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Abstract

Analytical methods accounting for imperfect detection are often used to facilitate reliable

inference in population and community ecology. We contend that similar approaches are

needed in disease ecology because these complicated systems are inherently difficult to

observe without error. For example, wildlife disease studies often designate individuals,

populations, or spatial units to states (e.g., susceptible, infected, post-infected), but the

uncertainty associated with these state assignments remains largely ignored or

unaccounted for. We demonstrate how recent developments incorporating observation

error through repeated sampling extend quite naturally to hierarchical spatial models of

disease effects, prevalence, and dynamics in natural systems. A highly pathogenic strain

of avian influenza virus in migratory waterfowl and a pathogenic fungus recently

implicated in the global loss of amphibian biodiversity are used as motivating examples.

Both show that relatively simple modifications to study designs can greatly improve our

understanding of complex spatio-temporal disease dynamics by rigorously accounting

for uncertainty at each level of the hierarchy.
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I N T R O D U C T I O N

Wildlife disease ecology has received considerable recent

attention because of the emergence and re-emergence of a

number of pathogens causing disease in both humans and

livestock (Dobson & Foufopoulos 2001; Ostfeld & Holt

2004; Webster et al. 2006). For example, about 60% of all

infectious diseases and 72% of recent emerging infectious

diseases resulted from pathogens of wildlife origin (Taylor

et al. 2001; Jones et al. 2008). Gaining understanding of

infectious disease in wild populations is therefore critical not

only for conservation, but also for human and agricultural

health; however, the study of these complicated systems is

inherently difficult. To help gain understanding of these

systems, a wealth of epidemiological models has been

developed, including spatio-temporal models focusing on

the spread of infections and disease (e.g., Hudson et al. 2002;

Keeling & Rohani 2007). Although theoretical models offer

useful predictions about the ecological characteristics of

pathogens in natural populations, available data are often

inadequate to accurately parameterize theoretical and risk

assessment models. Indeed, Barlow (1995) found that half

of the nearly three dozen wildlife disease models reviewed

did not provide evidence that their predictions could be

supported by empirical data. In another review, Gulland

(1995) summarized the situation: �The paucity of under-

standing of wildlife disease epidemiology thus arises…from

the traditional approach to investigating disease in wildlife

and the difficulties involved in collecting such information�.
Wobeser (2006) likened disease in wild populations to �an

iceberg in that only a tiny tip projects above the water to be

visible�, and there have been repeated calls to improve

surveillance programs for detecting disease and understand-

ing its role in population dynamics and local species

extinction (Plowright 1988; Smith et al. 2006; Yasué et al.

2006; Norman 2008; Nusser et al. 2008).

Two areas of disease ecology where reliable parameter

estimation is critical are wildlife surveillance programs and
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the modelling of disease dynamics. Surveillance and

monitoring programs tend to focus on the status of

pathogens and disease in populations, with infection

prevalence the primary parameter of interest (Salman

2003; Wobeser 2006). Modelling of pathogen and disease

dynamics typically focuses on: (1) the cycling of pathogens

and disease (e.g., incidence and transmission rates) within a

host system; and (2) the potential for these pathogens to

affect population dynamics and transmit to humans or

livestock (e.g., Clark & Hall 2006). These disease-dynamic

models generally operate at two different scales: dynamics

within host populations, and dynamics across space and

host populations. Regardless of scale, disease ecologists are

often limited by an inability to directly observe the

underlying process of scientific interest and must therefore

rely on observable (but imperfect) data to make inferences.

For example, studies within host populations often desig-

nate individuals to states (e.g., susceptible, infected, post-

infected) and investigate the state-specific patterns and

dynamics of the system (Packer et al. 2003). However, the

uncertainty associated with state assignments due to non-

detection or misclassification (see Table 1) remains largely

ignored or unaccounted for in inference. Indeed, there

appears to be a pattern emerging where the potential for

observation error in wildlife disease ecology is acknowl-

edged, but not addressed in sampling designs and statistical

analyses (e.g., Schall et al. 2000; Joly & Messier 2004;

Atkinson et al. 2005; Olsen et al. 2006; Jourdain et al. 2007).

Failing to directly address observation error has the

potential to perpetuate misleading inferences about disease

in natural systems (Faustino et al. 2004; Ward et al. 2006;

Jennelle et al. 2007). Even the simplest estimators, such as

those commonly used for prevalence, may be biased because

imperfect detectability has not been accounted for (Conner

et al. 2000).

Much attention in the capture–mark–recapture literature

(e.g., Williams et al. 2002) has focused on dealing with

observation error to facilitate more reliable inference in

population ecology. This gradual shift over the past five

decades has depended upon the eventual acknowledgment

by population ecologists that indices based on counts do not

provide a valid basis for making inferences about abundance

Table 1 Glossary of terms

Term Definition

Conditional probability The conditional probability of some event A given the occurrence of some other event B is written as Pr

(A|B) = Pr (A and B) ⁄ Pr (B), where Pr (A and B) is the joint probability of both A and B occurring.

Detection history A concise summary of presence ⁄ absence data under repeated sampling, where the detection or non-detection

of a state at a sample unit is indicated by a �1� or �0�, respectively. For example, a single-season detection

history hj = 011 indicates that three samples were collected from sample unit j when the state of the sample

unit was static. The state of interest (e.g., pathogen presence) was detected in the second and third samples,

but not the first. The multiseason (e.g., year-to-year) detection history hj ¼ 011 000 indicates three samples

were collected from sample unit j in seasons one and two, but the state of interest failed to be detected during

sampling in season two. The state of the sample unit remains static within, but not necessarily between,

seasons.

Incidence The proportion of uninfected sample units that become newly infected by a pathogen or disease during a given

period of time.

Independence If two events A and B are independent, then the probability of both events is the product of the probabilities

of the two events: Pr (A and B) = Pr (A) Pr (B).

Likelihood function A function indicating how likely a particular population is to produce an observed sample. The likelihood

function for the population parameters (h) given the observed data (y) is written as L hjyð Þ.
Misclassification A sampling condition arising when a state is encountered, but assigned to the wrong state. A false positive test

result is an example of a misclassification error.

Mutually exclusive If two events A and B are mutually exclusive, then the probability of either event is the sum of the

probabilities of the two events: Pr (A or B) = Pr (A) + Pr (B).

Non-detection Failing to detect a state, although present, because it was not encountered (e.g., during sampling and ⁄ or

laboratory assay).

Prevalence The proportion of sample units that is infected by a pathogen or disease at a specific point in time.

Repeated sampling The collection of multiple observations (i.e., samples) about the state of a system during a period when the

true state of the system is static. Repeated sampling can be used to inform the detection process

incorporating different types of observation error.

State uncertainty Uncertainty arising when a quantity that describes the true attribute of a system cannot be perfectly observed

due to non-detection or misclassification. In disease ecology, these attributes might include susceptible,

infected, and post-infected states of individuals, populations, or spatial units.
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and related demographic parameters (Anderson 2001).

Given the relatively new emphasis on wildlife disease

ecology, it is therefore not surprising that the use of

uncorrected data, such as time series of counts, is

commonplace in studies aimed at providing inferences

about disease effects, prevalence, and dynamics (e.g., Begon

et al. 1998; Hudson et al. 1998; Mellor & Rockwell 2006;

Wallenstein et al. 2007; Smith et al. 2009). However, it has

been recently recognized that multistate capture–mark–

recapture models incorporating imperfect detection and

state uncertainty can be adapted to examine disease within

host populations. Jennelle et al. (2007) described two

systems, avian pox in a population of Serins (Serinus serinus)

and Mycoplasma gallisepticum conjunctivitis in House Finches

(Carpodacus mexicanus), where multistate models were used to

account for imperfect detection. Failing to account for

differential detection probabilities among infected and

uninfected individuals resulted in respective positive and

negative biases in estimates of disease prevalence and, in

both cases, there can be completely spurious patterns in

system dynamics. Also examining conjunctivitis in finches,

Conn & Cooch (2009) applied a multistate model incorpo-

rating partial observability to examine survival and transition

probabilities between infected and susceptible states. Using

this approach, they were able to explicitly acknowledge that

disease state could not always be definitively diagnosed

upon visual inspection, thereby avoiding potential misclas-

sification and unnecessary data censoring. The difficult

problem of false positive errors has only very recently begun

to receive attention in the capture–mark–recapture literature

(Lukacs & Burnham 2005; Yoshizaki et al. 2009), but both

Jennelle et al. (2007) and Conn & Cooch (2009) recognized

the importance of incorporating this type of observation

error into their models of disease. False positive error rates

are increasingly being quantified in clinical studies (e.g.,

Carey et al. 2006), and there is much promise for future

research and model development in this area.

Taking these recent developments into consideration, we

contend that a similar shift is called for at the broader scale

of surveillance and disease dynamics modelling, across both

space and host populations. In this paper, we demonstrate

how recent developments in species occurrence models that

incorporate imperfect detection and state uncertainty extend

quite naturally to hierarchical spatial models of disease

effects, prevalence, and dynamics. We first identify the

potential sources of observation error and their implications

for inference at each level of the observation process, from

spatio-temporal allocation of field sampling efforts to

laboratory practices. We then formulate a general hierarchi-

cal strategy using repeated sampling at each level of the

hierarchy to address this uncertainty. To reinforce the key

components of this alternative approach, illustrative exam-

ples focusing on real-world disease problems of immediate

concern are utilized. These include a highly pathogenic

strain of avian influenza virus in migratory waterfowl (Liu

et al. 2005) and a pathogenic fungus recently implicated in

the global loss of amphibian biodiversity (Wake & Vreden-

burg 2008) as motivating examples of how this methodology

can greatly improve our understanding of complex spatio-

temporal disease dynamics in natural systems. In the face of

substantial uncertainty, both examples emphasize that

relatively simple modifications to the designs under which

data are collected and analysed can facilitate broader and

more reliable inferences in disease ecology.

Sources of uncertainty in disease ecology

Part of what makes reliable inference in disease ecology so

difficult is the myriad of ways uncertainty can be introduced

by observation error (Fig. 1). From the selection of spatial

units, populations, or individuals for surveillance, to the

collection, handling, and diagnosis of samples, uncertainty

can enter at any or all levels of the process. To illustrate,

consider uncertainty in the context of a hypothetical broad-

scale surveillance program for highly pathogenic Asian

strain H5N1 avian influenza virus (HPAIV) among water-

fowl (family Anatidae) in North America (Cattoli & Capua

2007; Kendall 2009). Waterfowl and shorebirds serve as the

natural reservoir of avian influenza viruses (AIV; Webster

et al. 1992), and there is considerable concern about the

current global spread of HPAIV because of its impact on

poultry and its pandemic potential to humans. Although

HPAIV has not been detected in the United States, concern

about the potential introduction of this pathogen by

migrating waterfowl resulted in the initiation of a nation-

wide wild bird surveillance program (U. S. Interagency

Strategic Plan 2006). Although some North American

waterfowl species can become fatally diseased with HPAIV,

other species remain asymptomatic when infected, even

though they are still infectious (Brown et al. 2006).

Therefore, surveillance for HPAIV virus is not predicated

on the detection of clinically suspect animals.

Given the virus were to arrive and were present in North

America, there is uncertainty associated with the selection of

geographic sample units because the selected units (or

subunits therein) may not contain infected individuals

(Fig. 1a, step 1). Given some individuals in a selected

spatial unit are in fact infected, there is uncertainty

associated with the sampling of animals because not all

individuals may be infected (Fig. 1a, steps 2–3). Given a

sampled individual is infected, there is uncertainty associated

with detection of the virus in samples based on the assay

technique (Fig. 1b). There are multiple levels of uncertainty

in laboratory assays commonly used to detect HPAIV in

samples, including the sensitivity and specificity of the PCR

assays to initially detect AIV, subsequently identify the virus
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as an H5 subtype, and finally determine whether the H5 (if

detected as such) is highly pathogenic. Finally, there is the

additional uncertainty that any of the tests resulted in a false

positive error, a form of misclassification that can arise due

to cross-reaction with other subtypes, lack of specificity to

AIV, or contamination. The incorporation of observation

error is therefore important for estimating results of

laboratory assays (i.e., by analysing duplicate subsamples;

see Fig. 1b, steps 3–5) as well as evaluating methods used to

detect pathogens of interest (e.g., Hui & Walter 1980).

The levels of uncertainty in disease studies can thus be

formulated in a hierarchical series of conditional proba-

bility statements (Table 1). Consider a hierarchy, where

the levels of uncertainty fall under four general themes

(Fig. 2):

Level 1: Pr (largest geographic area contains infected

individuals).

Level 2: Pr (selected sample unit contains infected

individuals | larger geographic area infected).

Level 3: Pr (selected individual infected | sample unit

infected).

Level 4: (a) Pr (detect pathogen with assay | individual

infected); (b) Pr (detect pathogen with assay | individual not

infected).

Levels within these general themes can then be added or

removed as dictated by the disease system, study design, and

number of branches in the spatial hierarchy. Although

Levels 1, 2, or 3 are typically of most ecological interest,

uncertainty at all levels of the hierarchy needs to be

adequately addressed to facilitate reliable inferences. In our

HPAIV example, suppose interest lies in estimating prev-

alence at different levels of spatial coarseness (e.g., the

spatial prevalence of HPAIV among ponds within wildlife

refuges located in 10 min blocks). Additional levels could

(a)

(b)

Figure 1 Conceptualization of the myriad

ways in which uncertainty can emerge in

wildlife disease ecology (e.g., avian influenza

in waterfowl populations), from the spatio-

temporal allocation of field sampling effort

(a) to laboratory practices (b). Red indicates

infected samples and sample units. Whether

or not a sample is infected, false negative or

false positive test results can conceivably

occur.
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then be introduced for each spatial subunit (pond and

refuge) within each 10 min block of the larger geographic

region of interest (e.g., North America). Similarly, the

probability of detecting HPAIV given the virus were present

within an individual sample could consist of three levels

(one for each of the three laboratory diagnostics), each with

its own probability of a true or false positive detection.

Regardless of the hierarchical structure, targeted surveil-

lance based on opportunistic (or �convenience�) sampling is

particularly prone to misleading inferences (Conner et al.

2000; Nusser et al. 2008). We will therefore assume that a

surveillance protocol has some basis in probability sampling

and focus on state uncertainty arising within the hierarchy

through non-detection and misclassification. If not

accounted for, false negative (or false positive) errors will

introduce negative (or positive) biases in estimates of

prevalence and potentially spurious patterns in pathogen

effects and disease dynamics (see Fig. 3). Laboratory

diagnostics are typically optimized for sensitivity and

specificity using known positive and negative samples,

although these protocols do not guarantee accurate results

(Cattoli & Capua 2007; Chua et al. 2007; Hyatt et al. 2007;

VanDalen et al. 2008). Careful selection and handling of

specimens can also reduce the potential for these errors, but

it is unlikely that sound field and laboratory protocols will

eliminate all error. Despite this, it remains standard practice

to ignore false negatives, false positives, and observability

biases in the application of wildlife disease models to spatio-

temporal data (e.g., Hartup et al. 2001; Hess et al. 2002;

Norman 2008; Osnas et al. 2009).

Hierarchical modelling of disease state uncertainty based
on repeated sampling

Our recommendation is that uncertainty at all levels of

the hierarchy be directly incorporated into spatio-temporal

disease models and informed by repeated sampling. This

approach relies on adapting and extending models

originally developed for examining patterns and dynamics

of species occurrence, when species are detected imper-

fectly (Royle & Link 2005; Nichols et al. 2008; MacKenzie

et al. 2009). The fundamental basis for these models is

that detection probabilities for species within spatial units

can be estimated via repeated sampling over time or

space, and we wish to demonstrate how this principle can

be extended to a wide variety of problems in disease

ecology.

Spatial prevalence and dynamics under imperfect detection

Consider an investigation of the prevalence of the

pathogenic fungus [Batrachochytrium dendrobatidis (Bd)] sus-

pected in recent global amphibian declines (Pounds et al.

2006; Wake & Vredenburg 2008) in a subset of wetlands

within a national park (note that all models developed

under this example could as easily be applied to the

previous HPAIV example). Studies have suggested that Bd

can exist in aquatic habitats for several weeks in the

absence of host species (Johnson & Speare 2003).

Furthermore, several species can serve as Bd hosts, but

only a subset of anuran species and populations seem

particularly vulnerable to the disease (Muths et al. 2008). If

a single water sample was collected from each wetland

(Kirshtein et al. 2007), the data would consist of samples

testing Bd positive (indicated by a �1�) or Bd negative

(indicated by a �0�). However, suppose each wetland was

sampled on three occasions (e.g., samples were collected on

three different days or at three different locations within

each wetland sensu Kendall & White 2009) during a period

where the Bd state of each wetland was static. Under

perfect detection, the observed data would consist entirely

of 111 and 000 detection histories (Table 1) for Bd positive

and negative wetlands, respectively. However, false nega-

Infected

Infected

Infected

True
positive

False
negative

Uninfected

Uninfected

Uninfected

False
positive

True
negative

Level 1

Level 2

Level 3

Level 4

Largest geographic area

Spatial sample unit

Sampled individual

Laboratory assay

Figure 2 Hierarchical formulation of uncer-

tainty in wildlife disease ecology under four

general themes. Conditional on the disease

state at the upper levels, many different

sample paths can lead to a false negative or

false positive result upon analysis at Level 4.

Spatial subunits may be added or removed

within Level 2 of the hierarchy.
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tives may arise due to a specific sample missing the

pathogen (Level 3 above) or the failure of an assay to

identify the pathogen in a positive sample (Level 4,

Kirshtein et al. 2007). When false negative wetland assign-

ments are possible, repeated sampling can provide infor-

mation about detection probabilities to facilitate unbiased

inferences about the spatial prevalence of Bd among

wetlands. In the simple case in which false positives are

not possible, a detection history of 011 would indicate an

unambiguous Bd state assignment for the wetland: Bd was

present in the wetland, but failed to be detected in the first

of the three samples. A detection history of 000 is

ambiguous because this observation can arise from two

mutually exclusive wetland states: (1) the wetland was

negative for the fungus; or (2) the wetland was positive for

the fungus, but Bd was not detected in any of the samples.

In essence, the repeat detection data for the unambiguous

wetland state assignments can be used to inform probability

statements about the true states of the ambiguous wetlands.

This is achieved by modelling the detection histories as

independent events arising from a multinomial distribution

(MacKenzie et al. 2002). Any wetland j with detection

history hj = 011 would have event probability

Pr hj ¼ 011
� �

¼ wð1� p1Þp2p3;

where w is the probability that a wetland within the

park is Bd positive, and pk is the probability that Bd is

detected in the kth sample (i.e., the sample contains the

pathogen and it is detected by the assay), conditional on

wetland j being infected. The parameter w can also be

interpreted as the expected proportion (i.e., spatial prev-

alence) of Bd positive wetlands within the park. The

ambiguous detection history hj = 000 would have event

probability

Figure 3 A simple numerical example of the types and magnitudes of bias that can result when imperfect detection is ignored in

epidemiological studies. Plots are large-sample approximations for naı̈ve estimators (i.e., assuming no false negative and no false positive

detections) of the probability of a sample unit initially being infected (prevalence), the probability of a unit transitioning from uninfected to

infected (incidence), and the probability of a unit transitioning from infected to uninfected (recovery). Expectations are plotted as a function

of: (a) the probability of detecting infection, given presence of the pathogen within a unit, in a single sample when the probability of a false

positive detection is zero; and (b) the probability of falsely detecting infection, given absence of the pathogen within a unit, in a single sample

when the probability of a false negative detection is zero. Dashed lines represent the true values for prevalence, incidence and recovery

probabilities. Dotted lines represent the expected values of naı̈ve estimators when one sample is collected per unit. Solid lines represent the

expected values of naı̈ve estimators when three samples are collected per unit.
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Pr hj ¼ 000
� �

¼ w
Y3

k¼1

1� pkð Þ þ 1� wð Þ;

where the additive terms account for the possibility that the

wetland was Bd positive (but the fungus was not detected by

sampling) or the wetland was truly Bd negative.

For any number of sample units and sampling occasions

per unit, the likelihood function for this two-state system is

simply the product of the event probabilities for each of the

s spatial units:

L w; pjh1; h2; . . . ; hsð Þ /
Ys

j¼1

Pr hj

� �
:

The fundamental assumptions of this model are: (1) the

infection state of each sample unit does not change during

the period of sampling (e.g., an uninfected wetland does

not become infected after the first sample or sampling

occasion); (2) all units have the same probability of the

pathogen being present; (3) the probability of a positive

detection from a sample, given presence of the pathogen,

is the same across all units; (4) detections are independent

within and across units; and (5) there are no false positive

detections. We will later describe how assumptions 2 and 3

may be relaxed, if appropriate covariates are available to

model variation in prevalence and detection probabilities

(see Incorporating more ecological realism). Similarly,

assumption 5 may be relaxed, if information about the

false positive detection process is available (see False po-

sitive state assignments). For this model (and all those to

follow), the likelihood function and detection history data

facilitate the estimation of parameters via maximum like-

lihood (e.g., MacKenzie et al. 2006) or Bayesian (e.g., Royle

& Dorazio 2008) analysis methods. All conditional prob-

ability statements in this paper result from integrating

across the possible latent disease states for a given model

(see Fig. 4). Alternatively, Monte Carlo integration meth-

ods can be used to the same effect (Royle & Dorazio

2008).

The parameter w thus corresponds to the prevalence of

the pathogen among spatial units, an important parameter

for inference about pattern in disease ecology. For

inferences about pathogen dynamics, we will relax an

assumption to examine changes in Bd spatial prevalence

through time (Fig. 4). Suppose wetlands were sampled three

times each year for two consecutive years, where Bd states

were assumed static during within-year sampling but

dynamic between years. The detection history

hj ¼ 101 110 would be unambiguous in wetland state

assignment for both years, with event probability

Pr hj ¼ 101 110
� �
¼ w1p1;1 1� p1;2

� �
p1;3 1� / 1;0½ �

1

� �
p2;1p2;2 1� p2;3

� �
;

where wt is Bd prevalence among wetlands within the

park in year t, pt,k is the Bd detection probability for the

kth sample of the t th year, and / m;n½ �
t is the probability of

a wetland transitioning from state m in year t to state n in

year t + 1 (see Table 2). The detection history

hj ¼ 000 000 would be ambiguous for both years, with

probability

Sample
unit

Infected

Detected 

Infected

Uninfected

Infected

Uninfected

Uninfected

Detected

Infected

Uninfected

Not
detected

Not
detected

Infected

Uninfected

[ ]( )1,01,1 1t t tP= −

[ ]1,01,1
t t tP=

( ) [ ]( )1,01,11 1t t tP= − −

( ) [ ]1,01,11t t tP= −

( ) [ ]0,11,01 t t t= −

( ) [ ]( )0,11,01 1t t tP= − −

( )( ) [ ]0,11,01 1t t tP= − −

( )( ) [ ]( )0,11,01 1 1t t tP= − − −

1,1
tp

1,11 tp−

[ ]1,01 t−

[ ]1,0
t

[ ]1,01 t−

[ ]1,0
t

1,0
t

p

1,0
1 t

p−

[ ]0,1
t

[ ]0,11 t−

[ ]0,11 t−

[ ]0,1
t

t

1 t−

Event  probability

ψ

ψ

φ

φ

φ

φ

φ

φ

φ

φ

ψ φ

ψ φ

ψ φ

P

ψ φ

ψ φ

ψ φ

φψ

ψ φ

Figure 4 The possible event probability

statements under a simple spatial disease

dynamics model. A sample unit is infected at

time t with probability wt, and given infec-

tion at time t, the unit is detected as infected

with probability p
1;1
t . An uninfected unit may

be (erroneously) detected as infected with

probability p
1;0
t . By time t + 1, an infected

unit may have become uninfected with

probability /½1;0�t , or an uninfected unit may

have become infected with probability /½0;1�t .

In application, it is typically assumed that

p
1;0
t ¼ 0: See Table 2 for formal interpreta-

tion of parameter superscripts.
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Pr hj ¼ 000 000
� �

¼

w1

Y3

k¼1

1� p1;k

� �
1� /½1;0�1

� �Y3

k¼1

1� p2;k

� �
þ /½1;0�1

" #

þ 1� w1ð Þ /½0;1�1

Y3

k¼1

1� p2;k

� �
þ 1� /½0;1�1

� �" #
:

Spatial prevalence within the park after the first year can be

obtained through the recursive equation wtþ1 ¼
wt 1� / 1;0½ �

t

� �
þ 1� wtð Þ/ 0;1½ �

t (MacKenzie et al. 2003).

Under this parameterization, the spatial incidence /tð Þ
among wetlands from time t to time t + 1 can be estimated

by / 0;1½ �
t .

Simple host and pathogen dynamics

These models can be extended beyond the simple two-state

system that accommodates false negative detections for the

pathogen. Suppose interest was not in whether specific

wetlands were infected with Bd, but instead in the effects,

prevalence, and dynamics of Bd on an amphibian species

potentially residing within these wetlands. Each wetland

could then fall under one of at least three possible states: (1)

unoccupied by the host species (State 0); (2) occupied by the

host species with no infected individuals (State 1); and (3)

occupied by the host species with infected individuals (State

2). Assuming no false positives, there is no uncertainty

associated with a wetland�s state assignment when an

infected individual is detected. However, there remains

uncertainty in the occupancy state of wetlands (due to non-

detection of the amphibian species) and for the infection

state assignment of occupied wetlands (due to non-detection

of Bd).

Consider the observed detection history hj ¼ 01 21 00

for a wetland that was visited over 3 years, where

individuals of an anuran species were captured (with

replacement) and swabbed for Bd over two sampling

periods within each year. In the first year, the anuran

species was only detected on the second sampling period,

and none of the sampled individuals tested positive for Bd.

The state of the wetland was partially observed because it

is known that the wetland was occupied by the anuran

species during both sampling occasions of the first year,

but it is unclear whether the wetland actually had no

infected individuals, or had infected individuals that

sampling failed to detect. In the second year, the �2�
indicates that infected individuals were detected during the

first sampling occasion. It is therefore known that the

wetland was occupied by infected individuals in the second

year, with Bd failing to be detected on any of the

individuals sampled during the second sampling occasion.

No individuals were captured in the third year, and it is

unclear whether the wetland was no longer occupied,

occupied but uninfected, or occupied and infected. The

3 years of this detection history show a natural ordering of

the degree of uncertainty about true wetland state. In year

one, the wetland must be in either state 1 or 2, whereas in

year two the true wetland state is known to be 2. Year

three admits the greatest uncertainty, with all three true

states being possible. The probability of observing this

detection history is

Pr hj ¼ 01 21 00
� �
¼ w½1�1 p

0;1
1;1 p

1;1
1;2/

½1;2�
1 þ w½2�1 p

0;2
1;1 p

1;2
1;2 /½2;2�1

� �

� p
2;2
2;1 p

1;2
2;2 / 2;0½ �

2 þ / 2;1½ �
2

Y2

k¼1

p
0;1
3;k þ / 2;2½ �

2

Y2

k¼1

p
0;2
3;k

 !
;

where w½m�t is the probability that a sample unit is in state m

in year t, p
l ;m
t ;k is the probability of observing state l on

sampling occasion k of year t when the true state is m, and

/½m;n�t is the probability of a sample unit transitioning from

state m in year t to state n in year t + 1 (MacKenzie et al.

2009). Note that in this example, we assume no false posi-

tives so that p
1;0
t ;k ¼ p

2;0
t ;k ¼ p

2;1
t ;k ¼ 0:

Under this three-state system, w½1�t þ w½2�t is the proba-

bility of a wetland being occupied by the host species in year

t, and the spatial prevalence of Bd among occupied wetlands

is wt ¼ w½2�t = w½1�t þ w½2�t

� �
; where w½m�tþ1 ¼ w½2�t /½2;m�t þ

w½1�t /½1;m�t þ 1� w½1�t � w½2�t

� �
/½0;m�t . The fraction of occu-

pied sample units containing no infected individuals at time t

that contained infected individuals by time t + 1 (i.e., spatial

Table 2 Definitions of parameters used in the hierarchical model

of spatial disease effects, prevalence, and dynamics that incorpo-

rates state uncertainty. Additional spatial or sample subscripts may

be added as required by the hierarchy

Parameter Definition

w½m�t Probability of sample units within a larger

geographic area being in state m at time t

wt Prevalence of infected sample units within

a larger geographic area at time t

/½m;n�t Probability of sample units within a larger

geographic area transitioning from state

m at time t to state n at time t + 1

/t Incidence of newly infected sample units within

a larger geographic area from time t to time

t + 1

p
l ;m
t ;k Probability of detecting a sample unit in state

l in the kth sample collected at time t when the

true state is m*

*In the absence of false positive errors, the state superscript is

removed when there are only two states.
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incidence) is /t ¼ w½1�t /½1;2�t þ 1� w½1�t � w½2�t

� �
/½0;2�t

h i�
1� w½2�t

� �
. As with all models herein, the likelihood for

this dynamic three-state system accommodating non-detec-

tion is simply L w;/; pjh1; h2; . . . ; hsð Þ /
Qs
j¼1

Pr hj

� �
. By

directly incorporating state uncertainty, this approach to

dynamical disease modelling not only allows changes in

disease or pathogen prevalence across time and space to be

reliably investigated, but also changes in host species

occurrence as a function of disease or pathogen state.

Hierarchical spatial patterns and dynamics

We will now extend these models of disease state

uncertainty to multiple spatial scales by incorporating

additional levels of repeated sampling within Level 2 of

the hierarchy (Fig. 2). Use of the same unified sampling

framework through each level of the spatial hierarchy allows

disease systems to be simultaneously examined across coarse

spatial units (e.g., for monitoring global trends) down to

much finer units that may be of importance at the local

population level. Perhaps instead of wetlands within a single

park, interest lies in Bd within a system of parks covering a

much broader geographic area (e.g., Muths et al. 2008). For

simplicity, suppose two wetlands in each park were

randomly sampled, and two water samples were collected

from each wetland. If only one sample tested positive for

Bd, the individual detection histories for the two wetlands

sampled in park i could be hi,1 = 00 and hi,2 = 01. At the

park level, the pathogen state is unambiguous because Bd

was detected in at least one of the samples from at least one

of the wetlands. However, there is ambiguity at the wetland

level because the pathogen was not detected in either of the

samples from the first wetland. Under the two-state

hierarchical model, this joint detection history event for

park i would have probability

Pr hi ¼
00

01

� �
¼

wi

wi;1 1� p1;i;1

� �
1� p2;i;1

� �
þ 1� wi;1

� �	 

�wi;2 1� p1;i;2

� �
p2;i;2

( )
;

ð1Þ

where wi is the probability that park i contains Bd (i.e., Bd

prevalence among the parks within the broader geographic

area), wi, j is the conditional probability that wetland j con-

tains Bd (i.e., Bd prevalence among the wetlands within park

i, given the pathogen is present in park i), and pk, i, j is the

probability that the kth sample from wetland j in park i is Bd

positive and detected (Nichols et al. 2008; Kendall 2009).

Additional replication in time allows the spread of the

pathogen to be examined at each of the spatial levels in the

hierarchy. Suppose that after an additional year of sampling,

the individual detection histories for the two sampled

wetlands in park i were hi;1 ¼ 00 00 and hi;2 ¼ 01 00 . As

Bd was not detected at either wetland in the second year,

there is now uncertainty at both the park and wetland level.

This can still be readily handled probabilistically at each level

of the spatial hierarchy under the dynamical two-state

model:

where wt,i is the probability that park i contains Bd during

year t, wt,i, j is the conditional probability that wetland j

contains Bd (given the pathogen is present in park i)

during year t, /½m;n�t ;i is the probability of park i

transitioning from state m in year t to state n in year

t + 1, /½m;n�t ;i;j is the probability of wetland j transitioning

from state m in year t to state n in year t + 1, and pt, k, i, j

is the probability that the kth sample from wetland j of

park i is Bd positive and detected in year t. The first

element on the right-hand side of the equation describes

the wetland probability statements conditional on the park

being Bd positive in both years. The second element

describes the wetland probability statements conditional

on the park becoming Bd negative, whereby all wetlands

must be Bd negative in the second

year /½1;0�1; i; j ¼ 1� /½0;1�1; i; j ¼ 1
� �

. Prevalence at both scales

can be obtained through the recursive equations

wtþ1;i ¼ wt ;i 1� / 1;0½ �
t ;i

� �
þ 1� wt ;i

� �
/½0;1�t ;i and

wtþ1;i; j ¼ fwt ;ið1� /½1;0�t ;i Þ½wt ;i; jð1� /½1;0�t ;i; j Þ þ ð1� wt ;i; jÞ

/½0;1�t ;i; j � þ ð1� wt ; iÞ/
½0;1�
t ;i /½0;1�t ; i; jg=wtþ1;i : As before,

Pr hi ¼
00 00

01 00

� �
¼w1;i 1�/ 1;0½ �

1;i

� � w1;i;1 1�p1;1;i;1

� �
1�p1;2;i;1

� �
1�/ 1;0½ �

1;i;1

� �
1�p2;1;i;1

� �
1�p2;2;i;1

� �
þ/ 1;0½ �

1;i;1

h i
þ 1�w1;i;1

� �
/ 0;1½ �

1;i;1 1�p2;1;i;1

� �
1�p2;2;i;1

� �
þ 1�/ 0;1½ �

1;i;1

� �h i
0
B@

1
CA

�w1;i;2 1�p1;1;i;2

� �
p1;2;i;2 1�/ 1;0½ �

1;i;2

� �
1�p2;1;i;2

� �
1�p2;2;i;2

� �
þ/ 1;0½ �

1;i;2

h i

8>>>><
>>>>:

9>>>>=
>>>>;

þw1;i/
1;0½ �

1;i

w1;i;1 1�p1;1;i;1

� �
1�p1;2;i;1

� �
þ 1�w1;i;1

� �	 

�w1;i;2 1�p1;1;i;2

� �
p1;2;i;2

( )

ð2Þ
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/t ;i ¼ /½0;1�t ;i is the spatial incidence among parks within

the broader geographic area, or the probability of park i

transitioning from Bd negative in year t to Bd positive in

year t + 1. Similarly, /t ; i; j ¼ /½0;1�t ; i; j is the incidence

among wetlands within park i, conditional on park i

being Bd positive in year t + 1. We note that this model

allows the possibility that a park is Bd positive, even if

none of the sampled wetlands contains the patho-

gen (assuming not all wetlands within the park were

sampled).

As eqn 2 implies, the hierarchical detection process and

the likelihood that describes it can become quite compli-

cated as the number of time periods, sample units, or sample

occasions increases. Succinct matrix notation makes the

model tractable:

Pr hið Þ ¼ y
YT�1

t¼1

Dt Rt Wt

" #
dT ð3Þ

where T is the number of sampling periods (e.g., years), y

is an initial state vector, Dt is a diagonal matrix specify-

ing the state-dependent probability of the observed

detection history for all s sample units at time t, Rt and

Wt are the state transition probability matrices for the

broader geographic area and the sample units, respec-

tively, and dT is a vector specifying the state-dependent

probability of the observed detection history for all

s sample units at time T. Motivated readers are referred

to Appendix S1 for complete details (see Supporting

Information).

Hierarchical multistate patterns and dynamics

We now develop a hierarchical spatial model for the

dynamical three-state system, where both sample units and

larger geographic areas can be classified as unoccupied (State

0), occupied but uninfected (State 1), or occupied and

infected (State 2) based on sampling of the host species.

Returning to the Bd example, suppose sampling was

conducted each year on two wetlands in each park, and

anurans were captured and swabbed for Bd on two

occasions within each year. If the two wetlands sampled

in park i during the first year yielded the detection histories

hi,1 = 10 and hi,2 = 21, it is known that this park was

occupied by infected individuals. Both wetlands were

occupied by the species, but it is unclear whether the

anuran population at the first wetland was infected or not.

Observing this joint detection history has probability

Pr hi ¼
10

21

� �
¼ w½2�i

w½1�i;1 p
1;1
1; i;1 p

0;1
2; i;1 þ w½2�i;1 p

1;2
1; i;1 p

0;2
2; i;1

� �
�w½2�i;2 p

2;2
1; i;2 p

1;2
2; i;2

2
4

3
5;

where w½m�i is the probability that park i is in state m, w½m�i; j is

the probability that wetland j is in state m, and p
l ;m
k;i; j is the

probability of observing state l for the kth sample of wet-

land j when the true wetland state is m. Under this model,

wi ¼ w½2�i = w½1�i þ w½2�i

� �
is Bd prevalence among occupied

parks within the broader geographic area, and

wi;j ¼ w½2�i;j = w½1�i;j þ w½2�i;j

� �
is the conditional Bd prevalence

among occupied wetlands within park i (given park i is

infected). If in a second year of sampling the wetland

detection histories hi;1 ¼ 10 00 and hi;2 ¼ 21 11 were

observed, it is known that park i remained occupied by the

host (anuran) species, but it is unknown whether the park

remained infected or became uninfected. At the lower level,

it is also unknown whether either of the sampled wetlands

was infected during the second year of sampling, or whether

the first wetland remained occupied by the host species. The

probability of observing this event under the hierarchical

three-state dynamics model is

where w½m�t ;i is the probability that park i is in state m during

year t, w½m�t ;i;j is the probability that wetland j of park i is in

state m during year t, and p
l ;m
t ;k;i;j is the probability of

observing state l in sample k at wetland j in year t when the

true state is m. The first element on the right-hand side of

the equation describes the probability statements condi-

tional on the park being occupied and infected in the first

year, but becoming uninfected and remaining occupied by

the host species in the second year. The second element

describes the probability statements conditional on the park

Pr hi ¼
10

21

00

11

� �
¼ w½2�1; i/

½2;1�
1; i

w½1�1; i;1 p
1;1
1;1; i;1 p

0;1
1;2; i;1 /½1;0�1; i;1 þ /½1;1�1; i;1 p

0;1
2;1; i;1 p

0;1
2;2; i;1

� �
þw 2½ �

1; i;1 p
1;2
1;1; i;1 p

0;2
1;2; i;1 /½2;0�1; i;1 þ /½2;1�1; i;1 p

0;1
2;1; i;1 p

0;1
2;2; i;1

� �
2
64

3
75

�w½2�1; i;2 p
2;2
1;1; i;2 p

1;2
1;2; i;2/

½2;1�
1; i;2 p

1;1
2;1; i;2 p

1;1
2;2; i;2

8>>>><
>>>>:

9>>>>=
>>>>;

þ w½2�1; i/
½2;2�
1; i

w½1�1; i;1 p
1;1
1;1; i;1 p

0;1
1;2; i;1 /½1;0�1; i;1 þ /½1;1�1; i;1 p

0;1
2;1; i;1 p

0;1
2;2; i;1 þ /½1;2�1; i;1 p

0;2
2;1; i;1 p

0;2
2;2; i;1

� �
þw½2�1; i;1 p

1;2
1;1; i;1 p

0;2
1;2; i;1 /½2;0�1; i;1 þ /½2;1�1; i;1 p

0;1
2;1; i;1 p

0;1
2;2; i;1 þ /½2;2�1; i;1 p

0;2
2;1; i;1 p

0;2
2;2; i;1

� �
2
64

3
75

�w½2�1; i;2 p
2;2
1;1; i;2 p

1;2
1;2; i;2 /½2;1�1; i;2 p

1;1
2;1; i;2 p

1;1
2;2; i;2 þ /½2;2�1; i;2 p

1;2
2;1; i;2 p

1;2
2;2; i;2

� �

8>>>><
>>>>:

9>>>>=
>>>>;
;

668 B. T. McClintock et al. Idea and Perspective

Published 2010. This article is a US Government work and is in the public domain in the USA



being occupied and infected during both years. As before,

this model allows for a park to have been occupied by the

host species and infected even if none of the sampled

wetlands was. The model may also be defined in general

terms using the matrix notation of eqn 3 by extending each

component for an additional state (see Appendix S1 in

Supporting Information).

The multistate hierarchical model is not limited to three

states, and the sample units are not limited to unoccupied or

occupied states for the host species. All sampling could

occur at units occupied by the host, and the states could

instead be defined only in terms of the pathogen (e.g.,

uninfected, less severe infection, more severe infection) to

address questions about the spread and status of infections

across host populations. One advantage of the former

approach is that it allows the effects of disease or infection

states to be assessed through the patterns and dynamics of

the host species. For example, if the host populations of

infected units tend to go locally extinct at a greater rate than

those of uninfected units /½2;0�>/½1;0�
� �

, then this provides

evidence for the negative impacts of the pathogen. This

approach would be particularly useful for large scale Bd

monitoring programs, because it is not yet understood why

some infected regions are exhibiting local declines while

other infected regions are not, as demonstrated in boreal

toad (Bufo boreas) populations in the southern and northern

Rocky Mountains (Scherer et al. 2005; Muths et al. 2008).

Despite our focus thus far on uncertainty within spatial

levels, the hierarchy need not be limited to levels in space.

For example, additional replication within Level 3 of the

hierarchy at the individual sample level (Fig. 1b, steps 3–5)

allows the probability that a sample contains a pathogen

(given the unit is infected) to be distinguished from the

probability that a pathogen is detected by the assay

technique(s), given the sample contained the pathogen.

This information could be particularly useful for examining

infection prevalence within local populations or for design-

ing optimal sampling and laboratory protocols.

Incorporating more ecological realism

All of these models may be further tailored to address

specific ecological hypotheses about the factors driving

pathogen prevalence and dynamics. For example, if Bd

prevalence is believed to be associated with temperature,

one could parameterize prevalence as a function of average

seasonal temperature using a logistic regression (e.g., Martin

et al. 2005) such that:

logit wið Þ ¼ b0 þ bT xi ;

where b0 is an intercept term, bT is a term for the tem-

perature effect, and xi is the average temperature for park i.

This approach could also be used to model transition

probabilities between states (e.g., incidence) as a function of

one or more covariates. Autologistic models (Besag 1972)

may be incorporated within this context, in that the infec-

tion state of a spatial unit may be correlated with that of its

neighbours. For example, one could model incidence in the

two-state model as

logit /½0;1�i; j

� �
¼ b0þk1 zi�1; j þ z iþ1; j

� �
þ k2 zi; j�1þ zi; jþ1

� �
;

where the probability that an uninfected unit in the ith row

and jth column of a spatial lattice becomes infected is related

to prevalence zi; j ¼wi; j

� �
or infection state zi;j ¼ 0;1

� �
at

neighbouring units, and kk is a term for the spatial depen-

dence in direction k. Because zi, j is not a standard covariate,

this parameter must be estimated to account for imperfect

detection. Simulation-based Bayesian approaches utilizing

Markov chain Monte Carlo (MCMC, e.g., Royle & Dorazio

2008) appear to be especially well-suited for the simulta-

neous estimation of parameters for the set of locations in

the sampled region. A less mechanistic approach could

utilize spatially correlated random effects (Magoun et al.

2007).

One could also model spatial dependence as a function of

the distance to occupied or infected neighbours. For

example, prevalence in the two-state model could be

parameterized as

logit wið Þ ¼ b0 þ bD

Pki

j¼1 wij zjPki

j¼1 wij

 !
;

where bD is a spatial dependence term for unit i, z j is the

prevalence z j ¼ wj

� �
or infection state z j ¼ 0; 1

� �
for unit

j within a set of ki neighbouring units, wij = 1 ⁄ hij is the

weight given to unit j, and hi j is the Euclidian distance be-

tween units i and j (Augustin et al. 1996). As above, the z j

covariate must be estimated under imperfect detection, and

simultaneous estimation of z j and wi can be accomplished

using MCMC. As a metric of disease spread, these methods

would also be useful for modelling incidence as a function

of distance to infected neighbours.

Many other sources of information can be readily

incorporated into the repeated sampling framework. For

example, one could collect detection data using multiple

methods (e.g., water and anuran swab samples) to

examine prevalence at each of the corresponding scales

(e.g., wetland and individual level) sensu Nichols et al.

(2008). Within a disease context, models of species co-

occurrence patterns and dynamics have been underutilized

due to a lack of suitable data sets (Gotelli & Rohde

2002). However, the proposed hierarchy can be extended

to recently developed co-occurrence models when species

are detected imperfectly (MacKenzie et al. 2006). As the
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most important predictors may differ by spatial scale, one

could also investigate different explanatory variables at

each level of the hierarchy. These could include variables

related to heterogeneity in detection probability parame-

ters, a potential source of observability bias if not

accounted for in these models (Royle 2006; Jennelle et al.

2007). This flexibility allows many interesting hypothe-

ses to be explored within the same probabilistic frame-

work, with model selection and multimodel inference

procedures available (e.g., Hoeting et al. 1999; Burnham &

Anderson 2002) as weights of evidence for competing

hypotheses about the specific system of interest

(see Plowright et al. 2008 for applications in disease

ecology).

False positive state assignments

We have thus far proposed a general strategy for

incorporating uncertainty into hierarchical spatial models

of disease. The specification of these models is straight-

forward and only requires some form of repeated sampling

at each level of the hierarchy. However, one problem of

this approach is the assumption of no misclassification due

to false positive errors when assigning disease or occu-

pancy states. This assumption provides one unambiguous

state (i.e., a gold standard) for which truth is �known�,
leading to the ability to estimate other model parameters in

the face of substantial uncertainty due to non-detection.

False positive errors have received considerably less

attention in other fields of ecology (but see Royle & Link

2006), and are arguably the most difficult to account for

because they remove the unambiguous observations on

which estimation is anchored. Despite the difficulty,

disease studies present a special opportunity to address

false positives because there is the potential to minimize or

quantify the frequency of these errors through laboratory

procedures.

The potential for false positive errors can be greatly

reduced through sound laboratory practices. Clearly, these

would include proper handling of samples and equipment

to prevent contamination, but also the selection of fresh

samples in the field. Optimizing tests for sensitivity and

specificity based on known negative and positive samples

is a standard procedure, and perhaps the best strategy for

reducing false positive errors is to calibrate for lower

sensitivity (Chua et al. 2007) and higher specificity

(VanDalen et al. 2008). This approach would result in

more false negative detections and create new problems

for inference methods that do not incorporate non-

detection, but these issues are readily handled by models

such as those we have proposed. Indeed, the meticulous

design and implementation of laboratory protocols can

greatly reduce the propensity for false positives, but it is

very unlikely that protocols alone will completely eliminate

them. It therefore seems warranted to incorporate false

positive errors within the hierarchical modelling frame-

work, and this theme constitutes a promising area for

future research.

Instead of relying on more expensive laboratory

diagnostics, disease or infection states are sometimes

assigned based on visual inspection in the field (Jennelle

et al. 2007; Conn & Cooch 2009). Depending on how

these states are defined, there is arguably greater potential

for misclassification when using visual inspection instead

of laboratory diagnostics. One approach to minimizing

the potential for false positive errors is to define the

observed infected states conservatively and rely on models

accounting for non-detection to correct for the these

errors. Alternatively, a subset of randomly selected

individuals could be diagnosed using both field and

laboratory diagnostics, where the laboratory state assign-

ment is considered a reference from which to assess the

misclassification errors of the field diagnostic method

(e.g., Hui & Walter 1980). This information could then be

directly incorporated within Level 4 of the hierarchy

(Fig. 2).

Another potential avenue uses ancillary information

about false positive error rates based on expert prior

information (e.g., Branscum et al. 2004) or additional tests in

the laboratory. Suppose a calibration protocol is established

to optimize sensitivity and specificity based on samples of

known infection state. If there were concerns about

contamination or if the procedure deemed �optimal� still

permitted the occasional false positive, this probability could

be estimated based on repeated tests of known negative

samples. The outcomes of n independent trials could be

assumed binomially distributed, with false positive assign-

ment probability p1,0 (Fig. 4). This auxiliary information

could then be incorporated into the models developed

above by constructing a joint likelihood for the detection

histories incorporating false positive errors. Under the two-

state hierarchical model (eqn 1), the individual sample unit

detection histories hi,1 = 00 and hi,2 = 01 would have joint

event probability

Pr hi¼
00

01

� �

¼wi

wi;1 1�p
1;1
1; i;1

� �
1�p

1;1
2;i;1

� �
þ 1�wi;1

� �
1�p1;0ð Þ2

h i
� wi;2 1�p

1;1
1; i;2

� �
p

1;1
2; i;2þ 1�wi;2

� �
1�p1;0ð Þ p1;0ð Þ

h i
8><
>:

9>=
>;

þ 1�wið Þ 1�p1;0
� �3

p1;0
� �

;

where p
l ;m
k;i; j is the probability of observing state l in sample k

of unit j within larger geographic area i when the true unit

state is m. The joint likelihood for this model is
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L w; p1;1; p1;0jh1; h2; . . . ; hs; y; n
� �
/ p1;0
� �y

1� p1;0
� �n�y

YS

i¼1

Pr hi jp1;0
� �

;

where y is the number of false positive events during the

laboratory trials. Equation 1 then arises as a special case of

this model under the constraint p1,0 = 0.

C O N C L U S I O N

Methods originally developed in other areas of ecology are

clearly extendable to disease surveillance, monitoring, and

modelling in ways that have yet to be widely appreciated by

disease ecologists. We believe that hierarchical occupancy

models provide a natural framework for inference about

disease prevalence and dynamics across time and space, in

the same way that multistate capture–recapture models

provide a natural way to investigate rates of mortality and

disease transmission among individuals within a local

population. Through repeated sampling, this general frame-

work allows a diverse range of questions about disease

effects, prevalence, and dynamics to be addressed while

rigorously accounting for uncertainty induced by observa-

tion error. We do not claim that adoption of our suggestions

will provide a complete remedy for the �paucity of

understanding of wildlife disease epidemiology�, as a general

sampling and modelling framework is one of several

components for which improvements are needed (Gulland

1995). However, we believe that use of these approaches

will represent a large step in the right direction. Just as

patients are encouraged to seek a second medical opinion

before beginning treatment, we encourage disease ecologists

to invest in repeated sampling before drawing inferences.

Perhaps our most important messages are that disease

ecologists are seldom (if ever) able to perfectly detect

disease, and that properly accounting for this inability is

critical to reliable inference. Non-detection and misclassifi-

cation errors are not statistical fine points, but rather can

produce misleading inferences if not properly incorporated

into inference methods (e.g., Martin et al. 2005; Royle &

Link 2006). This recognition of the importance of detection

issues took many years to be adopted in animal population

and community ecology; we do not expect rapid adoption of

this methodology in disease ecology. Yet we do hope for

similar changes to occur in disease ecology that will lead to

more reliable inferences about pathogens and disease in

natural systems.

We anticipate the arguments that the proposed modelling

framework requires additional data, and the nature of the

repeated sampling design will likely incur additional costs in

the field or laboratory. Indeed, this may pose a significant

hurdle because available resources are often inadequate for

implementing epidemiological studies at the scales these

models allow. However, we suspect there are many cases

where repeated sampling is conducted as part of field or

laboratory protocols, but not utilized for the estimation of

detection probabilities (e.g., Begon et al. 1998; Atkinson

et al. 2005; Salkeld & Schwarzkopf 2005; McLean et al.

2007). For existing surveillance and monitoring programs

where study costs are fixed, the need for replicate sampling

at sample units will sometimes result in fewer units being

sampled. This should not be viewed as undesirable. Under

imperfect detection, MacKenzie & Royle (2005) demon-

strated that without sufficient replicate surveys, sampling

more units can actually result in less precise estimates of

prevalence than sampling fewer units with a more appro-

priate level of replication. Similar results will likely hold for

the more complicated hierarchical models introduced here.

We emphasize that failing to obtain replicate samples

from the unit of interest leads to inferences about a random

variable (disease detection) that confound both: (1) true

disease presence; and (2) sampling and detection processes.

We believe that inference about true disease pattern and

process based on a smaller number of units will virtually

always be preferable to inference about a confounded

variable based on a larger number of units. Moreover,

provision of a clear framework for sampling and inference

leads naturally to the development of efficient sampling

designs that are optimal with respect to study objectives

(e.g., MacKenzie & Royle 2005). For example, the ability to

combine data from visual assessments of infection with

high misclassification error and more expensive laboratory

assays permitting unambiguous disease classification should

permit useful recommendations about the optimal mix of

effort devoted to these low expense ⁄ high error and high

expense ⁄ low error survey methods. In many cases, well-

designed approaches may ultimately cost less and provide

more understanding than a composite of multiple uncoor-

dinated, opportunistic surveillance protocols.

We also anticipate reluctance of wildlife disease ecologists

to embrace models and inference methods that appear to be

more complicated than those previously used. We do not

deny that incorporation of parameters reflecting detection

and misclassification lead to additional complexity. How-

ever, we note that some of the simpler models presented in

this paper can be implemented using available software,

such as programs PRESENCE (Hines 2006) and MARK

(White & Burnham 1999). Both PRESENCE and MARK

rely primarily on a maximum likelihood framework for

inference, but Bayesian analyses can be readily implemented

using MCMC approaches (e.g., Royle & Dorazio 2008;

MacKenzie et al. 2009). As ecologists show interest in these

types of models, we anticipate the rapid development of

software to implement additional specific models that are

useful in epidemiology.
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Use of hierarchical models of the type presented here will

permit inferences relevant to a number of important

questions in spatial epidemiology and disease ecology.

Single-season models (i.e., those with no temporal compo-

nent) permit inferences about spatial patterns of pathogens

and disease, as well as about ecological and environmental

covariates associated with spatial variation. The multiseason

models permit inferences about pathogen and disease

dynamics over both time and space. Factors affecting

disease outbreaks and remissions are the subject of many of

the more interesting ecological hypotheses, so we anticipate

much interest in covariate modelling of these pathogen- and

host-level vital rates. Multistate, multiseason models permit

simultaneous inference about disease and its effects on the

occurrence dynamics of host populations, a topic important

to conservation biology and evolutionary ecology.

We also believe that hierarchical disease models hold

great promise for wildlife disease management. Management

decisions may involve diverse actions, ranging from

vaccination to depopulation of infected individuals.

Informed decision making will require models projecting

the effects of different management actions on the vital

rates of the disease and host populations (e.g., Williams et al.

2002). The inference methods presented here would be

useful in the initial development of such models. They

would be especially useful for monitoring consequences

of actions by providing estimates of disease-dynamic

parameters to discriminate among competing models of

management effects.
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