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ABSTRACT The cliff swallow (Petrochelidon pyrrhonota, Vieillot) could potentially play an impor-
tant role in the transmission of West Nile virus (WNV) because of its breeding ecology, reservoir
competence status, and potentially high natural exposure rates. These birds nest in colonies and their
nests are occupied year round by swallow bugs (Oeciacus vicarius, Hovarth), hematophagus ecto-
parasites that feed primarily on cliff swallows. Swallow bugs are most likely exposed to WNV while
feeding on infectious blood of cliff swallows and, thus, if competent vectors, could contribute to
initiation and maintenance of seasonal WNV transmission. In addition, swallow bugs remain within
nests year round and, therefore, if persistently infected and competent vectors, they could provide
an overwintering mechanism for WNV. We tested the hypothesis that swallow bugs become infected
with WNV through direct abdominal inoculation or ingestion of infectious blood meals. We observed
that swallow bugs did not maintain or amplify WNV, and infectious virus titers within bugs declined
over 15 d postexposure. These results suggest that swallow bugs may not be competent vectors of

WNYV, and therefore are unlikely to play a significant role in transmission.
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Swallow bugs (Oeciacus vicarius, Hovarth) are wing-
less hemimetabolous ectoparasites for which the
blood of cliff swallows (Petrochelidon pyrrhonota, Vie-
illot) is the primary food source. Swallow bugs reside
within and use cliff swallow mud nests as a substrate
for oviposition (Loye 1985) and move freely within
and between nest colonies, although the latter only
occurs while attached to a host (Brown and Brown
2005). The geographic distribution of cliff swallows
and swallow bugs overlaps with the expanding en-
demic range of West Nile virus (WNV; family Flavi-
viridae, genus Flavivirus) in North America. Addition-
ally, cliff swallows develop West Nile viremia titers
sufficient to infect mosquitoes (Oesterle et al. 2009)
and have a high rate of exposure to the virus in some
geographic areas (our unpublished data).

Although the transmission cycle of WNV involves
birds as the primary reservoir host and mosquitoes as
the primary vector (Work et al. 1955, Hayes 1989),
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some aspects of transmission, such as nontraditional
infection routes and overwintering mechanism (s), re-
main unknown (Dohm and Turell 2001, Reisen et al.
2006). For example, a nonmosquito vector, the seabird
soft tick (Carios capensis, Neumann), transmitted
WNV to ducklings in an experimental setting
(Hutcheson et al. 2005). Furthermore, evidence for
overwintering of WNV in mosquitoes has been limited
(Nasci et al. 2001, Farajollahi et al. 2005, Bolling et al.
2007), supporting potential alternative means of over-
wintering such as virus persistence within vectors or
hosts. Swallow bugs could potentially serve as WNV
vectors and provide an overwintering mechanism be-
cause they are known virus vectors, both transmitting
and overwintering Buggy Creek virus (family Toga-
viridae, genus Alphavirus), which infects cliff swal-
lows and other birds when fed upon by infectious
swallow bugs (Rush et al. 1980, Hopla et al. 1993,
Brown et al. 2009). Swallow bugs and other nontra-
ditional vectors may contribute to WNV maintenance
throughout winter periods and subsequently reinitiate
avian-mosquito amplification cycles.

Given the parasitic nature of swallow bugs and
WNYV reservoir competence of cliff swallows (Oes-
terle et al. 2009), swallow bugs most likely ingest
infectious WNV blood meals when feeding on viremic
cliff swallows. However, limited, yet conflicting infor-
mation exists regarding the ability of swallow bugs to
become infected with and transmit WNV; Sixl et al.
(1989) demonstrated WNV seroconversion in mice in
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the presence of swallow bugs, whereas Oesterle et al.
(2010) failed to document WNV transmission from
swallow bugs to cliff swallow nestlings in an experi-
mental trial. To clarify the potential role of swallow
bugs as WNV vectors in nature, we exposed swallow
bugs to WNV by direct abdominal inoculation and by
feeding them WNV-spiked blood. The objectives of
the current study were to assess whether swallow bugs
become infected with WNV, and whether WNV am-
plifies and persists within these parasites.

Methods and Materials

Collection of Swallow Bugs. Before the initiation of
the cliff swallow breeding season, 10 swallow bug-
infested cliff swallow nests were collected from a
colony near Fort Collins, Colorado, in March 2007.
Nests were individually placed in 2-liter plastic storage
containers and transported to the United States De-
partment of Agriculture National Wildlife Research
Center (Fort Collins, CO). Within 24 h, swallow bugs
were removed from nests using Berlese funnels (Bio-
quip, Rancho Dominguez, CA) and transferred to a
4-liter glass beaker. Seed germination paper (Anchor
Paper, Saint Paul, MN) was folded accordion style and
placed in the beaker as a substrate for the swallow
bugs; the beakers were covered with a fine mesh cloth
to prevent escape of swallow bugs. The beakers were
then placed in an insect growth chamber (BioCold
Environmental, Fenton, MO) with environmental pa-
rameters of 12°C, 70% humidity, and 10-h photoperiod.
Temperature and photoperiod were gradually in-
creased to 27°C and 14 h of light per day over 3 mo to
bring swallow bugs out of diapause. Swallow bugs
were not allowed to feed during this period.

Inoculation of Swallow Bugs. Only swallow bugs at
later developmental stages (i.e., fourth instar to adult;
Usinger 1966) were inoculated. The procedure in-
volved immobilization of swallow bugs by chilling in
a glass petri dish over wet ice and then placing them
in a dorsal position. Then, by viewing through a dis-
secting microscope, a glass needle was inserted into
the abdomen, followed by gradual, but steady injec-
tion of the ~0.5-2 ul of WNV inoculum.

Injection of swallow bugs was accomplished
through use of a 60-ml syringe, glass needle, and poly-
ethylene tubing (60 cm L, 0.16 cm D) to connect the
syringe and needle. Glass needles were made using a
capillary tube (inner diameter 1.1 mm) and micropi-
pette puller (Narishige International, East Meadow,
NY); the tip was beveled (40°) with a microelectrode
beveler (Sutter Instrument, Novato, CA). The inoc-
ulum was first drawn into the needle and then injected
into the swallow bug by pressure created in the sy-
ringe. The quantity of inoculum was approximated by
measuring the distance the column of liquid traveled
during the injection (1 mm ~ 1 ul).

Each of five injection trials involved a total of 30-50
swallow bugs; 20-30 were injected intra-abdominally
with WNV NY99 strain 4132 (10>° plaque-forming
units [PFU]/ml, diluted in BA-1 medium), whereas
the remaining 10-20 were injected with nonvirus-
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containing BA-1 medium (M199, 0.05 M Tris, pH 7.6,
1% bovine serum albumin, 0.35 g/L sodium bicarbon-
ate, 100 U/ml penicillin, 100 pg/ml streptomycin, and
1 pg/ml amphotericin B). One-half of the swallow
bugs in each group were killed within 3 h of injection
(i.e.,0d postexposure [ DPE] ), whereas the remaining
swallow bugs were killed at one of the following time
points: 3, 6, 9, 12, 15 DPE.

Oral Exposure of Swallow Bugs. Swallow bugs were
orally exposed to WNV by providing a blood meal
infused with WNV. Blood was collected from WNV-
seronegative chickens, placed into tubes containing
sodium heparin, and then spiked with WNV (same
strain as used for injection experiments) for an ap-
proximate viral titer of either 107 or 105" PFU/ml
blood, whereas nonvirus-containing BA-1 medium
was used for sham-inoculated controls. For feeding
trials, blood was placed in 33-mm membrane feeders
(Lillie Glassblowers, Smyrna, GA); stretched Parafilm
(ALCAN, Neenah, WI) was used as a membrane, and
warm water (40°C) was circulated through the water
jacket of the feeder.

At each of four blood-feeding trials, ~5,000-10,000
swallow bugs were divided between two beakers, with
~T75% of the swallow bugs placed in the WNV-exposed
beaker, and the remaining ~25% placed in the control
beaker. Seed germination paper was provided as a
substrate; the paper allowed the swallow bugs to ac-
cess the top of the container. Mesh was secured over
the beakers with a rubber band. The blood-containing
membrane feeders (one spiked with WNV, and the
other with BA-1 medium) were placed directly across
the mesh of the beakers for direct contact between the
Parafilm and the mesh. The feeders were supported by
a clamp and stand.

Feeding apparatuses were in place for 2-3 h, after
which engorged swallow bugs were collected and
nonengorged were discarded. A portion (n = 20-40)
of the engorged swallow bugs was processed imme-
diately (0 DPE), and the remainder was placed in a
clean beaker with clean substrate and maintained for
sampling at later time points. These remaining swallow
bugs were sampled between 1 and 15 DPE (20-40
swallow bugs per time point).

Sample Processing and Testing. Inocula and blood
meals were aliquotted before feeding for later testing.
Blood aliquots (0.2 ml) were placed in serum separa-
tor tubes (Microtainer Benton Dickinson and Com-
pany, Franklin Lakes, NJ) and centrifuged at 10,000 X
g for 5 min within 1 h of collection to separate plasma
from packed cells. The inocula and plasma aliquots
were frozen to —80°C.

After recording developmental stage (first instar
through adult), engorged swallow bugs were individ-
ually processed in 2-ml microcentrifuge tubes (Fisher
Scientific, Pittsburgh, PA) with 500 ul of BA-1 medium
and a copper BB (4.5 mm; Crosman, East Bloomfield,
NY). Tubes were placed in chilled racks (TissueLyser
Adapter Set; Qiagen, Valencia, CA), agitated for 10
min at 25 Hertz using a Mixer Mill homogenizer
(model MM 301; Retsch, Newton, PA), centrifuged at
10,000 X g for 3 min, and frozen to —80°C.
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Fig. 1. Detectable virus titers in swallow bugs exposed to one of three WNV titers (blood meals at 10*7 and 10%! PFU/ml,
and needle inoculation with 10> PFU/ml) by two methods. Negative control swallow bugs (inoculated with BA-1 or fed blood
infused with BA-1 only) did not show detectable virus. The 95% confidence intervals are shown.

Aliquots of inocula and blood meals and individ-
ual swallow bugs were tested by Vero cell plaque
assay (Komar et al. 2003). Briefly, Vero cell mono-
layers in 6-well plates were inoculated in duplicate
with 0.1 ml of sample/well. The plates were incu-
bated for 1 h at 37°C, and then cells were overlaid
with 3 ml/well 0.5% agarose in minimum essential
medium supplemented with 2% fetal bovine serum
and antibiotics. Two days later, cells were overlaid
with a second 3-ml overlay containing 0.004% neu-
tral red dye. Viral plaques were counted on the third
and fourth days of incubation. The minimum titer of
WNYV for swallow bugs was 10°* PFU/ml swallow
bug homogenate; titers below this threshold were
considered zero.

Analysis. Before analysis, viral titers of swallow
bugs, blood meals, and injected inocula were log trans-
formed (log;o[x + 1]). Daily mean titers and confi-
dence interval were calculated for each group of ex-
posed swallow bugs (Fig. 1).

Results

All needle-inoculated swallow bugs tested WNV
positive at 0 DPE (mean 10"® PFU/swallow bug). The
percentage of swallow bugs with detectable virus de-
clined from 100% (n = 60) to 0% (0/12) by 15 DPE
(Fig. 1; Table 1). None of the swallow bugs that were

Table 1.
inoculation or blood meal ingestion

sham inoculated with BA-1 medium tested WNV pos-
itive.

The results from the blood-fed swallow bugs (ap-
proximate feeding rate 5-10%) varied greatly depend-
ing on the titer of the blood meal provided (Table 1).
Among swallow bugs that fed on blood containing a
low WNV titer (10*>7 PFU/ml plasma), 21% (8 of 37)
had detectable WNV at 0 DPE (mean titer 10°*> PFU/
swallow bug, range 0-10°® PFU/ml). Among all swal-
low bugs sampled at subsequent time points (3,6,9,12,
and 15 DPE), only one had detectable virus (6 DPE;
Fig. 1). Swallow bugs that fed on blood with a high
WNV titer (10%! PFU/ml plasma) had a higher infec-
tion rate and mean viral titers, and virus persisted for
a longer period postfeeding. Between 0 and 15 DPE,
the percentage of swallow bugs with detectable virus
and mean viral titers declined from 100% (n = 40) to
5% (2/40), and 10>? to 10°2 PFU/swallow bug, re-
spectively (Fig. 1). No swallow bugs that fed on blood
infused with BA-1 (e.g., no virus) tested WNV posi-
tive.

Discussion

The unique interactive ecologies of swallow bugs
and cliff swallows create an environment conducive to
arbovirus transmission; for example, these species are
integral to the ecology of Buggy Creek virus (Strauss

Resulis of virus isolation of swallow bugs exposed 1o varying levels of WNV (1037, 10°-°, 10%-! PFU/ml) by either needle

Swallow bugs exposed

No. positive/tested (day postexposure)

No

Method ~ PFU/ml : 1 2 3 4 5 6 78 9 10 11 12 13 14 15
exposed

Injection” 10>6 120 60/60 — — 9/14 — — 6/12 — — 512 — — 3/10 — — 0/12

Blood meal ~ 10°7 183 8/37 —  —  0/37 — 137 — — 0/200 — — 0/20 — — 0/32

Blood meal 10! 622 30/30 40/40 39/40 39/40 24/40 27/40 18/40 9/40 4/40 4/40 0/32 1/40 1/40 1/40 2/40 2/40

“ Data from five separate abdominal injection trials combined.
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and Strauss 1994). The swallow bug is a long-lived,
hematophagus, hemimetabolous, wingless parasite
that is highly dependent on cliff swallows for suste-
nance, shelter, and breeding (Loye 1985). There is
evidence that these parasites are naturally exposed to
WNYV, as swallow bugs tested positive for WNV RNA
in Colorado in summer and winter of 2003-2004 (our
unpublished data). Additionally, Sixl et al. (1989) doc-
umented possible WNV transmission to mice via swal-
low bugs; in this study, mice cohoused with swallow
bugs seroconverted to WNV, but whether swallow
bugs were the definitive and sole source of infection
was unclear.

Various aspects of cliff swallow biology could con-
tribute to the potential ecological interactions among
vertebrate host, vector, and virus, thereby warranting
examination of this avian species for involvement in
arbovirus transmission. Cliff swallows nest synchro-
nously in large colonies (Brown and Brown 1995)
often over water, where some mosquito species (e.g.,
Culex tarsalis) are relatively abundant (Brown and
Sethi 2002). These birds are most likely reservoir com-
petent for WNV in nature (average peak viremia of
experimentally inoculated swallow was 105> PFU/ml
serum; Oesterle et al. 2009), and in 2003, 22% of cliff
swallow nestlings tested oral swab positive for WNV
RNA (our unpublished data). In addition, there was a
high rate of natural exposure (20-40%) among free-
ranging adult cliff swallows in northern Colorado from
2004 to 2007 (our unpublished data). These data in-
dicate that relatively high rates of natural WNV in-
fection occurred among cliff swallows that congre-
gated to breed within several Colorado counties.

As the primary vectors of WNV and numerous other
arboviruses, mosquitoes provide a model for dissem-
ination and transmission of virus within the vector. In
competent mosquitoes, WNV replicates to moderate
titers in the midgut and disseminates to the hemocoel,
where it replicates to high titers and then infects the
salivary glands, after which virus can be transmitted to
naive hosts. Within this system, both virus replication
and dissemination within the mosquito are required
for transmission (Turell et al. 2001). Results from the
current study suggest that swallow bugs are unable to
support replication or maintenance of WNV. The viral
load in swallow bugs declined rapidly over time, re-
gardless of exposure route or viral titer of the blood
meal or injected inoculum, indicating that WNV did
not amplify within the swallow bugs. At the high-titer
blood meal provided to the swallow bugs (i.e., 105!
PFU/ml plasma), only 5% of blood-fed swallow bugs
had detectable WNV after 15 d, and titers in these
swallow bugs were minimal (Fig. 1). In contrast, WNV
was detected in 71% (n = 458) of Culex spp. mosqui-
toes 12-15 d after ingestion of a WNV-infectious blood
meal containing 10”72 PFU/ml WNV (Turell et al.
2000, 2001; Goddard et al. 2002).

As with most controlled studies, data from the cur-
rent study should be interpreted with several limita-
tions in mind. First, neither blood feeding from a
membrane feeder nor needle inoculation can ade-
quately mimic the complex interplay of circumstances
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that would result from a hematophagus insect feeding
on a WNV-infected cliff swallow. Second, the sample
size of swallow bugs in the current study does not
compare with that in nature and, therefore, if the
probability of a WNV transmission or overwintering
event is sufficiently rare, the present experiment may
fail to detect it. Third, we did not specifically examine
viral dissemination within the swallow bug; however,
results from a previous study support the notion that
WNV dissemination in swallow bugs is unlikely (Oes-
terle et al. 2010). Finally, the current study design was
aimed at assessing virus replication in bugs that might
lead to biological transmission; mechanical transmis-
sion of WNV via swallow bugs could potentially occur
soon after ingestion of an infectious blood meal and
remains a possible means for transmission. However,
the virus would not likely remain viable outside of the
host or vector for sufficient time to provide an efficient
transmission mechanism (Chamberlain and Sudia
1961).

In conclusion, whereas we were unable to implicate
swallow bugs in the transmission or overwintering of
WNV, further exploration of this concept may be
warranted based on lack of knowledge of definitive
overwintering mechanisms for WNV and other arbo-
viruses for which seasonal reinitiation of transmission
occurs. Additionally, unexplained observations re-
garding WNV and swallow bugs include apparent
WNV infection of mice via swallow bugs (Sixl et al.
1989) and WNV RNA-positive swallow bugs during
winter in northern Colorado (our unpublished data).
Investigations of WNV dynamics within swallow bugs
after ingestion of infectious blood meals using tech-
niques such as immunochemical localization of sites of
virus replication, as well as continued testing of field-
collected swallow bugs, would help further evaluate
their possible role in arbovirus transmission.
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