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1 Introduction

Veterinary Services Memorandum 800.112, Appendix III, provides guidance on assay validation
studies for ELISA relative potency assays. (USDA 2011) Section 2.2.5 outlines the design of
the parallelism study conducted during assay validation and gives expectations for satisfactory
parallelism. This note describes a method commonly used for the statistical analysis of data
from such a study. This document is intended for personnel with a substantial background
in mathematical statistics, including familiarity with nonlinear mixed effects models. (e.g.
Pinheiro and Bates 2000, Littell et al. (2006))

2 Preliminaries

2.1 Data Visualization

The first step should always be to visualize the optical density (OD) profiles for suitability of
the data and plausibility of the intended model fit. In particular, verify the following.

o Full curve. The full curves of both preparations from saturation through extinction
must be present.

o Parallelism. Their profiles of the two curves should appear to have the same sigmoid
shape and differ only by a horizontal shift.

o Zero lower asymptote. The ODs are typically corrected by subtracting the mean OD
of a reagent blank or negative control. When this is done, we generally assume that
the lower asymptote is zero. (For some assays, such as some competitive ELISAs, this
assumption may not hold.)
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2.2 Data Reduction

Next, for this analysis OD values within each dilution of a preparation on a plate are averaged
prior to analysis. As a result, the data set will now have one mean OD value for each dilution
of a preparation on a plate. This is done for convenience in Section 2.2.5 parallelism studies
only, so that the appropriate random components are used to evaluate the curve fits, without
including the within-plate/prep/dilution residual.

2.3 Model Parameterization

Finally, the analyst must choose a parameterization of the 3-parameter logistic (3PL) curve.
(Ratkowsky and Reedy 1986) Let y denote the (blank corrected) optical density, and z the
dilution. The three parameters of the curve are the upper asymptote, A; a scale factor, B;
and a location parameter, C.

For assay validation studies, use the following parameterization.

A

T 1+ exp [(C' — log, )/ B] ()

Y

The covariate is conventionally expressed in base d logarithms, where d is the dilution factor.!

Commercial software packages distributed with plate reading equipment may use another
parameterization, which is acceptable for serial (lot) release testing.

(2)

The A parameter will have the same numerical value in both parameterizations, but B and
C will have different numerical values depending on which parameterization is selected.?

3 Nonlinear mixed effects model

Using the parameterization of Eq.(1), the nonlinear mixed effects model can be formulated
by decomposing each parameter into a fixed effect that depends on preparation (reference or
test serial) and a random effect that depends on plate. (For simplicity we illustrate just a
single random effect. Include others as necessary.) Mathematically, this is written as follows:

. Al + Clj
1 +exp [(C; + ¢; — logg xijyr) / (Bi + bj)]

Yij)k + €Gjk (3)

L Any base will work, but the choice will naturally affect the location and scale parameter estimates.
2For additional details about parameterizations see STATWI0005.0.
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where 7 indexes the preparations (reference or test serial), j indexes the plates, and k indexes
the dilutions. The fixed effects are denoted by capital letters, and the random effects by
lower case letters.

The random effects are a for the upper asymptote, b for the scale factor, and ¢ for the location
parameter. Thus each parameter (A, B, and C') depends on one fixed effect (the preparation)
and one random effect (the plate). A residual error is represented by €. The random effects
are typically modeled as follows:

ey ~ N(0,07) (4)
a 07 [o2 0 0
bl ~MvN|[lo]|,[ 0 o2 0 (5)
c 0 0 0 o2

C

Here N is the normal distribution and MV N is the multivariate normal distribution. A
diagonal covariance matrix is assumed for the random effects, since it is unlikely there will
be enough data to fit an unstructured one. Sometimes, one or more of the random effect
variance components is estimated to be negligibly small. By convention, when this happens
we have chosen not to remove the random effect from the model. Finally, note that regarding
Eq.(4), it assumes homogeneity and independence of residuals, which may not always be the
case.

Once the model is fitted and parameter estimates are available, parameter ratios and their
confidence intervals may be obtained by the delta method. This requires the estimated
covariance matrix of the parameter estimates from the model fit. Critical values from the
t-distribution should be used; the degrees of freedom will be the number of plates minus
three, which is the number of random effects parameters (a, b, c).
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