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Abstract
Context.Wolf predation on livestock can cause economic hardship for livestock producers as well as reduce tolerance for

wolves. Lethal control of wolves is often controversial; thus, development of effective non-lethal methods for reducing
wolf–livestock conflict is important. Electrified fladry is a new tool that is similar to fladry (i.e. a barrier system that scares
wolves), but electrifiedfladry also incorporates an electric shock designed to decrease the potential for wolves to habituate to
the barriers.

Aim.Evaluation of electrifiedfladry requires understanding of its effectiveness relative tofladry and the costs and benefits
of applying it in the field.

Methods. By using captive wolves, we compared the effectiveness of electrified fladry v. fladry for protecting a food
resource during 2-week trials. We then performed a field trial with electrified fladry for managing wolves in Montana,
USA. We measured livestock depredation and wolf activity on six treatment and six control pastures, calculated the cost of
installation and maintenance, and surveyed all study participants about application of electrified fladry.

Key results. We found electrified fladry 2–10 times more effective than fladry at protecting food in captivity and that
hunger increased the likelihood of wolves testing fladry barriers. In field trials, we installed 14.0 km of EF systems in
treatment pastures and detectedwolves twice in control pastures but never in the treatment pastures. No livestockwere killed
by wolves in treatment or control pastures. A completed electrified fladry system cost $2303 for the first km and $2032 for
each additional km, and required 31.8 person-hours per kilometre to install. We observed 18 failures (i.e. electrified system
stopped working) during a total of 394 days of use. In total, 83% of ranchers who used fladry would continue to use it under
certain conditions, indicating some psychological benefit to users.

Conclusions and implications. The present study has demonstrated that electrified fladry offers superior protection
comparedwith non-electrified fladry; however, further field tests are warranted to help determine whether benefits outweigh
costs.

Introduction

Wolf (Canis lupus) predation on livestock can cause economic
hardship for livestock producers and lead to animosity towards
wolves; however, some management actions (especially lethal
control methods) have poor support from the general public
(Mech 1970; Ciucci and Boitani 1998; Reiter et al. 1999;
Bangs and Shivik 2001; Treves et al. 2002). Management of
predation must be effective in stopping damage, and also needs
to be socially acceptable; different damage-management
situations may have very different contexts and it is a difficult
task to identify the best lethal and non-lethal method for a
particular problem (Mech 1996). Presumably, a greater variety
of options would assist managers in a wider variety of complex
situations. Thus, there exists a strong need for a greater number of

effective management strategies that will help alleviate
depredation pressure from wolves (Breck 2004; Shivik 2006).

Recent studies using the barrier technique known as fladry
(flagging interspersed on a single strand of nylon twine)
documented that, for short durations, captive and free-ranging
wolves avoided flagging that prevented access to food (Okarma
1993; Okarma and Jedrzejewski 1997; Musiani and Visalberghi
2001; Musiani et al. 2003; Shivik et al. 2003). Fladry is a type of
primary repellent in that it relies on producing a flight or startle
response to deter predatory behaviour (Shivik et al. 2003; Shivik
2004). In earlier work, fladry has been rendered ineffective
through the process of habituation (Musiani et al. 2003),
which results in extinction of an animal’s fear towards a novel
object (Shivik et al. 2003). Habituation is determined by the
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intensity of a stimulus (e.g. fladry) and the motivation of
individual animals (Shivik et al. 2003). A key motivational
factor for many animals is hunger (e.g. Wilson et al. 1993,
1994) and it has been suggested that hunger in wolves plays
an important part in the process of habituation.

Secondary repellents rely on conditioning by using aversive
stimuli where flight behaviour is initiated by discomfort, pain, or
a general negative experience to prevent a particular behaviour
(Elliot and Covington 2001; Shivik et al. 2003; Shivik 2004).
Fladry can be modified to incorporate an aversive stimulus by
replacing the nylon twine that supports the flagging with an
electrified wire (Gallagher Turbo-wire, North Kansas City,
MO) to create electrified fladry (EF). By combining primary
and secondary repellents, EF may at first frighten, and then
condition wolves to avoid the barrier, thus providing a longer-
lasting non-lethal tool.

Our first objective was to use controlled trials with captive
wolves to compare the effectiveness of fladry to that of EF and
explore whether food motivation influenced the likelihood of
wolves habituating to either repellent. We hypothesised that
because EF combines primary and secondary repellency, it
would outperform fladry at preventing wolves from accessing
a highly desirable food source. Positive results from these trials
encouraged us to apply EF in the field where our objectives
were to test the efficacy of EF on protected pastures relative
to unprotected control pastures, perform a financial analysis of
costs andbenefits of installing andmaintainingEF, anddetermine
the willingness of livestock owners to use EF. All work was
approvedby theNationalWildlifeResearchCenter’s Institutional
Animal Care and Use Committee QA-1332.

Materials and methods
Study area

For captive trials, we conducted controlled pen experiments
during the winter 2006, by using 45 wolves in 15 packs,
including 36 grey wolves (Canis lupus) in 10 packs, three
Mexican grey wolves (Canis lupus baileyii) in two packs, and
six red wolves (Canis rufus) in three packs. Pack sizes ranged
from one to seven animals and each pack had its own enclosure
at the Wildlife Science Center (WSC), Forest Lake, Minnesota.
Enclosures were 105–925-m2 chain-link fenced areas that
contained one 19-L water bucket, one or two den boxes
(2–5m2) and natural vegetation, including shrubs and trees.

We conducted the field study in 2007 on private ranches that
had experienced conflict with wolves in south-western and
western Montana (Fig. 1). The study area of south-western
Montana (‘Boulder River’) was located in the Boulder River
valley near McLeod (45�390N, 110�060W), 27 km south of Big
Timber. The western Montana study area (‘Arlee’) was on the
Flathead Indian Reservation near Arlee (47�100N, 114�050W),
42 km north or Missoula.

At both study areas, vegetation consisted of mixed native and
non-native grass pastures. Native ungulates, including white-
tailed deer (Odocoileus virginianus), mule deer (Odocoileus
hemionus), elk (Cervus elaphus) and moose (Alces alces),
were found throughout the study areas, as were grizzly bears
(Ursus arctos), black bears (Ursus americanus), mountain lions
(Felis concolor), coyotes (Canis latrans) and wolves. Domestic

ungulates included horses, sheep, cattle, and llamas that used a
variety of pastures and open grazing areas. Wolf activity and
confirmed depredations historically warranted close monitoring
and at times occasional lethal removal of individuals from packs.
Three wolf packs were known to use Boulder River in 2006 and
two in 2007. Livestock that were confirmed killed by wolves in
the Boulder River study area included four calves and nine sheep
in 2007. The Arlee area had one known wolf pack in both 2006
and 2007. Livestock that were confirmed killed by wolves in the
Arlee study area included seven calves and one llama in 2006 and
eight calves, two cows and one llama in 2007. It is critical to note

Fig. 1. Map of the study area in south-western Montana, including six
treatment pastures on four ranches and combined wolf-pack ranges, and in
western Montana, including six treatment pastures on five ranches.
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that the number of livestock confirmed killed by wolves is a
minimum estimate and does not include animals killed but not
detected or reported.

Pen study

We randomly selected five packs to receive fladry, five to receive
EF and five to receive no barrier systems (Fig. 2). We ran trials in
three phases, with each phase lasting 2 weeks. Phase 1 was a
baseline treatment, where all packs received tethered carcasses
and no barriers. Phase 2 had five naïve packs that received fladry
treatement (np!F), five naïve packs that received EF (np!EF)
and five that were controls. Phase 3 had five packs that had
received electric fladry in Phase 2 and received fladry in Phase 3
(ef!F), five packs that had previously received fladry in Phase 2
and received electric fladry in Phase 3 (f!EF), and five controls
that remained with no barriers.

For the fladry and EF treatments, we sectioned off an 18-m2

areawithin the pen by running the barrier from one side of the pen
to the other.Weconstructed thefladry systemsprotecting the food
resource, following the method of Musiani and Visalberghi
(2001). That is, fladry and electrified fladry systems (Carol’s
Creations, Arco, ID) consisted of red plastic flags (50� 10 cm)
interspersed at 50-cm intervals on a 0.2-cm-diameter blue nylon
twine.We suspended the nylon twine 50 cmabove the groundand
attached it to fibreglass posts set at 3-m intervals. During the
construction of the EF system, the nylon twine that typically held
the flagging was replaced with a 0.2-cm electric mixed-metal
strand twine (Gallagher TurboWire,NorthKansas,MO) of nylon
and wire. We suspended the EF from the fibreglass posts in the
same manner as for the fladry system. We suspended a second
0.2-cm electric groundwire (Gallagher TurboWire) 13 cm above
the ground and attached it to the fibreglass posts. A 12-V battery-
powered fence energizer (Gallagher B260) electrified the wire
and produced a pulsed energy output of �2000V, with 2.6 J of
stored energy and a resistance of 500 ohms. Three 1-m copper
grounding rods grounded the circuit.

We mounted passive infrared motion-activated cameras
(Reconyx RM30, Holmen, WI) 1.2m high on the outside of
the pen fence.Cameraswere aimedalong the barrier line and set to
acquire a series of photos (four photos per second) if a wolf
approached the barrier. Cameras were equipped with infrared

illumination for night-time use, so that we were able to monitor
24 h per day. The food resource was one eviscerated road-killed
white-tailed deer (Odocoileus virginianus) previously collected
in the surrounding area. Deer carcasses were the wolves’ normal
maintenance food. We chained deer carcasses to the corner of
the pen with 1.2m of 0.47-cm stainless-steel chain to prevent
carcasses from being dragged out of the corner. We maintained
the Wildlife Science Center wolf-feeding protocol during the
study, i.e. wolves were provided food, in the form of a deer
carcass, in alternating fast andprovisioning periods.At the start of
the trial, we placed a deer carcass in the experimental areawhere it
remained in the protected area for 5 days; on Days 6 and 7, we
supplied carcasses in the unprotected area and replaced the
old carcass in the protected area with a new one. We defined
an approach as a single wolf occupying a location �2m from a
barrier line in a single recorded photo-data image. We show
descriptively how approaches varied by treatment group
(i.e. np!F, np!EF, ef!F, f!EF) relative to the number
of days in the trial and the fasting regime.

We defined latency to cross as the time elapsed between the
start of the trial and an event of a single wolf crossing the barrier
line (measured in days) to freely feed on the protected carcass.We
used the Kaplan–Meier survival estimator in program MARK
(i.e. known-fate model, White and Burnham 1999) to test for
differences in latency to cross the barrier. Thus, the encounter
history for each pack included 14 intervals (days). We included
only packs in the four primary treatments (np!F, np!EF, ef!F,
f!EF) for this analysis because all baseline packs (i.e. Phase 1)
and control packs in Phases 2 and 3 were feeding on the deer
carcass within 5min. Because we measured latency to cross
in days, inclusion of the baseline and control data would have
biased results for those packs that reacted to abarrier treatment but
still crossed within the first day.We tested six competing models
explainingdifferences in the latency to cross thebarrier among the
four primary treatments andwhether thenumberofwolves ineach
pack (PackSize) influenced the latency to cross (see Table 1).We
used the small sample-size correction of AIC to select the top
model (Burnham and Anderson 2002). We also calculated the
mean latency to cross for each of the four primary treatment
groups; for packs that never crossed, we used 14 days as part of
this calculation.

Field trial

We identified six pastures on four ranches in Boulder River and
six pastures on five ranches in Arlee. In each study area, we
randomly assigned pastures either to control (i.e. noEFbarrier) or
to an EF treatment where EF was installed around the entire
perimeter of the treatment pasture. The pastures (16–122 ha)
contained 40–200 cows at the beginning of the calving period.
Whenpossible,we setfladry lines1moutside the existingbarbed-
wire fence, away from cattle, to minimise destruction and
ingestion of flags by cows. We attached fladry lines to 61-cm
fibreglass posts placed at 7.6-m intervals between t-posts set at
30.5m and on corners.

Wemonitored pasture perimeters by using all-terrain vehicles
to scan 5m inside and 5m outside of fladry barriers twice a week
for 3months, to determinewolf activity in or near the 12 pastures.
We also checked perimeters opportunistically when weather and

Phase 1: Controls
Naïve Packs

Phase 3: Controls
Naïve packs

Phase 2: Controls

Phase 1: Controls
Naïve packs

Phase 2
Fladry

Phase 3
Electric fladry

Phase 2
Electric fladry

Phase 3
Fladry

Packs 1–5

Phase 1: Controls
Naïve Packs

Phase 1: Controls
Naïve packs

Naïve packs

Phase 1: Controls
Naïve packs

Packs 6–10 Packs 11–15

Fig. 2. Diagram of the experimental design implemented to compare wolf
response to fladry with that to electrified fladry. The study was conducted on
captive wolves at the Wildlife Science Center, Minnesota, USA.
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snow conditions facilitated detection of wolf tracks. Because
all nearby packs had at least one wolf radio-collared (collared
previously byMontana Fish,Wildlife&Parks orUSDA-Wildlife
Services),wemonitoredwolf presence and absence in the vicinity
of ranches by scanning the valley for telemetry signals from the
ground with handheld antennas and VHF radio-collars. Finally,
we searched for dead or injured cattle by riding the entire pasture
and conversing with ranch personnel monitoring spring calving.
We recorded the number of days wolves were present in the
general study areas by using telemetry, presence and absence of
wolf tracks inside and outside of pastures, and the confirmed
injured or dead livestock on control v. treatment ranches. Because
of the low sample size, we present descriptive data from control
and treatment areas.

Cost, maintenance and social acceptance
We calculated cost per kilometre of installing and maintaining
fladry, and the mean time to install fladry per kilometre. We
performed maintenance on a system only when it failed (i.e. was
no longer electrified) and used these data to calculate a failure
rate. We used a mail survey to measure attitudes of all
participating livestock owners, concerning the application
and effectiveness of EF for protecting pastures used for
calving. The survey was similar for owners of protected and
unprotected pastures and consisted of questions on EF, covering
applicability, effectiveness, affordability, amount of wolf
sign, outcomes of the project and willingness to participate in
the future. We descriptively compared survey responses of
owners of protected and unprotected pastures.

Results

Pen study

During Phase 1 (i.e. baseline with no barriers), all 15 wolf packs
crossed the camera line and fed on the deer carcass within 5min.
Similarly, in both Phase 2 and 3, all five control packs crossed to
the carcasses within 5min. In Phase 2, no trend in approach
data emerged with the fladry treatment (np!F), with all packs
crossing the fladry barrier within a day. With the EF treatment
(np!EF), approaches through time decreased during the
2-week trial and exhibited a decrease subsequent to feeding in
the unprotected area onDays 6 and 7, andDays 13 and 14 (Fig. 3).
In Phase 3, fladry (ef!F) andEF (f!EF) trials startedwith fewer
approaches by wolves, on average, than for treatments in Phase 2

(Fig. 3), although the wolves continued to test both treatments
throughout the trial. Also inPhase 3, packs exhibited a decrease in
approaches subsequent to feeding on Days 6 and 7, and Days 13
and 14 (Fig. 3).

The survival analysis showed strong support for differences
in the latency to cross the barrier among all four treatment groups
(i.e. top two models in Table 1 contained 75% of AICc weight)
and weak support for the hypothesis that pack size influences
the latency to cross the barrier (i.e. addition of the covariate
PackSize to the top model decreased the AICc value for that

Table 1. Results of survival analysis to test for differences between the fladry treatments
S represents latency to cross fladry barriers, G1–G4 represent the four primary treatment groups where G1= np!F, G2= np!EF,
G3= ef!F and G4= f!EF (see Materials and methods for further description of treatments); PackSize is a covariate representing the
number of animals in each pack, ‘v’ represents differences among G1 to G4 and ‘= ‘ represents equivalence between treatment groups

Model AICc Delta
AICc

AICc
weight

No. of
parameters

Deviance

(1) S: (G1 v G2 v G3 v G4) 46.51 0.00 0.53 4 38.26
(2) S: (G1 v G2 v G3 v G4; PackSize) 48.30 1.79 0.22 5 37.93
(3) S: (G1 v G2=G3=G4) 48.64 2.13 0.18 2 44.56
(4) S: (G1 v G2 v G3=G4) 50.53 4.02 0.07 3 44.37
(5) S: (G1 =G3 v G2=G4) 66.92 20.42 0.00 2 62.85
(6) S: (G1 =G2=G3=G4) 77.60 31.09 0.00 1 75.57
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Fig. 3. Approaches (�x� s.e.) by captive wolf groups (n= 5) and days
fasted for fladry and electrified-fladry treatments at Wildlife Science
Center, Minnesota, USA.

Electrified fladry and wolves Wildlife Research 711



model, see Models 1 and 2 in Table 1). During Phase 2, latency
to cross EF (�x� s.e.) was 10 times greater (np!EF:
10.0� 2.5 days) than that to cross fladry (np!F:
1.0� 0.0 days), whereas during Phase 3, latency to cross EF
(f!EF: 14� 0.0) was nearly two times greater than that to cross
fladry (ef!F: 8.2� 2.7) (Fig. 4).

Field trials

We detected wolves by telemetry on 11 of 20 and 19 of 29
monitoring days in the Arlee and McLeod study areas,
respectively. We did not document any livestock mortality,
nor did we find scat inside or outside of any protected or
unprotected pastures. After combining both study areas, we
detected wolves via track surveys outside of control pastures
on 2 days, inside of control pastures on 2 days, outside of
treatment pastures on 1 day, and never within treatment pastures.

Cost, maintenance and social acceptance

We installed 14.0 km of EF systems between the two study areas,
and used three to eight people per pasture to install fencing. The
one-time costs for a completed EF systemwere $2303 for the first
kilometre and $2032 for each additional kilometre. We spent
an average of 31.8 person-hours per kilometre when installing
fencing. Several factors caused systems to fail, including the
following: branches falling on fence; deer, elk and cattle crossing
fence; and heavy snows.We observed 18 failures during a total of
394 days of use and calculated a failure rate of 0.003 failures
km–1 day–1. Mean time to locate and fix problems was 49.2min
(s.e. = 11.3) per failure event.

All nine project participants responded to the questionnaire.
For participants with a protected pasture (n= 6), fivewerewilling
to participate in another EF project in the future. Respondents
with protected pastures primarily perceived low levels or no wolf
sign before, during and after the EF were removed, both in
protected pastures and near or around protected pastures. With
respect to applicability and efficacy of EF, five of six respondents
agreed or strongly agreed that livestock were not stressed by

fladry and three of six either disagreed or strongly disagreed that
EF decreases the risk of depredation by wolves. But ironically,
three of six also agreed or strongly agreed that because of EF,
they were less concerned about livestock when livestock were
not being watched. However, all six either disagreed or strongly
disagreed that EF was affordable and only two of six would
recommend the use of EF to neighbouring landowners.
Furthermore, there was complete agreement that it would be
unlikely that EFwould be implemented if a producer incurred the
total cost to apply it to any pasture size ranging from8 to 65 ha.As
the size of the pasture increased, respondents were less willing to
use it. Respondents were more agreeable with using EF when
there was cost sharing or no support required from producers.

For ranchers surveyed with unprotected pastures (n= 3), two
were interested in participating in EF projects in the future and
respondents varied onagreement to the applicability andpotential
efficacy of EF. When questioned whether EF was affordable
and not too expensive, all three disagreed, moreover, all three
respondentswere either unlikely or very unlikely to use EF if they
had to bear the total cost and labour of implementing the tool. As
the size of the pasture increased, respondents were less willing to
use it. However, opinions to the use of EF in the future shifted
towards likely when there would be cost sharing.

Discussion

Our captive trials demonstrated that EF was superior to fladry
for protecting highly desirable food items in captive situations.
For both fladry and EF treatments, wolves demonstrated an initial
wariness in approaches and then began to more frequently
investigate the barrier during the habituation process. As
wolves began biting at the flags, fladry systems failed but EF
administered negative conditioning that reinforced the initial
fear response. The combination of primary and secondary
repellents greatly increased the efficacy of this non-lethal
predation-management tool.

We also found that the number of approaches to fladry and EF
barriers generally increased as fasting time increased.We suggest
that increases in approaches were related to food motivation and
the willingness to take more risks to obtain a resource as hunger
increased, while decreases in approaches through time were
explained by conditioned avoidance and decreased motivation
through satiation. The implication of this result is that wolveswill
likely habituate to fladry faster when coupled with an increase in
food motivation, thus having abundant native prey available for
wolves will be critical for reducing wolf–livestock conflict.

A carryover effect of conditioned avoidancewas seen in Phase
3 with the fladry treatment (ef!F) where one pack did not cross
for 9 days and two packs did not cross for 14 days, although
eliciting guarded approaches, even with the lack of negative EF
stimulus.Webelieve these packswere reluctant to cross thefladry
barrier in Phase 3 because they still exhibited conditioned
avoidance behaviours after having been exposed to EF. The
cautious approaches and delayed crossing behaviours may also
be explained by the lack of foodmotivation at the start of the trial.
Response to fladry treatments in Phase 3 eventually showed an
increase in mean approaches that may be explained by constant
testing by wolves and the lack of negative reinforcing stimulus
because the fladry was not electrified.
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Fig. 4. Survival functions representing the latency of wolf packs to cross
fladry and electrifiedfladry in four different treatments. Trialswere performed
in captivity for 2-week durations at the Wildlife Science Center, Minnesota,
USA.
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Although EF proved superior to fladry in captivity, caution is
neededwhenextrapolating the success of this tool tofield settings.
The following three important factors help determine whether a
management tool is utilised in the field: efficacy, installation and
maintenance costs, and user acceptance. Our field trial provided
limited information about the efficacy of EF for excluding
wolves that could be used to compare the benefits of EF to its
costs. Primary evidence included detection of tracks inside
an unprotected pasture on 2 days, and outside protected and
unprotected pastures on 3 days, whereas we never found
tracks within treatment pastures. However, our field trial did
demonstrate the feasibility of installing and maintaining EF,
providing strong evidence that the electrified portion of this
system is durable in field conditions. Furthermore, modifying
the design of EF can substantially decrease the direct and indirect
costs associated with EF. Shortening the flagging to <30 cm
would enable EF to be placed on an existing barbed-wire
fence with industry-standard hardware. In addition, it is not
necessary to utilise the braided turbo wire as a ground wire; it
is cheaper to utilise an industry-standard high tensile-strength
electric wire, which maintains the functionality of the EF.
A change of the design of EF to an integrated approach with
existing fencing would decrease the number of people, supplies,
installation time and difficulties with transportation and handling
of equipment, thus likely improving stakeholder’s willingness to
use this tool.

Finally, basing the evaluation of EF only on its efficacy may
erroneously discount its biological and sociological importance.
Inour study,fiveof six ranchers that usedfladrywould continue to
use it under certain conditions,which suggest that its use provides
some psychological benefit through the belief that EF has the
potential to reduce risk of livestock loss and thus ease concern
about livestock losses when livestock are not directly being
watched by people (Lance 2009). That said, there was little
interest to invest in EF as a tool. Study participants may have
been reticent to invest inEFbecausebackground ratesof livestock
killing by wolves were generally low throughout much of the
immediate and surrounding study areas, thus limiting the
potential benefits of EF relative to its cost. If depredation risk
was higher, it is possible that attitudes about EF or any other tool
may be different. In the long term, having a tool with a higher
probability of success will more likely garner social acceptance
amongst users. We believe EF provides such assurances, given it
is properly maintained.

Recommendations and conclusions

We believe that there is a high probability that EF is effective for
excludingwolves fromsmaller pastures; thus, discounting the use
of EF because it costs more than fladry may be a mistake. Wolf-
caused livestock losses are difficult to prevent in their entirety;
however, wolf-caused livestock losses have been shown to
affect a recurring set of livestock owners, suggesting a spatial
component to conflicts (Sime et al. 2007). Targeting application
of EF to the areas prone to conflict may decrease risk and assist
these disproportionately affected livestock owners.

Management of predation on livestock by wolf is an adaptive
process that uses a multi-faceted approach to foster tolerance
of predators, predator management and acceptable predation-

management tools. Non-lethal tools are generally criticised for
having short-term success and for being ‘costly’when compared
with lethal methods (Shivik 2004, 2006). Yet, lethal tools also
have associated criticisms and costs and may not provide the
most effective long-term approach when considering diverse
stakeholders and when costs and benefits are defined more
broadly (Phillips et al. 2004; Berger 2006). Thus, we caution
against making judgments about any management tools, unless
this is done with understanding of the biological, economical and
sociological context of the situation and through time. Non-lethal
tools such as EF may be essential for fostering and increasing
tolerance of predators, especially when used in combination with
other lethal and non-lethal tools (Sime et al. 2008). Under the
terms of some compensation programs, the use of non-lethal tools
may also be a pre-condition for reimbursement. Where wolves
and livestock overlap, a suite of field-based management tools
and social equity considerations, such as cost sharing of non-
lethal tools, are required to facilitate wolf conservation over the
long term.

Acknowledgements

Funding was provided by the USDA-Wildlife Services-National Wildlife
Research Center, Montana Fish, Wildlife & Parks, USDA-Natural Resource
Conservation Service and the Animal Welfare Institute. Logistical support
was provided by USDA-WS-Montana Program, Montana Fish, Wildlife &
Parks and the Confederated Salish and Kootenai Tribes of the Flathead
Reservation. We thank S. Durham and M. Lewis for their valuable
statistical and survey-design expertise, J. Fischer for help with GIS, and
K. Malsom, M. Row, M. Buckman, J. Cade and B. Ebson for long hours and
patience during daunting captures. In addition, we thank S. Courville for help
with landowner relations, F. Provenza and two anonymous reviewers for input
on earlier drafts, and many volunteers for help in the field.

References

Bangs, E. E., and Shivik, J. (2001). Managing wolf conflict with livestock in
the northwestern United States. Carnivore Damage Prevention News 3,
2–5.

Berger, K. M. (2006). Carnivore–livestock conflicts: effects of subsidized
predator control and economic correlates on the sheep industry.
Conservation Biology 20, 751–761. doi:10.1111/j.1523-1739.2006.
00336.x

Breck, S.W. (2004).Minimizing carnivore–livestock conflict: the importance
and process of research in the search for optimal solutions. In ‘Predators
and People: From Conflict to Conservation’. (Eds N. A. Fascione,
A. Delach and M. E. Smith.) pp. 13–27. (Island Press: Washington, DC.)

Burnham, K. P., and Anderson, D. R. (2002). ‘Model Selection and
Multimodel Inference: A Practical Information-Theoretic Approach.’
2nd edn. (Springer: New York.)

Ciucci, P., and Boitani, L. (1998). Wolf and dog depredation on livestock in
central Italy. Wildlife Society Bulletin 26, 504–514.

Elliot, A. J., and Covington, M. V. (2001). Approach and avoidance
motivation. Educational Psychology Review 13, 73–92. doi:10.1023/
A:1009009018235

Lance, N. J. (2009). Application of electrified fladry to decrease risk of
livestock depredation by wolves (Canis lupus). M.Sc. Thesis. Utah State
University, Logan, UT.

Mech, L. D. (1970). ‘TheWolf: The Ecology and Behavior of an Endangered
Species.’ (Doubleday/Natural History Press: Garden City, NY.)

Mech, L. D. (1996). A new era for carnivore conservation. Wildlife Society
Bulletin 24, 397–401.

Musiani, M., and Visalberghi, E. (2001). Effectiveness of fladry on wolves in
captivity. Wildlife Society Bulletin 29, 91–98.

Electrified fladry and wolves Wildlife Research 713

dx.doi.org/10.1111/j.1523-1739.2006.00336.x
dx.doi.org/10.1111/j.1523-1739.2006.00336.x
dx.doi.org/10.1023/A:1009009018235
dx.doi.org/10.1023/A:1009009018235


Musiani, M., Mamo, C., Boitani, L., Callaghan, C., Gates, C. C., Mattei, L.,
Visalberghi, E., Breck, S. W., and Volpi, G. (2003). Wolf depredation
trends and the use of fladry barriers to protect livestock in western North
America. Conservation Biology 17, 1538–1547. doi:10.1111/j.1523-
1739.2003.00063.x

Okarma, H. (1993). Status andmanagement of the wolf in Poland. Biological
Conservation 66, 153–158. doi:10.1016/0006-3207(93)90001-H

Okarma, H., and Jedrzejewski, W. (1997). Livetrapping wolves with nets.
Wildlife Society Bulletin 25, 78–82.

Phillips,M.K.,Bangs,E.E.,Mech,L.D.,Kelly,B.T., andFazio,B.B. (2004).
Exterminationandrecoveryof the redwolf andgreywolf in the continuous
United States. In ‘Biology and Conservation of Wild Canids’.
(Eds D. W. MacDonald and C. Sillero-Zubiri.) pp. 297–309. (Oxford
University Press: New York.)

Reiter,D.K.,Brunson,W., andSchmidt,R.H. (1999). Public attitudes toward
wildlife damage management and policy. Wildlife Society Bulletin 27,
746–758.

Shivik, J. A. (2004). Non-lethal alternatives for predation management.
Sheep and Goat Research Journal 19, 64–71.

Shivik, J. A. (2006). Tools for the edge:what’s new for conserving carnivores.
Bioscience 56, 253–259. doi:10.1641/0006-3568(2006)056[0253:
TFTEWN]2.0.CO;2

Shivik, J. A., Treves, A., and Callahan, P. (2003). Nonlethal techniques for
managing predation: primary and secondary repellents. Conservation
Biology 17, 1531–1537. doi:10.1111/j.1523-1739.2003.00062.x

Sime,C.A.,Bangs,E. E.,Bradley,L., Steuber, J. E.,Glazier,K.,Hoover, P. J.,
Asher, V., Laudon, K., Ross, M., and Trapp, J. (2007). Gray wolves and
livestock in Montana: a recent history of damage management:
1987–2006. In ‘Proceedings of the 12th Wildlife Damage Management
Conference’. (EdsD. L.Nolte,W.M.Arjo andD.H. Stalman.) pp. 16–35.
(USDA-WS-National Wildlife Research Center: Fort Collins, CO.)

Sime,C.A.,Asher,V.,Bradley,L., Laudon,K.,Ross,M., Trapp, J.,Atkinson,
M., and Steuber, J. E. (2008). Montana gray wolf conservation and
management 2007 annual report. Montana Fish, Wildlife & Parks,
Helena, MT.

Treves, A., Jurewicz, R. R., and Naughton-Treves, L. (2002). Wolf
depredation on domestic animals in Wisconsin, 1976–2000. Wildlife
Society Bulletin 30, 231–241.

White, G. C., and Burnham, K. P. (1999). Program MARK: survival
estimation from populations of marked animals. Bird Study 46(Suppl.),
120–139. doi:10.1080/00063659909477239

Wilson, D. S., Coleman,K., Clark, A. B., andBiederman, L. (1993). Shy bold
continuum in pumpkinseed sunfish (Lepomis-Gibbosus) – an ecological
study of a psychological trait. Journal of Comparative Psychology 107,
250–260. doi:10.1037/0735-7036.107.3.250

Wilson, D. S., Clark, A. B., Coleman, K., and Dearstyne, T. (1994). Shyness
andboldness in humans andother animals.Trends inEcology&Evolution
9, 442–446. doi:10.1016/0169-5347(94)90134-1

Manuscript received 11 February 2010, accepted 3 July 2010

714 Wildlife Research N. J. Lance et al.

http://www.publish.csiro.au/journals/wr

dx.doi.org/10.1111/j.1523-1739.2003.00063.x
dx.doi.org/10.1111/j.1523-1739.2003.00063.x
dx.doi.org/10.1016/0006-3207(93)90001-H
dx.doi.org/10.1641/0006-3568(2006)056[0253:TFTEWN]2.0.CO;2
dx.doi.org/10.1641/0006-3568(2006)056[0253:TFTEWN]2.0.CO;2
dx.doi.org/10.1641/0006-3568(2006)056[0253:TFTEWN]2.0.CO;2
dx.doi.org/10.1111/j.1523-1739.2003.00062.x
dx.doi.org/10.1080/00063659909477239
dx.doi.org/10.1037/0735-7036.107.3.250
dx.doi.org/10.1016/0169-5347(94)90134-1

