-

elled cerulean warbler (Dendroica cerulea Wilson) abundance

as a function of land use and climatic influences in the Prairie–

Hardwood Transition BCR (BCR23). Bird Conservation

Regions were also found to be effective strata for mapping

predicted abundances of five species of grassland birds as a

function of land use and climate variables (Thogmartin et al.,

2006). Abundance of American woodcock (Scolopax minor

Gmelin) has also shown to be related to landscape habitat

variables at varying spatial scales (Thogmartin et al., 2007).

We evaluated the influence of large-scale land-use and

climatic variables on waterbird populations in the US portion

of Bird Conservation Region 11 (hereafter US-BCR11), the

Prairie Pothole Region (PPR). The US-BCR11 of the northern

Great Plains is the most important waterfowl habitat in the

United States. Modelling wetland species has high applicability

to worldwide bird conservation because of the overall decline

in these habitats. Similar research can be used in other regions

of the world to guide wildlife and habitat management

decisions.

We used bird abundance data from the NABBS, land cover

data from the National Land Cover Dataset, and climate data

from the National Climatic Data Center to model relative

waterbird abundance as a function of environmental variables

at three different spatial scales. Our objective was to provide

models to predict the influence of land use and climatic factors

on waterbird populations at a regional scale within US-BCR11.

These predictions can be used (1) as a starting point for

focusing conservation resources on specific locations where

they will be optimally beneficial, and (2) for targeting areas

where management strategies for waterbirds will have the most

impact.

MATERIALS AND METHODS

Study area

Bird Conservation Region 11 (BCR11) covers over

715,000 km2 across five states and three provinces; however,

this study examined only the portion within the United States,

due to a lack of continuous land cover data across interna-

tional boundaries (Fig. 1). The general landscape of BCR11

was formed c. 12,000 years ago, when glaciers melted and left

behind depressions that collected rain and snow melt (Leitch,

1989). Vegetation composition varies widely across BCR11 due

to large fluctuations in hydrological regimes. Submergent

vegetation dominates in locations deep enough to have

standing water during the dry season. Central zones within
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wetlands that periodically dry up contain mid-height and tall

emergents. Vernal potholes support primarily grasses, sedges

and forbs (Kantrud, 1989). Agriculture is the dominant

economic force in BCR11 and has tremendously affected the

area ecologically (Euliss et al., 1999). The human population in

BCR11 is generally sparse, with people migrating from the

rural areas to urban centres as farms increase in size (Leitch,

1989). Increases in urbanization and a concomitant increase in

road construction have had a negative impact on the ecology

of BCR11 (Euliss et al., 1999). Before European settlement, the

region consisted of c. 10% wetland (Mitsch & Gosselink,

2000); however, over half of pre-existing wetlands have been

drained for agriculture (Leitch, 1989). The remaining wetlands

are heavily affected by agriculture-induced sedimentation,

large inputs of nutrients, and agricultural chemicals (Euliss

et al., 1999).

The climate of BCR11 is characterized by both precipitation

and temperature extremes with climate groups B (arid climate)

and D (continental climate) from the Köppen climate classi-

fication being found in this region. The region is typically

colder and wetter to the north and east, and warmer and drier

to the west and south, relative to other areas within the region

(Kantrud, 1989). Temperatures in BCR11 are generally cold,

with mean daily temperatures at or below 0 �C for 5 months of

the year. Air temperatures in the winter can drop below )60 �C

and can exceed 40 �C during the summer (Euliss et al., 1999).

Historical data sets

We assembled data from several existing, large-scale data sets,

including bird abundance data from NABBS routes within US-

BCR11 (Sauer et al., 2006), climate data from the National

Climatic Data Center (National Climatic Data Center, 2002),

and land cover data from the United States Geological Survey

National Land Cover Dataset (US Department of the Interior,

Geological Survey, 1992; Vogelmann et al., 2001). We used

these data sets in conjunction with a hierarchical spatial count

model to predict relative bird abundance as a function of

environmental covariates.

The NABBS is a long-term survey effort to monitor the

status of bird population trends at a continental scale. Breeding

bird survey routes are randomly assigned along roadsides

across North America, and are surveyed every year during late

May and June. Each route is 39.4 km in length, and there are

50 stops approximately every 0.8 km along the route. At each

stop, an observer conducts a 3-min point count and records all

birds seen or heard within a 402-m radius. Individual routes

are surveyed by the same observer each year, when possible,

with a consistent method and only under suitable weather

conditions (low wind and minimal precipitation). Attempts to

minimize variability in NABBS data ensure that data are as

unbiased as possible, and that real variation in trends can be

detected over time. We used NABBS data between 1980 and

2000 because this time-frame overlaps the time when land

cover data were derived from satellite imagery during the early

1990s (Vogelmann et al., 2001). In US-BCR11, there are 95

routes for which data were used in this study (Fig. 1); data

from 77 routes were used to create spatial models, while data

from 18 randomly selected routes were withheld for validation.

We derived land-use information and metrics from the

NLCD 1992 distributed by the United States Geological

Survey. Land-use data from the NLCD are available as 30-m

grids and represent conditions in the United States in the early

1990s. We evaluated land-use patterns at three spatial scales by

creating three sizes of buffer: 0.1 km (c. 1000 ha), 1 km

(c. 10,000 ha) and 10 km (c. 100,000 ha) around each 39.4-

km NABBS route. We quantified land-use metrics within each

buffer size around each route using ArcGIS v. 9.1 GIS software

(ESRI, 2005, Redlands, CA, USA) and fragstats v. 3.3

(McGarigal et al., 2002). We reclassified National Landcover

Data from Anderson Level II classes into a modified Anderson

Level I classification (Anderson et al., 1976) to reduce potential

errors in land-use classifications that may occur at finer levels.

We used raster algebra to multiply the NLCD reclassifications

Montana

Iowa
Nebraska

Minnesota

South Dakota

North Dakota

0 200 400100 Km

Breeding Bird Survey Routes

Tesselation

Figure 1 Distribution and tesselation of 95

North American Breeding Bird Survey routes

in the US portion of Bird Conservation

Region 11.
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with each size of buffer; the resulting grid contained only land-

use data within each buffer surrounding each route. We used

fragstats to calculate land-use metrics within each buffer

zone surrounding NABBS routes (McGarigal et al., 2002).

We obtained weather data from 245 recording stations from

1980 to 2000 across BCR11 in both the United States and

Canada. Data for Canada were used with those from the

United States as part of another study to evaluate bird–

environment relationships in the Canadian portion of BCR11

(Forcey et al., 2007). Total precipitation (snowfall combined

with rainfall) for stations within the US portion of BCR11 was

not provided, so we calculated total precipitation for the

United States as follows:

Total precipitation ¼ Rainfallþ ð0:1� SnowfallÞ:

This equation approximates the amount of liquid precipi-

tation as one-tenth of the amount of snowfall, which is a

common conversion factor (Akinremi et al., 1999).

We used the kriging function of the Spatial Analyst

extension of ArcGIS v. 9.1 (ESRI, 2005) to create a continuous

surface for each climate variable from 1980 to 2000 over

BCR11. Surface interpolations use information from known

points to estimate values on a grid where information is not

known. This allowed estimation of climate variables around

NABBS routes from the information recorded at surrounding

weather stations. We averaged the grid cell values within each

10-km buffer surrounding each NABBS route to compute a

value for each weather variable for each route for each year.

Resolution of climate interpolations was 1000 m, and all

climate variables were evaluated at the largest (100,000-ha)

scale.

Modelling approach

We modelled bird abundance from the NABBS as a function of

nuisance effects associated with the survey design, land-use

variables and climatic influences using a hierarchical modelling

approach within a Bayesian framework. Hierarchical models

are useful for modelling NABBS data because they acknowl-

edge correlation among multiple observational units that are

present in the survey design. Temporal correlation in counts is

present among years and spatial correlation is present among

routes. Temporal and spatial correlations occur when count

similarity is tied to survey chronology and geographic prox-

imity, respectively. We used a Bayesian framework to fit

hierarchical models because all unknown quantities are treated

as random variables, and it therefore provides a natural

approach to this type of analysis (Link & Sauer, 2002).

We used Poisson regression to model bird abundance as a

function of environmental covariates in US-BCR11 because

counts are typically discrete positive values and are often

Poisson distributed. Modelling in a Bayesian framework

accommodates Poisson-distributed counts, nuisance effects

associated with the NABBS, and spatial autocorrelation present

in the data. We fitted models using Markov chain Monte Carlo

(MCMC) techniques using Gibbs sampling (Link et al., 2002).

Gibbs sampling is an algorithm used to sample the posterior

distribution of a random variable (Gelman et al., 2004). We

computed three chains for each MCMC simulation with

different starting values for each chain to allow computation of

the Gelman–Rubin test for convergence (Brooks & Gelman,

1998). We ran MCMC simulations for 25,000 iterations,

including a 20,000-iteration burn-in period required for

convergence. Convergence represents the point beyond which

the initial values for the chains do not influence the posterior

distribution, and dependence on the prior distribution is

minimized. We used WinBUGS v. 1.4.1, which provides a

means to run MCMC simulations using Gibbs sampling

(Spiegelhalter et al., 2003).

We used data from 1212 NABBS counts surveyed by 145

observers from 1980 to 2000 to model bird abundance as a

function of environmental covariates in US-BCR11. The

response variable in the models is the total number of birds

for each species across the entire route for each year. We

incorporated nuisance effects into the model at three levels in

the hierarchy. We included a random year effect and a fixed

effect trending term to account for inherent temporal variation

in bird abundance occurring as populations fluctuate naturally

(Link & Sauer, 2002). We included two observer effects in the

model: one random effect accounted for differences in

surveying abilities among observers (Sauer et al., 1994) and

the other fixed effect accounted for inexperience (a first-time

observer effect). The first-time observer effect was a binary

variable which was 0 if it was an observer’s first time surveying

a given route and a 1 if the observer had surveyed the route

previously. The first-time effect accounted for improvements

in observer bird identification over time, increased surveying

efficacy, and associating certain species with individual stops

(Kendall et al., 1996). We accounted for spatial autocorrela-

tion in counts with a spatial conditional autoregressive (CAR)

prior distribution on the route random effect (Banerjee et al.,

2004). We derived an adjacency matrix (Lawson et al., 2003)

within US-BCR11 from an irregular lattice created from a

tessellation of NABBS routes within BCR11 (Hooge &

Eichenlaub, 1997) (Fig. 1). Spatial autocorrelation is ac-

counted for when routes share a common boundary in the

tessellation; distances among routes are not taken into account,

although this is possible in other applications (Su et al., 2004).

The final model we used has the form:

log½kðsÞ� ¼
Xn

k¼1

vkðsÞ þ ZkðsÞ þ xkðsÞ þ gIðsÞ þ ckðsÞ þ ek:

Lambda (k) represents the count of a species on a route for a

given year (sample size k = 1 to n). Counts, environmental

covariates and nuisance effects all occurred across space (s). mk

describes a matrix of environmental fixed effects (x) and their

associated parameters (b). One unique aspect of Bayesian

analyses is the inclusion of prior beliefs or information that

may influence the final outcome. This prior information

(henceforth ‘priors’) can be either vague or specific. Because

little information is known about how environmental variables

influence waterbirds at the regional level, we assigned vague
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prior distributions to parameters in the model (Link & Sauer,

2002). Year (c) and observer (x) were treated as random

effects, with mean zero normal distributions; beta parameters

and novice effects (g) were given normal distributions with

mean of 0 and variance equal to 1000 (Link & Sauer, 2002;

Thogmartin et al., 2004a). Spatial effects (Z) were modelled as

a conditional autoregressive normal prior. This hierarchical

spatial count model was used by Thogmartin et al. (2004a,

2006) to model the effects of environmental covariates on

cerulean warblers and five grassland bird species. Overdisper-

sion was accommodated via a normal random effect on the

observation level with a diffuse variance prior distributed

uniformly between 0.001 and 1000.

The number of environmental variables that can be

measured through remote sensing is large relative to our

sample size. Because of risks associated with finding spurious

effects when examining a large number of covariates, variables

that were thought to be important descriptors of bird

abundance were selected a priori. We reviewed published

habitat associations and life histories for waterbirds in this

study to determine which environmental variables would be

likely to have the largest effects on abundance (Table 1). These

variables were used to construct a candidate set of models at

each spatial scale for each focal species. Spearman’s rank

correlations were calculated for environmental covariates;

covariates with a correlation coefficient > 0.5 were not

included in the same a priori model.

Life history was evaluated for mallard (Drilling et al., 2002),

blue-winged teal (Anas discors Linnaeus) (Rohwer et al., 2002),

ruddy duck (Oxyura jamaicensis Gmelin) (Brua, 2002) and

pied-billed grebe (Podilymbus podiceps Linnaeus) (Muller &

Storer, 1999). These species were chosen for the following

reasons: (1) this group of species represented a variety of

waterbirds with copious data available on spatial distribution

and abundance; (2) these species are abundant and conspic-

uous, which makes them conducive to representation by the

NABBS – having a strong data set is important for evaluating

new modelling approaches; (3) these species can be important

indicators of the overall health of the Prairie Pothole ecosystem

given their wide distribution in this area; and (4) these species

occur in a variety of different habitats with mallard and blue-

winged teal preferring seasonal wetlands, and pied-billed grebe

and ruddy duck preferring more permanent wetlands (Johnson

& Grier, 1988).

We standardized all environmental variables to have a mean

of 0 and standard deviation of 1. This not only improves

MCMC convergence (Gilks & Roberts, 1996), but also allows

comparison of the slopes in the model to assess the relative

importance of each variable. We constructed models with

covariates at a common scale; we did not have sufficient a

priori information available to warrant constructing multi-

scale models.

We ranked models as to how well they fit the data by

comparing the deviance information criterion (DIC) among

models and ranking them, within each of the three scales,

accordingly (Spiegelhalter et al., 2002). We constrained infer-

ence to models that were within 4 DIC units of the best model,

which approximates a 95% confidence set of best models

(Burnham & Anderson, 2002, p. 170). We calculated model

weights and variable importance measures to assess the relative

importance of each model and variable, respectively. We also

modelled null models (which contained no environmental

variables, only nuisance variables associated with the survey

design) to provide a reference point to ascertain the degree to

which environmental variables improved model fit.

After completing model fitting of the models identified a

priori, we conducted post-hoc analyses to determine if other

variables and models provided a better fit to the data. We

evaluated slope coefficients and 95% credibility intervals from

explanatory variables in the a priori candidate models to

determine the relative strength of association for each variable.

We created several additional models for each species, using

variables whose 95% credibility interval did not overlap zero;

the 95% credibility intervals were based on models from the a

priori candidate set. This allowed exploration of additional

models that might provide a better fit to the data but which

were not identified a priori. We included models identified post

hoc that had a lower DIC value than the best a priori model.

Model evaluation

We withheld data from 18 NABBS routes in BCR11 from

model construction so that known abundance information

from these routes could be compared with estimated abun-

dances generated from the best model. We assessed the model

against independent (or external) data by regressing observed

data against imputed (expected) values derived from the final

mapped model (Thogmartin et al., 2007). The observed data

were data randomly withheld from the modelling process

(n = 257 counts). This imputation was consistent with the

data and priors, and was conditional on the values of the

model parameters. We compared abundance values calculated

for withheld routes with known data using simple linear

regression. We evaluated our models using two aspects of

model validation: discrimination and calibration. We com-

pared the ability of the model to predict abundance by

comparing the slopes of the regression line to a 1:1

correspondence line (calibration) and by examining the R2

values of the regression line (discrimination). All regression

analyses were performed using the R stats package

(R Development Core Team, 2007).

Relative abundance mapping

We created spatial maps of bird abundance across US-BCR11

for each waterbird species in this study. Spatial models were

based on model-averaged beta parameters in each model

within the subset of best models (Burnham & Anderson, 2002,

p. 151). We standardized data layers in the GIS before creating

maps of bird abundance because the same covariates were

standardized prior to MCMC simulation. We mapped water-

bird abundance by creating three sizes of regular lattices over

G. M. Forcey et al.
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US-BCR11; the three sizes correspond to the spatial extents

examined in the study (1000, 10,000 and 100,000 ha). For each

bird species, we summarized environmental covariates using a

lattice size that equals the scale(s) at which each covariate was

determined to be important. Final maps of avian abundance

had a 1000-m resolution and all mapping operations were

computed using the raster calculator in the Spatial Analyst

extension of ArcGIS v. 9.1 (ESRI 2005).

RESULTS

Both landscape and climatic factors were important descriptors

of waterbird abundance in US-BCR11 (see Table 2 and

Appendix S1 in Supporting Information). The influence of

scale was less pronounced, as models with the same predictor

variables at different scales had similar DIC values for many

species (Table 2, Appendix S1). Slope coefficients for the same

Table 1 A priori environmental variables included in suites of candidate models predicting waterbird abundance in the US portion of Bird

Conservation Region 11 for each species modelled. All covariates were standardized with a mean of 0 and standard deviation of 1.

Type of variable Variable Variable description Species modelled*

Climate Previous year precipitation Total precipitation from the year prior to when

bird abundance was measured

All species

Previous spring temperature Mean spring temperature (March–June) from

the spring prior to when bird abundance was

measured

All species

Yearly precipitation Total precipitation from the same year bird

abundance was measured

All species

Yearly temperature Mean yearly temperature from the same year

bird abundance was measured

All species

Spring precipitation Total spring (March–June) precipitation from

the same year that bird abundance was

measured

All species

Spring temperature Mean spring temperature from the same year

bird abundance was measured

All species

Patch-level land

cover

Developed (%) Percentage of developed area in the landscape

(includes roads, buildings, etc.)

Forest (%) Percentage of tree cover in the landscape

(includes deciduous and coniferous trees)

RUDU

Herbaceous planted (%) Percentage of herbaceous planted in the

landscape (includes cropland, fallow, and,

pasture)

MALL, BWTE

Herbaceous upland (%) Percentage of herbaceous planted in the

landscape (includes grasses and forbs)

MALL, BWTE

Water (%) Percentage of open water in the landscape All species

Water interspersion and

juxtaposition index�
Percentage of land-use types that are adjacent

to open water

BWTE, RUDU, PBGR

Water largest patch index (%)� Percentage of total landscape comprised by the

largest patch of open water

PBGR

Wetland (%) Percentage of vegetated wetland in the landscape All species

Landscape-level

land cover

Wetland interspersion and

juxtaposition index�
Percentage of land-use types that are adjacent to

vegetated wetland

MALL, PBGR

Contagion§ Aggregation of different patch types in the

landscape (low contagion indicates many land

uses in the landscape)

MALL, RUDU, PBGR

Simpson’s diversity– Diversity of land uses in the landscape MALL, BWTE

*Species abbreviations: MALL = mallard (Anas platyrhynchos), BWTE = blue-winged teal (Anas discors), RUDU = ruddy duck (Oxyura jamaicensis),

PBGR = pied-billed grebe (Podilymbus podiceps).

�Interspersion and juxtaposition index is when a particular land-use type is adjacent to only one other land-use type. Interspersion and juxtaposition

index equals 100 when a particular land-use type is equally adjacent to all other land-use types. The interspersion and juxtaposition index equals

minus the sum of the length (m) of each unique edge type involving the corresponding patch type divided by the total length (m) of edge (m)

involving the same type, multiplied by the logarithm of the same quantity, summed over each unique edge type; divided by the logarithm of the

number of patch types minus 1; multiplied by 100 (to convert to a percentage) (McGarigal et al., 2002).

�Largest patch index equals the area of the largest patch of a particular land use divided by the total landscape area, multiplied by 100.

§Contagion is when every grid cell is a different land-use type. The contagion index equals 100 when the landscape consists of a single land-use type.

This metric is similar to interspersion and juxtaposition except that contagion is based on cell adjacencies and not land-use type adjacencies.

–Simpson’s diversity index represents the chance that any two grid cells selected at random would be different land-use types.
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variable across scales were generally similar, further indicating

a lesser importance of landscape scale (Appendix S2). Climate

variables contributed strongly to predicting bird abundance for

all species. No candidate models in the best subset for any

species lacked climate variables, and candidate models without

climate covariates had higher DIC values than models with

climate predictors. We considered a variable as having a strong

effect if its 95% credibility interval did not overlap with zero.

Wetland area was also a strong covariate across most species,

and all species were positively associated with this variable.

Post-hoc analyses did not reveal any models with better fit than

a priori models (Table 2, Appendix S1). Most other variables

(with the exception of wetland variables) were not strongly

related with abundance of waterbirds in US-BCR11.

Model selection uncertainty was high for mallards, with 20

models within four DIC units of the best model, and the best

model having a weight of 0.09 (Table 2, Appendix S1). The

most important environmental predictors of mallard abun-

dance were yearly precipitation, current-year spring precipita-

tion, water area, wetland area and contagion. In general,

mallards were most influenced at the coarsest scales, but model

selection uncertainty limited the ability to make a definitive

conclusion (Appendix S2). Predicted maps of abundance

showed mallards to be most abundant in central North Dakota

and north-eastern South Dakota. Small areas in north central

Montana also were predicted to contain high numbers of

mallards (Fig. 2a).

Models explaining blue-winged teal abundance also showed

uncertainty, with 14 models in the best subset (Table 2,

Appendix S1). Both spring temperature and spring precipita-

tion were strongly related to blue-winged teal abundance

(Appendix S2). Wetland area was also an important covariate

across the finest and intermediate scale, but its relationship

with abundance was negligible at the coarsest scale. Both

current-year spring temperature and current-year spring

precipitation were also important predictors of abundance,

with strong negative and positive relationships, respectively

(Appendix S2). The predicted abundance map for blue-winged

teal showed abundances to be highest in central North Dakota

and north central South Dakota, with lower abundances

elsewhere in US-BCR11 (Fig. 2b).

Ruddy ducks showed a smaller degree of model uncertainty

than the other waterfowl, with the best model weighted at

0.24, and 11 candidate models competing with the best

model. The influence of scale was more pronounced with this

species, with only covariates at the finest and intermediate

scale appearing in the best subset of models (Table 2,

Appendix S1). Ruddy duck abundance was related to current

year, previous year, and spring precipitation variables. The

relationship with temperature variables was negligible. Land

cover predictors associated with ruddy duck abundance

included total area of water and wetland at the finest and

intermediate scales; the influence of these variables at the

coarsest scale was much smaller (Appendix S2). The mapped

Table 2 Explanatory variables and the scale at which they were evaluated from the best models for each bird species studied in the US

portion of Bird Conservation Region 11: mallard (Anas platyrhynchos), blue-winged teal (Anas discors), ruddy duck (Oxyura jamaicensis) and

pied-billed grebe (Podilymbus podiceps).

Species Model1
Scale

(ha)2 Parameters3 DIC4 DDIC5 wi
6

Evidence

ratio7

Mallard YearPrecip + YearTemp +

WetlandInterspersionJuxtaposition + Contagion

100,000 730.284 5001.22 0 0.09 1.00

Null 732.468 5006.69 5.47

Blue-winged teal SpringPrecip + SpringTemp + Water(%) +

Wetland(%) + SimpsonsDiversity

100,000 512.371 3339.17 0 0.16 1.00

Null 514.007 3345.73 6.56

Ruddy duck YearPrecip + YearTemp + Water(%) +

Wetland(%) + Forest(%)

1000 210.429 1174.21 0 0.24 1.00

Null 213.811 1184.23 10.02

Pied-billed grebe YearPrecip + YearTemp 100,000 277.232 1700.47 0 0.46 1.00

Null 281.09 1710.88 10.41

The null model (a model without any environmental covariates) was included to serve as a comparison with the best models that contain

environmental variables. Precipitation variables were modelled at the largest (100,000-ha) scale.
1Descriptions of model parameters can be found in Table 1. No best models were found using the post-hoc analysis.
2The scale at which the variable was measured is presented in hectares. Null models have no scale associated with them.
3The effective number of parameters is calculated by the posterior mean of the deviance minus the deviance of posterior means.
4Deviance information criterion.
5DDIC is the DIC difference between the best model and the model for which the DDIC is given.
6Model weights provide a measure of support for the model relative to the others in the table and are calculated with the following equation, where Di

and Dr are the DDIC values for each model (Burnham & Anderson, 2002, p. 75).

wi ¼ expð�1
2DiÞPR

r¼1
expð�1

2DrÞ
7Evidence ratio is calculated by dividing the wi for the best model by the wi for the model which the evidence ratio applies.
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(a)

(b)

(c)

(d)

Figure 2 Predicted relative abundance for (a) mallard (Anas platyrhynchos), (b) blue-winged teal (Anas discors), (c) ruddy duck

(Oxyura jamaicensis), (d) pied-billed grebe (Podilymbus podiceps) in the US portion of Bird Conservation Region 11, the Prairie Potholes.

Different shades should only be treated as a difference in predicted relative abundance within a species. Mapping was performed using

model-averaged values (Burnham & Anderson, 2002).
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model showed ruddy ducks to be most concentrated in south

central North Dakota and north central South Dakota

(Fig. 2c).

Model selection uncertainty was low for pied-billed grebes,

with the best model weighted at 0.46 (Table 2, Appendix S1).

Pied-billed grebes were correlated with many environmental

covariates depending on the scale of the analyses. Water area

had the strongest relationship at the intermediate scale. The

most important climate predictors were spring and yearly

precipitation in the current year (Appendix S2). The predicted

abundance map for pied-billed grebes showed scattered high

concentrations of abundance to occur in central North Dakota

and north-eastern South Dakota, with lower abundances

occurring elsewhere in US-BCR11 (Fig. 2d).

Model validation

In general, validation through discrimination showed that

models predicting waterbird abundance in US-BCR11 had

moderate to good fit (R2 = 0.23–0.51). The calibration com-

ponent of our validation showed that models generally over-

predicted bird numbers for ruddy duck, under-predicted

abundance for pied-billed grebe, and equally under- and over-

predicted for blue-winged teal and mallard (Fig. 3). The model

Figure 3 Simple linear regression plots validating spatial models for predicting bird abundance in the US portion of Bird Conservation

Region 11 (n = 257, P < 0.001 for all species): (a) mallard (Anas platyrhynchos), (b) blue-winged teal (Anas discors), (c) ruddy duck (Oxyura

jamaicensis), (d) pied-billed grebe (Podilymbus podiceps). The solid line represents the regression line; the dotted line represents a 1:1

correspondence line. Validation was done using values generated from the best model from each species (Table 2).
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grossly over-predicted (by 200–1000 birds) abundances for

nine counts for ruddy ducks on a single route in North Dakota

(route 18), but performed well for the remainder of counts.

DISCUSSION

Hierarchical spatial count modelling showed relationships

between waterbird abundance and large-scale land-use and

climate variables. Most focal species were related to both land

cover and climatic variables at all three spatial extents. Overall,

no particular spatial extent had a predominant association

with bird abundance, although some species (i.e. ruddy duck)

did not show correlations with one of the three scales.

Although spatial scale has been shown to be important in other

studies (Pribil & Picman, 1997; Saab, 1999; Holland et al.,

2004), it may be unimportant for most waterbird species in

US-BCR11 for one or more of the following reasons: (1) the

scales used in these analyses do not correspond to the scales at

which waterbirds respond to environmental variables; (2)

smaller-scale effects are driving waterbird abundance; or (3)

errors in climate interpolations or land-use data may preclude

the ability to detect the effects of scale that we examined.

We included wetland area as a covariate a priori in all

candidate models because all focal species use wetlands to

some extent in US-BCR11. Our hypotheses regarding positive

relationships with wetland area were largely confirmed, with all

species showing a positive association with this variable at one

or more scales (Appendix S2).

Including climate predictors in models made notable

improvements in model fit for all species. All candidate

models for each species in the best subset included at least one

climate variable, indicating that climate predictors are impor-

tant for describing bird abundance in US-BCR11. This finding

concurs with other studies, including that of Venier et al.

(2004), who found that adding climate variables to models

with land cover covariates improved fit. Cotgreave (1995) also

noted strong relationships between temperature and precipi-

tation variables and bird abundance patterns, and Root (1988)

revealed strong correlations between bird distributions and

temperature and precipitation variables. Climate effects found

in the present study may have been more pronounced because

of the additional information present in time-series data as

opposed to data averaged across many years.

Mallards, blue-winged teal, ruddy ducks and pied-billed

grebe show strong relationships with the presence of wetland

habitat at large scales in US-BCR11. This result was anticipated

given the foraging requirements for waterfowl and corrobo-

rating evidence from other studies (Mulhern et al., 1985;

Krapu et al., 2000; Miller, 2000). Given the importance of

wetlands, it is not surprising that precipitation variables were

strongly associated with mallard and blue-winged teal abun-

dance. Strong positive relationships between herbaceous

vegetation at the finest scale and mallard and blue-winged

teal abundance were confirmed in this analysis, and were

probably due to these species preferring areas with good

nesting cover (Drilling et al., 2002; Rohwer et al., 2002).

Relationships between mallard and blue-winged teal and

herbaceous cover may also be apparent due to philopatry of

successfully nesting females and their offspring (Arnold &

Clark, 1996). A negative relationship between the previous

year’s spring temperature and blue-winged teal abundance was

contrary to what was hypothesized a priori. Colder tempera-

tures often negatively affect recruitment of waterfowl; however,

mallards and blue-winged teal do not appear to be adversely

affected by colder spring temperatures in US-BCR11. Miller

(2000) also showed that abundance of mallard in the US-

BCR11 region is less related to temperature than that of those

nesting in other biomes.

Ruddy ducks and pied-billed grebes were positively associ-

ated with increasing precipitation, and ruddy ducks were more

associated with precipitation variables in the current year

rather than in the previous year. The floating platform nests

used by pied-billed grebes (Muller & Storer, 1999) may make

them more reliant on recent local precipitation amounts than

other waterbirds in this study. However, pied-billed grebes nest

earlier than ruddy ducks and often use old vegetation as

nesting substrate. This behaviour suggests that precipitation

from the previous year should have had more influence on this

species than that from the current year. Pied-billed grebe

abundance was also related to water and wetland amounts at

the intermediate scale, which can be explained by their

tendency to remain within close proximity of nesting wetlands

(Naugle et al., 1999). Strong associations with water area and

wetland area also occurred for ruddy ducks, which is likely to

be due to their preference for large wetlands (Brua, 2002);

inhabiting large wetlands may make this species less dependent

on habitat further from their territory. The inverse relationship

between the contagion index and pied-billed grebe abundance

(though weak) can be explained by its affinity for multiple land

cover types (wetlands, water and agricultural fields) around the

nesting area (Muller & Storer, 1999). Savard et al. (1994)

showed that ruddy ducks prefer wetlands surrounded by few

trees, a relationship confirmed in our study by a negative

association between ruddy ducks and total forest.

Technical limitations, inherent with remote sensing, reduce

our ability to clarify relationships between waterbird abun-

dance and environmental covariates at the regional scale. For

example, water depth, an important influence on the presence

of diving ducks (Murkin et al., 1997), cannot be measured by

remote sensing. Further, spatial data on the annual changes in

areal coverage of emergent vegetation, which provides nest

substrate and cover for waterbirds (Linz et al., 1996), are not

available. Another issue with land-use data involves classifica-

tion errors, which can occur during image interpretation.

Some cover types, especially rare ones, may be incorrectly

classified or overlooked completely when digitizing Thematic

Mapper data (Thogmartin et al., 2004b). We have attempted

to reduce classification inaccuracies by reclassifying the NLCD

1992 into broader land-use categories similar to the Anderson

level 1 classification system (Anderson et al., 1976), thereby

increasing classification accuracy. Forcey et al. (2007) found

little influence of land-use variables on bird abundance in

Land use and climate influences on waterbirds
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Canada, while many strong relationships occurred in our

study. We do not attribute this to ecological differences

between the two countries, but rather to differences in land-use

data thematic and spatial resolution. The availability of 30-m

resolution data for the United States made it possible to reveal

large-scale relationships with land-use variables that were not

possible with the 100-m resolution data available from Canada.

Possible errors in our climate interpolations may have

reduced our ability to find climate relationships with water-

birds. These errors are most pronounced in locations with low

densities of weather-recording stations and at small scales.

Because of our large sample of weather-recording stations

(n = 245), we suggest that large-scale errors over US-BCR11

are unlikely and that micro-variation in climate variables at

small scales is not relevant for regional-scale modelling efforts.

A final concern with our modelling approach involves using

time-series climate data with static land cover data. The lack of

time series land cover data reduces the amount of information

present and prevents evaluation of how bird populations

respond to land cover change over time. This issue could be

exacerbated in US-BCR11 due to the addition of CRP

(conservation reserve program) land in this area from 1980

to 2000. In our model, changes in land cover over the times

series of the response would be accommodated in the random

effect associated with years. Incorporation of time-series land

cover and water cover data would probably improve the ability

to detect effects of these variables on waterbird populations as

the two interact over time. Even so, we were able to elucidate

the effects of land cover on waterbirds in US-BCR11, and the

strength of these effects were, in some instances, greater than

those of climatic influences.

Results from both discrimination and calibration validation

show models generally predicted the withheld data well

(R2 = 0.23–0.51), although there were exceptions. Although

some models fitted the data less well, we believe that mapping

the models is useful as long as the results from model

validations are considered when interpreting the maps. Models

grossly over-predicted abundances for ruddy ducks for nine

counts on route 18 in north-central North Dakota. North

Dakota route 18 is surrounded by a disproportionate amount

of wetland area at the finest and intermediate scales compared

with other routes in US-BCR11. Given the strength of

association of these variables with ruddy ducks (Appendix S2),

the model over-predicted abundance of this species on this

NABBS route. While the model over-predicted the raw

number of birds, the observed numbers on this route were

in the upper range of abundances recorded for these species.

Removing North Dakota route 18 predictions did not signif-

icantly improve the model fit. This suggests that, while

estimated raw numbers of birds may be unreliable in some

cases or areas, the models still predicted accurate patterns in

relative abundance. Maps of relative abundance for waterbirds

in US-BCR11 should be interpreted with this caveat in mind

and should be used only when evaluating relative abundance of

waterbirds across a region such as US-BCR11. Abundance

maps should be supplemented with ancillary field data before

any conservation or management decisions are made, in order

to validate the presence and relative abundance of the

waterbird species of concern.

MANAGEMENT IMPLICATIONS

With conversion of wetlands and grasslands into agriculture

over large areas, conservation of birds in large ecoregions will

continue to remain a priority for biologists and land managers.

Application of our models to waterbird conservation and

management serves two purposes: (1) models provide infor-

mation on how waterbirds are related to climate and land-use

patterns at varying spatial scales, and (2) maps of predicted

relative abundance suggest locations where conservation and

management efforts should be focused in order to have most

benefit on habitats favouring the species of interest. Obviously,

climate cannot be managed, but it is possible to manage land-

use patterns to aid in the conservation and management of

waterbirds in large ecoregions throughout the world. Further-

more, understanding the relationships of these waterbirds to

climate may allow predictions of the effects of climate change

on future patterns of distribution and abundance.
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