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1 Introduction

Veterinary Services Memorandum 800.73 provides guidance on studies required for the
licensure of diagnostic test kits. This document provides technical details related to es-
timating diagnostic sensitivity (Sn) and diagnostic specificity (Sp). A simulation method
is described that makes use of the performance characteristics of one or more reference
tests, as well as the prevalence of each population sampled. A software package is available
to implement the procedure. This document assumes that the reader has a substantial
background in mathematical statistics.

2 Notation and Properties

This section provides notation that will be used throughout. Further, properties of prob-
abilities are provided to allow derivations of expected probabilities and hence, expected
counts.

Let

� P (•) represent a marginal probability.

� P (•|•) represent a conditional probability

� D+ indicates disease positive

1
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2 NOTATION AND PROPERTIES 2

� D− indicates disease negative

� T+ indicates test positive

� T− indicates test negative

� T? indicates test suspect

� i = 1, 2, . . . , I where I is the number of tests (i = 1 refers to the experimental test
and i = 2, . . . , I refers to the (i− 1) reference tests)

� l = 1, 2, . . . , L where L is the number of populations sampled

� k = 1, 2, . . . , K represents the kth unique combination of test outcomes where K is
the total number of unique combinations of test results

� Si =

{
2, for a 2-state test
3, for a 3-state test

� K =
∏I
i=1 Si, which represents the number of unique test combinations

� πi = Sni = P(Ti+ | D+) for the ith test

� θi = Spi = P(Ti− | D−) for the ith test

� ψi = P(Ti? | D+) for the ith test

� φi = P(Ti? | D−) for the ith test

� δi =

{
0, if the ith test has 2 states
ψi

1−πi , if the ith test has 3 states

� γi =

{
0, if the ith test has 2 states
φi

1−θi , if the ith test has 3 states

� pl = Pl(D+) for the lth population (lth population prevalence)

� xk,i =


Ti − if the ith test is negative in the kth unique combination of test outcomes
Ti + if the ith test is positive in the kth unique combination of test outcomes
Ti ? if the ith test is suspect in the kth unique combination of test outcomes

� Mk is a vector of length I with elements (xk,1, xk,2, . . ., xk,I) representing the kth

unique combination of test outcomes; Mk 6= Mk′ for all k 6= k′

� Pl(Mk) denotes the probability of observing the kth unique combination of test out-
comes within the lth population.

� nk,l denotes the number of samples (observed count) exhibiting the kth unique com-
bination of test outcomes within the lth population.

� Nl =
∑K
k=1 nk,l is the total number of samples tested from the lth population.
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3 ESTIMATING SN AND SP 3

� n̂k,l denotes the expected count for the kth unique combination of test outcomes within
the lth population.

� n̂k,l =
[
[
∏I
i=1 P(ωk,i | D+)] Pl(D+) + [

∏I
i=1 P(ωk,i | D−)] Pl(D−)

]
Nl

Law of Total Probability: Let B1, B2, . . . , Bk be a collection of mutually exclusive and
exhaustive events, then for any event A,

P (A) =
k∑
i=1

P (A ∩Bi)

which implies

P (T−|D+) = 1− π

P (T+|D−) = 1− θ

in an instance where the test method has 2-states (positive and negative) and

P (T−|D+) = 1− π −

P (T+|D−) = 1− θ − φ

in an instance where the test method has 3-states (positive, negative and suspect).

Conditional Independence:

Two test methods are conditionally independent given disease status if and only if

P (T1, T2|D) = P (T1|D)P (T2|D)

3 Estimating Sn and Sp

3.1 Simulation Method

Identify one or more reference tests. Provide information on the performance characteristics
(sensitivity and specificity) of each reference test. Provide information on the prevalence
of each of the sampled populations. Estimate the Sn and Sp of the experimental kit by the
simulation method. If an infallible reference test is available, follow the method in Section
3.2.
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3 ESTIMATING SN AND SP 4

3.1.1 Sn and Sp

� The firm provides reasonable assumed values for Sn (π) and Sp (θ) for each
reference test used based on the available information.

� The firm provides reasonable assumed values for δ and γ for each 3-state reference
test used based on available information. These express the probability of a
suspect result as a fraction of the non-correct test results. See Section 2 Notation.

� When information exists for the distribution of Sn (π) and Sp (θ) it is typically
crude or limited. Unless specific data are available about the form and nature
of the distribution, rely on the software package default approach of simulating
from a beta distribution with fixed variance.

3.1.2 Prevalence

� Provide a known or reasonable assumed value of the prevalence for each popula-
tion sampled. Please refer to VSM 800.73 for further details regarding prevalence
estimates.

� When information exists for the distribution of prevalence it is typically crude
or limited. Unless specific data are available about the form and nature of the
distribution, rely on the software package default approach of simulating from a
beta distribution with fixed variance.

3.1.3 For each simulation cycle, the Sn (π) and Sp (θ) for the experimental test are es-
timated as the values that minimize the sum of the squared deviations between the
observed and expected counts. For a 2-state experimental test,

min
π1, θ1

K∑
k=1

L∑
l=1

(nk,l − n̂k,l)2

For a 3-state experimental test,

min
π1, θ1,δ1,γ1

K∑
k=1

L∑
l=1

(nk,l − n̂k,l)2

3.1.4 Using the above equations, interval estimates are obtained from the set of optimized
values for each set of simulations by the highest density method. A software package1

in the R language may be found online.

3.2 Estimating Sn and Sp with an Infallible Reference test

An infallible reference test is one that can detect either the presence or absence of a disease
without error. There are very few instances in which an infallible reference test exists for

1https://github.com/ABS-dev/DiagTestKit/blob/master/README.md
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A APPENDIX 5

determining the positive or negative status of a sample. If an infallible reference test is
available for one or the other disease status, then the corresonding parameter estimate (Sn
or Sp) is a simple fraction.

For example, for a 2-state experimental kit the results of the experimental kit and the true
disease status can be cross-classified as follows:

Disease
Test Positive Negative
Positive a b
Negative c d

Then Sn and Sp are determined as follows:

Sn = P (T+|D+) =
a

a+ c

Sp = P (T−|D−) =
d

b+ d

Use the Clopper-Pearson (Clopper & Pearson (1934)) method for obtaining interval esti-
mates.

A Appendix

A.1 A Single 2-State Reference Test, One population, 2-State
Experimental Test

When a single 2-state reference test (T2) is used to estimate the sensitivity and specificity
of a 2-state experimental test (T1), there are 4 unique test combinations (i.e. K = 4). If
only one population is sampled, there are a total of 4 expected counts.

Let

� M1 = (T1−, T2−)

� M2 = (T1−, T2+)

� M3 = (T1+, T2−)

� M4 = (T1+, T2+)

STATWI0002.04 page 5 of 9
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Therefore,

P1(M1) = P(T1 − |D+)P(T2 − |D+)P1(D+) + P(T1 − |D− )P(T2 − |D− )P1(D− )

= (1− π1)(1− π2)p1 + θ1θ2(1− p1)

P1(M2) = P(T1 − |D+)P(T2 + |D+)P1(D+) + P(T1 − |D− )P(T2 + |D− )P1(D− )

= (1− π1)π2p1 + θ1(1− θ2)(1− p1)

P1(M3) = P(T1 + |D+)P(T2 − |D+)P1(D+) + P(T1 + |D− )P(T2 − |D− )P1(D− )

= π1(1− π2)p1 + (1− θ1)θ2(1− p1)

P1(M4) = P(T1 + |D+)P(T2 + |D+)P1(D+) + P(T1 + |D− )P(T2 + |D− )P1(D− )

= π1π2p1 + (1− θ1)(1− θ2)(1− p1)

The expected counts are

� n̂1,1 = P1(M1)N1

� n̂2,1 = P1(M2)N1

� n̂3,1 = P1(M3)N1

� n̂4,1 = P1(M4)N1

Sensitivity and specificity of the experimental kit are estimated as the values that minimize
the sum of the squared residuals. Specificially,

min
π1, θ1

[
(n1,1 − n̂1,1)

2 + (n2,1 − n̂2,1)
2 + (n3,1 − n̂3,1)

2 + (n4,1 − n̂4,1)
2
]

This can easily be extended to multiple populations.

A.2 Two, 2-State Reference Tests, One population, 3-State Ex-
perimental Test

When two, 2-state reference tests are used to estimate the performance characteristics of a
3-state experimental test, there are 12 unique test combinations (i.e. K=12). If only one
population is sampled, there are a total of 12 expected counts.

Let

� M1 = (T1−, T2−, T3−)

� M2 = (T1−, T2−, T3+)
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� M3 = (T1−, T2+, T3−)

� M4 = (T1−, T2+, T3+)

� M5 = (T1+, T2−, T3−)

� M6 = (T1+, T2−, T3+)

� M7 = (T1+, T2+, T3−)

� M8 = (T1+, T2+, T3+)

� M9 = (T1?, T2−, T3−)

� M10 = (T1?, T2−, T3+)

� M11 = (T1?, T2+, T3−)

� M12 = (T1?, T2+, T3+)

Therefore,

P1(M1) = P(T1−|D+)P(T2−|D+)P(T3−|D+)P(D+) + P(T1−|D−)P(T2−|D−)P(T3−|D−)P(D−)

= (1− π1)(1− δ1)(1− π2)(1− π3)p1 + θ1θ2θ3(1− p1)

P1(M2) = P(T1−|D+)P(T2−|D+)P(T3+|D+)P(D+) + P(T1−|D−)P(T2−|D−)P(T3+|D−)P(D−)

= (1− π1)(1− δ1)(1− π2)π3p1 + θ1θ2(1− θ3)(1− p1)

P1(M3) = P(T1−|D+)P(T2+|D+)P(T3−|D+)P(D+) + P(T1−|D−)P(T2+|D−)P(T3−|D−)P(D−)

= (1− π1)(1− δ1)π2(1− π3)p1 + θ1(1− θ2)θ3(1− p1)

P1(M4) = P(T1−|D+)P(T2+|D+)P(T3+|D+)P(D+) + P(T1−|D−)P(T2+|D−)P(T3+|D−)P(D−)

= (1− π1)(1− δ1)π2π3p1 + θ1(1− θ2)(1− θ3)(1− p1)

P1(M5) = P(T1+|D+)P(T2−|D+)P(T3−|D+)P(D+) + P(T1+|D−)P(T2−|D−)P(T3−|D−)P(D−)

= π1(1− π2)(1− π3)p1 + (1− θ1)(1− γ1)θ2θ3(1− p1)

P1(M6) = P(T1+|D+)P(T2−|D+)P(T3+|D+)P(D+) + P(T1+|D−)P(T2−|D−)P(T3+|D−)P(D−)

= π1(1− π2)π3p1 + (1− θ1)(1− γ1)θ2(1− θ3)(1− p1)

P1(M7) = P(T1+|D+)P(T2+|D+)P(T3−|D+)P(D+) + P(T1+|D−)P(T2+|D−)P(T3−|D−)P(D−)

= π1π2(1− π3)p1 + (1− θ1)(1− γ1)(1− θ2)θ3(1− p1)
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P1(M8) = P(T1+|D+)P(T2+|D+)P(T3+|D+)P(D+) + P(T1+|D−)P(T2+|D−)P(T3+|D−)P(D−)

= π1π2π3p1 + (1− θ1)(1− γ1)(1− θ2)(1− θ3)(1− p1)

P1(M9) = P(T1?|D+)P(T2−|D+)P(T3−|D+)P(D+) + P(T1?|D−)P(T2−|D−)P(T3−|D−)P(D−)

= δ1(1− π1)(1− π2)(1− π3)p1 + γ1(1− θ1)θ2θ3(1− p1)

P1(M10) = P(T1?|D+)P(T2−|D+)P(T3+|D+)P(D+) + P(T1?|D−)P(T2−|D−)P(T3+|D−)P(D−)

= δ1(1− π1)(1− π2)π3p1 + γ1(1− θ1)θ2(1− θ3)(1− p1)

P1(M11) = P(T1?|D+)P(T2+|D+)P(T3−|D+)P(D+) + P(T1?|D−)P(T2+|D−)P(T3−|D−)P(D−)

= δ1(1− π1)π2(1− π3)p1 + γ1(1− θ1)(1− θ2)θ3(1− p1)

P1(M12) = P(T1?|D+)P(T2+|D+)P(T3+|D+)P(D+) + P(T1?|D−)P(T2+|D−)P(T3+|D−)P(D−)

= δ1(1− π1)π2π3p1 + γ1(1− θ1)(1− θ2)(1− θ3)(1− p1)

The expected counts are

� n̂1,1 = P1(M1)N1

� n̂2,1 = P1(M2)N1

� n̂3,1 = P1(M3)N1

� n̂4,1 = P1(M4)N1

� n̂5,1 = P1(M5)N1

� n̂6,1 = P1(M6)N1

� n̂7,1 = P1(M7)N1

� n̂8,1 = P1(M8)N1

� n̂9,1 = P1(M9)N1

� n̂10,1 = P1(M10)N1

� n̂11,1 = P1(M11)N1

� n̂12,1 = P1(M12)N1

Sensitivity and specificity of the experimental kit are estimated as the values that minimize
the sum of the squared residuals. Specificially,

min
π1,θ1,δ1,γ1

K∑
k=1

(nk,1 − n̂k,1)2.
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