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a b s t r a c t

Feral swine (Sus scrofa) pose a significant disease threat to livestock and humans. Emerg-
ing technologies to reduce feral swine disease transmission risks include fertility control,
vaccination, and toxicants. However, for these technologies to be appropriate for field appli-
cation, a feral swine-specific oral delivery system is needed. We used two field trials to
generate information related to appropriate field application of the Boar-Operated-System
(BOSTM), an oral delivery system designed to provide bait access only to feral swine. Our
objectives were to determine whether pre-baiting BOSTM units increased bait removal
and to evaluate the proportion of feral swine and non-target animals that ingest baits
designed to deliver pharmaceuticals through the BOSTM. During both trials we used baits
housed within 10 BOSTM units. We monitored wildlife visitation, bait removal, and ingestion
using motion sensing digital photography and baits containing the bait marker tetracycline
hydrochloride (TH). During trial 1 we found three of five pre-baited BOSTM units were used
by feral swine only. Additionally, we found the five BOSTM units that were not pre-baited

were not used by feral swine or non-target wildlife. During trial 2 we determined bait
removal from the BOSTM to be reduced by only 10% for feral swine when activated, whereas
bait removal from the BOSTM by all other wildlife was reduced by 100% when activated. We
captured 81 feral swine and 23 raccoons and found 90% and 13% to have TH-marked teeth,
respectively. With minor modifications, the BOSTM should be considered a valuable tool to

ine dis
be used in feral sw

. Introduction

Feral swine (Sus scrofa) occur worldwide where they
ften cause significant damage to agriculture, natural

esources, the environment, and property (Campbell and
ong, 2009a; Massei et al., in press). Feral swine also pose a
ignificant disease threat to livestock and humans (Witmer
t al., 2003; Jay and Wiscomb, 2008). For example, across
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portions of their range, feral swine have been exposed to
pathogens important to the livestock industry and human
health (Campbell et al., 2008; Hall et al., 2008) and regu-
larly come into direct contact with domestic livestock at
facilities with low biosecurity, where disease transmission
is likely (Wyckoff et al., 2009).

Control options available to prevent or reduce the
risk feral swine present to livestock production include
improved animal husbandry and security, exclusion fenc-
ing, and population reduction (Reidy et al., 2008a; Wyckoff
et al., 2009). In the United States, feral swine population

reduction is often conducted using box or corral traps,
snares, or through shooting (i.e., aerial, ground or with
dogs; Campbell and Long, 2009a). Developing technologies
to reduce feral swine populations or disease transmission
risks include fertility control (Massei et al., 2008; Campbell
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et al., 2010), vaccination (Fletcher et al., 1990; Ballesteros
et al., 2009), and toxicants (Cowled et al., 2008). However,
for any of these emerging technologies to be appropriate
for field application, a species-specific oral delivery system
is needed (Long et al., 2010).

Prior investigations into oral delivery systems include
work on feral swine-specific baits in Australia (Cowled
et al., 2006a,b), Spain (Ballesteros et al., 2009), Germany
(Kaden et al., 2000; Brauer et al., 2006) and the United
States (Campbell et al., 2006; Campbell and Long, 2007,
2009b). These studies suggest that baits can be formu-
lated and exist that feral swine find highly attractive and
readily ingest; however, at locations in the United States,
other wildlife species also ingest candidate baits at a high
rate (Campbell et al., 2006). Consequently, investigations
into feral swine-specific feeder systems that contain baits
intended to deliver pharmaceuticals have commenced in
the United Kingdom (Massei et al., 2010) and the United
States (Long et al., 2010).

One feeder system that has consistently delivered bait
to feral swine, while preventing bait removal by non-target
wildlife, is the Boar-Operated-System (BOSTM; Long et al.,
2010; Massei et al., 2010). For example, in the United King-
dom, Massei et al. (2010) found feral swine feeding visits
to the BOSTM to be reduced by only 22%, whereas feed-
ing visits to the BOSTM by all other wildlife was reduced
by 100%. Similarly, the BOSTM was found highly effective
at allowing feral swine access to bait and excluding non-
target wildlife in trials conducted in the United States (Long
et al., 2010). However, additional information into how
best to deploy BOSTM units is needed. For example, it is
unknown whether pre-baiting BOSTM units prior to activa-
tion increases the rate of bait removal by feral swine. More
importantly, it is unknown what proportion of feral swine
populations ingest baits delivered through the BOSTM and
therefore would receive a hypothetical pharmaceutical.

We use two field trials conducted in southern Texas
to generate information related to appropriate field appli-
cation of the BOSTM. Our objectives were to determine
whether pre-baiting BOSTM units prior to activation
increased bait removal during activation and to evaluate
the proportion of feral swine and non-target animals that
ingest baits designed to transport pharmaceuticals as deliv-
ered through the BOSTM. We hypothesized that pre-baiting
would increase bait removal by feral swine and that BOSTM

units would deliver bait specifically to a high proportion of
the feral swine population.

2. Materials and methods

2.1. Study areas

Our first trial was conducted on the Laureles Division
of the King Ranch in Kleberg County, Texas (27◦25′N,
97◦35′W) from August to September 2009. Our study
area was in the eastern Rio Grande Plains ecoregion

(Gould, 1975) and was 1037 km2. The area, a mixed shrub
rangeland dominated by mesquite (Prosopis glandulosa)
and huisache (Acacia farnesiana), was stocked with cattle
at a rate of 1 animal unit per 0.1 km2 (McCoy et al., 2005).
Additionally, the area received an average of 75 cm of
ry Medicine 98 (2011) 243–249

precipitation per year (National climatic Data Center,
http://hurricane.ncdc.noaa.gov/ancsum/ACS), although
there was a severe drought during our trial (National
Oceanic and Atmospheric Administration, Palmer Hydro-
logical Drought Index – April 2009 to March 2010,
http://lwf.ncdc.noaa.gov/oa/climate/research/prelim/
drought/phdiimage.html). In addition to livestock, poten-
tial non-target wildlife that occurred within the area
were white-tailed deer (Odocoileus virginianus), collared
peccaries (Pecari tajacu), raccoons (Procyon lotor), striped
skunks (Mephitis mephitis), opossums (Didelphis virgini-
ana), badgers (Taxidea taxus), coyotes (Canis latrans),
bobcats (Lynx rufus), eastern cottontail rabbits (Sylvilagus
floridanus), black-tailed jack rabbits (Lepus californicus),
southern plains woodrats (Neotoma micropus), and hispid
cotton rats (Sigmodon hispidus). Population estimates were
not available from this area.

Our second trial took place from January to February
2010 on the Rob and Bessie Welder Wildlife Foundation
(WWF) (28◦06′N, 97◦22′W) in San Patricio County, Texas.
The WWF was approximately 31 km2 and received an aver-
age of 79 cm of rainfall annually (National climatic Data
Center, http://hurricane.ncdc.noaa.gov/ancsum/ACS). The
WWF was bordered to the north by the Aransas River,
the west by United States Highway 77, and the south
and east by private rangeland. Overstory vegetation con-
sisted of huisache, mesquite, live oak (Quercus virginiana),
cedar elm (Ulmus crassifolia), net-leaved hackberry (Celtis
reticulate), anaqua (Ehretia anacua) and muscadine (Vitis
rotundifolia). Non-target species on the WWF are similar
to those listed for Kleberg County above, with the addi-
tion of eastern fox squirrels (Sciurus niger). Also, cattle
were present throughout the trial. Population density esti-
mates from the WWF were 4.3–7.7 feral swine/km2 (Reidy,
2007).

2.2. Trial 1

Detailed descriptions of the BOSTM can be found in
Massei et al. (2010). In general, BOSTM units are made of
three all-metal components, a top cone, base plate, and
mast. Baits rest on a perforated base plate that is bolted to
the mast at 30 cm above the ground making it stationary.
The cone of the BOSTM is larger than the base plate and sits
firmly on the base plate when activated. Feral swine and
other wildlife may access baits by lifting the cone upward.
We secured masts into the ground (∼60 cm) with a 3.6 kg
hammer. We lubricated the mast daily using lithium grease
to ensure smooth operation of the cone.

We distributed BOSTM units in accordance with feral
swine habitat and sign of feral swine activity (i.e., in areas
with free-standing water, thick brush, and recent rooting).
We used 10 BOSTM units during the trial. The minimum
distance between two BOSTM units was 1.2 km. We cre-
ated a minimum convex polygon (Mohr, 1947) around the
BOSTM locations to estimate coverage area using ArcGIS 9.0

(Environmental Systems Research Institute, Redlands, CA).
BOSTM units were monitored daily using motion sensing
digital photography (Silent Image Professional and Rapid-
fire Editions, Reconyx, Holmen, WI). Throughout the trial
we visited BOSTM units daily between 10:00 and 17:00 h to

http://hurricane.ncdc.noaa.gov/ancsum/ACS
http://lwf.ncdc.noaa.gov/oa/climate/research/prelim/drought/phdiimage.html
http://lwf.ncdc.noaa.gov/oa/climate/research/prelim/drought/phdiimage.html
http://hurricane.ncdc.noaa.gov/ancsum/ACS
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ubricate masts, download digital images, record notes on
ait condition, and re-bait units.

We placed all 10 units out on day 1 and pre-baited
units for 14 days in an “open” position to allow all species
ccess to bait. We placed a pin in the mast to allow the
one to remain open 8 cm to enable feral swine and other
ildlife to become accustomed to using the BOSTM. We
re-baited BOSTM units daily with 1.0 kg whole kernel
orn, five polymer fishmeal baits (Bait-Tek Inc., Orange,
exas), and five soured grain based baits (Genesis Labora-
ories, Wellington, CO). The polymer fishmeal baits were
cm × 3 cm × 5 cm, open-ended, and hollow; the soured
rain baits were 2.5 cm3 and solid. We placed baits uni-
ormly on the base plate within the BOSTM. Also, during
he first five days of pre-baiting, 0.4 kg whole kernel corn
as placed on the ground in a 1 m radius from the mast of

he BOSTM to encourage wildlife discovery, visitation, and
se. The remaining five BOSTM units were left idle during
he pre-baiting period.

On day 15, we activated the five BOSTM units that were
re-baited and the five idle BOSTM units. During the 5 days
f activation we baited all BOSTM units daily with 1.0 kg
hole kernel corn, five polymer fishmeal baits, and five

oured grain based baits placed onto the base plate. We
ecorded the presence or absence of baits, bait condition,
nd replaced baits, as needed. We monitored BOSTM units
aily using motion sensing digital photography. For digital

mage analysis, we recorded the number of baits removed
y species.

.3. Trial 2

We used 10 BOSTM units during this trial. We distributed
OSTM units in accordance with feral swine habitat and
ign of feral swine activity (i.e., in areas with free-standing
ater, thick brush, and recent rooting). The minimum dis-

ance between two BOSTM units was 1.1 km. We created a
inimum convex polygon (Mohr, 1947) around the BOSTM

ocations to estimate coverage area using ArcGIS 9.0. We
onitored BOSTM units daily using motion sensing digital

hotography.
We pre-baited BOSTM units daily for 14 days with 1.0 kg

hole kernel corn and 15 polymer fishmeal baits that were
escribed in Section 2.2. We place baits uniformly within
he BOSTM. During the first 5 days of pre-baiting, 0.4 kg
hole kernel corn was placed on the ground in a 1 m radius

rom the mast of the BOSTM to encourage wildlife discov-
ry, visitation, and use. We placed a pin in the mast to allow
he cone to remain open 8 cm to enable feral swine and
ther wildlife to become accustomed to using the BOSTM.
hroughout the trial we visited BOSTM units daily between
0:00 and 15:00 h to lubricate masts, download digital

mages, record notes on bait condition, and re-bait units.
After the 14 day pre-baiting period, we activated BOSTM

nits (i.e., removed pins) for 7 days. During this period we
laced 1.0 kg whole kernel corn and 15 polymer fishmeal

aits with 250 mg of tetracycline hydrochloride (TH) incor-
orated into the bait matrix into each BOSTM daily. We used
aits containing 250 mg of TH because this is a concen-
ration known to permanently mark teeth of feral swine
Reidy et al., 2008b) and other wildlife (Fletcher et al., 1990)
ry Medicine 98 (2011) 243–249 245

to determine the proportion of feral swine and non-target
animal populations that ingested baits. We recorded the
presence or absence of baits, bait condition, and replaced
baits, as needed. For digital image analysis, we recorded the
number of baits removed by species.

From our digital images, we determined that raccoons
had removed spilled TH baits. Therefore, in addition to sam-
pling feral swine we also sampled raccoons to determine
ingestion rates. We began our trapping effort 8 days after
deactivation of BOSTM units, a sufficient duration to mark
teeth of feral swine (Reidy et al., 2008b). We pre-baited 14
box-style feral swine traps and one corral trap with 20 kg of
whole kernel corn for 8 days. Our feral swine trap density
was 0.75 traps/km2 and the distance to the closest BOSTM

ranged from 0.28 to 1.3 km. We concurrently set, without
pre-baiting, 15 mesomammal live traps (Model 108, Toma-
hawk Live Trap, Tomahawk, Wisconsin, USA) for sampling
raccoons. We baited mesomammal traps with whole ker-
nel corn. We placed these traps between 50 and 100 m from
each BOSTM unit. We set and checked feral swine and meso-
mammal traps for 17 days. We checked traps daily between
07:00 and 11:00 h to reduce heat exposure. We euthanized
captured animals by gunshot to the head (AVMA, 2007).
We then determined sex, estimated weight, and removed
lower mandible from carcasses for TH analysis. We released
non-target animals (e.g., white-tailed deer, collared pecca-
ries) immediately upon discovery. All capture and handling
procedures were approved by the Institutional Animal Care
and Use Committee at the National Wildlife Research Cen-
ter (protocol no. QA-1720).

We stored mandibles at −20 ◦C and later boiled them at
>100 ◦C for 1 h or until we could extract teeth. We extracted
incisors from feral swine and canines from raccoons. We
cross-sectioned teeth with a diamond Isomet low speed
saw (Buehler, Lake Bluff, IL), mounted sections on slides,
and examined slides for characteristic TH marking with a
compound microscope following Johnston et al. (1987). For
analysis, we recorded the number of teeth with TH marking
by species.

2.4. Statistical analyses

For trial 1 we reported descriptive statistics pertaining
to species-specific bait removal. For trial 2 we reported
descriptive statistics pertaining to species-specific bait
removal and ingestion rates ([no. of marked animals/no.
of animals in sample] × 100%). We compared between-sex
and between-age ingestion rates of feral swine using the
chi-square statistic (Alder and Roessler, 1977). We deter-
mined statistical significance at ˛ = 0.05.

3. Results

During trial 1 our estimated coverage area was 22.6 km2,
which suggested a BOSTM density of 0.44 units/km2. We
recorded 73,671 digital images. During the pre-baiting

period we observed regular visitation and use of the BOSTM

units by raccoons, collared peccaries, and feral swine, and
occasional visitation by white-tailed deer, southern plains
woodrats, eastern cottontail rabbits, nine-banded armadil-
los (Dasypus novemcinctus), coyotes, and numerous avian
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Fig. 1. A raccoon (Procyon lotor) attempting to gain access to bait housed
within a BOSTM in Kleberg County, Texas during trial 1, August–September
2009.

species. When activated, three of five pre-baited BOSTM

units were used by feral swine only, whereas non-target
species like raccoons were not able to use them (Fig. 1).
At each of these three sites, all 10 baits were removed by
feral swine each day (i.e., 100% of the baits removed [150 of
250 baits available] went to feral swine). Additionally, the
five BOSTM units that were not pre-baited were not used
by feral swine or non-target wildlife. From our pre-baiting
digital images we found that it took 6 days for feral swine to
begin using the BOSTM units. Cattle visited BOSTM units and
often loafed next to feeders for long periods (>4 h). How-
ever, we did not observe cattle removing baits and BOSTM

units were not damaged by cattle.
During trial 2 our estimated coverage area was 18.6 km2,
which indicated a BOSTM density of 0.54 units/km2. We
recorded 423,321 digital images. During pre-baiting we
found that feral swine began using one BOSTM unit on the
first day that it was deployed (Fig. 2) and regular visitation

Fig. 2. Feral swine (Sus scrofa) gaining access to bait contained within a
BOSTM on the Rob and Bessie Welder Wildlife Foundation, Texas during
trial 2, January–February 2010.
ry Medicine 98 (2011) 243–249

and use occurred by feral swine, raccoons, and white-tailed
deer thereafter. After activation, we found bait removal
rates from the BOSTM to be reduced by only 10% for feral
swine, whereas bait removal rates from the BOSTM by all
other wildlife was reduced by 100%. However, we observed
raccoons removing baits that feral swine had spilled out of
BOSTM units at two locations. Throughout, we determined
that cattle were not interested in the BOSTM. In total, 938
TH-marked baits were delivered through the BOSTM and
nine of ten units were used daily (Table 1). No baits were
removed from one BOSTM after it was activated.

We captured 81 feral swine and 23 raccoons during
our 17-day trapping effort. Mean number of feral swine
captured at a trap site was 5.4 (range = 1–14). Sex ratio of
captured feral swine was 43 M:38 F and mean weight was
43 kg. We found 73 of 81 (90%) feral swine to have TH-
marked teeth. Seventeen feral swine were omitted from
statistical analyses because age and sex was not recorded
at the time of capture due to severe weather conditions.
We found no differences by age (�2

1 = 0.83, P > 0.05) or sex
(�2

1 = 0.99, P > 0.05) in the proportion of feral swine that
were marked (Table 2). Mean number of raccoons captured
at a trap site was 3.3 (range = 1–6). Sex ratio of captured rac-
coons was 11 M:12 F. We found 3 of 23 (13%) raccoons to
have TH-marked teeth. An insufficient number of marked
raccoons prevented us from performing meaningful statis-
tical analysis. However, there was evidence that a greater
proportion of adult raccoons (15%) were marked than juve-
nile raccoons (0%; Table 2).

4. Discussion

Management to reduce disease exposure and transmis-
sion that involves the manipulation of wildlife, rather than
the manipulation of the environment or the pathogen,
takes on three forms: (1) reducing entire populations,
(2) reducing the proportion of infected individuals in the
population, and (3) reducing the proportion of suscep-
tible individuals in the population (Wobeser, 2006). A
feral swine-specific oral delivery system could be used to
accomplish tasks 1 and 3 above. Specifically, orally admin-
istered fertility control agents and toxicants might be used
to reduce entire feral swine populations and vaccines that
induce immunity by the oral route might be used to reduce
the proportion of feral swine susceptible in the population.
For example, work is underway to develop a combina-
tion fertility control vaccine and rabies vaccine for wildlife
(Bender et al., 2009). Therefore, the importance of develop-
ing new scientific tools for wildlife disease management,
such as the BOSTM, cannot be overstated (Henke et al.,
2008).

During trial 2 we achieved a baiting density of
50.4 baits/km2, as administered through BOSTM units.
Given feral swine population density estimates on the
WWF of 4.3–7.7 feral swine/km2 (from 133 to 239 total

animals; Reidy, 2007), we believe most feral swine con-
sumed >1 bait. If the pharmaceutical delivered in the
baits were a toxicant, then we expect our bait density
to have been lower, as animals would have died and
not had the opportunity to ingest multiple baits. Con-
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Table 1
Number of tetracycline hydrochloride baits delivered by BOSTM site and date in 2010 on the Rob and Bessie Welder Wildlife Foundation, Texas.

Site January 27 January 28 January 29 January 30 January 31 February 1 February 2 Total

1 15 15 15 15 15 15 15 105
2 15 15 15 15 15 15 15 105
3 0 0 0 0 0 0 0 0
4 15 15 15 15 15 15 15 105
5 15 15 15 15 15 15 15 105
6 15 15 15 15 15 15 15 105
7 15 15 15 15 15 15 15 105
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8 15 15 15 1
9 15 15 15 1
10 15 15 15 1

Total 135 135 135 13

ersely, if the pharmaceutical delivered in the baits were
vaccine, we believe that animals would have received
ultiple doses. Nonetheless, our bait density was inter-
ediate between trials conducted on feral swine in North
ueensland, Australia, where baits were delivered aerially
t 18 baits/km2 (Mitchell, 1998), and an island popula-
ion in Georgia, where baits were delivered by hand at
88 baits/km2 (Fletcher et al., 1990). The BOSTM functions
o cluster baits, which results in greater bait removal by
eral swine than baits distributed in a systematic arrange-

ent (Campbell and Long, 2007). Similar to field studies
onducted in the United Kingdom by Massei et al. (2010)
e did not observe social dominance within groups of feral

wine or monopolization by male feral swine at BOSTM.
Our bait ingestion rate for feral swine of 90% was

igh compared to other studies from North Queensland,
ustralia (63%; Mitchell, 1998), southern Texas (74%;
ampbell et al., 2006), and Queensland, Australia (80%;
owled et al., 2006b), but slightly less than that from an

nsular Georgia population (95%; Fletcher et al., 1990). It has
een estimated that very high (>90%) population reduction
ates are needed to rapidly eradicate foot-and-mouth in
eral swine in Australia (Pech and Hone, 1988). As deployed
n our study, the BOSTM appears capable of achieving this
evel of population reduction, assuming an effective toxi-
ant was being used. Our bait ingestion rate for raccoons of
3% was low and almost 7 times less than raccoon inges-

ion rates from a study from southern Texas that deployed
aits on the ground (Campbell et al., 2006). Furthermore,
e found no evidence that other non-target wildlife or

ivestock removed or ingested baits. Depending upon the
harmaceutical being delivered through the BOSTM and the

able 2
etracycline hydrochloride (TH) results from animals captured during trial 2 (Jan
hrough the BOSTM on the Rob and Bessie Welder Wildlife Foundation, Texas.

Species Category

Feral swinea,b Adult
Juvenile
Male
Female

Raccoonc Adult
Juvenile
Male
Female

a Age based on weight of sexual maturity (5–7 months or approximately 30 kg
b Seventeen feral swine were omitted from analysis because age and sex was n
c Age based on weight of sexual maturity (5.8 kg for males and 4.6 kg for femal
15 15 8 98
15 15 15 105
15 15 15 105

135 135 128 938

specific application, a 13% ingestion rate by raccoons may
be acceptable. It is possible that small mammals also might
feed on spilled baits or fragments. This problem could be
addressed by using a larger bait that contains a pharmaceu-
tical in an encapsulated core so that spilled bait fragments
from the BOSTM would not affect non-target small mam-
mals (Cowled et al., 2006a).

The BOSTM exploits the rooting behavior of feral swine;
an animal accesses bait by lifting upward on the cone
with its rostrum. This process requires learning either
through trial-and-error or through observation of cohorts.
We found that it took 6 days for feral swine to begin using
BOSTM units during trial 1 and that during trial 2 some feral
swine were able to operate the BOSTM during the first day.
In both trials we observed that feral swine first came to
the whole kernel corn distributed on the ground around
the mast during pre-baiting and we recommend using
a pre-baiting period with the BOSTM. Site-specific varia-
tion may occur in the duration of the pre-baiting period
needed to facilitate learning and we recommend monitor-
ing BOSTM units with motion sensing digital photography
to determine when this occurs. This variation may be due
to differences in relative density, wariness of feral swine
due to sustained hunting pressure, general neophobia, or
availability of natural foods in different seasons and study
sites. When delivering pharmaceuticals such as contracep-
tives or vaccines, it is likely that animals that feed from the

TM
BOS during a baiting campaign will remember and be the
first to feed in successive campaigns. Special consideration
related to the learning process of feral swine may be needed
if delivering toxicants through the BOSTM. For example,
one of the criteria that should be satisfied by any candi-

uary–February 2010) by sex and age following TH-marked bait delivery

No. of marked/no. in sample % Marked

28/29 97
32/35 91
31/33 94
29/31 94

3/20 15
0/3 0
1/11 9
2/12 17

; Sweeney et al., 1979; Mauget and Pepin, 1992; Taylor et al., 1998).
ot recorded at the time of capture due to severe weather conditions.
es; Gehrt and Fritzell, 1999).
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date toxicant is that it be fast-acting (Cowled et al., 2008).
Such fast-acting toxicants may result in negative condition-
ing to the BOSTM (i.e., carcasses in close proximity to the
units may frighten cohorts away or sub-lethal doses might
discourage animals from feeding from a BOSTM) or no con-
ditioning may occur if other members of cohort have been
removed. Additional research is needed to better under-
stand these relationships.

At two BOSTM locations we observed raccoons using
an ambush strategy of bait removal. Here, raccoons posi-
tioned themselves approximately 1 m from feral swine that
were ingesting baits from within the BOSTM. Because 15
baits were initially available to feral swine, baits that were
not being ingested were occasionally spilled by feral swine
onto the ground. In these instances we observed raccoons
quickly grasping and removing baits by hand. Our ingestion
rate data suggest these were experienced adult animals.
We believe that increasing the depth of the base plate (i.e.,
creating an elevated lip) on the BOSTM may prevent bait
spillage by feral swine and removal by non-target animals.
In no instances did we observe raccoons accessing bait by
lifting upward on the cone.

The efficacy of the BOSTM to deliver baits to feral swine
and exclude most non-target species was noteworthy. A
possible disadvantage to the units is their initial cost (Long
et al., 2010). However, we believe that if used regularly
over time that these cost can be recouped because the solid,
durable construction of the BOSTM. For larger baiting cam-
paigns employing tens or hundreds of BOSTM units, the
cost per unit would be reduced because of scaled-up pro-
duction. An advantage to the BOSTM compared to ground
or aerial distribution of baits is that BOSTM units do not
require a pre-deployment estimate of feral swine density
to calculate a target baiting intensity from (Fleming et al.,
2000) because feral swine voluntarily remove baits and a
known baiting intensity can be calculated at the end of the
campaign.

5. Conclusion

The BOSTM performed best with pre-baiting prior to
activation, delivered baits to a high proportion of the feral
swine population, and delivered baits to a low proportion of
the non-target (i.e., raccoon) population. With minor mod-
ifications, the BOSTM should be considered a viable disease
management tool to be used with existing technologies
in an integrated fashion. Concurrent development of oral
fertility control agents, vaccines, and toxicants are needed.
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