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a b s t r a c t

The performance of statistical methods for modeling resource selection by animals is difficult to evaluate
with field data because true selection patterns are unknown. Simulated data based on a known probability
distribution, though, can be used to evaluate statistical methods. Models should estimate true selection
patterns if they are to be useful in analyzing and interpreting field data. We used simulation techniques to
evaluate the effectiveness of three statistical methods used in modeling resource selection. We generated
25 use locations per animal and included 10, 20, 40, or 80 animals in samples of use locations. To simulate
species of different mobility, we generated use locations at four levels according to a known probability
distribution across DeSoto National Wildlife Refuge (DNWR) in eastern Nebraska and western Iowa,
USA. We either generated 5 random locations per use location or 10,000 random locations (total) within
4 predetermined areas around use locations to determine how the definition of availability and the
number of random locations affected results. We analyzed simulated data using discrete choice, logistic-
regression, and a maximum entropy method (Maxent). We used a simple linear regression of estimated
and known probability distributions and area under receiver operating characteristic curves (AUC) to
evaluate the performance of each method. Each statistical method was affected differently by number of
animals and random locations used in analyses, level at which selection of resources occurred, and area
considered available. Discrete-choice modeling resulted in precise and accurate estimates of the true
probability distribution when the area in which use locations were generated was ≥ the area defined to
be available. Logistic-regression models were unbiased and precise when the area in which use locations
were generated and the area defined to be available were the same size; the fit of these models improved
with increased numbers of random locations. Maxent resulted in unbiased and precise estimates of the
known probability distribution when the area in which use locations were generated was small (home-
range level) and the area defined to be available was large (study area). Based on AUC analyses, all models

estimated the selection distribution better than random chance. Results from AUC analyses, however,
often contradicted results of the linear regression method used to evaluate model performance. Discrete-
choice modeling was best able to estimate the known selection distribution in our study area regardless
of sample size or number of random locations used in the analyses, but we recommend further studies
using simulated data over different landscapes and different resource metrics to confirm our results. Our
study offers an approach and guidance for others interested in assessing the utility of techniques for

ion in
modeling resource select

. Introduction
Resource selection is a valuable field of study in animal ecology.
onclusions drawn from resource selection studies have impor-
ant implications because they often serve as guidelines for habitat

anagement plans and habitat suitability indices (Garshelis, 2000).
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Effective management and conservation of species requires an
understanding of habitat requirements, well-guided techniques for
collecting data, and robust methods for analyzing data. Animals
select resources at different scales dependent upon what is actually
available to them (Owen, 1972). What is perceived by the ani-
mal to be available is impacted by numerous factors that are too
complex to measure fully, but include distance, barriers, inter- or

intra-specific competition, risks, and habits or patterns of selec-
tion. While we may not be able to assess all the factors that an
animal considers when using specific locations, the analyst’s deter-
mination of areas of use and availability are important factors in
determining how well a model actually represents the population
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f interest, regardless of the statistical method used (McClean et
l., 1998; Aebischer et al., 1993; Buskirk and Millspaugh, 2006).

Determination of what is considered available to the animal and
he numbers of animals to include in the sample are recurring
oncerns that exist in analyses of use versus availability stud-
es (Alldrege and Ratti, 1992; Leban et al., 2001; Buskirk and

illspaugh, 2006). In many studies, it is difficult to determine areas
n animal did not use (Austin, 2002) and therefore resource selec-
ion analyses often involve a determination of available resources
nd the generation of random locations (Keating and Cherry, 2004;
ohnson et al., 2006). In particular, radio-telemetry studies only
ocument an animal’s use patterns; this type of data is extremely
ommon (Cooper and Millspaugh, 1999; Erickson et al., 2001;
anly et al., 2002; MacKenzie, 2006). Several definitions of avail-

bility exist in the literature, most of which are associated with
he geographic range of a species, study area, home range, or local-
zed areas around each use location (Johnson, 1980; Buskirk and

illspaugh, 2006). The researcher’s choice of what is defined to
e available to the animal can affect the results of the analysis
Johnson, 1980; McClean et al., 1998; Boyce et al., 2003). Some
tudies used the observed mobility of the study species (i.e., dis-
lacement distance between consecutive observations) to define
vailable resources (e.g., Arthur et al., 1996; Cooper and Millspaugh,
999), but until recently most quantitative methods did not allow
or such flexibility and definitions of availability were more sub-
ective. The number of animals observed in a study can also affect
esults of resource selection analyses. Alldrege and Ratti (1986)
ompared univariate and nonparametric approaches for model-
ng resource selection and reported methods used by Neu et al.
1974) and Quade (1979) performed well at sample sizes ≥20 ani-

als with 50 locations/animal. Leban et al. (2001) reached similar
onclusions when evaluating compositional analysis (Aebischer et
l., 1993). Some studies have evaluated performance of statistical
odels at different levels of availability; however, the true underly-

ng probability distribution of the selection patterns was not known
McClean et al., 1998; Phillips et al., 2004; Özesmi et al., 2006) or
as assumed (Leban et al., 2001). We are unaware of any stud-

es, however, that used simulated data generated according to a
nown probably distribution to examine the effects of sample size
number of animals), number of random locations, and areas of use
nd availability on results of multivariate techniques for modeling
esource selection.

Several statistical techniques have been used to develop
esource selection functions (RSFs). Through the 1990s, logistic
egression was widely used for analyzing data for producing RSFs
Manly et al., 1993). Recent criticism of the use of logistic regression
n use-availability studies, however, has raised substantial ques-
ions about the method (Keating and Cherry, 2004). In recent years,
he use of discrete-choice models for generating RSFs has increased
Cooper and Millspaugh, 1999; McDonald et al., 2006; Thomas et
l., 2006). One advantage of using discrete-choice modeling is that
he model allows the researcher to develop a different choice set for
ach independent observation of use. Developing a separate set of
andom locations for each use location allows resources to change
hroughout the study period and helps ensure resources defined
s available were accessible by the animal when selection of the
se location occurred (Arthur et al., 1996; Cooper and Millspaugh,
999).

In this study, we explore a new, maximum entropy approach
or developing RSFs (Maxent, version 3.0.6, Phillips et al., 2005).

axent is a machine learning method that has several aspects

hat make it well suited for modeling resource selection, and has
een effective at making predictions or inferences from incomplete

nformation in other domains, such as species distribution mod-
ling (Phillips et al., 2004; Phillips and Dudík, 2008) and natural
anguage processing (Berger et al., 1996). We are unaware, how-
elling 221 (2010) 565–574

ever, of any application of Maxent in studies of habitat or resource
selection. Maxent estimates the RSF by finding the distribution of
maximum entropy subject to the constraint that the expected value
of each feature under this estimated distribution matches its empir-
ical average (Phillips et al., 2006). The method of estimation used
by Maxent is equivalent to finding the maximum likelihood distri-
bution that is exponential in a linear combination of the features
(i.e., Gibbs distribution, Phillips et al., 2004). The deterministic algo-
rithms used in Maxent are guaranteed to converge to the optimal
(maximum entropy) probability distribution and employ a regular-
ization function to prevent algorithms from over-fitting the data
(Phillips et al., 2006; Phillips and Dudík, 2008). Della Pietra et al.
(1997), Collins et al. (2002), Dudík et al. (2004), Phillips et al. (2004,
2006), and Phillips and Dudík (2008) provide detailed informa-
tion on Maxent, machine learning, and the underlying updating
algorithms used in Maxent.

The most appropriate method for generating RSFs, assuming
a single best method exists, can be determined using simulated
data (Berger et al., 1999; Hirzel et al., 2001; Tyre et al., 2001). Our
objectives were to: (1) compare the performance of discrete-choice,
logistic-regression, and Maxent models in resource selection stud-
ies, (2) determine effects of sample size (number of animals) and
number of random locations used in analyses for each modeling
technique, and (3) determine effects of species’ mobility and area
defined to be available on performance of methods. If modeling
methods cannot consistently estimate a known probability dis-
tribution based on simple theoretical models, application of the
methods to real data is questionable at best, even if all statistical
assumptions are met.

2. Methods

We used five steps to investigate the performance of three
methods for estimating RSFs including: (1) generation of realis-
tic environmental data; (2) generation of simulated species data
(i.e., use locations) responding to direct environmental gradients
according to a known probability distribution; (3) generation of
random locations with respect to predefined choice sets; (4) selec-
tion of an appropriate statistical model to be evaluated; and (5)
evaluation of methods.

2.1. Generation of realistic environmental data

DeSoto National Wildlife Refuge (DNWR), an irregularly shaped
area of 3166 ha in Iowa and Nebraska, USA defined our study area.
In our study area, the average size of terrestrial patches was 10.6 ha
(range = 0.1–162.5 ha); <3% (7/265) of the terrestrial patches were
>50 ha in size. We used ArcMap version 9.2 (ESRI, 2006) to convert
the study area into a 30 m × 30 m raster that defined the 31,136
possible resource units within DNWR. We assumed the simulated
species was not aquatic and did not use roads to increase fitness and
removed these resource units from the study area. We classified all
of the raster points by landcover type and calculated the distance
of each point to road, water, and edge of wooded area. Distance to
edge of woods was negative for all grid cells classified as wooded
and positive for all other grid cells. Distance to road and distance
to water were all ≥0.0.

Coefficients from an RSF model of data collected for white-
tailed deer (Odocoileus virginianus) at DeSoto National Wildlife
Refuge during 1991–1997 were used to generate the known

selection distribution (Baasch, 2008). Each grid cell (i) had a
known probability of use given by Eq. (1) (provided in Appendix
A.2) where ˇ1 = −0.3617, ˇ2 = 0.0708, ˇ3 = 0.0424, ˇ4 = 0.3814,
ˇ5 = 0.2657, ˇ6 = –0.1932, ˇ7 = −0.3898, ˇ8 = −0.6384, ˇ9 = 0.2460,
ˇ10 = 0.06837 and where xi1–xi6 were six of the seven levels of the
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ategorical variable (landcover type). The final level of the land-
over variable (corn) was the reference category that was assigned
ˇ-value of 0.0. Variables xi7–xi10 were continuous distance mea-

ures (distance to road, water, edge of wooded area, and edge of
ooded area squared).

.2. Generation of use locations

We included 25 use locations per animal and varied sample size
y including 10, 20, 40, or 80 animals in the sample (250, 500, 1000,
nd 2000 use locations, respectively) to test the sensitivity of each
ethod to number of animals used in the analysis. Use locations
ere simulated observations of resource use generated accord-

ng to the known underlying probability distribution described in
ection 2.1. We generated use locations within 300 m, 600 m, or
200 m of the previous use location to simulate species of lower
obility or species that have a home range smaller than the study

rea (e.g., turtle, deer; Fig. 1). Use locations were also generated
cross the study area to simulate species of higher mobility that
ould traverse the entire study area on a daily basis. We define
level of use” as the area in which use locations were generated
within 300 m, 600 m, or 1200 m of previous use location or across
he study area).

For the first level of use (300 m), we generated use locations 1
t a time with replacement. The first use location for each animal
as generated from the set of all possible resource units within the

tudy area (Appendix A.1(1)). Use locations 2–25 for each animal
ere generated sequentially with replacement (Appendix A.1(2)).
e generated these locations at a minimum distance of 90 m from

he previous use location and within a 600 m × 600 m square area
entered on the previous use location (i.e., the animal traveled
etween 90 m and 300 m prior to recording another use location).
he probability of use for any subsequent resource unit was equal
o the probability of the underlying raster, normalized within the
redefined area. We used similar techniques to generate use loca-
ions for the second and third levels of use (600 m and 1200 m,
espectively). For the study-area level of use, all use locations were
enerated simultaneously across the study area with replacement
Appendix A.1(1)). The probability of use for each resource unit
as independent of previous use locations with this method of

election.

.3. Generation of random locations

We generated random locations within areas defined to be avail-
ble to the animal to represent resource units the animal could
ave chosen. We tested four levels of availability with respect to
ach use location (300 m, 600 m, 1200 m, and study area), to deter-
ine the best definition of availability for each statistical method

ested. To allow direct comparisons, we tested the performance
f all three statistical methods with the total number of random
ocations equal to either 5 × number of use locations, as suggested
y McFadden (1978) for discrete-choice analyses, or 10,000 ran-
om locations total (default setting in Maxent). We generated 1250,
500, 5000, or 10,000 random locations when the number of ran-
om locations = 5 × number of use locations, for sample sizes of 10,
0, 40, or 80 animals with 25 use locations per animal, respectively.
e generated 40, 20, 10, or 5 random locations per use location

or sample sizes of 10, 20, 40, or 80 animals, respectively when
he total number of random locations = 10,000. For clarity, we only
resent the results from the 2 extremes of 10 and 80 animals; other

esults fell in between those 2 extremes. Random locations were
hosen without replacement from the 30 m × 30 m raster-grid for
ach simulation trial (Appendix A.1(2)); the probability of select-
ng any resource unit was equal. Random locations were generated
utside a 2-ha square region centered on the respective use loca-
elling 221 (2010) 565–574 567

tion, representing a “pseudo-error polygon” to account for error
known to exist in telemetry studies, and within a square area cen-
tered on each use location with length and width equal to 2 times
the level defined to be available to the animal. For example, if the
level of availability was 300 m, we allowed the animal to choose
from the set of resource units located >60 m from the use location
and within a squared area ranging from 300 m to the north, south,
east, or west of the use location (Fig. 1).

2.4. Statistical models

We stratified random locations with each use location chosen
from the defined choice sets at each predetermined sample size for
discrete-choice analyses (Appendix A.1(3), Eq. (1)). We also used a
logistic-regression model (Eq. (2)) to analyze sets of data where the
“choice set” was defined as all random locations located within a
predetermined distance of any use location (Appendix A.1(4)). The
model included the same variables as the model used to produce
the underlying probability distribution (Baasch, 2008). In addition,
we used Maxent to analyze sets of data and included the same
terms as the other methods (Eq. (5)). We programmed Maxent to
model linear terms only and entered “distance to edge of wooded
area squared” by squaring these values within data sets prior to
importing into Maxent.

For analyses involving discrete-choice models, we discarded all
simulations that resulted in a coefficient for a landcover variable
<−10.0, which indicated random locations were generated in a class
of landcover in which no use locations were generated. Likewise,
for Maxent we discarded all simulations in which an estimate for a
coefficient was missing (null). By discarding these simulations, we
avoided having averages for estimates of coefficients skewed by a
few trials that resulted in an extreme estimate for a coefficient (e.g.,
−17.0) and were able to produce a complete set of coefficients for
each simulation.

2.5. Performance measures

We performed 100 simulations for each statistical method at
each level of use and availability and for each sample size result-
ing in 38,400 simulations of data. We compared the performance
of the three statistical methods (logistic regression, discrete choice,
and Maxent) by comparing the ability of each method to estimate
the known probability distribution with a calibration curve and by
using an analysis of area under the receiver operating curve (AUC).
The use of AUC for comparing the predictive ability of models has
increased in species distribution modeling and natural language
processing (Hanley and McNeil, 1982; Bradley, 1997; Park et al.,
2004; Fawcett, 2005), but its’ application to studies of resource
selection has only recently occurred (Boyce et al., 2002). The AUC is
equivalent to the probability of a model ranking randomly chosen
use locations higher than random locations, which is equivalent to
the Wilcoxon test of ranks (Hanley and McNeil, 1982; Park et al.,
2004; Fawcett, 2005). The AUC is the portioned area of correct clas-
sifications under the ROC curve so its value will always be between
0 and 1.0 and can be interpreted as a probability of correct classi-
fication or prediction. The ability to discriminate between use and
random locations (i.e., performance) of various statistical methods
can be directly measured and compared using AUC scores.

We compared the ability of the three statistical methods to esti-
mate the original probability distribution using all use and random
locations in each simulation. We used Eqs. (1) and (2) (Appendix

A.2) to calculate estimated probabilities of resource selection across
the study area for all 100 discrete-choice and logistic-regression
models, respectively. We used linear regression with estimated
selection as the predictor of known selection; each simulation
produced one calibration curve with an intercept and slope. We
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Fig. 1. An illustration of how we generated simulated locations of use (larger black, blue, and red numbered-circles) and random locations (smaller black, blue, and red circles)
used in resource selection analyses. In all 4 examples (panels A, B, C, and D), we: (1) generated use locations 1 at a time and chose the first use location (1), according to a
known probability distribution, from the set of all possible 30 m × 30 m resource units within the study area; (2) generated use locations 2 and 3 (of the 25/animal simulated
in the study) within an area in which we determined use could occur (solid-line boxes), at a minimum distance of 90 m from the previous use location, and sequentially
with replacement; and (3) generated 5 random locations/use location within the area we defined to be available (dashed-line boxes). (A) We generated use locations 2 (blue,
numbered circle) and 3 (red, numbered circle) within a 600 m × 600 m square area centered on the previous use location (i.e., the animal traveled between 90 m and 300 m
prior to recording another use location). We generated random locations within a 600 m × 600 m square area centered on each use location. (B) We generated use locations
2 and 3 within a 600 m × 600 m square area centered on the previous use location and generated random locations within a 1200 m × 1200 m square area centered on each
use location. (C) We generated use locations 2 and 3 within a 1200 m × 1200 m square area centered on the previous use location and generated random locations within a
6 tions
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u egres
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00 m × 600 m square area centered on each use location. (D) We generated use loca
nd generated random locations within a 1200 m × 1200 m square area centered on
se and random locations were stratified and defined the choice sets. For logistic r
efined the choice sets.

alculated the mean and standard error of slope and intercept coef-

cients from linear regressions of the 100 models. Methods that
roduced unbiased estimates of the known probability distribution
ould have mean slope and intercept values from linear-regression
odels of 1.0 and 0.0, respectively. Estimates of the known distri-

ution were considered acceptable when 95% confidence intervals
2 and 3 within a 1200 m × 1200 m square area centered on the previous use location
use location. When analyzing the data using discrete choice, the color-coordinated
sion and Maxent, all random locations were evaluated with each use location and

around mean slope and intercept coefficients contained 1.0 or 0.0,

respectively.

For discrete choice and logistic regression, we scaled and cen-
tered distance measures for all resources across the landscape
using: DISTscaled = (OBS − �)/SD. In this equation, DISTscaled were
scaled distance measures used in the models, OBS were distances
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f resource units to respective features, and � and SD were the
ean and standard deviation of respective distance measures in

he set of data, respectively. After scaling, each continuous dis-
ance measure had a mean of 0.0 and variance of 1.0. Maxent
sed (DISTclamped = (OBS − MINobs)/(MAXobs − MINobs)) to “clamp”
r reduce the range of continuous variables to have a minimum
alue of 0.0 and a maximum value of 1.0 for all locations within
he set of data. In this equation, DISTclamped are clamped distance

easures used in the models, OBS was the observed distance of
ocation to respective feature, and MINobs and MAXobs were mini-

um and maximum values for distance to respective features in the
imulated set of data. We used Eq. (5) (Appendix A.2) to calculate
axent probabilities of selection across the landscape and assigned
value of 0.0 or 1.0 to all resources with distances < or > what was
bserved in the simulated set of data, respectively. For example, if
continuous variable had a range of −100 to 100 and a particular

et of simulated data had a range of −90 to 80, we assigned a value
f 0.0 or 1.0 to all pixels across the landscape with a distance mea-
ure <−90 or >80, respectively, when computing probabilities of
esource selection across the landscape. We used linear-regression
rocedures outlined for discrete choice and logistic-regression to
etermine the ability of Maxent to estimate the known underlying
robability distribution.

We also measured model performance by comparing AUC scores
roduced in the 100 simulations. We used 75% of use locations
long with the sample of random locations drawn randomly with-
ut replacement from the area defined to be available to produce
odels for receiver operating characteristic (ROC) analyses. We

sed the remaining 25% of use locations as a test sample to calcu-
ate AUC scores for discrete-choice and logistic-regression models
Appendix A.1(5)). To produce AUC scores for Maxent, we set the
test sample” size to 25% and AUC values were included in the
utput as a standard function of the program. We produced box-
lots to display the average and range in distribution of AUC values
Appendix A.1(6)). We observed trends in AUC values to ascertain
mprovements in fit of models to test data across all levels of use and
vailability and across changes in number of animals and random
ocations used to produce each model.

We also compared the ability of each method to reproduce
oefficients of the known model. Differences in how continuous
ariables were standardized (scaled and centered, clamped) and
epresentation of the categorical variable in each model (intercept,
eference category, estimation of all levels), however, precluded an
n-depth comparison of all ˇs. Estimates of coefficients of the land-
over variable produced in analyses led to similar conclusions as
ther tests of performance so we did not report these results.

. Results

.1. Ability of statistical methods to estimate the known
robability distribution

Increasing the number of random locations used in analyses
rom 5 random locations per use location to 10,000 random loca-
ions (total) typically resulted in increased precision and accuracy
f estimates of the known probability distribution for all sta-
istical methods, but within each method, these estimates were
tatistically indistinguishable. We provided plots of average slope
oefficients and approximate 95% confidence intervals for all three
tatistical methods, across various levels of use and availability, and

or sample sizes of 10 and 80 animals with 25 use locations per ani-

al and 5 random locations per use location (Fig. 2); results from
nalyses with 20 and 40 animals fell between those two extremes.
e did not include a plot of intercept coefficients as the range of

ll values was between −0.0001 and 0.00005.
elling 221 (2010) 565–574 569

The precision of discrete-choice estimates of the known prob-
ability distribution increased (smaller standard errors) as we
increased sample size from 10 to 80 animals (Fig. 2). The accuracy
of estimates of the known probability distribution (bias), however,
was not affected by the number of animals included in discrete-
choice analyses. Estimates of the known probability distribution
produced by discrete-choice models were usually unbiased and
precise when area defined to be available was no larger than the
area in which use occurred. Increasing the number of random loca-
tions from 5 random locations per use location to 10,000 random
locations total had little or no effect on the precision or accuracy
of estimates of the known probability distribution produced by
discrete-choice models. Across all sample sizes, estimates of the
known probability distribution produced by discrete-choice mod-
els were usually more precise and accurate than logistic-regression
or Maxent when the area defined to be available was at a small scale.

The precision of estimates of the known probability distribution
produced by logistic-regression models increased as the number of
animals included in the analysis increased (Fig. 2). The accuracy of
these estimates, however, declined as we increased the number of
animals included in the analysis or decreased the area defined to be
available. When we generated use and random locations at larger
scales (≥1200 m), estimates of the known probability distribution
produced by logistic-regression models were unbiased and precise
(Fig. 2). Estimates of the known probability distribution produced in
logistic-regression analyses were unbiased and most precise when
levels of use and availability were equal and the ratio between the
number of random locations and use locations used in the analysis
increased from 5:1 to 40:1.

The number of animals and random locations used in analyses
and definition of availability affected the accuracy of estimates of
the known probability distribution produced by Maxent (Fig. 2).
Similar to other methods, the precision of estimates of the known
probability distribution produced by Maxent increased as we
increased the number of animals and random locations and as the
level of availability increased. The accuracy of these estimates, how-
ever, decreased as the number of animals increased and the level of
availability used in the analysis decreased. Maxent produced unbi-
ased and precise estimates of the known probability distribution
when the ratio between level of use and availability was smallest
(300 m: DNWR, Fig. 2).

3.2. Effect of level of use, level of availability, and sample size on
ROC analyses

We examined boxplots of AUC scores for all three statistical
methods, across all levels of use and availability, and for all sam-
ple sizes. We observed a trend in the variability and range of AUC
scores across numbers of animals used in analyses and levels of
availability and provided plots of AUC scores from analyses with
10 or 80 animals, 5 random locations per use location, and across
various levels of use and availability (Fig. 3). Increasing the number
of animals and random locations did not affect mean values of AUC
scores, but did influence the variability in AUC scores. Variability in
AUC scores was greater at smaller sample sizes (10 animals) than
at larger sample sizes (80 animals). As the ratio between level of
use and availability decreased, AUC scores increased for all statis-
tical methods tested (Fig. 3). We found no difference in AUC scores
across statistical methods tested.
4. Discussion

Our results highlight the critical importance of scale in assign-
ing use and availability in studies of resource selection (Boyce,
2006). The area in which we generated use and random locations
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Fig. 2. Mean slope coefficient of linear regression models with known probabilities predicted by estimated probabilities of resource selection and approximate 95% confidence
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300 m: study area (A)), 1:2 (B), 1:1 (C), 2:1 (D), and largest (study area: 300 m (E)).

ffected all statistical methods, but the effect differed by method.
or discrete-choice models, if selection of resources occurs within
localized area (i.e., within a home range) the area used to define

he choice set should be no larger than the area in which use actu-
lly occurred. To determine the area in which use occurred, many
tudies have used displacement distances between radio-telemetry
bservations (Arthur et al., 1996; Cooper and Millspaugh, 1999).
hen using discrete choice to model resource selection, our find-

ngs support definitions of availability used in these studies, such as
he definition used by Cooper and Millspaugh (1999). Cooper and

illspaugh (1999) used a circular area with radius equal to one-
alf of the average displacement distance centered one-quarter
ay’s walk from a previous telemetry location in the direction of
known bed site to define what was available to elk (Cervus ela-

hus) in South Dakota. Arthur et al. (1996) used a circular area

entered on the previous location with radius equal to the distance
olar bears (Ursus maritimus) in the Chukchi and Bearing Seas were
likely” to travel within 3 or 6 days dependent on the number of
ays between collections of use locations. Both of these, and other
tudies (McCracken et al., 1998), suggest centering the choice set
le sizes of 10 (�) or 80 (©) animals with 25 use locations per animal and 5 random
generated use locations (level of use) and area defined as available was smallest

for subsequent use locations on or in the direction of the previous
use location. Such definitions are logical if one assumes the ani-
mal has no a priori knowledge of the area in which they select use
locations, but in reality, animals are typically well acquainted with
their surroundings. A potential problem of such definitions for the
choice set is that the area in which the choice set is defined may
not contain the subsequent use location. For example, Arthur et al.
(1996) reported that on 2630 occasions (<2%), bears traveled a lin-
ear distance ≥ what was defined to be available, which would result
in these use locations falling outside the area in which the choice
sets were defined. Similar problems could also arise if one used the
definition of choice set suggested by Cooper and Millspaugh (1999)
and McCracken et al. (1998). Another potential problem of such def-
initions is the uncertainty in the direction the animal approached
the subsequent use location if one does not collect observations on

a regular basis (∼28 h) as did Cooper and Millspaugh (1999). For
these reasons, we centered the choice set for the current location
on the actual location rather than on or in the direction of the previ-
ous one. So long as the area defined to be available does not contain
resources that are inaccessible due to excessive distance from pre-
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Fig. 3. Area under receiver operating characteristic curve (AUC) scores for discrete-choice (white), logistic-regression (red), and MAXENT models (blue) at sample sizes of 10
o ion. P
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r
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r 80 animals with 25 use locations per animal and 5 random locations per use locat
level of use) and area defined as available was smallest (300 m: study area (A)), 1:2
bservations and length of whiskers = 1.5 × interquartile of the box.

ious location or other prohibitive factor, this definition should be
ppropriate and would ensure entire choice sets were contained in
he sample.

When using discrete-choice models to analyze data collected
n areas, such as our study area, where average size of habitat
atches was relatively small (X̄ = 10.6 ha) with few or no avoided
reas, selecting random locations within a small area centered
n each use location was not problematic. In areas where patch
izes are much larger than those in our study area, however, one
ould lose important effects of variables if selection of random loca-
ions occurs within small, localized areas around use locations that
o not include areas avoided by the animal. Multi-level analyses

f resource selection can help avoid such pitfalls in these situa-
ions (Johnson, 1980; Aebischer et al., 1993; McClean et al., 1998;
hompson and McGarigal, 2002; D’Eon and Serrouya, 2005). Our
esults suggest, when using discrete choice, one could use displace-
ent distances between successive use locations to determine
lots are grouped where the ratio between area in which we generated use locations
:1 (C), 2:1 (D), and largest (study area: 300 m (E)). Boxes encompass central 50% of

factors that influence selection at a larger, macro-habitat scale and
potentially a smaller scale (one-eighth- or one-quarter-days walk)
to determine factors that influence selection at a smaller, micro-
habitat scale.

Logistic-regression and Maxent modeling resulted in accu-
rate and precise estimates of the known probability distribution
when the study area was defined to be available. Such definitions
of availability are politically rather than biologically determined
boundaries and can be problematic if the study area is large or the
research animal is not very mobile (e.g., turtle). If the area defined
to be available includes resources outside the range selected by the
animal, resources may not be accessible due to distance, compe-

tition, or other preclusive scenarios (Johnson, 1980; Aebischer et
al., 1993; Keating and Cherry, 2004). A notable difference between
these two techniques was that estimates of the known probability
distribution were most accurate and precise for logistic-regression
when the levels of use and availability both occurred on a larger
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cale (≥1200 m) and for Maxent when use occurred within a local-
zed area (e.g., within a home range) and availability was defined
t a larger scale (study area). The fact that Maxent performed best
nder these conditions is reasonable given its successful applica-
ion in the field of species distribution mapping (Phillips et al.,
006). In many species distribution studies, occurrence or use loca-
ions are obtained from specimens in natural history museums
nd herbaria and “background” or random locations are typically
rawn from across the study area to define the space in which
se occurred (Ponder et al., 2001; Hoffman, 2008). Occurrence data

n many of these studies tend to be clustered groups of locations
n various regions of the study area (e.g., Fig. 2 in Phillips et al.,
006), which could be related to differences in intensity of sam-
ling efforts across the study areas (Ponder et al., 2001). In these
ituations, the distribution of use locations (occurrence) and ran-
om locations (background) would be similar to our study when
se occurred within a localized area (300 m) and availability was
efined at the study-area level.

Previous studies of statistical techniques used in analyses of
esource selection suggest the number of animals included in the
ample should be ≥20 with 50 locations/animal (Alldrege and Ratti,
986, 1992; Leban et al., 2001). Resource selection models evalu-
ted in these studies, however, were nonparametric or multivariate
pproaches with 1 categorical variable (landcover) included in the
odels. Our multivariate approaches that included categorical and

ontinuous variables showed that increasing the number of ani-
als used in analyses had little effect or resulted in slightly less

ccurate estimates of the known probability distribution. The pre-
ision of estimates, however, improved as the number animals
ncreased, which was similar to results reported by others (Manly,
002; Manly et al., 2002). It was surprising that the ability to accu-
ately estimate resource selection functions with samples as small
s 10 animals with 25 locations/animal was observed in this study;
his could be advantageous when analyzing data obtained from a
mall population of animals or when budget or time constraints
rohibit more intensive sampling efforts. Performance in individual
tudy areas with different underlying features, however, is neces-
ary before our results are applied elsewhere.

Similar to McFadden’s (1978) findings, increasing the number of
andom locations used in discrete-choice analyses had little effect
n estimates of the known probability distribution when the area
n which use locations were generated was greater than the area in

hich random locations were generated. When levels of use and
vailability were misclassified (level of availability > level of use),
esults of discrete-choice analyses improved slightly by increasing
umbers of use and random locations, but the improvement did
ot overcome the misclassification error. Increasing the number
f random locations used in Maxent and logistic-regression analy-
es, however, tended to improve the accuracy of estimates of the
nown probability distribution. A potential problem of using an
ncreased number of random locations in analyses is contamina-
ion (resources actually used, but classified as random locations;
eating and Cherry, 2004). Contamination may or may not affect

he results of analyses depending upon how robust the statistical
ethod is and the level of contamination in the sample (Keating

nd Cherry, 2004; Johnson et al., 2006).
Interpretation of a statistical method’s performance varied

epending on the method used for evaluation. The AUC analy-
es often resulted in different conclusions of model performance
han comparisons of estimated and known probability distribu-
ions. A generally accepted guideline for determining acceptability

f models is that models with good predictive ability have AUC
cores >0.75 (Elith, 2002; Phillips and Dudík, 2008). According to
his criterion, all models had good predictive ability when selec-
ion of use locations occurred within a smaller area and availability
as defined at the study-area level (Fig. 3). Results of AUC analy-
elling 221 (2010) 565–574

ses consistently ranked models produced by Maxent with high and
low predictive abilities accurately. As random sampling extended
to the “study area” and the area of selection decreased, Max-
ent performed better than other methods. In these situations, it
was more likely that unused resources were included in the sam-
ple of random locations (decreased contamination), the disparity
between probabilities of selection between used and random loca-
tions increased, and thus higher AUC scores. We found, however,
AUC scores increased as the area defined to be available increased,
which often resulted in an inaccurate measure of performance
for discrete-choice and logistic-regression models. Discrete-choice
models performed best when the area of use was ≥ area defined
to be available, which likely resulted in similar probabilities of
selection between used and random locations, and thus lower AUC
scores. As AUC score are a measure of the models ability to rank a
use location higher than a random one, it was not a reliable mea-
sure of performance for the more traditional RSF models (Boyce et
al., 2002; Termansen et al., 2006; Austin, 2007; Lobo et al., 2008);
calibration curves comparing estimated and known probability
distributions were the most telling evaluation of each statistical
method. A more complete assessment of AUC methods is needed
to determine their utility in evaluating RSFs.

5. Conclusion

Discrete-choice models consistently produced the most accu-
rate and precise estimates of the known probability distribution in
our study area when levels of use and availability were specified
correctly, regardless of the number of animals or random locations
included in analyses. When using discrete-choice models to esti-
mate resource selection, the area defined as available should be
restricted to a small area in which resources were selected. If the
level in which use occurred is unknown, one should err on the side
of defining a smaller area of availability. Distribution and size of
patches of landcover, however, could also affect the performance
of statistical methods used in resource selection studies so further
studies using simulated data over different landscapes and with dif-
ferent data types are needed to confirm our results. We urge caution
when using ROC analyses as a measure of model performance in
resource selection studies, especially when standard statistical pro-
cedures such as logistic-regression or discrete choice are used. Our
study offers a template and guidance for others interested in assess-
ing techniques for modeling resource selection for their study site;
the performance of these and other statistical methods may vary,
however, when applied to study areas with different underlying
features.

Appendix A.

A.1. Description of functions, packages, and additional settings in
Program R (R Development Core Team, 2006) used to select use
and random locations, produce models, evaluate model
performance, and create figures

Reference Function Package Additional Settings

1 rmultinom stats NA
2 sample base NA
3 clogita survivalb NA
4 glm stats logitc

5 performance ROCR aucd

6 boxplot graphics NA

a The “clogit” function is a wrapper for the Cox Proportional Hazards regres-

sion that estimates a logistic-regression model by maximizing the exact conditional
likelihood (R Development Core Team, 2006).

b Lumley (2006).
c Link used to produce logistic-regression models.
d Performance measure setting used to produce AUC scores for discrete-choice

and logistic-regression models.
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.2. Overview of statistical models

The standard equation for the discrete-choice model (McDonald
t al., 2006) was:

ˆ(i) = exp(ˇ1xi1 + ˇ2xi2 + · · · + ˇpxip)∑

k ∈ {U′∪A}
exp(ˇ1xk1 + ˇ2xk2 + · · · + ˇpxkp)

, (1)

here P̂(i) was an estimate of the probability of selection for
esource unit i; xi1–xip were characteristics of resource units; ˇ1–ˇp

ere coefficients of respective characteristics; U′ were the set of
ndices for unique used units; and A were the set of indices for
nits in the random sample of units from the choice set.

The standard equation for the logistic-regression model was:

ˆ(i) = exp(ˇ0 + ˇ1xi1 + ˇ2xi2 + · · · + ˇpxip)
1 + exp(ˇ0 + ˇ1xi1 + ˇ2xi2 + · · · + ˇpxip)

, (2)

here P̂(i) was an estimate of probability of use for resource unit
; xi1–xip were characteristics of resource units (landcover and
istance measures); and ˇ1–ˇp were coefficients of respective char-
cteristics.

The standard equation for a Maxent model (Phillips et al., 2006;
hillips and Dudík, 2008) was:

�(x) =
exp

(∑p
i=1�ifi(x)

)

Z�
, (3)

here q�(x) was an estimate of (P̂[y = 1|x]) or probability of selec-
ion for resource unit x; � were coefficients of the model; f(x)
ere characteristics of the resource units; and Z� =

∑
x ∈ xe�∗f |(x)

as a normalizing constant used to ensure probabilities sum to
.0.Where we only modeled linear terms, �if (xi) was simply �1xi1 +
2xi2 + · · · + �pxip. To obtain Maxent estimates of the conditional
robability of selection for all resource units within the study area
Phillips and Dudík, 2008), we used:

(y = 1|x) = eHq�(x)
1 + eHq�(x)

, (4)

here q� was the maximum entropy estimate of the true distribu-
ion of selection; and H was the entropy of the Maxent model, q�

Phillips and Dudík, 2008).
We present Eq. (4) with a similar notation used in Eqs. (1) and

2) which resulted in:

ˆ(i) = exp(H)(exp(ˇ1xi1 + ˇ2xi2 + · · · + ˇpxip)/Zˇ)

1 + exp(H)(exp(ˇ1xi1 + ˇ2xi2 + · · · + ˇpxip)/Zˇ)
(5)

here P̂(i) was the conditional probability of resource unit i being
elected; xip were the characteristics of resource unit i; and ˇ1–ˇp

ere coefficients of respective characteristics.
Eq. (5) is the logistic format of the Maxent model (Phillips and

udík, 2008), which is similar to the logistic-regression model (Eq.
2)); however, the Maxent model contains a parameter estimate for
ll levels of the categorical variable (landcover) and an intercept
stimated by the entropy of the model.
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