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Behavioral flexibility is an important adaptive response to changing environ-
ments for many animal species. Such plasticity may also promote the invasion of
novel habitats by introduced species by providing them with the ability to expand or
change their ecological niche, a longstanding idea with recent empirical support. At
the individual level, flexibility may arise through innovation, in which an individual
invents a new behavior, or through social learning, in which an individual adopts a
behavior used by others. There is increasing evidence that the adaptive value of
these two modes of learning, and the overall expression of behavioral flexibility, may
vary with social and environmental context. In this paper, we propose that invasive
species may change the degree to which they express behavioral flexibility in an
adaptive manner during the different stages of invasion. Specifically, the “adaptive
flexibility hypothesis” predicts that the expression of behavioral flexibility, and thus
the diversity of behaviors observed in a population, will be high during the initial
stage of introduction into a novel environment due to innovation, followed by a
decline in behavioral diversity during the establishment and growth of a founding
population due to social learning of successful behavioral variants. We discuss several
alternatives to this hypothesis and suggest empirical and theoretical tests of these
hypotheses. This “adaptive flexibility hypothesis” suggests that a more nuanced app-
roach to the study of the behaviors employed by individuals in populations at different
invasion stages could generate new insight into the importance of such flexibility
during species invasions, and the evolution of behavioral plasticity in general.
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394 T.F. Wright et al.

INTRODUCTION

Behavioral flexibility is employed by many species as an adaptive response to
changing environments. Flexibility in behavior lies at one end of a continuum of plas-
tic responses that includes developmental plasticity in individual physiology and
anatomy, and genetic responses to selection over generations (DUKAS 1998b; PIGLIUCCI

2001; WEST-EBERHARD 2003). Of these forms of response, behavioral changes can gen-
erally occur most quickly and thus are best suited for rapid responses to changes in
the external environment. An organism may face such changes due to naturally
occurring events or to human activities that alter its native habitat. It may also face
rapid changes when introduced into a novel habitat by human activities. A variety of fac-
tors determine whether an introduced species will be successful in establishing a breeding
population in its new habitat, and whether it will become invasive (RICHARDSON et al. 2000;
KOLAR & LODGE 2001; COLAUTTI & MACISAAC 2004, REJMÁEK et al. 2005). In this paper we
discuss the role of behavioral flexibility in mediating the establishment success of an
organism introduced into a novel environment, and propose a new model that describes
how the expression of behavioral flexibility may be expected to change through the succes-
sive stages of establishment, population growth, and invasion.

SOURCES AND CONSEQUENCES OF BEHAVIORAL FLEXIBILITY

The ability of an organism to selectively modify behaviors in response to changing
circumstances may arise from a number of sources. Innate behaviors, or those inde-
pendent of experience, may allow individuals to respond to a variety of different stimuli,
but these reactions, although perhaps highly tuned, are non-modifiable. Such flexibility
is predicted to be beneficial to the degree that either the cues for, or the timing of,
changes are predictable across generations, such as diurnal or seasonal changes in the
environment, or developmental changes of the animal itself (STEPHENS 1991; DUKAS

1998b; SHETTLEWORTH 1998). Most discussions of behavioral flexibility, however, focus
on situations where the behavior of individuals is modified by experience (DUKAS

1998a; SHETTLEWORTH 1998; READER & LALAND 2003a). In this conception of behavioral
plasticity, changes in the behavioral repertoire can result from individual learning in
which an individual either modifies an existing behavior or invents a new one, termed
“innovation” (READER & LALAND 2003b). Changes in behavior can also result from “copy-
ing” or other forms of social learning, in which new behavioral variants are learned from
others (BOYD & RICHERSON 1985; LALAND et al. 1996; READER & LALAND 2003b). Behavio-
ral flexibility through either type of learning is predicted to be beneficial when environ-
ments change, although social learning may be less advantageous when environments
vary so rapidly or unpredictably that the information acquired from others is unreliable
or outdated (DAWKINS 1980; HARLEY 1981; STEPHENS 1991; DUKAS 1998b; SOL 2003).

Individual and social learning differ in their propensity to introduce new behavioral
variants into the repertoire of individuals and populations. Individual learning can pro-
duce innovative behaviors that are novel for an individual or a population, and increase
the behavioral flexibility of the former and the behavioral diversity of the latter (READER

& LALAND 2003b). In contrast, social learning involves, by definition, the adoption of a
behavior already performed by others (GALEF & LALAND 2005). Thus social learning can
lead to increased behavioral flexibility in the individual that adopts new behavioral
variants, but generally does not increase behavioral diversity, where behavioral diver-
sity is analogous to species diversity within ecological communities. This is because
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Behavioral flexibility and species invasions 395

social learning does not introduce new variants into a population, unless the model for
the behavior is new to the population, and may reduce the frequency of many existing
variants (READER & LALAND 2003b). Furthermore, when social learning is focused on
only a few models or behavioral variants, it can lead to the establishment of learned
cultural traditions that supplant behaviors acquired through innovation, and thus lead
to an overall reduction in the number of behavioral variants expressed by individuals
and the population (BOYD & RICHERSON 1985; LALAND et al. 1996). Thus social learning
may have contrasting effects on behavioral flexibility and diversity at the individual and
population levels depending on which individuals learn and adopt new behaviors, which
individuals model behaviors that are incorporated by others, and the relative frequency of
the behavioral variant being learned. These contrasting effects are reflected in historical
views of social learning and culture, which have been considered by some workers as con-
servative forces, and by others as sources of novel behaviors (GALEF 2003).

In recent years there has been an increase in the number of empirical studies of
the causes and consequences of behavioral flexibility. Many studies take a comparative
approach to examine environmental, neuroanatomical and social correlates of behav-
ioral flexibility across species. Comparative studies of primates have found associa-
tions between brain size and innovation, social learning and tool use (READER &
LALAND 2002); between innovation and sex, age and social rank (READER & LALAND

2001); between innovation and neophilia (DAY et al. 2003); and between innovation
and neocortex size, diet breadth, and laboratory measures of learning but not with
geographic range or climatic variability (READER & MACDONALD 2003). Comparative
studies of birds have found similar trends, with associations between the size of the
hyperstriatum ventrale and feeding innovation (TIMMERMANS et al. 2000); neophilia
and learning (GREENBERG 2003); brain size and mortality rates (SOL et al. 2007); brain
size and climatic variability (SCHUCK-PAIM et al. 2008); brain size and social complexity
(BURISH et al. 2004); and between brain size and both propensity to innovate and suc-
cess in novel habitats (SOL et al. 2005).

A complementary line of investigation conducted largely with captive populations
has focused on inter-individual variation in flexibility and its costs, benefits and conse-
quences. In guppies, Poecilia reticulata, innovation ability, as measured by completing
a novel foraging task, was found to vary with sex, body size and degree of food depriva-
tion (LALAND & READER 1999a), and innovation rate was correlated with competitive
ability in males but not females (LALAND & READER 1999b). These results suggest that
innovation may be state dependent and triggered by metabolic needs. Further studies
demonstrated that specific behavioral innovations could increase in frequency in popu-
lations via social learning (LACHLAN et al. 1998; READER & LALAND 2000). In some cases
this process led to a potentially maladaptive conformity to a specific behavior (LALAND &
WILLIAMS 1998; DAY et al. 2003) that was subsequently released in the absence of demo-
nstrators (BROWN & LALAND 2002). In starlings, Sturnus vulgaris, individual learning
rates were correlated with neophilia, dominance and speed of solving a novel foraging
task (BOOGERT et al. 2006). Surprisingly, social associations in starlings did not predict
the path by which foraging innovations spread through groups, perhaps because of
artificially small and confined groups (BOOGERT et al. 2008). Likewise, in both rooks,
Corvus frugilegus, and ravens, Corvus corax, neophobia to novel foods is reduced in the
presence of conspecifics (STOWE et al. 2006a; DALLY et al. 2008); in ravens the degree of
neophobia, and of social learning, is further modified by the social relationships among
individuals (STOWE et al. 2006b; SCHWAB et al. 2008). Wild Carib grackles, Quiscalus
lugubris, were found to vary their expression of a novel foraging behavior with food
type and risk of kleptoparasitism, suggesting that individuals may vary their behavioral
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396 T.F. Wright et al.

repertoire with social context (MORAND-FERRON et al. 2004). Additional avian examples of
variation in neophobia and exploratory behavior with age and social context are
reviewed in GREENBERG & METTKE-HOFMANN (2001). Overall these studies suggest that (i)
behavioral flexibility sometimes confers fitness advantages, (ii) these benefits vary with
social context, individual state and the external environment, and thus (iii) the expres-
sion of flexibility can vary over time in potentially adaptive ways.

FLEXIBILITY AND SPECIES INVASIONS

While an interest in the adaptive nature of behavioral responses to environmental
change has long been an integral part of the study of animal behavior, there is an
increasing interest in the role played by behavioral flexibility in species invasions (SOL

2003; PRICE & SOL 2008). Invasion by exotic species is one of the largest threats to native
species worldwide (WILCOVE et al. 1998; SALA et al. 2000; CLAVERO & GARCÍA-BERTHOU

2005; but see GUREVITCH & PADILLA 2004). Invasive species can modify habitats, reduce
species diversity through competition and predation, facilitate disease emergence and
adversely affect ecosystem functions (MOONEY et al. 2005; PIMENTEL et al. 2005; SALO et al.
2007). Successful invasion of a new habitat involves several successive stages (RICHARDSON

et al. 2000; KOLAR & LODGE 2001; COLAUTTI & MACISAAC 2004): transport from native
habitat (generally human-mediated), introduction to new habitat, establishment and
growth of a self-sustaining population at the original introduction site (also termed “natu-
ralization”; RICHARDSON et al. 2000), and invasion to new sites (see Fig. 1 in KOLAR &
LODGE 2001). At present there are gaps in our understanding of the invasion process and
the factors that facilitate or inhibit transition between one stage and another (RICHARDSON

et al. 2000; KOLAR & LODGE 2001; PUTH & POST 2005). An improved knowledge of the
behavioral characteristics that facilitate species invasions should aid in the control and
mitigation of their detrimental effects (KOLAR & LODGE 2001; SOL 2003; CASSEY et al. 2004).

Behavioral flexibility is thought to aid introduced species during invasion by pro-
viding them with the ability to expand or even change their ecological niche by exploiting
new foods, shelters, or habitats (DUNCAN et al. 2003; PRICE et al. 2008). It may also pro-
vide a mechanism for avoiding ecological and evolutionary traps, which may result
from rapid environmental changes that alter the reliability of cues used in behavioral or
life-history decisions (SCHLAEPFER et al. 2002). Such plasticity is distinct from consider-
ations of species as “generalists” or “specialists”; these classifications are static concepts
based on physiological constraints and overlook the potentially rapid responses to envi-
ronmental changes that can occur through innovation or social learning of novel behav-
iors (GREENBERG 1990). The idea that more flexible species are more likely to be
successful invaders is a longstanding one (MAYR 1965; ROUGHGARDEN 1972; MORSE 1980).
Recent comparative studies have supported this hypothesis, with more innovative bird
species (as measured by feeding innovations) being more successful invaders of New Zea-
land (SOL & LEFEBVRE 2000) and worldwide (SOL et al. 2002, 2005); similar patterns are
seen in mammals (SOL et al. 2008). The combination of innovation with social learning,
as documented in a number of primate species (READER & LALAND 2002), is likely to be
especially advantageous for species in novel habitats, as it could allow copying explora-
tory behavior per se as well as permitting the rapid transmission of successful strategies.

On the other hand, there may be benefits in limiting the degree of flexibility and
exploratory behavior expressed by an individual. For example, neophobia, or the avoid-
ance of novel objects, could reduce an organism’s exposure to the deleterious effects of
unfamiliar resources such as novel foods, nesting sites or shelter, and by doing so could
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Behavioral flexibility and species invasions 397

minimize an organism’s exposure to dangerous predators, diseases or toxic foods,
and reduce expenditures on energetically costly activities like antiparasite behaviors
(GREENBERG 1990, 2003; GREENBERG & METTKE-HOFMANN 2001; HUGHES & CREMER

2007). Greenberg’s “neophobia threshold hypothesis” suggests that neophobia regu-
lates an animal’s degree of ecological plasticity, since the response to novelty plays a
role in ecologically important behaviors such as food and habitat choice (GREENBERG

1990). Neophobia may be modulated by neophilia, or a tendency toward exploratory
behavior; these two behavioral drives were hypothesized by GREENBERG & METTKE-
HOFMANN (2001) to vary independently with the degree of environmental complexity
and the degree of danger or competition in a given environment to produce differing
levels of exploratory behavior under different ecological conditions. Limited behavio-
ral flexibility may also be advantageous when behaviors that are beneficial in a new
habitat are linked with dispersal strategies, at least during natural range expansions
(DUCKWORTH & BADYAEV 2007).

While much of the work to date regarding invasion success has examined inter-
specific patterns of invasion and correlates of success, recent studies of several taxa pro-
vide evidence that behavioral flexibility may be an important mechanism involved in
the invasion of new habitats. MARTIN & FITZGERALD (2005) found that under controlled
captive conditions, individual house sparrows, Passer domesticus, from an actively
invading population (Colón, Panama) were more likely to approach and consume
novel foods than were sparrows from a long-established population (Princeton, New
Jersey). A comparison of introduced versus native populations of the rusty crayfish,
Oronectes rusticus, found that foraging behavior varied depending on the competitor
species present in native vs introduced habitats, and this behavioral flexibility may
explain the higher growth rates, and invasiveness, of O. rusticus in its introduced range
(PINTOR & SIH 2009). Field and laboratory studies of the invasive Argentine ant, Linepi-
thema humile, show that colonies are able to modify their aggressive behavior depend-
ing on their size and the presence of competitors, and this behavioral flexibility could
allow even small colonies to persist and thrive in a new environment (SAGATA & LESTER

2009). Based on these findings, SAGATA & LESTER (2009) point out that propagule size,
which is thought to be a fundamental driver of invasions (LOCKWOOD et al. 2005;
SIMBERLOFF 2009), may have limited power to predict invasion success in species with
behavioral flexibility. Furthermore, a spatially explicit individual-based model has
shown that learning can facilitate the expansion into a novel habitat by allowing the
persistence of locally (genetically) maladapted populations (SUTTER & KAWECKI 2009).
These model-based findings are supported by field and experimental studies of cray-
fish (HAZLETT et al. 2002) and crabs (ROUDEZ et al. 2008), which have found signifi-
cantly greater learning abilities for invasive species when compared with native
relatives. Finally, a well-documented example of a behavioral innovation facilitating the
invasion of a new habitat is provided by black rats, Rattus rattus, that have successfully
invaded the Jerusalem pine forest as a result of a feeding innovation (stripping pine
cones to obtain seeds) that is transmitted via social learning (TERKEL 1994, 1995).

These studies are evidence of a growing recognition that learning and behavioral
flexibility are key factors in the success of invasive species. To our knowledge, however,
there have been no longitudinal studies of behavioral flexibility during invasion; it
remains to be determined exactly how behavioral flexibility enhances invasion success,
whether the benefits of flexibility are constant over all stages of invasion, and to what
degree the expression of behavioral flexibility might vary adaptively during different
invasion stages (SOL 2003).
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398 T.F. Wright et al.

THE ADAPTIVE FLEXIBILITY HYPOTHESIS

We propose that individuals in invasive populations will change the degree to which
they express behavioral flexibility during different stages of invasion in an adaptive manner
(Fig. 1). Specifically, we hypothesize that during the initial introduction stage, when found-
ing individuals are exploring a new environment, innovation will be favored and the expres-
sion of flexibility, as measured by the number of behavioral variants present in a
population, will be high. Populations in which these individuals survive and reproduce suf-
ficiently to create a self-sustaining population would enter the establishment stage of spe-
cies invasions. Copying more successful behavioral variants will be favored over exploration
and innovation in established populations due to the time costs associated with exploration
and the opportunity costs of foregoing behavioral alternatives that others have demon-
strated to be successful. These processes would lead to a gradual decrease in the number of
behavioral variants observed. If the founding population continues to grow to a sufficient
degree, it will enter the invasion stage in which overcrowding favors dispersal and the
founding of daughter populations. Where these new populations occupy novel environ-
ments that offer new resources to be exploited and new dangers to be avoided, behavioral
flexibility will again be favored in dispersers, leading to a transitory rise in the number of
behavioral variants. Successful daughter populations would in turn enter an established
stage in which behavioral diversity would be reduced by copying of the most successful
behavioral variants; this suite of variants may well differ from those persisting in the found-
ing population. We term this hypothesis the “adaptive flexibility hypothesis” (Fig. 1a).

There are several alternatives to the adaptive flexibility hypothesis (Fig. 1b–d). One
alternative is that the expression of behavioral flexibility is constant regardless of invasion
stage. Levels of behavioral flexibility may remain constant through time and uniform
across individuals because a species’ inherent propensity for flexibility is relatively fixed.
Alternatively, behavioral flexibility may be fixed at different levels in different individuals
or classes of individuals due to consistent personality differences or behavioral syndromes
(SIH et al. 2004). Consistent individual differences have been documented for exploratory
behavior in great tits, Parus major, in which individuals can be sorted into fast or slow
explorers by the latency to which they approached a novel object or explored a novel habi-
tat (VERBEEK et al. 1994). Such differences have been shown to be both repeatable within
an adult individual and heritable in wild birds (DINGEMANSE et al. 2002), but are less repeat-
able within an individual in lines artificially selected for either fast or slow exploratory
behavior (CARERE et al. 2005). A second alternative is, that after an initial rise, the number
of behavioral variants in a population remains relatively constant over time due to a “skill
pool effect” (GIRALDEAU 1994) in which individuals remain specialized on a few behavioral
variants rather than copying the successful variants of others. A third alternative is that
copying of successful variants does occur during the establishment phase, resulting in a
reduced suite of behavioral variants in a population, but that the cultural traditions
formed through copying are sufficiently strong that dispersing individuals do not exhibit
an increased diversity of behaviors upon founding daughter populations. Low diversity of
behavioral variants may also be expected if dispersers selectively settle in environments
that best match their learned behavioral repertoire. All of these alternatives, and the adap-
tive flexibility hypothesis itself, are amenable to testing as discussed below.

The adaptive flexibility hypothesis is primarily applicable to behaviors with a sig-
nificant learned component, and incorporates several behavioral processes related to
learning. These include neophobia, innovation, individual learning and social learning.
Evaluating the relative importance of these various processes is critical to testing and
refining the hypothesis. We predict that where novel behaviors are rewarded, individual
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Behavioral flexibility and species invasions 399

Fig. 1. — Conceptual models of different alternatives for changes in the expression of behavioral flexi-
bility through successive stages of a species invasion. Behavioral flexibility is measured by the number
of behavioral variants in a population (solid line). Vertical dashed lines denote the various stages of spe-
cies invasion listed across the bottom of the figure. The introduction stage represents the initial period
that follows the movement of a species into a novel habitat via human actions, the establishment stage
represents the period when this initial introduced population becomes self-sustaining, and the invasion
stage represents the period when this population spreads beyond the initial point of introduction and
becomes abundant (RICHARDSON et al. 2000; KOLAR & LODGE 2001). (a) The adaptive flexibility hypothe-
sis predicts that the number of behavioral variants in a population will rise due to innovation and explora-
tion during the population introduction stage then decline as the population becomes established and
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learning and innovation could quickly lead to the expression of a large variety of
alternative behaviors expressed by different individuals in a recently introduced popu-
lation. Subsequently, biased social learning of successful variants is key to the decline
in behavioral variants predicted by the hypothesis. Although we have emphasized cop-
ying behavior as the most obvious form of social learning that would produce this
effect, it is likely that other forms of social learning, such as local enhancement, stimu-
lus enhancement, or social facilitation, would also reduce the diversity of behaviors. In
these types of social learning, individuals would be acquiring behavior patterns in the
same context as the model, which would often result in the same behavioral outcome.
It will be important to test this prediction that all forms of social learning would have
similar effects, since copying is generally thought to be less taxonomically widespread
than other forms of social learning (DUKAS 1998a; SHETTLEWORTH 1998).

The adaptive flexibility hypothesis focuses on how individuals and populations might
change in their expression of behavioral plasticity on relatively short timescales through
learning. The predicted decline in behavioral flexibility could occur over successive genera-
tions or even within a single generation, depending on how frequently individuals learned
new variants and whether transmission of learned variants was vertical (between genera-
tions) or horizontal (within generations). It is also possible that selection might lead to
adaptive changes over many generations in the genetic mechanisms underlying behavior;
such changes might lead to an increased capacity (rather than the propensity) to express
behavioral flexibility, or they might lead to a reduction of the capacity for social learning
through genetic accommodation of successful variants (WEST-EBERHARD 2003).

Learned behaviors that might be expected to show adaptive flexibility include for-
aging strategies, diet choice, nesting or burrowing site choice, roosting or sleeping site
choice, anti-predator responses, preferred group sizes, mate choice and anti-parasite
strategies. Not all learned behaviors are expected to follow this model; for example,
learned vocal signals may be under a different selection regime than many other learned
behaviors (SLATER & LACHLAN 2003). Where shared vocal patterns are used to denote
group membership (NOWICKI 1983; BOUGHMAN 1998), convergence to a single vocal vari-
ant may occur quickly in newly established populations without any intermediate rise in
the number of variants expressed by individuals. In species where learned vocal signals
are used as honest indicators of individual quality in social competition for resources or in
gaining access to mates (WEST-EBERHARD 1983; SEARCY & NOWICKI 2005), selection may
either favor diversification or homogeneity of vocal signals independent of invasion stage.

The adaptive flexibility hypothesis and its alternatives are testable given multiple
populations of a behaviorally flexible introduced species. The most direct test would be
provided by longitudinal studies that track the changes in the number of variants of a par-
ticular class of behavior (e.g. foraging methods) used by known individuals within a single
founding population and its daughter populations as they pass through different stages
of invasion. An alternative approach would be to catalog behavioral variants of different

copying of successful variants leads to cultural traditions. The dotted line represents the rise in behavioral
variants predicted in newly established daughter populations due to innovation in a new environment.
(b) Alternative hypothesis 1 suggests that the degree of behavioral flexibility expressed by a species (or
classes of individuals within species) is stable, leading to a constant number of variants across stages.
(c) Alternative hypothesis 2 is based on the “skill pool effect” (GIRALDEAU 1994), which suggests that indi-
viduals would maintain specialized subsets of the behavioral variants present in a population rather
than copying successful variants, leading to a constant number of behavioral variants in a population after
an initial rise due to innovation. (d) Alternative hypothesis 3 suggests that the cultural traditions formed
through social copying could be sufficiently strong to suppress innovation in daughter populations
founded during the invasion stage.
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Behavioral flexibility and species invasions 401

populations to quantify the expression of behavioral flexibility in a particular class of
behavior. If these populations vary in their invasion stage then the numbers of variants can
be compared across populations as a measure of the degree of behavioral flexibility
expressed by individuals during different stages of invasion; here behavioral variation at
the population level would serve as a proxy measure of behavioral flexibility at the individ-
ual level based on the testable assumption that population diversity was not produced by
individual specialization. A third approach would be to compare introduced populations
with ones from the native range. The latter are likely to represent established populations
to which behavioral variants within invading populations at different stages may be com-
pared. A fourth approach would be experiments with captive individuals to assess a spe-
cies’ general propensity for innovation, copying, neophobia and flexibility, and to test the
critical assumption that individuals will preferentially copy variants that are more success-
ful in a particular environment. Finally, quantitative modeling approaches would be useful
to determine the range of conditions under which the temporal changes in behavioral flex-
ibility predicted by the adaptive flexibility hypothesis might occur, and to disentangle the
relative importance of the various underlying behavioral processes.

CONCLUSIONS

There is considerable evidence from a range of species suggesting that behavioral
flexibility can benefit those individuals that employ it. These advantages may vary with
social context, individual state and external environment, suggesting that the expression
of flexibility might be expected to vary over time even within an individual. There is
increasing evidence that behavioral flexibility plays an important role in facilitating
invasions by species, particularly in species capable of both individual and social learn-
ing. Our proposed adaptive flexibility hypothesis predicts that the expression of behav-
ioral flexibility might change with stage of invasion, with high flexibility observed early
in invasions followed by decreases as some individuals identify locally adaptive behav-
ioral strategies and these innovations spread through social learning. Studies focusing
on the number of variants expressed in a population and the degree of flexibility
expressed by individuals should provide more insight into the causes and consequences
of species invasions and the evolution of behavioral flexibility in general.
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