[bookmark: _GoBack]
Interim Tag Data Standard for UHF Animal Identification
August 2016
Background
Radio frequency identification (RFID) technology has been available in the livestock industry for many years. Standardization of the RFID technology used in the identification devices has been and will remain critical to ensure compatibility of devices across manufacturers.
Most common in the market place has been low frequency identification devices operating at 134.2 kHz. Standards for low frequency (LF) RFID devices used for livestock were established in the 1990’s through a Working Group of the International Organization for Standardization (ISO/TC23/SC19/WG3). Two primary standards were defined: one standard on the code structure in the transponder, and the other on the technology for the communication between reader and transponder. These standards are referenced below.
· ISO 11784. Agricultural Electronics—Radio Frequency Identification of Animals—Code Structure. International Organization for Standardization.
· ISO 11785. Radio Frequency Identification of Animals—Technical Concept. International Organization for Standardization.
USDA has required conformance to these standards for official identification devices that utilize low frequency RFID technology.
More recently, RFID identification devices using ultra high frequency (UHF) technology have become available on the market. USDA has approved several RFID eartags that incorporate UHF technology based on EPC Gen 2 (v1.2.0) ISO/IEC 18000-6C operating in the 902 MHz – 928 MHz range. While this standard addresses the communication protocol between the reader and the UHF tag, there is no standard for a common encoding scheme, or Tag Data Standard (TDS), for translating USDA animal numbering systems in UHF identification devices. A global standard is needed and highly preferred by USDA. However, as of this date, no standard has been defined and no standard appears to be on the horizon anytime soon.
In lieu of an established global standard for the encoding of animal identification numbers in UHF tags, USDA has defined an interim standard that would achieve uniformity across manufacturers authorized to encode USDA animal numbers into UHF identification devices. This action was warranted to ensure technical standardization is achieved as timely as possible across manufacturers already providing USDA animal identification devices utilizing UHF. Transition to a global standard(s) is strongly preferred and USDA acknowledges that this standard will be for interim use until such a standard evolves. When such a standard is available, USDA will work with approved manufacturers of official UHF identification devices to establish a timeline to transition to the recognized global standard.
This interim standard offers encoding flexibility for current tag types and is designed to accommodate new tag types in the future without the need for hardware or software updates. In addition, this interim TDS does not dictate the size of the memory chip used in the UHF device but leaves that decision up to the manufacturer based on the ID type, encoding format and any additional information they elect to encode in the chip. A User Memory Indicator (UMI) also referred to as a Value Added Indicator (VAI) has been added in the Electronic Product Code (EPC) header to indicate if information was encoded in the user memory at the time of tag manufacture.
The interim UHF TDS covers all USDA official animal identification numbers as well as the number format of the USDA Approved Backtags illustrated in the following chart.
USDA animal numbering systems
	Number
	Format of Animal Number
	Number Examples

	Animal identification number (AIN)

	15 digits (fixed)
· 840 are the first three digits (numeric code for USA)
	840 003 123 456 789

	National Uniform Eartagging System (NUES) - 9

	 9 alpha/numeric (fixed)
· 2 State or Tribal[footnoteRef:1] code [1: Tribal alpha and numeric codes are assigned by APHIS when requested by a Tribe (see ADT General Standards for listing: http://www.aphis.usda.gov/traceability/downloads/ADT_standards.pdf).]

· 3 alpha series
· 4 digits in a sequential numerical series
	23 ELV 4574
PA ELV 4574

	National Uniform Eartagging System (NUES) - 8
	8 alpha/numeric (fixed)
· Swine and other species (except sheep and goats)
· 2 numeric State or Tribal code
· 2 alphabetical series
· 4 digits in a numerical series
	23 AB 4574

	
	·
	

	
	· Sheep and goats (exclusive to scrapie program)
· 2 alpha postal abbreviation
· 2 alphabetical or alphanumeric series
· 4 digits in a numerical series
	PA AB 4574
or
PA A2 4574

	
	
	

	Flock-based number
with herd management number

	15 alpha/numeric (variable)
· Flock identification number (maximum of 9 characters prefixed with State’s postal abbreviation) with a unique herd management number (up to 6 characters). Does not include I, O, or Q except as part of a postal abbreviation.
	MN0456 4275

	Location-based number[footnoteRef:2] [2: Location identifiers include both the premises identification number (PIN) issued through the PIN allocator and the Location Identification (LID) numbers administered by the State or Tribe.]

With the herd management number
	14 Alpha/numeric (variable)
· Either a premises identification number (PIN) or location identification number (LID) with a unique herd management number PINs have 7 characters; LIDs may have 6, 7, or 8 characters; and the herd management number may have up to 6 characters.
	006ER2A 4275

	USDA Approved Backtag
	8 Alpha/numeric (fixed)
· 2 digit State numeric code
· 2 alpha (2)
· 4 digits
	006ER2A 4275

Interim Tag Data Standard Overview
Below is the Memory Map reference we have used to help establish our proposed interim TDS and it should be noted that this interim standard only covers the EPC in memory bank 01 of the map below. It is assumed that the use of all other memory banks along with the CRC and PC of the EPC will follow GS1 standards as this will eventually provide an easier transition to a recognized international standard when it becomes available.

[image:]

The interim TDS described in this document divides the Class-1 Gen 2 EPC memory into three general sections (not including the CRC and PC): Header, which occupies the first three bytes, the Content section that holds the actual device identification and a Flex section that may or may not be used to store additional information.
	EPC of Memory bank 01

	Header
	Content
	Flex

The Header encompasses the first three Bytes of the EPC memory and contains information about the tag type, size of the Content and the data encoding method, ASCII or integer. In addition, the header contains a reissue counter, the check digit for the Content (animal identification section) and the Value Added Indicator.
The Content section of the memory contains the official identification such as an AIN or NUES ID and may be encoded as either ASCII or an integer, depending on the ID type. The Header section provides the reader/software information on the ID type, size and encoding method of the information contained in the Content. The Content size is incremented in bytes and when Content is an integer the encoding will follow little-endian format. https://en.wikipedia.org/wiki/Endianness

The Flex section may or may not exist and when it does exist can contain information encoded as ASCII or Integer. Information in the Header partition identifies if the Flex section contains data and the encoding format. The available size of the Flex section will depend on the Content and the size of the chip.
Header
Byte One:
The information contained in the first byte of the Header will define the tag type, if the content is encoded as integer or ASCII and the Flex type.
1. [image:]Bits 1-6 identify the tag type (64 possible types)
a. Types 0-31 = content is integer
b. Types 32-63 = content is ASCII
2. Bits 7-8 identify the Flex type (4 possible types)
a. 0 = No Flex
b. 1 = Management ID (INT)
c. 2 = Management ID (ASCII)
d. 3 = Manufacture Number (INT) e.g., date of manufacture

Byte Two:
Byte two identifies how many bytes of memory the Content and Flex sections occupy. Combining the information contained in bytes one and two the hardware/software should be able to read existing and new tag types without the need for updates each time a new tag type is added.

Byte Three:
Byte three holds the UMI/VAI, tag reissue counter and the check digit that is calculated from the ID contained in the content portion of memory.
The UMI/VAI is a one bit indicator within the EPC that provides a mechanism for the manufacturer to identify if information was written to the User Memory (bank 11) at the time of initial encoding.
The reissue counter will be set to 0 for all initial tag production and allows for up to 7 reissues. This is the same functionality as used in LF RFID animal identification devices.
The check character calculation is based on the credit card check digit algorithm and is demonstrated in the appendix of this document.

Content
The Content portion of tag will contain the actual official identification, e.g., 840 AIN or NUES. After encoding by the manufacturer the Content section will be “read only” without the ability to alter. As defined in byte one of the Header, the Content will be encoded as an integer or ASCII. Byte two of the Header will define the total size, in bytes, of the Content section. Please note that not all ID types will fit on the smaller 96 bit chips.
Flex
This section may or may not exist and if it does, it holds data as defined in byte one of the Header. The available size of the Flex area is determined by the total available memory less the Header and Content sections. Therefore, chips with more memory will accommodate larger Flex volumes than chips with smaller memory capacities.

Examples of the TDS and tools on the following pages.

[image:]

Interim Tag Data Standard (TDS) for UHF Animal Identification

[image:]

12
September 2, 2016

This illustration provides example encodings for multiple tag types and demonstrates how some ID types with flex data added would require larger chips.
[image:]

The following examples use an application that was produced to validate the encoding and reading process using the interim tag data standard. A copy of this application can be obtained by contacting randy.d.munger@aphis.usda.gov

[image: C:\Users\rmunger\AppData\Local\Temp\1\SNAGHTML3b7501.PNG]
When the application opens, you are presented with three options Encode, Decode or Use Reader.
Example 1 - AIN:
In this example we will demonstrate the encode/decode options entering the tag information from the first row of the spreadsheet above. Click the Option Encode to open the encoder.
Enter the information from the first row of the spreadsheet on page six of this document (also provided below) into the encoder.
[image:]
· Content type = AIN (integer)
· Flex = None
· Reissue counter = 0
· Tag Content = 840000123456789
· User Memory Indicator = none
Click on Encode and the Encoded Bytes in Hexadecimal fill the Header, Content and Flex (if present) fields. In this example the result is 00800B154DF8C4F9FB020000.Remember this is in little-endian.
[image: C:\Users\rmunger\AppData\Local\Temp\1\SNAGHTML14533e2.PNG]

If you have the encoding for a tag and would like to reverse the process above, then you can use the Decode option in the sample app selector.
[image: C:\Users\rmunger\AppData\Local\Temp\1\SNAGHTML482195.PNG]Clicking on Decode opens the app.
Type or paste in the tag encoding (use Copy to Clipboard button to easily use the information from the encoder):
[image: C:\Users\rmunger\AppData\Local\Temp\1\SNAGHTML516a76.PNG]Here we have used the encoding produced in the example above.
Click the Decode button to review the tag information:

This is a reverse process of the encoder example and the information is exactly the same.
The following diagram is an examination of the hexadecimal value created in this example: 00800B154DF8C4F9FB020000
[image:]

Example 2 – Approved Backtag with Flex
Need to add explanations for this section……

Example 2 – Approved Back tag with Flex information
In this second example we will also demonstrate the use of the encode/decode options while entering the tag information from the fourth row of the spreadsheet on page five of this document.

Enter the information from the fourth row of the spreadsheet above into the Encoder:
[image:]

· [image: C:\Users\rmunger\AppData\Local\Temp\1\SNAGHTML1fb4f90.PNG]Content type = Approved Back Tag (ASCII)
· Flex Type = Mfn. Num. (Integer)
· Flex Content = 200
· Reissue counter = 0
· Tag Content = 34GL8322
· User Memory Indicator = none

Click on Encode and the Encoded Bytes in Hexadecimal fill the Header, Content and Flex fields. In this example the result is 8B81033334474C38333232C8.

As shown in the first example, if you have the encoding value for a tag and would like to reverse the process above, then you can use the Decode option in the sample app selector.

[image: C:\Users\rmunger\AppData\Local\Temp\1\SNAGHTML163ee534.PNG]Clicking on Decode opens the UHF Tag Decoder app.

[image: C:\Users\rmunger\AppData\Local\Temp\1\SNAGHTML1fe78f0.PNG]Type or paste in the tag encoding (use Copy to Clipboard button to easily use the information from the encoder):
Here we have used the encoding produced in this Back tag example above.
Click on the Decode button to review the tag information:
This is just a reverse process of the encoder and the information is exactly the same.
The following diagram is an examination of the hexadecimal created in this example: 8B81033334474C38333232C8
[image:]

Upon request we will also provide sample code in C# .NET to encode and decode tags using the proposed TDS. This code may be a useful guide to tag and software manufacturers. Please contact randy.d.munger@aphis .usda.gov for a copy of this code.
Appendix (Check Character Calculation):

// To get the ASCII integer code for a character, find the index then add 32
// This isn't really needed in C#/.NET because we could treat the CHAR as
// an integer but this makes the example more agnostic
private const String AsciiCharacters =
 " !\"#$%&'()*+,-./0123456789:;<=>?@" +
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_`" +
 "abcdefghijklmnopqrstuvwxyz{|}~";

/// <summary>
/// Calculates the check digit using a modified version of the GS1 standard
/// http://www.gs1.org/how-calculate-check-digit-manually.
/// The modifications are:
/// 1.) Map each character to the printable ASCII decimal values
/// This means any printable ASCII is allowed
/// 2.) Divide the sum by 16 and return the remainder instead
/// of returning 0-9 return 0-15 (to make full use of 4 bits)
/// </summary>
/// <param name="identifier">The identifier.</param>
/// <returns>A checkdigit of 0-15</returns>
public static Byte CalculateCheckDigit(String identifier)
{
 Int32 sum = 0;

 for (Int32 i = 0; identifier != null && i < identifier.Length; i++)
 {
 // Get the ASCII decimal value of the character we are on
 Int32 dec = AsciiCharacters.IndexOf(identifier[identifier.Length - i - 1]) + 32;

 // 31 means the ASCII character wasn't found
 if (dec == 31)
 throw new Exception("Only ASCII between 32 and 126 (decimal value) allowed.");

 sum += dec*(i%2 == 0 ? 3 : 1);
 }

 // Return the remainder of our sum divided by 16
 // to make full use of our 4 bits (range of result is 0-15)
 return (Byte) (sum%16);
}

image2.png
Bytel | Bit1
Bit2 | ontent type (0-63 inclusive)
BIt3 |, ighest bit= O indicates Integer (<-31) content encoding
e |aighest bt =1 inccates Ascil (>=32)content encoding
8it6
Bit7 |Flextype (0-3 inclusive)
Bit8_|0=No Flex, 1=MGT (INT), 2=MGT (ASCI), 3=MFG NUM (INT)
Byte2 | Bitl
8it2 |Content Length in Bytes (0-15 inclusive)
8it3 |If encoded as an integer then only 1,2,4,8 allowed
Bita
Bit5
8it6 |Flex Length in Bytes (0-15 inclusive)
8it7 |If encoded as an integer then only 1,2,4,8 allowed
Bits
Byte3 | Bit1 |User Memory Indicator (Value Added Indicator)
Bit2
8it3 |Reissue Counter (0-7 inclusive)
Bita
Bits
8its |Check digit (0-15 inclusive)
8it7 |Display as hex (0-)

Bits

image5.png
Content Type Tag Content & exype Flex Reissue | User 96 Bits ! 128 Bits. ! 192 Bits.
Digit Content # |mem?| 1 2 3 4 s 6 7 8 s 10 1 12013 14 15 1s}17 18 15 20 au 2 2 u
T T
0- AIN (Integer) 840000123456789 | B | None o N[0x00 | 0x@0 | 0x08 | 0x15 | 0xa | 0xa | oxca | oxFs | oxes | oxo2 | ox00 Oxooi E
32- NUES (Ascll) 34881234 c | merTaGascn | 3-8 o N[oxs2 | oxe3 | oxoc | oxa3 | ox34 | oxa1 | oxa2 | ox1 | ox32 | 0xe3 | oxaa oxzz!oxzn 0xa2 | ox00 Oxooi
32- NUES (Ascll) 84WAZ5678 6 | MGTTAG Integer | sas7as o v [ox61 | 0x0a | 0xes | 0x38 | 0x34 | 057 | 01 | 0w | 3 | x| 7 | x| o | oxs | v | oxcol
34- Approved Back Tag (ASCI) | 34GL8322 3 | MinNum 200 o n | oxee | ov81 | 003 03| w38 | 07| o | oxss | w33 | o2 | oz | el i
0- AIN (Integer) 840000123456789 | B | MGTTAGASCH | ‘OleBessie| 3 v | ox02 | oxse | oxee | ox15 | 0xa | oxFs | oxca | oxFs | oxes | oxo2 | ox00 0x27i0x4r oxéc | 0x65 0x20i0x42 x5 | 0x73 | 0x73 | 0x69 | 0x65 | 0x00 | 0x00
T T
33 Location # Plus MGT # (Ascll) | 1A123456123a56 | 0 | maTTAGAscl | cash 0 N | oxs | oxra| 0x00 | 0xag | oxa1 | 0x31| 0x32 | 0x33 | 0x34 | 0x35 | 0x36 | 0x20! 0x31 | 0x32 | 0x33 | 0x34 ! 0x35 | 0x36 | 0x43 | 0x61 | 0x24 | 0x68 | 0x00 | 0x00

image6.png

image7.png
Flex Reissue | User 96 Bits 1

Content Type Tag Content FlexType 1

Content # |Mem?l 1 2 3 a4 s 6 7 8 9 10 mu !

T

1

0-AIN (integer) 840000123456789 | B | None 0 N_| 0x00| 0x80 | 0x08 | 0x15 | 0x4D | 0xF8 | 0xca | 0xF9 | 0xFB | 0x02 | 0x00 I
\

image8.png
7 UHF Tag Encoder

EPCSize (96,128..) 96

Content Type [AIN (integer)
FlexType © None ©) Mgt Tag (integer) © Mgt Tag (ASCI) ©) Mig Num (integer)
Reissue Counter (0-7) 0

Tag Content 840000123456789 (numbers ony - content type s set to integer)

Check Digit & (automatically calculated)
Content Length (0-15) |8 (automatically calculated)
Flex Content (disabled because flex type is "none’)
Flex Length (0-15) [W/A | (automatically calculoted)
User Mem Indicator]

=

Encoded Bytes (Hexadecimal)
00 =)
Headerl Header2 Header3

154DFECAFerE0200
Content

image9.png
7 UHF Tag Decoder

Tag Bytes (008008 154DFACHFSF8020000]

=

image10.png
TagBytes 00800B154DFECAFOFE020000

Decode

Valia? True
ContentType ~ AIN ntege)
FlexType None

Reissue Counter (07 0
Tag Content B40000123456789
Content Check Digit &
Content Length (015) &
Flex Content
Flex Length 0-15) 0
User Mem Indicator Falze

image11.png
Hex

Bits

00

08

154DFBC4FOFB0200

00

000000

00

1000

0000

0] 000

1011

Tag Type 0, AIN (840000123456789) litle-endian No Flex

Map for Example 1- AIN

Content: Type is defined in Header Byte 1, bits 1-
in Header Byte 2, bits 1-4.

. Length is defined

Flex: Type is defined in Header Byte 1, bits 7-8. Length is defined in
Header Byte2, bits 5-8.

e
at2 |Content type: Bits represent the integer 0, meaning this is an AIN
Bt [encoded as ittle-endian.

>< Bitd HeaderByte.

Bits 1
Bt

_ ::; Flex type: Bits represent the integer 0, meaning Flex s not present.

(| 8 [content Length: Bits represent the integer 8, meaning the contentis 8
:g bytes in length.

e eaderaye

BtS | Flex Length: Bits represent the integer 0, meaning the Flex length is 0 2
B or there s no Flex.
57

_| sts

/"~ [mit1_|User Memory Indicator: Bits represent the integer 0, meaning none.
:g Reissue Counter: Bits represent the integer 0, meaning original
aea [production not a reissued tag. am
BItS | Check digit: Bits represent the integer 11, meaning the check 3
2% |characters 11 or B as represented in hexadecimal.

| sits

image12.png
ok Flex Reissue | User 96 Bits i 1288its i
Content Type Tag Content FlexType i i
Digit content # |mem?| 1 2 3 a4 5 6 7 8 9 10 m 12}13 14 15 16|

i i

34 - Approved Back Tag (ASCII) 34618322 3 | MfnNum 200 0 N_ | 0x88B | 0x81 | 0x03 | 0x33 | 0x34 | 0x47 | 0x4C | 0x38 | 0x33 | 0x32 | 0x32 | oxcs! l

image13.png
EPCSize 96, 128..)
Content Type
FlexType

Reissue Counter (0-7)
Tag Content

Checl Digit

Content Length (0-15)
Flex Content

Flex Length (0-15)
User Mem Indicator

%

Approved Back Tag (ASCI)

© None © Mt Tag (integer)
0

34618322

3 (automatically calculated)
8 (automatically calculated)
200

1 (automatically calculated)

o
Encode

Encoded Bytes (Hexadecimal)
= e
Headerl Header2

3334474038333232
Content

e
Flex

Copy to Clipboard

lgt Tag (ASCID © Mg Num (integer)

(ASCIl characters only - content type i set to ASCI)

(numbers only - content type is set to integer)

03
Header 3

image14.png

image15.png
Tag Bytes

Valia?
Content Type
FlexType

Reissue Counter (07
Tag Content

Content Check Digit
Content Length (0-15)
Flex Content

Flex Length (0-15)
User Mem Indicator

8881033334474C38333232C8

Decode

Trae
Approved Back Tag (ASCI)
Manufacturer Number

o

36832

200

False

image16.png
H ex 88 81 03 3334474C38333232 c8

Bits 700070] 17] [7000 [0001] [0] @00 [o0rt ‘Approved Backiag encoded as ASCI Wanfaciure Number encoded as Infeger

Map for Example 2 - Approved Backtag with Flex

Content: Type is defined in Header Byte 1, bits 1-6. Length is defined
in Header Byte 2, bits 1-4.

Flex: Type is defined in Header Byte 1, bits 7-8. Length is defined in
Header Byte2, bits 58,

s
air2 [Content type: Bits represent the integer 34, meaning this is an
sit3 [Approved Backtag encoded as ASCIL
< Bits Heasersyte
Bits 1
sits
_ ::: [Flex type: Bits represent the integer 3, meaning Manufacture Number.
([BT [content Length: Bits represent the integer 8, meaning the content is 8
Bit2 .
&2 lotes n lengeh.
> e esderayie
Bt |Flex Length: Bits represent the integer 1, meaning the Flex length is 1 2
its
5 fovee.
| sies
(~ [Citt_|User Memory Indicator: Bits represent the integer 0, meaning none.
:‘; Reissue Counter: Bits represent the integer 0, meaning original
aia [production not areissued tag. e
BitS |check digit: Bits represent the integer 3, meaning the check character 2
S o3,
Bit7
_| sis

image1.png
BANK 2
E
00

e

o1

bye 0

1

fise o [—ctss® TSt
~ o 1[eont TAGMODEL 17|
~—ACCESSPWD —» H 2 ‘
o [o o =
10 4
e -
o =— omots —= ofiEE
< proTOCNTRL —» _[TF| 21 p——
" 3! ==
§
== 3
mE
1 8|
e H =

image3.png
USDA
SOLA

image4.png
TTTTTTTTTTTTTTTTTTTTTTTT

AGRICULTURE

