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The mission of Wildlife Services’ (WS) 

National Wildlife Research Center (NWRC) 

is to apply scientific expertise to resolve 

human-wildlife conflicts while maintaining 

the quality of the environment shared with 

wildlife. NWRC develops methods and infor-

mation to address human-wildlife conflicts 

related to the following: 

•	 agriculture (crops, livestock, aquaculture, 

and timber) 

•	 human health and safety (wildlife disease, 

aviation) 

•	 property damage 

•	 invasive species  

•	 threatened and endangered species 



Message From the Director    1

This past year has been a tumultuous one for 

health care professionals and disease special-

ists. The global impacts of severe acute respi-

ratory syndrome coronavirus 2 (SARS-CoV-2, 

the virus that causes COVID-19) to public health 

have been enormous and have shown how 

interconnected we are to one another and  

the environment.

Approximately 75 percent of emerging infec-

tious diseases in people come from animals. 

Because of this, Wildlife Services (WS) and 

other APHIS programs support a collaborative 

One Health approach to addressing animal dis-

eases and pathogens, including SARS-CoV-2. 

Working across multiple disciplines and levels, 

the One Health approach seeks to achieve 

optimal health for people, animals, plants, and 

the environment by recognizing and consid-

ering the many interconnections among them. 

Globally, hundreds of organizations are 

furthering the One Health approach through 

initiatives, policies, programs, and platforms. In 

the United States, Congress has appropriated 

millions of dollars to APHIS to lead efforts to 

combat the threat of zoonotic diseases and 

advance emergency preparedness. 

I’m proud to share that WS employees, 

including National Wildlife Research Center 

(NWRC) researchers, biologists, and techni-

cians, have risen to the challenge. They are 

providing scientific expertise in a variety of 

disciplines, such as wildlife disease, genetics, 

modeling, and animal behavior and ecology, 

to help guide wildlife disease surveillance 

and monitoring efforts, disease diagnostics, 

and agency responses to disease outbreaks. 

In this year’s report, you’ll learn how NWRC 

researchers are partnering with the Centers 

for Disease Control and Prevention, as well as 

State health departments and wildlife agen-

cies, to monitor for SARS-CoV-2 in susceptible 

wildlife, such as mink and white-tailed deer. 

We are also helping to determine if wildlife 

species could serve as reservoirs for main-

taining the virus outside the human population. 

Unfortunately, SARS-CoV-2 is not the only 

infectious pathogen causing animal and 

human health concerns. NWRC’s expertise 

is also helping with efforts to mitigate the 

impacts of chronic wasting disease on deer 

and elk, African swine fever on domestic and 

feral swine, and rabies on terrestrial wildlife, 

such as raccoons, foxes, skunks, and mon-

gooses. Working together with our Federal, 

State, and Tribal partners, WS and other APHIS 

programs are increasing and enhancing the 

Nation’s ability to prevent, detect, report, and 

respond to emerging and zoonotic diseases 

now and in the future.

It is with pleasure that I present to you the 2021 

research accomplishments for NWRC. 

Jason Suckow 

Director  

National Wildlife Research Center 

Wildlife Services, APHIS-USDA 

Fort Collins, CO

Message From the Director

Jason Suckow, NWRC 
Director   
Photo: USDA, Wildlife Services
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Research Spotlights
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The health of animals, 
people, and the 

environment is connected. 
The One Health approach is 
a collaborative effort of the 

human health, veterinary 
health, and environmental 

health communities. 
Through this collaboration, 

APHIS achieves optimal 
health outcomes for both 

animals and people.  
Source: Wikipedia 
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APHIS supports a One Health approach to addressing animal 

diseases and pathogens, including SARS-CoV-2.

The National Wildlife Research Center (NWRC) 

is part of Wildlife Services (WS), a program 

within the U.S. Department of Agriculture’s 

(USDA) Animal and Plant Health Inspection 

Service (APHIS). Our researchers are dedicated 

to finding biologically sound, practical, and 

effective solutions for resolving wildlife damage 

management issues. The following spotlights 

feature some of WS NWRC’s expertise and our 

holistic approach to addressing today’s wildlife-

related challenges.

SPOTLIGHT: SARS-CoV-2 
Research in Wildlife 

On March 11, 2021, President Biden signed 

into law the American Rescue Plan (ARP) Act, 

also known as one of the COVID-19 stimulus 

bills. The ARP is a multifaceted, $1.9 trillion 

plan created to mount a national vaccination 

program, identify and address emerging strains 

of COVID-19, and safely reopen schools, among 

other activities. Under the umbrella of USDA 

activities funded in the legislation, the Secretary 

of Agriculture designated APHIS as the lead 

agency to develop a plan to conduct monitoring 

and surveillance of susceptible animal species 

for SARS-CoV-2 (the virus that causes COVID-19). 

The ARP allocates $300 million for this charge 

and the money is available until expended.

WS, along with other APHIS programs, is 

leading efforts to develop and carry out a robust 

early warning surveillance system to alert public 

health partners of potential disease concerns 

in animals and potentially prevent or limit the 

impacts of SARS-CoV-2 and future zoonotic 

disease outbreaks in people and animals. The 

system leverages and expands upon WS and 

APHIS’ Veterinary Services disease monitoring 

and surveillance capabilities and expertise.

The following sections highlight WS surveil-

lance and research related to SARS-CoV-2  

in wildlife.

Initial SARS-CoV-2 Surveillance

In fall 2020, before Congress passed the ARP, 

outbreaks of SARS-CoV-2 were confirmed 

on mink farms in Utah, Michigan, Wisconsin, 

and Oregon. WS National Wildlife Disease 

Program (NWDP) wildlife biologists and NWRC 

researchers conducted wildlife surveillance for 

the virus in small to medium-sized carnivores 

and other species around the infected farms. 

Per One Health principles, which highlight the 

interconnections among people, animals, 

and the environment, we conducted this 

surveillance as part of investigations involving 

the Centers for Disease Control and Prevention 

(CDC); the U.S. Geological Survey; and State 

departments of agriculture, natural resources, 

and health. APHIS supports a One Health 

approach to addressing animal diseases and 

pathogens, including SARS-CoV-2.

More than 200 wild and invasive free-ranging 

animals found near infected mink farms—

including raccoons, minks, skunks, opossums, 

rodents, and feral cats—were captured, 

sampled, and tested for SARS-CoV-2 at APHIS’ 

National Veterinary Services Laboratories 

(NVSL) in Ames, IA. Presumed escaped minks 

were closely associated with nearby barns and 
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designated as domestic escapees based on 

their location, behavior, genetics, and appear-

ance. Researchers identified wild minks by  

their brown coat color and size (smaller than 

farmed mink).

Surveillance results showed that 11 mink 

escapees in Utah and 1 in Oregon tested 

positive for antibodies to SARS-CoV-2. Further 

testing showed several of the mink not only  

had SARS-CoV-2 antibodies but also were 

positive for the SARS-CoV-2 virus. One wild 

mink from Utah also tested positive for the 

virus. No other sampled species had a detect-

able antibody response or tested positive. 

While it is thought that infected farm workers 

introduced the virus to the farmed minks, it is 

unknown how the virus was transmitted to the 

wild mink. This was the first free-ranging native 

wild animal confirmed with SARS-CoV-2 in the 

United States.

APHIS is working closely with Federal, State 

and industry partners to develop a SARS-CoV-2 

infection avoidance and monitoring program 

for mink farms. The voluntary program will 

offer incentives, guidance, and support to 

mink farmers dealing with the virus and may 

be adapted for other species and industries 

affected by it or other zoonotic pathogens. 

White-Tailed Deer Exposure to 
SARS-CoV-2

Close to 300 million white-tailed deer live in 

the United States. They are found in every State 

except Alaska and enjoyed by many wildlife 

watchers, recreationalists, and hunters. Studies 

conducted in 2020 and early 2021 showed 

that white-tailed deer have protein (ACE-2) 

receptors capable of binding to SARS-CoV-2, 

allowing the virus to enter susceptible cells, 

and that captive deer experimentally exposed 

to the virus are susceptible to infection. Given 

these findings and the fact that white-tailed 

deer often come into close contact with people, 

APHIS further investigated SARS-CoV-2 in wild, 

free-ranging deer.  

“Widespread human infections with 

SARS-CoV-2 combined with human-wildlife 

interactions create the potential for spillover 

between people and animals,” says NWRC’s 

assistant director, Dr. Tom DeLiberto. “Studying 

the susceptibility of certain mammals to 

SARS-CoV-2 helps to identify species that may 

serve as reservoirs or hosts for the virus, as 

well as understand the origin of the virus and 

predict its impacts on wildlife and the risks of 

cross-species transmission.”

We obtained serum samples from wild, free-

ranging white-tailed deer opportunistically 

as part of wildlife damage management 

activities WS conducted in 32 counties in 

Illinois, Michigan, New York, and Pennsylvania 

from January 2020 to 2021. These samples 

were tested at NWRC and NVSL. Antibodies to 

SARS-CoV-2 were detected in 33 percent of 

the 481 samples collected. The results varied 

WS surveillance in wildlife 
around SARS-CoV-2-

infected mink farms led to 
the discovery of an infected 

wild mink. This was the 
first free-ranging native 

wild animal confirmed with 
SARS-CoV-2 in the  

United States. 
Photo: Adobe Stock  
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by State (in Illinois, 7 percent of 101 samples 

contained antibodies; in Michigan, 67 percent 

of 113 samples; in New York, 19 percent of 68 

samples; and in Pennsylvania, 31 percent of 

199 samples). None of the deer populations 

surveyed showed signs of clinical illness associ-

ated with SARS-CoV-2.

Additionally, in late 2021, NVSL confirmed 

SARS-CoV-2 infection in wild white-tailed deer 

in Ohio, based on samples collected between 

January and March 2021 by The Ohio State 

University College of Veterinary Medicine as 

part of ongoing deer damage management 

activities.

The finding that wild white-tailed deer were 

exposed to and infected with SARS-CoV-2 

was not unexpected given that white-tailed 

deer are susceptible to the virus, are abundant 

in the United States, often have close contact 

with people—and that more than 114 million 

Americans were estimated to have been 

infected with the SARS-CoV-2 virus by the 

summer of 2021, according to the CDC.   

Further research is needed to understand the 

significance of SARS-CoV-2 in free-ranging 

white-tailed deer, including how the deer are 

exposed to the virus and potential impacts, if 

any, to overall deer populations, other wildlife, 

and people. APHIS is working closely with 

Federal and State partners, including the U.S. 

Department of the Interior, the CDC, and the 

Association of Fish & Wildlife Agencies, to 

determine next steps.

Investigating SARS-CoV-2 in Other 
Wildlife

Although wild animals were likely the origin 

of SARS-CoV-2, it is largely unknown how the 

virus affects most wildlife species and if wildlife 

could serve as a reservoir for maintaining the 

virus outside the human population. 

Through a series of experimental infection 

studies, Colorado State University, NWRC, and 

University of Queensland researchers evaluated 

the susceptibility of nine wildlife species to 

SARS-CoV-2. Results of captive animal studies 

showed that several species that frequently 

WS surveillance for 
SARS-CoV-2 in wild, 
free-ranging white-tailed 
deer showed deer were 
exposed to the virus in 
2020. Further research is 
needed to understand how 
the deer were exposed 
to the virus and potential 
impacts, if any, to overall 
deer populations, other 
wildlife, and people.  
Photo: Adobe Stock  
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In studies with 
experimentally infected 
captive animals, results 
showed that deer mice, 
bushy-tailed woodrats, 

and striped skunks 
(pictured) are susceptible 
to SARS-CoV-2 infection 
and can shed the virus in 

respiratory secretions. 
Photo: Adobe Stock

come into close contact with humans and 

human dwellings, including deer mice, 

bushy-tailed woodrats, and striped skunks, 

are susceptible to infection and can shed the 

virus in respiratory secretions. In contrast, 

cottontail rabbits, fox squirrels, Wyoming 

ground squirrels, black-tailed prairie dogs, 

house mice, and racoons are not susceptible. 

These results expand the knowledge base of 

susceptible species and provide evidence that 

some human-wildlife interactions could result 

in SARS-CoV-2 transmission.

Wildlife Disease Dynamics: NWRC’s 
Newest Research Project

The SARS-CoV-2 virus, highly pathogenic avian 

influenza, and rabbit hemorrhagic disease are 

just a few of the emerging infectious patho-

gens and diseases making headlines these 

days. WS’ NWDP and NWRC have been at the 

forefront of the Nation’s efforts to monitor and 

understand the impacts of these pathogens  

on wildlife. 

Since NWDP’s inception in 2003, NWRC has 

supported the program through cutting-edge 

disease research. In recognition of that strong 

partnership, NWRC formed a new research 

project in 2020 titled “Wildlife Disease 

Dynamics, Epidemiology, and Response,” led 

by research biologist and wildlife epidemiolo-

gist Dr. Susan Shriner. 

“Our project supports NWDP, identifies and 

characterizes wildlife pathogens at the wildlife-

agricultural interface, and develops tools for 

the identification and mitigation of disease 

risks to agricultural, public, and wildlife health,” 

says Shriner. “We work hand in hand with the 

program’s wildlife disease biologists to help 

address emerging wildlife disease issues.”

Over the next 5 years, Shriner anticipates 

the project will focus on understanding the 

dynamics of wildlife pathogens such as avian 

influenza virus and SARS-CoV-2, as well as 

evaluate current wildlife disease surveillance 

methods and conduct outbreak investigations. 

Her team will also assess North American wild-

life and livestock’s ability to serve as hosts for 

emerging agricultural and zoonotic pathogens, 

including SARS-CoV-2. 

Next Steps—With the passage of the 2021 ARP 

and efforts to strengthen our Nation’s ability 

to quickly detect and respond to emerging 

and zoonotic diseases in animals, NWRC will 

continue to provide leadership and expertise 

on wildlife diseases through several of its 

research projects. Next steps will likely include 

broader SARS-CoV-2 surveillance in wildlife 

such as deer, red fox, and other common 

species, as well as more in-depth studies to 

better understand the significance of the virus 

in free-ranging wildlife. These efforts will help 

advance knowledge about how animals are 

exposed to the virus and potential impacts, if 

any, to overall wildlife populations and people.
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Spotlight: WS Wildlife Tissue 
and Serum Archives 

WS’ National Wildlife Disease Program (NWDP) 

participates in wildlife disease monitoring and 

surveillance in all regions of the United States. 

The program’s wildlife disease biologists 

are trained in epidemiology, wildlife health, 

animal handling, surveillance, and sampling 

techniques. They collect thousands of tissue, 

serum, hair, and other samples annually from 

numerous wildlife species, including rodents, 

waterfowl, feral swine, deer, coyotes, raccoons, 

and other species. Such samples have great 

historical and scientific value to WS, as well 

as to conservationists, epidemiologists, and 

researchers around the world. They are an 

important source of specimens for retrospec-

tive studies.

NWDP established the WS Wildlife Tissue and 

Serum Archives in 2005. The initial contents 

included samples from avian influenza 

surveillance in wild birds, feral swine disease 

surveillance, and plague and tularemia 

monitoring. The archives have since expanded 

to include samples for diseases such as swine 

tuberculosis, pseudorabies, West Nile virus, 

leptospirosis, and others. The collection is 

unique in its quantity of samples, the diversity 

and broad geographic range of the species 

sampled, and the breadth of samples collected 

consistently over extended periods of time. 

The following sections highlight how NWDP’s 

archived samples have been used in NWRC’s 

wildlife research.

Age and Environmental Factors Drive 
Avian Influenza 

A challenge for many wildlife managers and 

disease ecologists is knowing the relative 

importance of wildlife population and 

environmental factors, and how they influence 

the spread of pathogens at local, regional, and 

continental levels. 

NWRC, APHIS’ Veterinary Services, and 

university scientists combined data on low 

pathogenic avian influenza virus (AIV) from 

wild waterfowl samples in the WS Wildlife 

Tissue and Serum Archives with waterfowl 

banding and recovery data to identify the 

factors most likely to influence AIV’s spread in 

the United States. 

Researchers studied: (1) demographics (age, 

sex); (2) environmental reservoirs (water 

temperature and local aggregation of birds); 

(3) hot spots (areas of high AIV prevalence); 

and (4) contact networks (flow and clusters of 

birds connected by similar migration patterns). 

These factors form the basis for five hypo-

thetical systems used to explain the distribution 

of AIV over space and time.

Researchers tested the five hypotheses using 

statistical models and found that bird age 

and environment reservoirs were the two 

primary factors influencing continental-scale 

AIV infection in migratory waterfowl. Water 

temperatures, plus the seasonal movement 

and aggregation of young that had never 

been exposed to AIV, drove the spread of the 

virus. Researchers recommended that AIV 

The WS Wildlife Tissue and Serum Archives are an important source 

of specimens for wildlife disease, genetics, and population studies.
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Five hypothetical systems driving 
the spread of avian influenza virus: 

(1) demography hypothesis, (2) 
environmental reservoir hypothesis, 
(3) hot-spots hypothesis, (4) contact 

network hypothesis, and (5) multiple 
mechanism hypothesis.  
Graph: USDA, Wildlife Services  
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surveillance and monitoring efforts focus on 

assessing local densities of younger birds and 

water temperatures instead of tracking bird 

migration patterns or regional bird movements 

from areas of high AIV prevalence.

“Having access to avian influenza surveillance 

data from across the country and across mul-

tiple years allowed us to successfully model the 

movement of the virus on the landscape,” says 

NWRC project leader Dr. Alan Franklin. “The WS 

Wildlife Tissue and Serum Archives make this 

type of research and analysis possible.” 

SARS-CoV-2 in Deer

Much is still being learned about SARS-CoV-2 

(the virus that causes COVID-19 in people), but 

scientists know it can spread from people to 

animals in some situations, especially during 

close contact. Studying the susceptibility of 

certain mammals to this virus helps to identify 

species that may serve as reservoirs or hosts. It 

also helps us understand the origin of the virus 

and predict its impacts on wildlife and the risks 

of cross-species transmission.

The spotlight “SARS-CoV-2 Research in 

Wildlife” discusses recent surveillance for the 

virus in white-tailed deer. In addition to oppor-

tunistically collecting and analyzing samples 

from deer during WS wildlife damage man-

agement activities in 2020 and 2021, NWRC 

researchers evaluated 143 archived deer serum 

samples from the WS Wildlife Tissue and 

Serum Archives. The samples were collected in 

Illinois, Michigan, New York, and Pennsylvania 

from 2011 to 2020, before SARS-CoV-2 was 

detected in the United States.  

The archived samples were screened using a 

commercially available SARS-CoV-2 antibody 

screening test known to be highly accurate 

when used for other species. However, it 

had not yet been validated for deer. To help 

allay concerns that the commercial test may 

have detected antibodies to another virus 

(a phenomenon known as cross-reacting), 

Graph showing positive 
(red) and negative (blue) 
tests results by year for 
SARS-CoV-2 antibodies in 
deer serum samples. Note 
that positive samples were 
not detected until 2020. 
One sample in 2019 was 
at the minimum threshold 
of detection and was 
determined to be a  
false positive.  
Graph: USDA, Wildlife Services  
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a subset of samples was tested at NVSL 

using a different test specific to SARS-CoV-2. 

Both analyses resulted in identical findings. 

Researchers detected SARS-CoV-2 antibodies 

in only 1 of the 143 archived samples. The 

single sample was at the minimum threshold 

of detection and likely a false positive. This 

low-level detection is well within the expected 

false positive rate of the test used.

“When you graph the data, it’s clear that deer 

started to become exposed to the SARS-CoV-2 

virus after the virus became prevalent in people 

in the spring of 2020,” says NWRC’s assistant 

director, Dr. Tom DeLiberto. “However, it’s 

important to note that we still do not know if 

the deer were exposed through people, the 

environment, or other wildlife. Having the WS 

Tissue and Serum Archives was invaluable 

in this retrospective study and helped us 

determine when deer in the United States were 

first exposed.”

Mining Genetic Information From 
Feral Swine Archive

In 2015, NWRC’s Wildlife Genetics Project 

started to archive feral swine genetic samples. 

These samples have been opportunistically 

collected by WS field specialists and wildlife 

disease biologists in 39 States, Guam, and 

Puerto Rico while conducting feral swine 

damage and disease management activities. 

To date, WS personnel have collected nearly 

27,000 feral swine genetic samples. 

Additional samples from feral swine in Canada 

and Mexico have been acquired through 

collaboration. 

The archived samples provide NWRC 

geneticists with enough DNA to genotype or 

“genetically fingerprint” individual feral swine, 

allowing scientists to identify and distinguish 

among current feral swine populations as well 

as determine their origins.

Using archived samples, NWRC genetic anal-

yses show that feral swine are overwhelmingly 

wild boar and domestic pig hybrids, which 

may have greater potential than domestic 

pigs to establish and become invasive. 

NWRC geneticists are leveraging the archival 

genomic resources to identify genes that 

likely contribute to a hybrid pig’s heightened 

invasiveness. 

NWRC geneticists have also used archived 

samples to develop a statistical test to 

differentiate the unique genetic attributes of 

feral swine from domestic breeds. Such a test 

helps States such as Missouri, Michigan, and 

Minnesota enforce local prohibitions on the 

possession or transport of feral swine. It also 

serves to deter the establishment of captive 

herds, which can lead to invasive populations 

should animals escape or be released. 

Feral swine hair 
samples are collected 

opportunistically as part 
of WS’ operational efforts 

to control feral swine 
damage. Hair is plucked 

from the back of the animal 
and used in genetic studies 

to help determine the 
origins of specific feral 

swine populations.   
Photo: USDA, Brandon Schmit  



Research Spotlights    13

Wildlife forensics, which involves the use of genetic technologies, 

aids in wildlife damage management.

“The genetic insights we’re gathering from 

these archived feral swine samples help us 

determine the effectiveness of current man-

agement efforts, as well as how feral swine 

may be spreading across the country,” says 

NWRC geneticist Dr. Tim Smyser. “Is a popula-

tion the result of a failed eradication attempt or 

the illegal movement of feral swine by people? 

Did feral swine that were detected in Great 

Lakes States originate in Texas or Canada? The 

answers may help guide future management 

actions, policies, or regulations.” 

Another line of NWRC research combines high-

resolution genetic analysis with serological 

disease diagnostics. Specifically, researchers 

are evaluating whether genetic attributes influ-

ence feral swine susceptibility or resistance to 

infection from diseases, such as pseudorabies 

and brucellosis. If such genetic underpinnings 

exist, researchers plan to develop predictive 

models that use feral swine genetics data to 

determine potential disease risks across  

the country. 

Next Steps—NWRC geneticists are working 

to incorporate feral swine-specific genetic 

markers into environmental DNA assays so that 

researchers and natural resource managers 

can identify the source of swine DNA found in 

water samples. Additionally, geneticists are 

examining the genomes of pigs in Africa that 

are susceptible and resistant to African swine 

fever. The information will be used to help 

determine the susceptibility of U.S. feral swine 

to the virus. 

Spotlight: Wildlife Forensics 

The field of wildlife forensics uses science-

based processes and techniques to examine, 

identify, and compare evidence found at sites 

associated with wildlife incidents. While tradi-

tionally used to solve crimes against wildlife, 

such as poaching or illegal selling of animals or 

animal products, wildlife forensics also aids in 

wildlife damage management. DNA samples 

from saliva, hair, or blood on clothing and other 

items from people involved in wildlife attacks 

or from animal carcasses at predation sites 

can identify the animal species—and often 

individual animals—involved.

NWRC’s Wildlife Genetics Project uses wildlife 

forensics to address wildlife damage manage-

ment issues. The summaries below highlight 

NWRC’s recent wildlife forensics efforts.

Investigating Animal Attacks on 
People

As urban wildlife and feral animal populations 

increase, so do associated conflicts. Often, 

agencies that end up handling these issues 

do not have access to useful wildlife damage 

management tools, such as forensic analysis. 

Attacks on people by coyotes and packs of 

feral dogs can challenge the resources and 

preparedness of these agencies. 

On February 28, 2020, the Kentucky 

Department of Fish and Wildlife Resources 

requested NWRC’s assistance in a forensic 

evaluation of a suspected wild animal attack 

that resulted in the death of a 13-year-old child. 
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Researchers from NWRC’s Wildlife Genetics 

Project swabbed numerous bite marks and 

collected hairs from the child’s shoes, T-shirt, 

and jacket. Additional samples were taken by 

authorities from the child. The child lived with 

a dog, so the Kentucky State police collected 

oral swabs from the pet. Test results showed 

all DNA collected from these items came from 

several individual domestic dogs. One was 

the home dog, but because its DNA was not 

associated directly with the bite marks, it was 

not implicated in the attack. 

“We identified three individual dogs’ DNA 

associated with the bite marks,” says Dr. Toni 

Piaggio, a geneticist and project leader of the 

Wildlife Genetics Project. “Of the samples col-

lected from nine feral dogs in the area where 

the incident occurred, three matched samples 

obtained from the bite marks on the child, his 

T-shirt, jacket, and shoes.”

The feral dogs were captured and euthanized. 

This was the second human fatality in a rural 

area due to a feral dog pack attack (the first 

was in Florida in 2019). Feral dogs may be an 

emerging issue in wildlife damage manage-

ment because they impact native wildlife and 

are considered one of the biggest threats to 

biodiversity worldwide.

In Chicago that same year (2020), a young boy 

was purportedly attacked by a coyote in a city 

park. Again, experts with the Wildlife Genetics 

Project were asked to determine the species 

involved and to compare DNA collected from 

the child’s clothing to that of a coyote that had 

been captured in the area. Laboratory results 

showed the DNA from the child’s clothing and 

wounds matched that of the coyote being held. 

After the incident, NWRC and WS Illinois 

Operations helped Chicago Animal Care and 

Control develop a coyote attack preparedness 

plan and DNA sampling protocol for any future 

attacks. The plan has been requested by other 

entities in Illinois and elsewhere. 

Protecting Endangered Species From 
Predators

Millions of dollars are spent each year in the 

United States to boost endangered and threat-

ened species populations and their habitats. 

In some situations, local populations of these 

species are vulnerable to extinction due to 

predation by native and invasive wildlife.

Predation on ground-nesting birds and their 

eggs is a major concern for conservationists 

and wildlife managers. Accurately identifying 

the predatory species responsible is key to 

effective management. For instance, the 

greater sage-grouse (Centrocercus uropha-

sianus) is a ground-nesting bird at risk of 

extinction in multiple U.S. States and Canada. 

Predation on sage-grouse nests is rarely seen, 

Given their expertise, 
wildlife managers 

sometimes assist law 
enforcement and public 

health officials with 
responding to animal 

attacks on people. Wildlife 
forensics is an important 

tool for identifying the 
species and individual 

animal involved in  
such incidents. 
Photo: Adobe Stock
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and it is difficult to identify the responsible 

predator species from nest remains. 

To help identify common mammalian preda-

tors, NWRC geneticists analyzed predator 

saliva DNA on sage-grouse eggshells and bird 

carcasses in Wyoming. Researchers monitored 

sage-grouse nests and hens using infrared trail 

cameras and radio telemetry. They also sampled 

for DNA on egg remains and/or hen carcasses 

when a nest failed or a hen was eaten. 

For 79 percent of the nests and 47 percent of 

the carcass samples, researchers identified 

the mammalian predator species using DNA. 

Eighty-six percent of the detected mammal 

predators were canids, including coyotes and 

dogs. Other predators included rodents, striped 

skunks, and cattle. 

NWRC researchers acknowledge that iden-

tifying nest and hen predators is challenging 

given the lack of species-specific signs at nests 

and the difficulty in differentiating predators 

from scavengers using DNA evidence. The 

results suggest that the best approach to 

reducing nest and hen predation is to use 

multiple techniques, including field surveys, 

camera monitoring of depredation events, and 

DNA forensics-based methods. 

In similar efforts, NWRC geneticists 

assisted U.S. Army Reserve biologists at 

Camp Ripley in Minnesota with identifying 

Local populations 
of endangered and 
threatened species can be 
vulnerable to extinction 
due to predation by native 
and invasive wildlife. To 
help identify common 
predators of greater 
sage-grouse, NWRC 
geneticists analyzed 
predator saliva DNA on 
sage-grouse eggshells and 
bird carcasses.  
Photo: USDA, Wildlife Services
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NWRC geneticists 
developed new protocols 

for collecting DNA samples 
from depredated livestock 

carcasses. Knowing 
which predator species is 
responsible ensures that 
management actions to 

prevent depredations  
are appropriate.  

Photo: USDA, Wildlife Services
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predators responsible for attacking endan-

gered Blanding’s turtle (Emydoidea blandingii) 

nests and hatchlings. DNA samples taken 

from five hatchling carcasses collected in 2021 

identified several predators, including crows, 

chipmunks, and mice. The findings gave the 

biologists valuable information that helped 

them implement management strategies to 

reduce predation by these species.

Collecting DNA From Livestock 
Carcasses

WS aids landowners, State and Federal agen-

cies, and others who request help with wildlife 

damage management issues, including 

livestock depredation by animals such as 

coyotes, wolves, mountain lions, and bears. 

Often, WS field specialists can determine the 

predator species responsible by looking at 

bite marks and other patterns on a carcass. 

But sometimes, the clues left at the scene are 

not enough, and more high-tech methods are 

needed. Knowing which species is responsible 

ensures that immediate and future manage-

ment actions to prevent depredations are 

targeted and appropriate.

WS is investigating new uses for noninvasive 

DNA sampling (for instance, collection of hair, 

scat, and saliva) in predation damage manage-

ment. Salivary DNA samples can identify the 

predator species and individual animal respon-

sible for killing livestock. However, studies 

show that samples with low DNA quality and 

quantity can create challenges. 

To improve salivary DNA sample collection 

techniques, NWRC geneticists collaborated 

with NWRC’s Utah Field Station and the 

nonprofit Wildlife Science Center in Minnesota 

to investigate differences in coyote, wolf, and 

mountain lion salivary DNA deposits and 

degradation on cattle and sheep carcasses. 

“We found that wolf DNA was the most abun-

dant and easily collected of the three species 

sampled,” says Piaggio. “For best results, the 

DNA should be collected within the first 12 

hours of deposit; otherwise, it degrades, and 

our chances of identifying the animal’s genetic 

signature is reduced. This can be overcome, 

however, by taking more samples.”

Better results are also achieved when the 

parts of a carcass hide with saliva deposits 

are swabbed for DNA in the laboratory and 

not in the field. NWRC recommends that field 

specialists working on depredation incidents 

remove and ship sections of carcass hides to 

the NWRC genetics lab for DNA collection and 

analysis.

These findings resulted in new protocols for 

collecting DNA samples from depredated 

carcasses. To view the protocols for field 

collection of hides from depredated carcasses, 

see Appendix 1 in Piaggio et al. 2019, DNA 

persistence in predator saliva from multiple 

species and methods for optimal recovery from 

depredated carcasses, published in the Journal 

of Mammalogy.

Next Steps—NWRC’s Wildlife Genetics Project 

continues to provide technical expertise and 

services to new stakeholders, including urban 

wildlife managers, local municipalities, and 

police departments. Researchers are also 

assisting WS Operations with shorebird depre-

dation investigations and management. Future 

work includes a collaboration with NWRC’s 

Utah Field Station and Utah State University 

to evaluate whether prey DNA can be detected 

by swabbing the oral cavities of coyotes that 

recently fed on depredated livestock.

https://nwrc.contentdm.oclc.org/digital/collection/NWRCPubs1/id/65869/rec/2
https://nwrc.contentdm.oclc.org/digital/collection/NWRCPubs1/id/65869/rec/2
https://nwrc.contentdm.oclc.org/digital/collection/NWRCPubs1/id/65869/rec/2
https://nwrc.contentdm.oclc.org/digital/collection/NWRCPubs1/id/65869/rec/2
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WS NWRC employs about 150 scientists, tech-

nicians, and support staff who are currently 

devoted to 16 research projects (see Appendix 

1). Below are brief summaries of select findings 

and accomplishments from 2021 not already 

mentioned in this year’s report. 

Devices 

•	 Best Management Practices for Trapping. 
Traps and trapping are an important com-

ponent of wildlife damage management, 

wildlife research, and conservation. The 

Association of Fish & Wildlife Agencies pub-

lished more than 20 years’ worth of research 

on live-restraining traps used to capture 

mammals in a comprehensive monograph 

titled Best Management Practices for 

Trapping Furbearers in the United States 

(Wildlife Monographs, volume 201, issue 

1). WS Operations and research personnel, 

as well as experts from many other State 

and Federal agencies, were an integral part 

of the research supporting the trapping 

guidelines. The monograph describes 

performance data collected for 84 different 

trap models, including cage, foothold, and 

foot-encapsulating traps, as well as a power-

activated foot snare. The data was collected 

from trapped furbearers—such as muskrats, 

American beavers, raccoons, and coyotes—in 

33 States from 1997 to 2018.

The Association of Fish 
& Wildlife Agencies 
published more than 20 
years’ worth of research 
on live-restraining traps 
for mammals. Traps and 
trapping are an important 
component of wildlife 
damage management, 
research, and conservation. 
Photo: USDA, Anson Eaglin

https://wildlife.onlinelibrary.wiley.com/doi/10.1002/wmon.1057
https://wildlife.onlinelibrary.wiley.com/doi/10.1002/wmon.1057
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	 Key findings from the publication include the 

following: 

•	 Selectivity was high for all trap types.

•	 Most traps had high capture efficiency. 

•	 Cage traps had the lowest average injury 

score. 

•	 Added-, offset- and laminated-jaw 

foothold traps performed better than 

standard jaw models. 

•	 Trap-related mortality or significant  

injury to furbearers and nontarget 

animals was rare.

	 Though the data spans two decades, interest 

in evaluating trap designs and trapping 

techniques to improve animal welfare, 

capture efficiency, selectivity, practicality, and 

user safety remains high. To ensure these 

tools remain available, wildlife managers 

and others must address concerns and 

knowledge gaps through public outreach, 

trapper education, adaptive management, 

ecological research, and trap research and 

development. 

Contact: Thomas DeLiberto

•	 Improved Strategies for Handling Entire 
Feral Swine Sounders. As feral swine 

populations expand throughout North 

America, researchers are increasingly tasked 

with trapping and marking entire sounders 

(family groups) to monitor them and gather 

information for management purposes. 

Capture and marking procedures are chal-

lenging, dangerous for both researchers 

and animals, and time consuming. NWRC 

researchers developed an integrated 

pig-handling system to efficiently sort, 

weigh, chemically immobilize, and mark 

multiple feral swine simultaneously in a 

controlled manner. To evaluate the system’s 

functionality, 121 pigs of varying ages and 

group sizes were captured and marked 

over 18 capture events in Texas. Using the 

pig-handling system, researchers chemically 

immobilized 51 large pigs weighing 90–223 

pounds (lbs)/41–101 kilograms (kg) and 

manually restrained 170 smaller pigs (less 

than 99 lbs/45 kg), with injury rates below 

4 percent. Average handling times for large 

pigs was approximately 72 minutes and 

less than 1 minute for smaller pigs. Sounders 

were released intact and routinely recorded 

together on motion-activated cameras after 

release. Incorporating a handling system 

into wild pig research and management 

is encouraged to facilitate safe handling 

procedures for both pigs and handlers.

Contact: Michael Lavelle

NWRC researchers 
developed an integrated 

pig-handling system to 
efficiently sort, weigh, 

chemically immobilize, 
and mark feral swine. 

Photo: USDA, Wildlife Services
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Pesticides

•	 Repellents for Perching Birds.  NWRC 

researchers are investigating anthraquinone 

(AQ), a naturally occurring plant compound, 

for use in surface repellents to reduce 

fecal contamination from perching birds. 

European starlings, house sparrows, and 

pigeons often gather in groups, resulting in 

hazards to human health and safety, as well 

as monetary losses, due to the accumulation 

of their feces. The acidic nature of bird 

feces is corrosive to building materials 

and can cause unsafe walking surfaces. 

NWRC researchers evaluated three surface-

application repellent formulations with 

captive European starlings: Airepel HC with 

castor oil, an AQ-based repellent; Airepel HC 

with castor oil that does not contain AQ; and 

MS2, a novel, inert formulation with a tacky, 

oily texture. 

	 Results showed all three formulations 

reduced fecal accumulations beneath 

treated perches. Researchers recommend 

further testing of these repellent formula-

tions under field conditions.  

Contact: Scott Werner

•	 Crop Features Impact Repellent 
Applications and Effectiveness. Blackbirds 

cause significant damage to sunflower 

crops. Although their consumption of sun-

flower achenes (seeds) has been reduced 

by more than 80 percent in laboratory 

trials when the seeds are fully coated with 

an AQ-based repellent, researchers have 

been unable to replicate these results with 

intact sunflowers or in field trials. NWRC and 

North Dakota State University researchers 

evaluated the efficacy of an AQ-based 

repellent that is applied directly to mature 

sunflower plants, using a lab-based sprayer 

similar to one farmers would use to treat 

their crops. The repellents failed to reduce 

damage when the treated sunflower plants 

were exposed to blackbirds in a laboratory 

setting—even in the absence of disk flowers, 

which keep the repellent from reaching the 

seeds. 

	 Researchers also tested the ability of ground 

rigs equipped with drop nozzles to deposit 

a repellent effectively in a field setting. 

Applications varied by tractor speed, tank 

pressure, spray action, nozzle type, tank 

mixture, and repellent application rates. 

Seeds and disk flowers were collected at 

application to determine repellent coverage 

European starlings, house 
sparrows, and pigeons 
often gather in groups, 
causing property damage 
and human health and 
safety hazards due to 
the accumulation of their 
feces. NWRC researchers 
evaluated three surface-
application repellent 
formulations to reduce  
bird damage.  
Photo: USDA, James Thiele
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and residues. Results showed that repellent 

coverage did not differ among treatments, 

that the amount of repellent residue on 

the seeds was considerably less than that 

on disk flowers, and that the repellent did 

not reduce bird damage. Researchers note 

that because field techniques cannot apply 

enough repellent on the sunflower’s face, 

the AQ concentrations on the seeds are 

considerably lower than those shown to 

reduce bird damage in laboratory trials (on 

loose seeds). More research is needed to 

overcome issues related to plant shape and 

structure, so that repellent can be deposited 

more effectively. 

Contact: Page Klug

•	 Repellent Seed Treatment To Prevent 
Feral Swine Damage to Corn.  Feral swine 

damage corn more than any other crop in the 

United States. Most of the damage occurs 

immediately after farmers plant seeds, when 

pigs root them up to eat. NWRC researchers 

evaluated the effectiveness of an AQ-based 

repellent to reduce feral swine consumption 

of unplanted seed corn in Alabama and 

Texas. Three AQ concentrations (0.5, 1.5, and 

3 percent) were tested. Results showed that 

the 3-percent concentration had the greatest 

repellency rates (95 and 59 percent in 

Alabama and Texas, respectively). However, 

repellency decreased when larger numbers 

of feral swine appeared at the bait sites. 

Several nontarget species also visited the 

treated bait sites. Raccoons (Procyon lotor) 

ate the AQ-coated corn, but white-tailed 

deer (Odocoileus virginianus) and mule deer 

(O. hemionus) did not. 

	 Overall, the results show promise for 

developing an AQ-based repellent for seeds 

to reduce feral swine damage. Future studies 

will test the repellency of the 3-percent 

AQ concentration on seed corn planted 

underground.

Contact: Scott Werner

•	 Impacts of Sodium Nitrite on European 
Starlings. Sodium nitrite (SN) is an inorganic 

salt commonly used to cure meat. SN is 

the active ingredient in a toxic bait called 

HOGGONE, which is being evaluated in 

Australia and the United States for use with 

invasive feral swine. To better understand 

the impacts of SN on nontarget bird species, 

NWRC researchers investigated the toxicity of 

this chemical in European starlings. Findings 

NWRC and North 
Dakota State University 

researchers evaluated 
the efficacy of an 

anthraquinone-based 
repellent applied directly 

to mature sunflower plants 
using a sprayer similar to 

that used by farmers to 
treat their crops. 

Photo: USDA, Page Klug 
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showed that SN presented a moderate toxic 

hazard to European starlings. The exposure 

of 10 starlings to the current experimental 

formulation of HOGGONE (10 percent SN) 

resulted in the death of 1 starling during 4 

days of exposure to the toxic bait. 

	 Researchers note that SN has moderate 

potential to be developed as a toxicant for 

invasive European starlings, depending on its 

cost-effectiveness. Future studies with other 

North American songbird species are recom-

mended to determine the nontarget risk of 

SN toxicity at bait sites and to limit the avail-

ability of SN bait to birds from the spillage 

that feeding feral swine cause. Researchers 

note nontarget risks can be minimized by 

following best practices for vertebrate  

pest baiting.

Contact: Scott Werner

Other Chemical and Biological 
Methods

•	 Determining Mosquito Blood Meal Hosts 
Using Genetics.  Sequencing the DNA of 

fresh blood meals in invertebrates, such as 

mosquitoes, allows researchers to detect 

and identify host species and pathogens. 

Multiple vector-borne pathogens that occur 

in Puerto Rico—including dengue, Zika, 

chikungunya, and West Nile viruses—pose 

a potential threat to people and animals. 

Identifying species that mosquitoes feed on 

helps present a snapshot of how urban wild-

life may contribute to pathogen transmission 

and provides important information to public 

health and disease managers. 

	 NWRC, Colorado State University, and 

University of Southern Mississippi 

researchers collected 604 blood-engorged 

mosquitoes from 240 traps placed 

throughout neighborhoods in the San Juan 

Metropolitan Area during 2018 and 2019. 

Two mosquito species were collected: the 

southern house mosquito (Culex quinque-

fasciatus) and the yellow fever mosquito 

(Aedes aegypti). By analyzing the DNA in the 

mosquitoes’ blood meals, researchers deter-

mined that the southern house mosquito fed 

on 17 bird species, 7 mammal species, and 

1 reptile species. Yellow fever mosquitoes 

fed on two bird species and three mammal 

species. The most dominant host species 

were those humans have introduced, such as 

domestic chickens, domestic dogs, rats, and 

iguanas. A variety of uncommon native bird 

species were also detected, demonstrating 

that this method can also be used as a 

biodiversity detection tool. 

	 These findings provide a snapshot of 

the animal community in the San Juan 

Metropolitan Area, which potentially plays 

a role in the spread of mosquito-borne 

pathogens. 

Contact: Toni Piaggio

By analyzing the DNA in 
mosquito blood meals, 
researchers determined 
that the southern house 
mosquito (pictured) fed 
on a wide range of animal 
species in San Juan, Puerto 
Rico. The findings provide 
a snapshot of the animal 
community in San Juan, 
which could play a role in 
the spread of mosquito-
borne pathogens. 
Photo: Adobe Stock
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•	 Virus Isolation Using Chicken Eggs Can 
Skew Results. The growth and cultivation 

of viruses (also known as virus isolation) 

in model organism cells or tissues for 

research purposes is a common practice. 

Unlike bacteria which can be grown on 

agar (an artificial nutrient medium), viruses 

require a living host cell for replication. 

For instance, influenza A viruses are often 

grown in embryonated chicken eggs 

that are free of specific pathogens. Such 

growth in alternative host tissues and cells, 

however, basically constitutes a host jump 

that can lead to genetic changes. Colorado 

State University and NWRC researchers 

sequenced 70 avian influenza viruses from 

wild birds and compared their genomes 

before and after the viruses were isolated in 

embryonated chicken eggs. Results showed 

that the growth of the viruses in eggs led to 

genetic mutations, with some mutations 

becoming dominant. Researchers warn 

that such skewed populations could lead to 

flawed evolutionary inferences and biased 

subtype detection. For genomic studies 

of wild bird influenza viruses, researchers 

recommend directly sequencing the virus 

from host samples instead of growing it in 

embryonated chicken eggs.

Contact: Toni Piaggio

•	 Framework for Invasive Species 
Surveillance Using eDNA. Every year, 

invasive species cause billions of dollars 

in economic losses and other damages in 

the United States. A significant portion of 

invasive species management is dedicated 

to assessing the presence of these species, 

whether it is initial detection of alien 

species of concern, tracking their spread, 

or monitoring for survivors of eradication 

efforts. Advances in molecular technologies 

allow for detecting a species through its 

environmental DNA (eDNA), even when its 

numbers are relatively low. In 2020, the 

National Invasive Species Council formed a 

task team of nearly 30 Federal scientists and 

invasive species experts to summarize the 

usefulness of eDNA sampling and analysis 

for invasive species surveillance programs. 

The overall framework helps managers 

decide if, when, and how to use eDNA for 

surveillance—and, if it is used, how to ensure 

managers and stakeholders will accept 

the results, while clearly understanding the 

method’s strengths and limitations.

Contact: Toni Piaggio

•	 Standardizing Assay Limits of Detection 
and Quantification for eDNA. eDNA 

studies often use quantitative real-time 

polymerase chain reaction (qPCR) to detect 

low levels of target species’ eDNA in water, 

soil, or air samples. NWRC researchers and 

partners proposed a standardized process 

and reporting method for calculating 

and interpreting eDNA assay limit of 

detection (LOD) and limit of quantification 

(LOQ) for single-species qPCR studies. 

Advances in molecular 
technologies allow for 

species detection via 
environmental DNA (eDNA; 

that is, DNA shed by an 
organism into water, soil, 

or air). The genetic material 
could come from mucus, 

urine, feces, shed skin,  
hair, or scales. 

Photo: Adobe Stock
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Standardizing how LOD and LOQ are 

determined, interpreted, and reported for 

eDNA assays allows for more informed and 

meaningful comparisons of results between 

laboratories. It also provides a means for 

assessing assay quality and performance. 

Seven independent laboratories participated 

in an interlaboratory comparison of LOD 

and LOQ for 36 eDNA assays for a variety of 

species. This work established standards for 

minimum reporting for all eDNA studies. 

Contact: Toni Piaggio

•	 Impacts of Surgical Sterilization 
on Coyote Behavior. Coyotes (Canis 

latrans) that feed on livestock often do 

so out of necessity, to provide adequate 

amounts of food for their pups. Surgical 

sterilization methods that preserve gonadal 

hormones, such as vasectomies, have 

successfully reduced livestock depredation 

by free-ranging coyotes without affecting 

behaviors such as territoriality and mate 

fidelity. To learn more about the impacts of 

sterilization on coyote behavior, NWRC and 

Tufts University researchers compared the 

behavior and reproductive hormones of 

untreated captive coyote pairs to pairs that 

had received different surgical sterilization 

treatments (for instance, vasectomy, spay, 

neuter, and ovary-sparing spay). 

	 The behavioral findings showed that steril-

ization treatments did not create intolerance 

between coyote pairs or break down pair 

bonds. Testosterone concentrations of 

neutered and vasectomized males differed 

significantly from those of intact males, 

indicating that the sterilization treatments 

were successful and that the different 

techniques impacted hormones differently. 

There were no differences in estradiol or 

progesterone levels among female treat-

ment groups. No sterilized pairs produced 

pups, but the intact pairs did. The results 

show that sterilization holds potential as a 

future management strategy to help reduce 

livestock depredation. 

Contact: Julie Young

 

Coyotes that feed on 
livestock often do so out 
of necessity, to provide 
adequate amounts of 
food for their pups. 
Sterilization of select 
coyotes holds potential 
as a future management 
strategy to help reduce 
livestock depredation. 
Photo: Adobe Stock 
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•	 Combined GonaCon and Rabies 
Vaccination for Feral Cats. Overpopulation 

of free-roaming and feral cats is a global 

problem, negatively impacting animal health 

and welfare, human health, and wildlife 

resources. Among many other things, 

these cats can spread diseases—such as 

rabies, toxoplasmosis, and leptospirosis—to 

people and other animals. NWRC and 

Israeli researchers examined the safety and 

efficacy of GonaCon immunocontraceptive 

vaccine (GonaCon) used in combination  

with a rabies vaccine in 16 mature feral 

female cats. 

	 Results showed that in the short term, the 

combined vaccinations were safe and effec-

tive in the treated cats. Over the study period, 

no negative health concerns were detected. 

There were no differences in serum rabies 

antibody titers among groups, and the cats 

kept a protective titer throughout the study. 

Anti-gonadotropin-releasing hormone 

antibodies were detected in all but one of the 

GonaCon-vaccinated cats. Although fertility 

tests were not conducted, an evaluation of 

vaginal cells and ovarian tissues suggested 

that reproduction was suppressed in 

GonaCon-vaccinated cats. Such a combined 

vaccination approach may help to reduce 

human and animal health risks associated 

with feral cats.

Contact: Doug Eckery

•	 Training Ferrets To Detect Avian 
Influenza. The spread of highly pathogenic 

avian influenza in commercial poultry and 

backyard flocks in the United States in 

2015 resulted in more than $800 million in 

damage and control costs, as well as the 

lethal removal of nearly 50 million domestic 

birds. Fecal sampling of wild waterfowl and 

their habitats is an integral part of surveil-

lance for the early detection of emerging 

avian influenza viruses (AIV) that pose a 

threat to human and poultry health. To aid 

in developing new tools for early detection 

of AIV in the environment, researchers from 

NWRC, Colorado State University, and Monell 

Chemical Senses Center trained domestic 

As a proof-of-concept 
study, NWRC, Colorado 

State University, and 
Monell Chemical Senses 

Center researchers trained 
domestic ferrets to 

discriminate between the 
feces of avian influenza-
infected and noninfected 

mallards. Efforts are 
underway to similarly train 

detector dogs to help with 
early detection of the virus 

in the environment. 
Photo: USDA, Gail Keirn
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ferrets to discriminate between the feces 

of AIV-infected and noninfected mallards. 

Whenever they detected a marked increase 

of acetoin in the odor of the feces, which 

indicates AIV infection, the ferrets displayed a 

conditioned behavior (active scratch alert). 

	 Results show that ferrets can identify 

this signature odor and that it is specific 

for AIV infection. This odor identity is not 

compromised by days since infection, 

exposure dosage, individual duck identity, or 

husbandry methods. These findings suggest 

that using trained detector dogs could add a 

layer of surveillance screening to the current 

early detection system that would improve 

efficiency by decreasing the number of 

samples tested. 

Contact: Susan Shriner

Disease Diagnostics, 
Surveillance, Risk Assessment, 
and Management

•	 Influenza A Virus Reassortment in Birds 
and Mammals. When influenza A viruses 

(IAV) infect the same host simultaneously, 

some of their genetic segments can mix—a 

process known as reassortment. This 

process is an important source of viral 

diversity and can lead to the spread of 

viruses to new host species. To investigate 

taxonomic differences in IAV reassortment, 

NWRC and Emory University researchers 

examined reassortment of two distinct avian 

IAVs within their natural host (mallards) 

and a mammal (guinea pigs). The animals 

were inoculated with both H3N8 and H4N6 

viruses, two viral subtypes typically found 

in mallards that also circulate in other 

North American waterfowl. Subsequent 

samples were collected from the cloacas 

of the mallards and the nasal tracts of the 

guinea pigs, and viral genetic exchange was 

monitored. 

	 Results revealed abundant reassortment 

in mallards, giving rise to highly diverse 

viral populations. In guinea pigs, reassort-

ment rates were lower, with fewer unique 

genotypes and lower diversity. These 

findings indicate that mallards provide a 

more suitable host environment for avian IAV 

reassortment than mammals.

Contact: Susan Shriner 

•	 Dispersal of Antimicrobial-Resistant 
Bacteria by Gulls. Disease experts 

suspect that gulls serve as reservoirs and 

disseminators of antimicrobial-resistant 

(AMR) bacteria, given the birds’ wide-ranging 

movements, use of human waste sites 

and agricultural production systems, and 

known propensity to carry pathogens. U.S. 

Geological Survey and NWRC researchers 

investigated the risk of long-distance 

dispersal of AMR bacteria (Escherichia coli) 

by landfill-foraging gulls in Alaska. Fecal 

material from glaucous-winged gulls (Larus 

glaucescens), herring gulls (Larus argen-

tatus), glaucous gulls (Larus hyperboreus), 

and potential hybrids of these species was 

collected at seven community landfills 

and other gull congregation areas (such as 

beaches). Forty-two gulls were also captured 

and fitted with global positioning system 

(GPS) transmitters to track their movements. 

	 Using a combination of phenotypic, 

genomic, and animal telemetry approaches, 

researchers determined that gulls likely 

acquire AMR bacteria from landfills. They 

may then disperse it across and between 

continents through their migratory move-

ments. The frequency of AMR Escherichia 



28    NWRC ACC0MPLISHMENTS, 2021

coli detections in gulls was strongly corre-

lated with the number of people in the local 

community. Satellite telemetry tracking of 

gulls inhabiting Alaska landfills showed that 

during the period they shed AMR bacteria, 

they migrated to Russia, Canada, and 

California. Researchers note this technology 

may be useful for optimizing surveillance of 

AMR in the environment and minimizing  

its spread.

Contact: Jeff Chandler

•	 Responding to an African Swine Fever 
Detection in Feral Swine. African swine 

fever (ASF) is a deadly pig disease that can 

significantly impact swine producers, their 

communities, and the economy. There is no 

ASF treatment or vaccine available. The only 

tools to stop the spread of the disease are 

depopulation and movement bans. Because 

feral swine can carry and spread ASF, any 

response to an outbreak in the United States 

would include surveying and culling them. 

In collaboration with the National Feral 

Swine Damage Management Program, WS 

Operations, and APHIS’ Veterinary Services, 

NWRC researchers developed a model to 

predict ASF transmission in feral swine. The 

model considers many factors, including 

feral swine density, movement, interaction 

and contact among swine; culling capacity 

(for example, how many swine would need 

to be removed daily, based on local condi-

tions, to prevent disease transmission); and 

time (for instance, the period between the 

ASF introduction and initial detection). 

	 The product of this modeling effort is an 

application that allows users to enter values 

for the various factors and receive an optimal 

culling radius for disease elimination. The 

application also shows the size of the culling 

area and the number of feral swine targeted 

for removal under different management 

conditions to aid in ASF preparedness  

and planning.

Contact: Kim Pepin

•	 Contact Among Feral Swine: Implications 
for Disease Risk. Feral swine are an 

invasive, social species that can transmit 

devastating diseases such as ASF to 

domestic swine. Contact among individual 

animals plays a fundamental role in the 

spread of infectious disease, affecting the 

length and severity of an outbreak within a 

population. NWRC researchers and partners 

placed proximity loggers and GPS devices on 

48 feral swine in Florida and South Carolina 

to determine the effects of social structure, 

spatial distribution (home-range overlap 

U.S. Geological Survey 
and NWRC scientists 

investigated the  
 risk of dispersal of 

antimicrobial-resistant 
bacteria (Escherichia coli) 

by landfill-foraging  
gulls in Alaska. 
Photo: Adobe Stock 
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 and distance), sex, and management (lethal 

removal and baiting) on contact rates and 

the risk of establishing ASF in U.S. feral swine 

populations. 

	 Modeling results found that social group 

membership was the primary factor 

influencing contact rates among feral swine. 

In fact, contact rates among members of 

the same social groups (sounders) were 10 

times higher than those among individuals in 

different sounders. Fewer contacts occurred 

among sounders whose home ranges were 

greater than 1.2 miles/2 kilometers (km) 

apart, while no contact occurred among 

sounders whose home ranges were greater 

than 2.5 miles/4 km apart. When contact 

and management data were combined 

with ASF information to simulate disease 

transmission and risk, results showed that 

indirect contact by feral swine resulting from 

the use of bait stations might increase the 

risk of disease establishment by up to 33 

percent, relative to direct contact among feral 

swine. Low-intensity population reduction 

(removal of less than 6 percent of the feral 

swine population) had no impact on contact 

rates but did reduce the risk of ASF establish-

ment relative to no population reduction. 

This suggests that even low levels of ongoing 

management can reduce the risk of an ASF 

introduction taking hold. This approach  

provides insight for optimizing disease 

control in spatially and socially structured 

feral swine populations.

	 In a related study, NWRC researchers and 

partners from the University of Florida, 

Colorado State University, Archbold 

Biological Station-Buck Island Ranch, and 

APHIS’ Veterinary Services placed GPS collars 

on 20 feral swine and 11 cattle on a cow-calf 

ranch in Florida. Important microbes feral 

swine carry that pose a risk to cattle include 

pseudorabies virus, Mycobacterium tubercu-

losis, Brucella abortus (agent of brucellosis), 

and antimicrobial-resistant strains of 

Escherichia coli or Salmonella sp. bacteria. 

Researchers used movement ecology 

theory and network modeling to estimate 

the effects of sex, distance/proximity, and 

cattle supplement availability on contact 

Contact among 
individual animals plays 
a fundamental role in 
the spread of infectious 
disease, affecting the 
length and severity 
of an outbreak within 
a population. NWRC 
researchers and partners 
investigated direct and 
indirect contact between 
feral swine and livestock. 
Photo: USDA, Wildlife Services
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rates between feral swine and cattle; they 

also characterized feral swine use of cattle 

resources that humans provide (for example, 

mineral supplements, molasses, and water). 

Results showed that despite limited direct 

contact between feral swine and cattle, 

numerous indirect contacts occurred via 

natural resources across the landscape. 

Researchers note that indirect contact could 

be the primary mode of disease transmission 

between feral swine and cattle because the 

two species tend to use the same habitats 

at different times. They also recommend 

excluding feral swine from liquid molasses 

sites to help decrease indirect contact  

with cattle.

Contact: Kim Pepin

•	 Modeling Rabies in Mongooses. Small 

Indian mongooses (Urva auropunctata) were 

introduced from Asia to several Caribbean 

islands during the 19th century to control 

rodent populations on sugar plantations. 

These opportunistic carnivores quickly 

became invasive in Caribbean ecosystems, 

where they cause substantial damage 

to native species. In Puerto Rico, Cuba, 

Grenada, and the Dominican Republic, 

mongooses are the primary reservoir for 

rabies virus. To help inform applied research 

for mongoose rabies management, NWRC 

and Canadian researchers created a model 

and conducted uncertainty analysis to 

identify important factors and data gaps for 

understanding mongoose rabies dynamics 

in Puerto Rico. 

	 The analysis revealed that transmission 

rates, infection mortality, and the location 

and size of initial outbreaks strongly influ-

ence rabies virus spread and persistence in 

mongoose populations. Other important 

mongoose population variables include 

habitat-specific densities and habitat 

influences on home range and dispersal. 

Researchers suggest using these results to 

design ecological studies and collect data to 

(1) improve models for spatial simulation of 

mongoose rabies dynamics and (2) control 

and guide the development of management 

strategies targeting mongoose rabies in  

the Caribbean.

Contact: Amy Gilbert

As part of WS’ efforts to 
develop and refine tools 

for mongoose rabies 
control, NWRC researchers 

evaluated the rabies 
antibody responses of 

mongooses after the 
delivery of Ontario Rabies 

Vaccine (ONRAB) via 
Ultralite baits. 

 Photo: USDA, Wildlife Services
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•	 Evaluating ONRAB for Mongooses in 
Puerto Rico. Since their introduction in the 

19th century, small Indian mongooses have 

become agricultural pests on Puerto Rico 

and a reservoir for rabies virus. As part of 

WS efforts to develop and refine tools for 

mongoose rabies control, NWRC researchers 

evaluated the rabies antibody responses 

of mongooses following the delivery of 

Ontario Rabies Vaccine (ONRAB) via Ultralite 

baits. These baits are used to control rabies 

in other wild carnivores, such as skunks, in 

North America. 

	 Ultralite baits containing ONRAB were 

presented to 18 captive mongooses; sham 

baits were given to 6. Thirteen of the 18 

mongooses and all 6 that were given shams 

punctured and/or ate the baits. Researchers 

collected blood samples from the 

mongooses and analyzed them for rabies 

antibodies at 0, 14, and 30 days after vac-

cination. By day 30, rabies antibodies were 

detected in 85 percent of the mongooses 

that had punctured and/or eaten the baits. 

However, further refinement of the bait may 

be warranted, as some mongooses did not 

interact with it, while others ate it but did not 

produce antibodies. Modifying the bait struc-

ture and shape—for example, making it soft 

and more cylindrical to suit the narrow shape 

of a mongoose’s mouth—could help reduce 

vaccine spillage and inefficient contact with 

the oral mucosa.

Contact: Are Berentsen

•	 Evaluating ONRAB for Raccoons and 
Striped Skunks. Since the 1990s, oral rabies 

vaccination (ORV) has been used to halt 

the westward spread of the raccoon rabies 

virus variant from the eastern continental 

United States. To help expand available ORV 

products, NWRC researchers conducted 

experimental field trials in West Virginia of 

ONRAB for use with raccoons (Procyon lotor) 

and striped skunks (Mephitis mephitis). 

As a follow-up to the first year and U.S. 

experimental trials of ONRAB in rural West 

Virginia, this trial continued for 5 years and 

evaluated two bait densities (75 and 300 

baits/km2). Changes in the level of rabies 

virus neutralizing antibodies (RVNA) were 

measured in raccoons and skunks before 

and after exposure to ORV during each year 

of the trial. 

	 The increase in bait density from 75/km2 

to 300/km2 corresponded to an increase 

in average post-ORV RVNA prevalence 

for both raccoon and skunk populations. 

Raccoon population RVNA levels increased 

from 53 to 82 percent, and skunk population 

RVNA levels increased from 11 to 39 percent. 

Raccoon rabies virus was locally eliminated 

in the study area during the trial and up to 

3 years post-trial. Researchers concluded 

that multiple years of ORV application may 

be needed to achieve and maintain RVNA 

seroprevalence in target wildlife populations 

for the control and elimination of the raccoon 

rabies virus variant. 

Contact: Shylo Johnson

•	 Rat Lungworm in Hawaii. Angiostrongylus 

cantonensis, or rat lungworm, is the most 

common cause of eosinophilic meningitis 

in people. This condition causes headaches, 

a stiff neck, tingling or pain in the skin, 

fever, nausea, and vomiting, and can be 

permanently debilitating or even lethal. 

People usually become infected with this 

parasite by ingesting its larvae in raw or 

insufficiently cooked snails, slugs, freshwater 

prawns, frogs, or fish. Infection may also 

occur by eating contaminated fresh produce, 

such as lettuce. In Hawaii, all three species 
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of introduced rats and a variety of native and 

non-native snails are known to harbor A. 

cantonensis infections. NWRC and University 

of Hawaii researchers sampled for A. 

cantonensis infection in wild Polynesian and 

black rats (Rattus exulans and Rattus rattus) 

and snails (Parmarion martensi) in Hilo. 

	 Results showed the overall infection 

prevalence was 86 percent in snails and 

64 percent in rats (77 percent in Polynesian 

rats and 48 percent in black rats). Infections 

varied with environmental and host-related 

factors. Body mass was a strong predictor of 

infection in all three species, with different 

patterns seen between sexes and species of 

rats. Infection prevalence and intensity for 

snails were high in May and February, but 

generally lower and more variable during 

the intervening months. Understanding how 

infections may vary across host populations 

aids in future disease surveillance and 

targeted management strategies.

Contact: Shane Siers

Wildlife Damage Assessments

•	 Using Weather Radar To Predict Bird 
Damage. Weather radar isn’t just for 

forecasting the weather. Next Generation 

Weather Radar (NEXRAD) is also used by 

researchers to track large flocks of black-

birds, which could help reduce bird damage 

to sunflower crops. Using weather surveil-

lance radar data from 2012 to 2019, NWRC, 

University of Oklahoma, and University of 

Notre Dame researchers monitored one 

large blackbird roost near Bismarck, ND. 

	 Results showed the blackbird numbers 

routinely peaked in mid- to late October—

around the same time unharvested sun-

flower crops reach maturity. The estimated 

maximum number of blackbirds in the flock 

ranged from nearly 347,000 to more than 

a million per day. Researchers determined 

that if producers could harvest their 

sunflower 2 weeks earlier, they could save 

as much as $1,800 a year in damages from 

this single roost. Planting early, choosing 

early maturing sunflower varieties, and 

desiccating the crop could result in an earlier 

harvest to avoid peak blackbird numbers. 

Researchers emphasize that a harvest 

coordinated among neighbors would be 

vital to the success of an earlier approach. 

If one neighbor harvests early but others do 

not, the birds will still find sunflower fields, 

and those producers may suffer severe bird 

damage. Predicting blackbird arrival can help 

producers plan dates for planting, harvesting, 

and implementing management tools 

before large flocks arrive. These methods 

could be expanded to other crops that 

blackbirds damage, such as corn and rice.

Contact: Page Klug

•	 Feral Swine Impacts to Water Quality. 
Riparian habitats play a vital role in filtering 

pollutants and sediment from water, 

which improves water quality and ensures 

adequate nutrient cycling. Riparian areas 

also provide valuable habitat for plants and 

animals, surface water storage, resources for 

agriculture and livestock production, and rec-

reational opportunities for people. However, 

the livestock and wildlife living in and near 

riparian areas can contaminate streams 

through direct contact or indirectly through 

runoff polluted with feces and urine. Use of 

such contaminated water has been linked 

to disease outbreaks in people. Feral swine 

may significantly contaminate and alter 

the functionality of riparian ecosystems by 

digging and overturning soil, which can lead 
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to increased erosion and runoff. NWRC and 

Auburn University scientists compared the 

water quality of streams from watersheds on 

a privately owned property in Alabama with 

a dense pig population and a nearby national 

forest without an established pig population. 

Water samples were collected twice monthly 

for a year. 

	 Results showed that watersheds with feral 

swine had elevated dissolved organic carbon 

and total nitrogen levels attributable to feral 

swine feces. Furthermore, watersheds with 

feral swine had Escherichia coli values that 

were 40 times higher than watersheds 

without feral swine. This study is the first to 

definitively link feral swine to the introduction 

of fecal material and waterborne pathogens 

in watersheds.

Contact: Kurt VerCauteren

•	 Using Federal Crop Insurance Data 
To Estimate Wildlife Damage. Wildlife 

damage to crops is a persistent and costly 

problem for many U.S. farmers that varies 

substantially across crops, regions, and 

years. Most existing estimates of crop 

damage have relied on field studies 

conducted by trained biologists or surveys 

distributed to farmers. However, NWRC 

researchers developed a new method 

of estimating wildlife damage that uses 

Federal crop insurance data. As a case study, 

researchers estimated damage for corn, 

soybean, wheat, and cotton—all economi-

cally important crops that are vulnerable to 

wildlife damage. The combined loss for the 

four crops was estimated at $593 million in 

2017. The highest total estimated losses from 

wildlife were in soybeans ($324 million) and 

corn ($194 million); the highest estimated 

percentage losses were in soybeans (0.87 

percent) and cotton (0.72 percent). The 

eastern and southern regions of the country 

were clearly the most susceptible to wildlife 

damage. Using crop insurance data is a 

reliable way to evaluate differences in crop 

NWRC and Auburn 
University research 
found watersheds with 
feral swine had greater 
amounts of Escherichia 
coli than watersheds 
without feral swine.  
Photo: Adobe Stock
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damages for the coming years. A better 

understanding of damage differences can 

also help guide research and development of 

new management techniques.

Contact: Stephanie Shwiff

•	 Why Some Animals Thrive in Urban 
Areas. Some species, such as striped 

skunks, raccoons, and coyotes, thrive in 

urban areas. These adaptable species 

are considered “ecological generalists” 

that can readily modify their diets and 

habitat use—traits that allow them to live 

in challenging environments, including 

urban settings, where they may encounter 

novel, complex, and changing situations. To 

better understand these species’ adaptive 

behaviors, NWRC, university, and artificial 

intelligence researchers conducted trials at 

NWRC facilities in Colorado and Utah with an 

automated device that measured the ability 

of these animals to alter their behavior in 

changing circumstances. Designed by the 

researchers, the device included two easily 

accessible buttons placed on either side of 

a food-dispensing chute. Captive raccoons, 

skunks, and coyotes were encouraged to 

press one of the two buttons to receive a 

food reward. Once the animals learned to 

press the correct button for food, researchers 

reversed the button settings. 

	 Raccoons in the study generally engaged 

with the device and successfully navigated 

the change. Although the sample size for 

skunks was limited, researchers found that 

they were willing to approach and engage 

with the device rather quickly. Nevertheless, 

skunks did not complete a high number of 

reversals: only one of three demonstrated 

learning. Despite efforts to habituate six 

coyotes and motivate them to interact 

with the device, only one did so. This study 

demonstrates that raccoons and skunks 

have the intellectual flexibility to adapt their 

To better understand the 
mechanisms underlying a 

species’ adaptive behavior, 
NWRC, university, and 

artificial intelligence 
researchers designed and 

used an automated device 
in a series of trials with 

captive skunks, raccoons 
(pictured), and coyotes. 

The ability to modify and 
change behavior allows 

some species to live in 
challenging environments.   

 Photo: University of Wyoming, 

Lauren Stanton 
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behavior by forming and then reversing 

learned associations.

Contact: Shylo Johnson

•	 Black Vulture Conflict and Management 
in the United States. Black vulture 

(Coragyps atratus) populations are 

increasing and expanding their range in 

North America. This development, combined 

with the birds’ ability to adapt well to human 

landscapes, has contributed to increasing 

numbers of human-vulture conflicts. 

NWRC researchers collaborated with WS 

Operations biologists to summarize the 

status of and trends in black vulture conflicts, 

review available management strategies, 

identify knowledge gaps, and provide 

recommendations to enhance management 

and understanding of this species. 

	 Results showed vulture conflicts with 

livestock are on the rise, as well as vulture 

damage to private and public property and 

collisions between vultures and aircraft. 

Researchers have learned more about 

rancher perceptions of vulture predation on 

livestock, including estimates of economic 

damage and use of mitigation strategies. 

However, a basic understanding of the 

underlying mechanism driving the conflict 

and the evaluation of existing tools and 

methods to mitigate damage are limited. For 

damaged property, little information is avail-

able about the economic losses, stakeholder 

perceptions, or tool efficacy. Regarding 

aviation safety, recent research on the flight 

behavior of black vultures has direct implica-

tions for reducing aircraft collision risks. 

Knowledge is still limited about which factors 

influence vulture roost site selection and the 

most effective ways to leverage the species’ 

sensory ecology and behaviors to reduce 

damage. 

Contact: Bryan Kluever

•	 Vulture Roosts. Turkey vultures (Cathartes 

aura) and black vultures often roost in groups 

Tarps offered to visitors 
at Everglades National 
Park help prevent vulture 
damage to cars. Black 
vulture populations are 
increasing and expanding 
their range in North 
America. This, combined 
with the birds’ ability 
to adapt to human-
dominated landscapes, has 
contributed to increased 
conflicts.  
 Photo: USDA, Gail Keirn
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of several hundred or more. Two factors that 

may influence where they choose to roost 

are air currents and distance to food sources. 

A roost near roads, for instance, may be an 

attractive option because it provides the 

thermal currents that emanate from paved 

surfaces as well as carrion from vehicle col-

lisions. To assess the role of human-based 

and natural landscape features on roosting 

habitat selection, NWRC researchers and 

partners analyzed data from 11 black and 

7 turkey vultures fitted with GPS satellite 

transmitters. Results showed that habitat 

fragmentation and diversity influenced 

the roosting choices of both species in all 

seasons. Turkey vultures were most likely to 

roost at intermediate road densities in three 

of four seasons, but black vultures showed 

a positive relationship with roads only in 

fall. Both species were increasingly unlikely 

to roost as the landscape became more 

urbanized. These findings inform wildlife 

managers where current and future roosts 

may likely occur.

Contact: Bryan Kluever

•	 Cost of Cormorant Damage to Catfish 
Farms. To reduce losses, catfish farmers in 

the southern United States often attempt 

to scare away fish-eating birds, such as 

double-crested cormorants (Phalacrocorax 

auratus), from their farms. Despite these 

efforts, cormorants continue to feed on 

farmed catfish. NWRC and university 

scientists conducted an economic analysis 

to determine the costs of bird damage 

management, based on survey responses 

from 88 percent of all farms in the Delta 

region of Mississippi and Arkansas. These 

farms account for more than 60 percent of 

all catfish production nationwide. Estimates 

of the revenue lost from catfish eaten by cor-

morants were developed from a concurrent 

study on cormorant distribution, abundance, 

and diet in the region. 

	 Catfish farmers spent on average $704/

hectare (ha) (plus or minus $394/ha) to 

scare birds, making it one of the top five 

costs of raising catfish. The most expensive 

aspects of scaring birds were manpower 

(39 percent of all bird-scaring costs) and 

trucks used to scare birds (34 percent). The 

profitability of the catfish farms improved by 

4–23 percent over 27 different production 

categories when the effects of bird predation 

were removed. In fact, all but one of the 

previously unprofitable farm production 

categories became profitable. Industry-wide, 

catfish losses averaged $47 million. Total 

direct economic effects (including both 

the increased costs to scare birds and the 

revenue lost from fish eaten by cormorants) 

averaged $65 million. This information is 

To assess the role of 
human-based and natural 

landscape features on 
roost selection, NWRC 

researchers and partners 
analyzed data from 

black and turkey vultures 
fitted with GPS satellite 

transmitters.  
 Photo: Adobe Stock
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useful to fish farmers, policymakers, and 

others striving to reduce the economic 

damages associated with fish-eating birds.

Contact: Brian Dorr

•	 Cost of Scaup Damage to Baitfish and 
Sportfish Farms. Although the lesser scaup 

(Aythya affinis) is not widely known to be 

a fish-eating bird, it will eat farmed fish. 

NWRC researchers estimated the cost of 

scaup damage to various species of baitfish 

and sportfish using data on the abundance, 

distribution, and dietary habits of scaup 

that visited Arkansas baitfish and sportfish 

farms during the winters of 2016–2017 and 

2017–2018. Total annual costs to scare birds 

from baitfish and sportfish farms were 

$622 (plus or minus $742/ha). The greatest 

costs of scaring birds were manpower (56 

percent), truck usage (32 percent), levee 

upkeep for vehicle access to scare birds 

(9 percent), firearms and ammunition (2 

percent), and pyrotechnic devices (1 percent). 

The combined annual economic losses, 

calculated as reduced revenue from fish 

losses to scaup plus expenditures to scare 

birds, averaged $683/ha for golden shiners 

(Notemigonus crysoleucas), $695/ha for 

fathead minnows (Pimephales promelas), 

$663/ha for sportfish, and $673/ha for gold-

fish across the 2 study years. The fish losses 

to scaup alone averaged over $1 million per 

year for the Arkansas baitfish industry. Total 

estimated costs to the Arkansas baitfish 

industry on average were $5.5 million 

per year. This study provides important 

estimates of the costs related to ongoing and 

possibly increasing conflicts between lesser 

scaup and baitfish and sportfish farms.

	 Researchers also used the data to analyze 

and model the distribution and abundance 

of scaup using baitfish and sportfish farm 

characteristics. Results showed that scaup 

appeared more frequently at larger golden 

shiner and fathead minnow ponds stocked 

at greater densities. Farm-level models 

suggested that farms further from major 

rivers and with an average pond size of 

approximately 20 acres/8 ha were most 

likely to attract scaup. Producers can apply 

these findings to implement bird harassment 

efforts at times and locations where scaup 

predation is more likely.

Contact: Brian Dorr

•	 Food Habits of Wintering Cormorants 
in the Mississippi Delta. Double-crested 

cormorants impact U.S. commercial 

aquaculture and are considered the primary 

bird predator in catfish aquaculture facilities 

in the Mississippi Delta. The Delta covers 

35,000 square miles and includes parts of 

Mississippi, Arkansas, and Louisiana. Recent 

changes in aquaculture practices, regulatory 

policies, and decreased overall acres in 

production prompted NWRC and university 

researchers to assess cormorant consump-

tion of catfish in relation to their night roosts. 

Sixty-nine cormorants were collected from 

night roosts from October through April, 

coinciding with peak cormorant migration 

and seasonal residency within the region. 

	 Stomach content analysis showed, on 

average, that catfish made up 33 percent 

of a cormorant’s overall diet, which is less 

than reported in previous studies. There 

was no difference between the amount of 

channel catfish (Ictalurus punctatus) versus 

hybrid catfish (I. punctatus x I. furcatus) 

eaten. Most catfish were eaten during the 

months of February and March. Analysis 

showed the best model for predicting catfish 

consumption was based on the amount of 

catfish aquaculture within 19 miles/30.6 km 
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of a night roost. This research also shows 

that catfish consumption drops rapidly for 

cormorants from roosts that are more than 

6 miles away from farms. These findings will 

help inform cormorant management deci-

sions. Researchers note that even though 

cormorants have shifted their diet to more 

naturally occurring fish species, aquaculture 

remains an important regional food source.

Contact: Brian Dorr

•	 Estimating Wildlife Strike Costs at U.S. 
Airports. Costs associated with aircraft-

wildlife collisions, or wildlife strikes, in the 

United States are widely acknowledged by 

the aviation community. Estimating the cost 

of wildlife strikes to civil aviation relies on 

strike- and cost-related information reported 

by aircraft operators and airport staff to the 

Federal Aviation Administration’s National 

Wildlife Strike Database (NWSD). The accu-

racy of these estimates, however, is under-

mined by the skewed nature of reported 

cost data. Often, these estimates also fail 

to account for differences in observed strike 

characteristics (for example, type of aircraft, 

size of aircraft, type of damage, and size 

of the animal struck). NWRC and Colorado 

State University economists used modern 

machine-learning techniques to provide a 

more accurate measure of strike-related 

costs accrued by the U.S. civil aviation 

industry. Using NWSD data from 1990 to 

2018, machine-learning models determined 

that wildlife strikes cost a minimum average 

of $54 million annually. This estimate is 

lower than previous estimates ($187 million) 

calculated using more traditional statistical 

methods.

Contact: Stephanie Shwiff

Wildlife Management 
Methods and Evaluations

•	 Use of Sonic Net To Disperse Blackbirds.  
Blackbird damage to agricultural crops 

is common across the United States. 

NWRC and College of William and Mary 

researchers evaluated the use of a novel tool 

called a Sonic Net to deter mixed-species 

blackbird flocks from predating on maturing 

NWRC and university 
research findings about 

correlations between 
cormorant night roosts 

and catfish consumption 
help inform cormorant 

management decisions. 
 Photo: Adobe Stock
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sunflower crops in North Dakota. The Sonic 

Net masks communication among birds 

by delivering “pink noise”—basically white 

noise (with reduced higher frequencies) that 

overlaps with the frequencies the birds use 

to communicate with one another. If birds 

cannot hear predators or the warning calls 

of other birds, their perceived predation 

risk increases, and they relocate to an area 

perceived to be less risky. Sonic Nets were 

placed in three sunflower fields actively 

used by mixed blackbird flocks. Each field 

contained two 0.2-ha plots with individually 

marked sunflowers. After treating 1 plot 

per field for 20 days with the Sonic Net, 

researchers measured the total area damaged 

on the marked sunflowers in all 6 plots. 

	 The Sonic Net treatments reduced damage 

to sunflowers by 27 percent, 64 percent, and 

23 percent, respectively. Researchers predict 

that the effect of the Sonic Net treatment 

may be greater in other crop phases and types, 

such as in the establishment phase or ground 

cover crops. Both lack high vegetation, which 

can obstruct the Sonic Net’s sound. 

Contact: Page Klug

•	 Avoiding Nontargets While Baiting 
Feral Swine. Toxic baiting of invasive feral 

swine (Sus scrofa) is a potential new tool for 

population control and damage reduction 

in the United States. However, there are 

concerns that nontarget species, especially 

songbirds, may be exposed to these baits. 

NWRC and College 
of William and Mary 
researchers evaluated the 
use of a novel tool called 
a Sonic Net (such as the 
one pictured here) to deter 
mixed-species blackbird 
flocks from maturing 
sunflower crops in  
North Dakota. 
Photo: Sam McClintock

Toxic baiting is a potential 
new tool for feral swine 
population control and 
damage reduction in 
the United States. To 
avoid nontarget species, 
such as songbirds, from 
eating the bait, NWRC 
researchers evaluated the 
effectiveness of inflatable 
scare devices (pictured) 
placed near baiting 
stations.  
 Photo: USDA, Nathan Snow
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NWRC researchers conducted an analysis 

of a 2018 baiting study to identify daily and 

landscape factors that may have influenced 

the use of bait sites by nontarget songbirds, 

ground birds, raccoons, and white-tailed 

deer. Results showed that no single strategy 

can prevent all these species from visiting 

bait sites. However, offering the bait at night, 

in feral swine-specific feeders, and in more 

uniform habitats can minimize songbird 

visits. Researchers also recommend placing 

bait stations away from sites where residual 

particles of grain from pre-baiting are avail-

able on the ground, removing spilled bait 

as quickly as possible, and employing a bird 

frightening device the morning after toxic 

baiting. Managers can increase feral swine 

visits to sites by allowing time for pigs to 

attract other pigs to the bait sites and baiting 

along linear habitat areas, such as edges of 

crop fields or riparian corridors. 

Contact: Nathan Snow

•	 Hunter Tolerance for Feral Swine. In 

the United States, recreational hunters 

play a unique role in both controlling and 

spreading invasive feral swine. Many States 

encourage hunting to help manage feral 

swine populations; others may want to 

maintain or establish feral swine populations 

for future hunting opportunities. NWRC 

and Texas A&M AgriLife Extension Service 

researchers surveyed 37,317 Texas resident 

and nonresident licensed hunters about 

their “tolerance” for feral swine—that is, their 

ability and willingness to accept the costs 

or negative aspects of living with wildlife, 

and their desire for positive interactions with 

wildlife. A common indicator of tolerance is 

often the maximum acceptable number of 

target animals in an area. Of those surveyed, 

83 percent were intolerant of feral swine: 

about 63 percent preferred to see the 

swine population reduced and 20 percent 

preferred to see it completely removed. 

Sixteen percent of hunters were tolerant of 

feral swine: 14 percent preferred to see the 

population remain the same and 2 percent 

preferred to see it increase. Researchers 

found that hunter tolerance could largely be 

explained by: 

•	 motivations and preferences for hunting 

feral swine

•	 level of concern for feral swine damage

•	 overall attitudes toward feral swine

	 The most important motivations for hunting 

feral swine were to obtain a trophy animal, 

followed by obtaining meat. Respondents’ 

overall concern about feral swine damage 

was high, with the greatest concern about 

damage to pastures. Their overall attitudes 

toward feral swine were largely negative. 

Researchers note, however, that this should 

not be interpreted to mean that most hunters 

More than 37,000 Texas 
resident and nonresident 

licensed hunters were 
surveyed about their 

tolerance for feral swine. 
 Graphic: USDA

  H U N T E R  S U R V E Y  R E S P O N D E N T S

89% were Texas residents

91% were white

96% were male

52  average age (in years)

58% bachelors degree or higher

73% hunted feral swine

48% owned or managed land 
(of those, 32% experienced  
feral swine damage)

11% trapped and sold live feral swine

1% provided feral swine guiding or outfittilng 
services to paying hunters
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 support efforts to rid Texas of feral swine. 

This finding has significant implications 

for feral swine management in Texas, 

as hunters may resist efforts focused on 

eradication rather than strategic population 

reduction. Results of this research are also 

useful in expanding current knowledge 

about human tolerance for wildlife, including 

species that are non-native and invasive, and 

in identifying important factors affecting how 

hunters perceive and interact with feral swine.  

Contact: Stephanie Shwiff

•	 Evaluating the Effectiveness of Mountain 
Beaver Management. Mountain beavers 

(Aplodontia rufa) are burrowing rodents 

found in the humid, wet forests and steep 

mountain areas of the Pacific Northwest. 

Their clipping and browsing of new conifer 

seedlings reduce seedling growth or kills 

trees, which reduces stocking density 

and delays stand development. NWRC 

and Oregon State University researchers 

evaluated the effectiveness of trapping and 

toxicant baiting to reduce mountain beaver 

damage across two mountain ranges in 

western Oregon. Damage estimates were 

collected on untreated and treated forest 

plots containing Douglas fir (Pseudotsuga 

menziesii) seedlings at 1-, 6-, and 12-month 

intervals after planting and the start of 

management activities. 

	 Overall, mountain beavers damaged 76 

percent and 46 percent of seedlings in 

untreated and treated plots, respectively. 

Seedling heights also differed after 1 

year: seedlings in untreated plots were 4 

inches/10.6 centimeters (cm) shorter on 

average than those in areas with trapping 

and baiting. The mean cost associated 

with preventing mountain beaver damage 

through trapping and baiting in the study 

was $62/acre ($154/ha)—less than the 

estimated mean cost of $74/acre ($182/

ha) to replant seedlings in gaps where 

damage occurred. The study indicates that 

an integrated, proactive approach that 

includes trapping and baiting may be less 

expensive overall than the reactive approach 

of replanting seedlings in gaps created by 

mountain beavers.

Contact: Jimmy Taylor

•	 Evolutionary Impacts of Human-Wildlife 
Conflict. Human-wildlife interactions, 

including conflicts, are increasingly 

common as growing urban and suburban 

areas create more opportunities for these 

encounters. Wildlife damage management 

techniques often aim to deter, relocate, or 

remove the animals causing the conflict, 

which may lead to selective pressures that 

shape animal population size, structure, 

and distribution. Moreover, the intensity of 

conflict management can vary considerably 

by species, public perception, policy, religious 

and cultural beliefs, and geographic region. 

NWRC and university researchers developed 

a conceptual model that combines human-

wildlife conflict, wildlife management, and 

urban evolution to address how certain 

processes drive wildlife adaptation in cities. 

An integrated, proactive 
approach that includes 
trapping and baiting 
may be the most efficient 
strategy for addressing 
mountain beaver damage 
to new conifer seedlings. 
 Photo: USDA
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Investigating human-wildlife conflict as an 

evolutionary phenomenon may provide 

insights into how conflict arises and how 

management plays a critical role in shaping 

urban wildlife characteristics.

Contact: Stewart Breck

•	 Using Beavers as a Management Tool. 
Using beavers as natural engineers to 

increase damming is becoming a popular 

management strategy known as beaver-

related restoration. Methods used include 

beaver translocations, mimicking beaver 

dams with human-made equivalents, and 

increasing woody food/construction material 

for beavers. Expected outcomes from 

increased beaver dams are highly variable 

but may include improving watershed condi-

tions (the result of raising the water table 

in valley floors), improving fish and wildlife 

habitat, and reducing flood levels. However, 

such expectations are rarely stated, and 

most are not evaluated after beaver-related 

restoration is implemented. Without proper 

planning and understanding of all the natural 

Using beavers as natural 
engineers to increase 

damming is becoming 
a popular management 

strategy known as 
beaver-related restoration. 

A multidisciplinary team 
of researchers recently 

developed an assessment 
framework to help wildlife 

managers determine if 
beaver-related restoration 

is appropriate. 
 Photo: Adobe Stock

Investigating human-
wildlife conflict as 

an evolutionary 
phenomenon may 

offer insights into how 
conflict arises and 
how management 

plays a critical role in 
shaping urban wildlife 

characteristics. 
 Photo: Adobe Stock
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processes at work, the actual success or 

failure of beaver-related restoration remains 

unknown. For such efforts to succeed, 

beavers must survive, remain in place, and 

build dams that ultimately result in desired 

conditions. A multidisciplinary team of 

researchers recently developed an assess-

ment framework to support beaver-related 

restoration. Applying this adaptive manage-

ment framework will help managers 

determine if beaver-related restoration is 

appropriate, and if so, help them achieve 

the desired outcomes. The researchers note 

that because nature is intrinsically messy, 

successfully implementing beaver-related 

restoration requires practitioners to state 

their goals and acknowledge that the 

responses of animals and landscapes are 

often unpredictable.

Contact: Jimmy Taylor

•	 Factors Leading to Successful Island 
Rodent Eradications. Eradications of inva-

sive rodents on islands eliminate their nega-

tive impacts on native plants and animals. 

However, these efforts have been less 

successful in the tropics than in temperate 

regions, triggering research and reviews. A 

team of international scientists, including 

a researcher with the NWRC Hawaii Field 

Station, evaluated 35 eradication attempts 

on 17 tropical islands. Researchers compared 

the project management of each attempt, 

as well as operational and environmental 

factors. The efforts that failed were 

characterized by operational faults, such as 

poor planning, low quality bait, and gaps 

during bait application. In some cases, 

the operational faults were unequivocally 

the cause of the failure; in others, it was 

difficult to discriminate operational faults 

from confounding environmental factors 

(for example, land crabs eating bait or year-

round rodent breeding). A leading cause of 

failure appeared to be that some rodents did 

not receive a lethal dose of toxin. Though 

this problem can arise on both temperate 

and tropical islands, there may be less room 

for errors (such as gaps in bait coverage) on 

tropical islands, where land crabs can eat bait. 

	 The findings on factors leading to 

eradication successes (for instance, 

expert-reviewed plans, realistic funding 

and permits, and high standard baiting 

operations) reflect current best practice rec-

ommendations. Researchers note that strict 

adherence to best practices can increase 

overall rates of eradication success.

Contact: Shane Siers

•	 Hard Versus Soft Bait for Rodent 
Eradications. Rodenticide-based eradica-

tions can fail if rats do not eat enough 

bait. A recent review of a failed attempt to 

eradicate invasive Polynesian rats from 

Wake Atoll suggests that some rats may 

not have eaten a lethal dose of rodenticide 

due to dietary and/or sensory preferences 

developed from regular access to human 

food. Human food may be higher in fats 

and oils and be softer or chewier than the 

hard pellet formulation of the rodenticide 

Brodifacoum 25W Conservation (B-25W) 

used in the eradication attempt. 

	 To test this theory, NWRC researchers 

captured rats from two areas on Wake Atoll: 

one where rats may have regular access to 

human food, and another uninhabited part 

of the island where rats presumably have 

less access and, therefore, are less likely to 

be preconditioned. The rats were fed both a 

“soft” sachet formulation of a brodifacoum-

based bait (FINAL Soft Bait with Lumitrack) 

and the harder pellet formulation of B-25W. 
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The rats overwhelmingly preferred the 

pellet formulation. No rats in the trial ate 

any of the FINAL bait, and all the rats that 

ate B-25W died. While these results suggest 

that any future baiting operations on Wake 

Atoll should continue to use hard pellets, 

researchers caution that dietary preferences 

of local rodent populations may differ on 

other islands. In these cases, alternative 

baiting choices may be more appropriate 

and effective.

Contact: Shane Siers

Wildlife Population 
Monitoring Methods and 
Evaluations

•	 Asian Longhorned Tick Surveillance.  
Haemaphysalis longicornis, the Asian long-

horned tick (ALHT), is native to eastern Asia 

but has become invasive in several countries, 

including Australia, New Zealand, and the 

Eastern United States. The medical and 

veterinary communities are concerned about 

the establishment of ALHT in the United 

States because of its potential as a livestock 

pest and vector for disease. WS research 

and operations personnel, in cooperation 

with other collaborators, conducted ALHT 

surveys on potential wildlife hosts in Virginia 

and New Jersey. This surveillance found 51 

ALHT-infested animals, including raccoons 

(Procyon lotor), Virginia opossums (Didelphis 

virginiana), red foxes (Vulpes vulpes), wood-

chucks (Marmota monax), eastern cottontail 

rabbits (Sylvilagus floridanus), striped skunks 

(Mephitis mephitis), and white-tailed deer 

(Odocoileus virginianus). Data also confirmed 

that ALHTs in all three of their active life 

stages (larva, nymph, and adult) were present 

NWRC, Utah State 
University, and Idaho 

Department of Fish 
and Game researchers 

determined that enhancing 
forage quality may  

aid in reestablishing 
pronghorn herds. 

 Photo: Adobe Stock
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on numerous hosts and in their habitats. 

Because many of these wildlife hosts are 

peridomestic (frequently living near people 

and human habitats), ALHT could become an 

issue for domestic animals and people.

Contact: Sarah Bevins

•	 Factors Influencing Pronghorn Fawn 
Survival. Pronghorns (Antilocapra ameri-

cana) are an iconic symbol of U.S. deserts 

and plains and a valued game animal for 

hunters in many Western States. In Idaho, 

pronghorn populations have not rebounded 

from intensive hunting in the late 1980s. 

Because fawn survival impacts population 

growth, NWRC, Utah State University, 

and Idaho Department of Fish and Game 

researchers investigated factors affecting 

the survival rate of 217 radio-collared 

pronghorn fawns in Idaho. Data showed 

the leading cause of fawn mortality was 

coyote (Canis latrans) predation (58 percent), 

followed by unknown causes of mortality (18 

percent), predation by unknown animals (12 

percent), predation by bobcats (Lynx rufus, 6 

percent), predation by golden eagles (Aquila 

chrysaetos, 3 percent), and other causes 

(3 percent). Models showed that the body 

mass index of newborn fawns and levels of 

2,6-diaminopimelic acid in the fecal material 

of pronghorn mothers—both of which are 

linked to diet quality—were positively related 

to fawn survival. Models also showed that 

the presence of more rabbits and hares 

resulted in greater fawn survival, likely 

because they served as an alternative prey 

for coyotes and other predators. Researchers 

conclude that management actions to 

enhance forage quality or restore habitat 

for higher quality forage may aid in reestab-

lishing pronghorn herds.

Contact: Eric Gese

•	 European Starling Use of Urban and 
Rural Landscapes. Since their intentional 

introduction into the United States in the 

1800s, European starlings (Sturnus vulgaris) 

have become the fourth most common bird 

species in both urban and rural areas. Wildlife 

resource managers need better information 

about starling movement and habit-use 

patterns to effectively manage populations 

of these birds and the damage they cause. 

NWRC researchers compiled data from six 

radio-telemetry studies conducted between 

2005 and 2010 to compare the movements 

and habitat use of radio-tagged starlings in 

urban and rural habitats. 

	 Key findings indicated that urban roosts 

contained smaller numbers of birds (fewer 

than 30,000) than more rural roosts (more 

than 100,000). Birds from city-center 

roosts occasionally switched to the outlying 

major roosts. Human-related food sources 

(for instance, feedlots, shipping yards, 

and landfills) were their primary foraging 

sites. Birds traveling to roosts from primary 

foraging sites in rural landscapes would 

often pass over closer minor roosts to 

reach major roosts in stands of emergent 

vegetation in large wetlands. The minimum 

estimated home range for tagged birds was 

European starling being 
fitted with a radio-
telemetry harness. NWRC 
researchers compiled data 
from six radio-telemetry 
studies conducted between 
2005 and 2010 to compare 
radio-tagged starling 
movements and habitat 
use in urban and rural 
habitats. 
 Photo: USDA, Wildlife Services
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approximately 60 miles2. Wildlife resource 

managers can use this information to predict 

potential roosting and foraging sites—and 

areas to monitor when carrying out pro-

grams in different landscapes.

Contact: Page Klug

•	 Genetic Variation in European Starlings. 
European starlings were introduced to New 

York in 1890 and subsequently became one 

of the most widespread and numerous bird 

species in North America. Genetic compari-

sons of starling individuals and populations 

can identify factors that helped facilitate this 

rapid and successful expansion. NWRC and 

Cornell University researchers investigated 

patterns of genomic diversity and dif-

ferentiation using genome sequencing of 

166 starlings from dairies and feedlots in 17 

States. Consistent with this species’ high 

dispersal rate and history of rapid expansion, 

researchers found few genetic differences 

among birds from different locations. 

However, researchers did find some gene 

sequences correlated with temperature and/

or precipitation, suggesting that local adap-

tation may have evolved rapidly. This survey 

of genomic signatures of expansion in North 

American starlings is the most comprehensive 

to date and complements ongoing studies 

of worldwide local adaptation in these highly 

dispersive and invasive birds.

Contact: Scott Werner

•	 Feral Swine Movement Behavior and 
Resource Selection. Understanding how 

invasive species such as feral swine move 

through and use resources in the landscape 

provides insights into how their popula-

tions survive and expand. It also allows 

managers to predict the movements of 

animals in different landscapes and optimize 

Understanding how 
invasive species, such as 

feral swine, move through 
and use resources in the 
landscape gives insights 

into how their populations 
survive and expand. 

 Photo: Adobe Stock
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damage management activities. NWRC 

and Savannah River Ecology Laboratory 

researchers used GPS data from 49 feral 

swine in the Southeastern United States and 

hidden Markov models to define movement 

paths and assign behaviors (such as resting, 

foraging, and traveling) for individual swine. 

They also compared the connection between 

these behaviors and food availability (for 

instance, in seasons offering high or low 

access to forage). 

	 Female feral swine were most active during 

twilight hours in the high-forage season and 

showed more variable movements in the 

low-forage season, while male feral swine 

exhibited nocturnal activity patterns in both 

seasons. The feral swine used bottomland 

hardwoods and dense canopy cover while 

resting, foraging, and traveling during both 

seasons. Males used shrub and grassy 

habitats, as well as bottomland hardwoods, 

while foraging in the low-forage season 

compared to the high-forage season and 

used roads, paths cut for power lines, and 

streams more often than females while 

traveling. Feral swine establish populations 

and home ranges in a variety of landscapes, 

but these results show that male and female 

pigs exhibit clear differences in movement 

behavior. As a result, managers can increase 

the effectiveness of techniques, such as trap-

ping and toxicant baiting, by targeting feral 

swine in habitats where they prefer to forage 

or travel.  

Contact: Kim Pepin   

•	 Black Bear Impacts on Mountain Lion 
Feeding Behavior. Black bears (Ursus 

americanus) and mountain lions (Puma 

concolor) are both considered apex preda-

tors (species that have no natural predators). 

For more than 80 years, mountain lions 

have been the sole apex predators in the 

Great Basin of Nevada. However, black bears 

have recently recolonized the area and are 

known to scavenge on mountain lion kills. 

To evaluate the impacts of these bears on 

mountain lion foraging behavior in the Great 

Basin, NWRC researchers and partners in 

Utah and Nevada investigated kill sites of 

31 mountain lions between 2009 and 2017, 

in areas with different bear densities. The 

researchers analyzed both the number of 

nights mountain lions spent feeding on a 

NWRC researchers and 
partners in Utah and 
Nevada found that higher 
black bear densities 
reduced mountain lion 
feeding bout durations 
and influenced their prey 
selection. 
 Photo: Adobe Stock
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particular prey item and the type and propor-

tion of prey in their diet. 

	 Results showed that the duration of 

mountain lion feeding bouts was driven 

primarily by the size of the prey being 

eaten, local bear density, and the presence 

of dependent kittens. The proportion of 

mule deer in mountain lion diets across all 

study areas declined over time, was lower 

for male mountain lions, increased with 

the presence of dependent kittens, and 

increased with higher bear densities. In sites 

with feral horses (Equus ferus), a novel large 

prey, mountain lion consumption of these 

animals increased over time. These findings 

suggest that higher bear densities over time 

may reduce mountain lion feeding bout 

durations and influence prey selection when 

alternative, but more dangerous, large prey 

are available.

Contact: Julie Young

Registration Updates

•	 Broadening Acetaminophen Application 
Scenarios for Brown Treesnake Control.  
In 2003, acetaminophen was registered 

as a pesticide by the U.S. Environmental 

Protection Agency (EPA) for use in brown 

treesnake control on Guam. The original 

approved usage was limited to inserting 

single 80 milligram (mg) tablets into dead 

newborn mice and hand-placing them 

in PVC pipe bait stations in and around 

forested areas and along fence lines. Over 

the years, the label has been amended to 

Some invasive brown 
treesnakes in Guam 

weigh up to 2,000 grams. 
NWRC research indicates 
that these larger snakes 

require higher doses of 
registered acetaminophen 

to ensure mortality. In 
2020, the EPA label was 

amended to allow multiple 
acetaminophen tablets to 

be applied per bait when 
targeting unusually large 

brown treesnakes. 
 Photo: USDA, Shane Siers 
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allow for (1) manual or automated aerial 

dispersal of baits from aircraft over large 

areas or places not practically accessible by 

ground-based methods, (2) bait stations in 

urban and residential areas, and (3) the use of 

alternative baits, including rodents and birds 

of all sizes, lizards, and artificial bait. Recent 

NWRC research confirmed that a single 

80 mg dose, if ingested, is lethal to brown 

treesnakes under 250 grams, which make 

up most of the snakes on Guam. However, 

some individual snakes grow much larger (up 

to 2,000 grams), and research indicates that 

these snakes require higher doses to ensure 

mortality. In December 2020, the label was 

amended again with EPA to allow multiple 

tablets to be applied per bait when targeting 

unusually large brown treesnakes and to 

permit more flexibility in bait station spacing. 

These label modifications allow for a broader 

range of application scenarios and more 

effective targeting of these invasive snakes. 

Contact: Emily Ruell

•	 Feral Swine Toxicant Development 
Update. WS continues to make steady 

progress toward registering a toxic bait for 

feral swine called HOGGONE, which contains 

sodium nitrite (SN) as the active ingredient. 

The program has partnered with Australia’s 

Centre for Invasive Species Solutions and 

Animal Control Technologies Australia to 

have HOGGONE registered for operational 

use in that country. Meanwhile, NWRC is 

working through the EPA requirements for 

a U.S. registration. Although effective at 

reducing feral swine numbers, the initial 

HOGGONE formulation resulted in unaccept-

able levels of nontarget hazards to passerine 

birds. This led NWRC researchers to modify 

the bait station, bait formulation, and baiting 

strategy, all of which have been evaluated in 

small-scale field trials in Alabama, Texas, and 

Queensland, Australia, during the last 2 years. 

	 The bait station has been modified to accept 

small, compacted trays that limit the ability 

of feral swine to spill the bait on the ground 

while feeding. HOGGONE (now renamed 

HOGGONE 2) has also been reformulated 

to reduce the risks to nontarget species 

by (1) increasing the microencapsulation 

coating around the SN, (2) decreasing the 

SN concentration by 50 percent to minimize 

the amount of SN deployed, and (3) using 

more finely milled grains to reduce the 

bait’s attractiveness to birds. The baiting 

strategy has been modified to reduce the 

attractiveness of the bait sites to nontarget 

animals by (1) decreasing the amount of 

pre-baiting time, (2) increasing the distance 

between pre-baiting sites and bait stations 

to avoid any remnant particles of whole-

kernel corn that might attract birds, and (3) 

incorporating a deterrent device to scare 

nontargets away until a biologist can arrive 

to remove any spilled bait. EPA approved an 

amendment to the experimental use permit 

(EUP) for HOGGONE 2 in April 2021; NWRC 

researchers tested the above modifications 

with HOGGONE 2 in the field in northern 

Texas and southern Alabama in the summer 

of 2021. The EUP study’s final report will 

be submitted to EPA as part of the future 

Federal (Section 3) registration application 

for HOGGONE 2. 

	 Concurrently, NWRC continues working to 

complete the remaining registration data 

for the Section 3 registration application, 

including an additional winter-spring field 

trial in 2023, product chemistry, ecological 

effects, toxicology, and food residue data 

required after EPA designated HOGGONE a 

“food-use” pesticide in 2018. The reformula-

tion of HOGGONE into HOGGONE 2 also 
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necessitated repeating some of the product 

chemistry registration data developed for the 

original formulation. 

	 WS anticipates submitting the full year-

round Section 3 registration application to 

EPA in the fall of 2023. EPA has 25 months 

to evaluate the submitted registration data 

and food tolerance petitions. WS anticipates 

a final decision from the agency by late 2025 

or early 2026. 

Contact: Emily Ruell

•	 GonaCon-Deer Pesticide Label Updated. 
In April 2021, the EPA approved a label 

amendment for the GonaCon-Deer registra-

tion. The label changes will help improve 

field use of GonaCon-Deer to manage 

white-tailed deer. Changes include:

•	 allowing for “booster” doses to be 

administered by hand injection or 

remote darting. (The first vaccination of 

a female deer must still be administered 

by hand injection.)

•	 clarifying language that requires the 

marking of vaccinated animals.

•	 adding instructions for remote darting, 

including requiring that applicators 

retrieve darts whenever possible.

	 We expect use of remote darting to improve 

the feasibility and cost effectiveness of 

controlling deer populations with GonaCon-

Deer. Hand injection of GonaCon-Deer is 

costly and time consuming; it also limits the 

percentage of a population that can receive 

booster vaccinations, thereby reducing the 

effectiveness of the product for population 

control. Also, hand injection requires 

capturing and immobilizing the animal, 

which can be a safety risk to animals and 

applicators. Allowing booster doses to be 

administered to marked animals via remote 

darting removes the need to repeatedly 

capture and immobilize the same animal.

Contact: Emily Ruell

Technology Transfer 

•	 Patents, Licenses, and New Inventions. 
In fiscal year (FY) 2021, NWRC scientists 

were awarded one U.S. patent and eight 

foreign patents. In addition, NWRC scientists 

submitted four utility patent applications. 

See the following table for details on issued 

patents and patent applications. NWRC 

scientists also submitted three U.S.  

provisional patent applications and one 

invention disclosure to the NWRC Technology 

Transfer Office.

Contact: John Eisemann 

The EPA label for GonaCon-
Deer has been amended to 

allow remote darting for 
booster vaccinations.  

 Photo: USDA, Wildlife Services
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List of NWRC-issued 
patents and patent 
applications for 2021 
Table: USDA, Wildlife Services

INVENTION  
TITLE

NWRC INVENTORS  
AND COOPERATOR  
CO-INVENTORS

COUNTRY  
PATENT/APPLICATION  
NUMBER

A L L O W E D

Frontal vehicle 
illumination to reduce 
animal-vehicle collision

DeVault, T., Blackwell, B., and 
Seamans, T.

United  
States

16/668/253

Ultraviolet strategy for 
avian repellency

Werner, S. African Regional 
Intellectual 
Property 
Organization 

Canada

South Africa

China

India

New Zealand

AP/P/2017/009720

2,954,333

2017/01198

ZL 2014 8 0080504.7

PCT/US2014/048119

728465

Use of visual cues to 
enhance bird repellent           
compounds

Werner, S. and
Ballinger, K. (Arkion Life 
Sciences)

New Zealand 2017/01198

Method for repelling 
rodents

Werner, S. and
Ballinger, K. (Arkion Life 
Sciences)

Canada 2,036,508

A P P L I C A T I O N

Selectively accessible 
feeder

Lavelle, M., Halseth, J., 
Snow, N., and Staples, L., 
Lake, B. (Animal Control 
Technologies, Australia)

United States

Patent Control 
Treaty         

17/270,855

PCT/AU2019/050903

Intelligent dual sensory 
species-specific 
recognition system

VerCauteren, K., Snow, 
N., Halseth, J., and Azimi-
Sadjadi, M., Hall, J., 
Robbiano, C. (Information 
Systems Technologies, Inc.)

United States 17/230,453

Vaccine compositions 
and adjuvants

Miller, L., Rhyan, J., and  
Eckery. D.

United States 16/331,157

Lethal bird trap Shiels, A. United States Not yet assigned

Patent Table
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•	 Technology Transfer Agreements. 
WS partners with universities, private 

companies, and others to promote research 

and development for new products that help 

manage wildlife damage. WS formalizes 

these partnerships through a variety of 

intellectual property agreements. In FY 

2021, NWRC entered into two Confidentiality 

Agreements, four Data Sharing Agreements, 

six Material Transfer Agreements, eight 

Material Transfer Research Agreements,  

and two Cooperative Research and 

Development Agreements. 

Contact: John Eisemann

Awards

•	 2021 NWRC Publication Award. Each year, 

the NWRC Publication Awards Committee, 

composed of NWRC scientists, reviews 

over 125 publications generated by NWRC 

colleagues. The resulting peer-recognized 

award honors outstanding contributions to 

science and wildlife damage management. 

In 2021, the committee presented the award 

to Dr. Kurt VerCauteren for his work on the 

book Invasive Wild Pigs in North America: 

Ecology, Impacts, and Management (CRC 

Press, 479 pp). 

	 This publication arose from a multidisci-

plinary collaboration between NWRC, the 

University of Georgia, Auburn University, 

Michigan State University, and Mississippi 

State University. VerCauteren and his co-

editors assimilate and organize information 

on wild pigs (also known as feral swine)—the 

most destructive vertebrate species ever 

introduced into the United States. The book 

addresses all aspects of wild pig biology, 

ecology, damage, and management in a 

single, comprehensive volume that man-

agers, researchers, policy makers, and other 

stakeholders can build on. The impact of this 

book on WS operations, stakeholders, the 

public, and future research endeavors will  

be substantial. 

•	 NWRC Employee of the Year Awards. 
The winners of this award are nominated by 

their peers as employees who have clearly 

exceeded expectations in their contributions to 

the NWRC mission. The winners this  year are:

•	 Dr. Susan Shriner  

research grade scientist 

Wildlife Disease Dynamics, 

Epidemiology, and Response Project 

Fort Collins, CO

•	 Dr. Tim Smyser  

support scientist  

Wildlife Genetics Project 

Fort Collins, CO

•	 Kathlyn Stauffer 

biological science technician  

Managing Ungulate Damage and 

Disease Project  

Fort Collins, CO

•	 Corey Perrillioux 

facility manager 

Administration Unit  

Fort Collins, CO

•	 Presidential Migratory Bird Federal 
Stewardship Award. APHIS received the 

Presidential Migratory Stewardship Award 

in recognition of WS’ efforts to conserve 

large native migratory birds and protect 

the people of Hawaii. The Council for the 

Conservation of Migratory Birds, led by the 

U.S. Fish and Wildlife Service and composed 

of many Federal agencies with migratory bird 

responsibilities, chose the winner in  May 2021. 
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	 WS conducted a joint research-operational 

project to reduce human-wildlife conflicts 

associated with two culturally significant 

bird species: the Hawaiian goose, or nēnē, 

and the Laysan albatross, or mōlī. Since 

both species are large, they pose a potential 

aircraft strike risk near airfields in some 

areas of Hawaii. WS research and operations 

personnel collaborated with numerous 

partners not only to reduce the aircraft strike 

hazards these species present, but also to 

identify, preserve, enhance, and support 

important breeding and foraging habitats 

for the birds elsewhere on the island. The 

project employed innovative nonlethal 

management tools, such as canine teams 

for dispersing birds, mitigation translocation, 

and egg swaps. Targeted research gauged 

the impact and effectiveness of these 

tools, which will guide future management 

strategies. 

APHIS received the 2021 
Presidential Migratory 
Stewardship Award in 
recognition of WS’ efforts 
to conserve large native 
migratory birds and protect 
people in Hawaii. 
 Photo: USDA, Wildlife Services
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2021 Publications

The transfer of scientific information is an 

important part of the research process. NWRC 

scientists and other WS experts publish in a 

variety of peer-reviewed journals that cover 

a wide range of disciplines, including wildlife 

management, genetics, analytical chemistry, 

ornithology, and ecology. (Note: 2020 

publications that were not included in the 2020 

NWRC accomplishments report are listed here.)

Adams-Progar, A., K. Steensma, S. Shwiff, 

J. Elser, S. Kerr, and T. Caskin. 2020. 
Understanding and preventing bird damage 

on dairies. Proceedings of the Vertebrate Pest 

Conference 29. Paper no. 56. 3 pp.

Ahlstrom, C.A., M.L. van Toor, H. Woksepp, J.C.  

Chandler, J.A. Reed, A.B. Reeves, J. Waldenström, 

A.B. Franklin, D.C. Douglas, J. Bonnedahl, and 

A.M. Ramey. 2021. Evidence for continental- 

scale dispersal of antimicrobial resistant 

bacteria by landfill-foraging gulls. Science of 

the Total Environment. Online first. doi: 10.1016/j.

scitotenv.2020.14451

Altringer, L., J. Navin, M.J. Begier, S.A. Shwiff, 

and A. Anderson. 2021. Estimating wildlife 

strike costs at U.S. airports: a machine learning 

approach. Transportation Research Part D: 

Transport and Environment 97:102907. doi: 

10.1016/j.trd.2021.102907

Ammar, S., L. Wood, C. Su, M. Spriggs, J. Brown, 

K. Van Why, and R. Gerhold. 2021. Toxoplasma 

gondii prevalence in carnivorous wild birds in the 

eastern United States. International Journal for 

Parasitology: Parasites and Wildlife 15:153–157. 

doi: 10.1016/j.ijppaw.2021.04.010

Aubry, L.M., S.B. Hudson, B.M. Kluever, A.C. 

Webb, and S.S. French. 2020. Competing 

reproductive and physiological investments in 

an all-female lizard, the Colorado checkered 

whiptail. Evolutionary Ecology 34:999–1016. 

doi: 10.1007/s10682-020-10081-x

Avery, M.L. 2020. Monk parakeet (Myiopsitta 

monachus Boddaert, 1783). pgs 76–84. In: 

Downs, C.T. and L.A. Hart, editors. Invasive Birds: 

Global Trends and Impacts. CAB International, 

Wallingford, United Kingdom.

Avery, M.L. and C.J. Feare. 2020. Control or 

eradication: problems in the management of 

invasive birds. pgs 349–361. In: Downs, C.T. and 

L.A. Hart, editors. Invasive Birds: Global Trends 

and Impacts. CAB International, Wallingford, 

United Kingdom.

Barela, I.A., L.M. Burger, G. Wang, K.O. 

Evans, Q. Meng, and J.D. Taylor. 2021. Spatial 

transferability of expert opinion models for 

American beaver habitat. Ecological Informatics 

61:101211. doi: 10.1016/j.ecoinf.2021.101211

Barton, K.E. and A.B. Shiels. 2020. Additive 

and non-additive responses of seedlings to 

simulated herbivory and drought. Biotropica 

52(6):1217–1228. doi: 10.1111/btp.12829

Bastille-Rousseau, G., P.E. Schlichting, D.A. 

Keiter, J.B. Smith, J.C. Kilgo, G. Wittemyer, K.C. 

VerCauteren, J.C. Beasley, and K.M. Pepin. 2021. 
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Multi-level movement response of invasive wild 

pigs (Sus scrofa) to removal. Pest Management 

Science 77(1):85–95. doi: 10.1002/ps.6029

Beasley, J.C., L.M. Clontz, A. Rakowski, N. Snow, 

and K.C. VerCauteren. 2021. Evaluation of a 

warfarin bait for controlling invasive wild pigs 

(Sus scrofa). Pest Management Science 77(7): 

3057–3067. doi: 10.1002/ps.6351

Berentsen, A.R., I.L. Leinbach, M.J. Rivera-

Rodriguez, and A.T. Gilbert. 2021. Oral rabies 

vaccination of small Indian mongooses (Urva 

auropunctata) with ONRAB via Ultralite baits. 

Viruses 13(5):734. doi: 10.3390/v13050734

Bevins, S.N., J.C. Chandler, N.L. Barrett, B.S. 

Schmit, G.W. Wiscomb, and S.A. Shriner. Plague 

exposure in mammalian wildlife across the 

western United States. 2021. Vector-Borne and 

Zoonotic Diseases 21(9):667–674. doi: 10.1089/

vbz.2020.2765

Blackwell, B.F., T.W. Seamans, M.B. Pfeiffer, 

and B.N. Buckingham. 2021. European starling 

nest-site selection given enhanced direct 

nest predation risk. Wildlife Society Bulletin 

45(1):62–70. doi: 10.1002/wsb.1151

Bleke, C.A., E.M. Gese, and S.S. French. 2021. 

Variations, validations, degradations, and 

noninvasive determination of pregnancy 

using fecal steroid metabolites in free-ranging 

pronghorn. General and Comparative 

Endocrinology 312:113841. doi: 10.1016/j.

ygcen.2021.113841

Bogardus, T. and A.B. Shiels. 2020. Effectiveness 

of A24 automatic traps for landscape level 

rodent control. Proceedings of the Vertebrate 

Pest Conference: 29. Paper no. 13. 5 pp.

Bolds, S.A., B.G. Lockaby, S.S. Ditchkoff, M.D. 

Smith, and K.C. VerCauteren. 2021. Impacts of 

a large invasive mammal on water quality in 

riparian ecosystems. Journal of Environmental 

Quality 50(2):441–453. doi: 10.1002/jeq2.20194

Bonaparte, S.C., L. Adams, B. Bakamutumaho, 

G. Barbosa Costa, J.M. Cleaton, A.T. Gilbert, 

M. Osinubi, E.G. Pieracci, S. Recuenco, V. 

Tugumizemu, J. Wamala, and R.M. Wallace. 

2021. Rabies post-exposure healthcare-seeking 

behaviors and perceptions: results from a 

knowledge, attitudes, and practices survey, 

Uganda, 2013. PLoS ONE 16(6):e0251702. doi: 

10.1371/journal.pone.0251702

Borland, E.M., D.A. Hartman, M.W. Hopken, 

A.J. Piaggio, and R.C. Kading. 2020. Technical 

limitations associated with molecular barcoding 

of arthropod bloodmeals taken from North 

American deer species. Journal of Medical 

Entomology 57(6):2002–2006. doi: 10.1093/

jme/tjaa112

Brown, V.R., R.S. Miller, S.C. McKee, K.H. Ernst, 

N.M. Didero, R.M. Maison, M.J. Grady, and S.A. 

Shwiff. 2021. Risks of introduction and economic 

consequences associated with African swine 

fever, classical swine fever, and foot-and-

mouth disease: a review of the literature. 

Transboundary and Emerging Diseases 

68(4):1910–1965. doi: 10.1111/tbed.13919
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Browne, A.S., H.M. Cranford, C.N. Morgan, J.A. 

Ellison, A.R. Berentsen, N. Wiese, A. Medley, 
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B.R. Ellis, K.M. Bisgard, R. Wallace, and E.M. Ellis. 

2021. Determination of freedom-from-rabies 

for small Indian mongoose populations in the 

United States Virgin Islands, 2019-2020. PLoS 

Neglected Tropical Diseases 15(7):e0009536. 

doi: 10.1371/journal.pntd.0009536

Burr, P.C., J.L. Avery, G.M. Street, B.K. Strickland, 

and B.S. Dorr. 2020. Historic and contemporary 
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in the Mississippi Delta. The Condor 122:1–13. doi: 

10.1093/condor/duaa036
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and B.S. Dorr. 2020. Piscivorous bird use 
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Mississippi. Journal of Wildlife Management 

84(8):1560–1569.  doi: 10.1002/jwmg.21948
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J.L. Elser, and S.A. Shwiff. 2021. Towards 

a more comprehensive understanding of 

wild pig (Sus scrofa) impacts on agricultural 

producers: insights from a Texas case study. 

Crop Protection 150:105793. doi: 10.1016/j.

cropro.2021.105793
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Schulte, and P. Toni. 2021. Evaluating potential 

effects of solar power facilities on wildlife from 

an animal behavior perspective. Conservation 

Science and Practice 3(2):e319. doi: 10.1111/csp2.319
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editors. GMOs. Topics in Biodiversity and 
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Appendix 1

Defining Economic Impacts and Developing 

Strategies for Reducing Avian Predation  

in Aquaculture 

Project Leader: Fred Cunningham

Developing Control Methods, Evaluating Impacts, 

and Applying Ecology To Manage Carnivores 

Project Leader: Julie Young

Developing Methods To Manage Damage and 

Disease of Feral Swine and Other Ungulates

Project Leader: Kurt VerCauteren

Development of Injectable and Mucosal 

Reproductive Technologies and Their 

Assessment for Wildlife Population and  

Disease Management

Project Leader: Jason Bruemmer

Economics, Operations Research, and Social 

Dimensions of Wildlife Management

Project Leader: Stephanie Shwiff

Evaluation and Development of Wildlife 

Repellents and Repellent Application Strategies

Project Leader: Scott Werner

Genetic Methods To Manage Livestock-Wildlife 

Interactions

Project Leader: Antoinette Piaggio

Improving Methods To Manage Healthy Forests, 

Wetlands, and Rangelands

Project Leader: Jimmy Taylor

Methods and Strategies for Controlling Rabies

Project Leader: Amy Gilbert

Methods and Strategies To Manage Invasive 

Species Impacts to Agriculture, Natural 

Resources, and Human Health and Safety

Project Leader: Steven Hess

Methods and Strategies To Manage Rodent 

Impacts to Agriculture, Natural Resources, and 

Human Health and Safety

Project Leader: Aaron Shiels

Methods Development and Damage 

Management of Depredating Birds and  

Invasive Wildlife

Project Leader: Bryan Kluever

Methods Development To Reduce Bird Damage 

to Agriculture: Evaluating Methods at Multiple 

Biological Levels and Landscape Scales

Project Leader: Page Klug

Understanding and Exploiting Wildlife Behavior 

To Mitigate Wildlife Collisions With Aircraft, 

Other Vehicles, and Structures

Project Leader: Brad Blackwell

Wildlife-Borne Pathogens Affecting Food  

Safety and Security: Developing Methods  

To Mitigate Effects

Project Leader: Alan Franklin

Wildlife Disease Dynamics, Epidemiology,  

and Response

Project Leader: Susan Shriner

More information about these projects  

is available on the NWRC web page at: 

www.aphis.usda.gov/wildlifedamage/nwrc

List of 2021 NWRC Research Projects
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Appendix 2

NWRC Research Contacts 

NAME CONTACT INFORMATION AREAS OF EXPERTISE

Abbo, Benjamin (970) 266-6122 
benjamin.g.abbo@usda.gov Chemistry

Antaky, Carmen (808) 238-2795
carmen.antaky@usda.gov Island invasives

Berentsen, Are (970) 266-6221 
are.r.berentsen@usda.gov Rabies

Bevins, Sarah (970) 266-6211 
sarah.n.bevins@usda.gov Wildlife disease

Blackwell, Bradley (419) 625-0242 ext. 15 
bradley.f.blackwell@usda.gov Aviation safety, lighting systems

Breck, Stewart (970) 266-6092  
stewart.w.breck@usda.gov Carnivores

Bruemmer, Jason (970) 266-6035 
jason.bruemmer@usda.gov Project Leader: fertility control

Burr, Paul (662) 341-5788
paul.burr@usda.gov Aquaculture, fish-eating birds

Campbell, Chloe (970) 266-6222
chloe.e.campbell@usda.gov Library

Chandler, Jeffrey (970) 266-6090 
jeffrey.c.chandler@usda.gov

Laboratory Support Services  
Unit Leader

Cunningham, Fred (662) 325-8215  
fred.l.cunningham@usda.gov

Project Leader: aquaculture,  
fish-eating birds

Davis, Amy (970) 266-6313 
amy.j.davis@usda.gov Modeling

DeLiberto, Shelagh (970) 266-6121 
shelagh.t.deliberto@usda.gov Repellents

Dorr, Brian (662) 325-8216  
brian.s.dorr@usda.gov Aquaculture, fish-eating birds

Drabik-Hamshare, 
Morgan

(419) 625-0242
morgan.b.drabik-hamshare@usda.gov Aviation safety, drones, vultures

Edwards, Jenna (970) 266-6023 
jennifer.m.edwards@usda.gov

Information Services Unit Leader: 
library, web, archives

Eisemann, John (970) 266-6158  
john.d.eisemann@usda.gov

Technology Transfer  
Program Manager

Evans, Betsy (352) 375-2229
betsy.evans@usda.gov Invasive birds, vultures

Fischer, Justin (970) 266-6174 
justin.w.fischer@usda.gov Geographic Information System
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NAME CONTACT INFORMATION AREAS OF EXPERTISE

Franklin, Alan (970) 266-6137  
alan.b.franklin@usda.gov

Project Leader: emerging infectious 
diseases, food safety

Gese, Eric (435) 245-6091  
eric.m.gese@usda.gov Carnivores

Giglio, Rachael (970) 266-6000
rachael.giglio@usda.gov Genetics

Gilbert, Amy (970) 266-6054 
amy.t.gilbert@usda.gov Project Leader: rabies

Glow, Michael (970) 266-6163 
michael.p.glow@usda.gov Feral swine, ungulates

Goldade, David (970) 266-6080 
david.a.goldade@usda.gov Chemistry Unit Leader

Golnar, Andrew (970) 266-6171 
andrew.golnar@usda.gov Modeling

Greiner, Laura (970) 266-6022 
laura.b.greiner@usda.gov Quality assurance

Griffin, Doreen (970) 266-6081 
doreen.l.griffin@usda.gov Quality control, genetics

Hamby, Hayden (970) 266-6230
hayden.hamby@usda.gov Formulation chemistry

Hess, Steven (808) 932-4751  
steven.hess@usda.gov Project Leader: island invasives

Hoblet, Joshua (419) 625-0242
joshua.l.hoblet@usda.gov Aviation hazards

Hopken, Matt (970) 266-6046
matt.w.hopken@usda.gov Genetics

Horak, Katherine (970) 266-6168 
katherine.e.horak@usda.gov Physiological modeling, pesticides

Humphrey, John (352) 448-2131 
john.s.humphrey@usda.gov Invasive species, vultures

Johnson, Shylo (970) 266-6125 
shylo.r.johnson@usda.gov Rabies

Keirn, Gail (970) 266-6007  
gail.m.keirn@usda.gov Legislative and Public Affairs

Kluever, Bryan (352) 448-2130 
bryan.kluever@usda.gov Project Leader: invasive species, birds

Klug, Page (701) 231-5190 
page.e.klug@usda.gov

Project Leader: bird damage to 
agriculture 

Lavelle, Michael (970) 266-6129 
michael.j.lavelle@usda.gov Ungulates, wildlife disease

Mangan, Anna (970) 266-6236 
anna.mangan@usda.gov Genetics

Mauldin, Richard (970) 266-6068 
richard.e.mauldin@usda.gov Fertility control

McBride, Michael (970) 266-6364  
michael.mcbride3@usda.gov Supervisory Attending Veterinarian
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NAME CONTACT INFORMATION AREAS OF EXPERTISE

Mitchell, Diana (970) 266-6131 
diana.r.mitchell@usda.gov Staff officer

Mundell, Cary (970) 266-6101 
cary.mundell@usda.gov Fertility control

Pepin, Kim (970) 266-6162 
kim.m.pepin@usda.gov Modeling, feral swine

Piaggio, Toni (970) 266-6142  
toni.j.piaggio@usda.gov Project Leader: genetics

Porter, Stephanie (970) 266-6000
stephanie.porter@usda.gov Wildlife diseases

Root, Jeff (970) 266-6050  
jeff.root@usda.gov Wildlife diseases

Ruell, Emily (970) 266-6161 
emily.w.ruell@usda.gov Product registration, pesticides

Schultz, Jeffrey (435) 245-6091 
jeffrey.t.schultz@usda.gov Carnivores

Shiels, Aaron (970) 266-6374 
aaron.b.shiels@usda.gov

Project Leader: rodents, invasive 
species

Shriner, Susan (970) 266-6151 
susan.a.shriner@usda.gov

Project Leader: wildlife disease, 
disease modeling

Shwiff, Stephanie (970) 266-6150 
stephanie.a.shwiff@usda.gov Project Leader: economics

Siers, Shane (671) 686-1334 
shane.r.siers@usda.gov

Island invasives, brown tree snakes, 
Guam

Smyser, Timothy (970) 266-6365 
timothy.j.smyser@usda.gov Genetics

Snow, Nathan (970) 266-6041 
nathan.p.snow@usda.gov Feral swine

Sugihara, Robert (808) 932-4754 
robert.t.sugihara@usda.gov Invasive species

Szakaly, Sara (970) 266-6021 
sara.j.szakaly@usda.gov Archives

Taylor, Jimmy (541) 737-1353 
jimmy.d.taylor@usda.gov Project Leader: forestry, beavers

Tillman, Eric (352) 448-2132 
eric.a.tillman@usda.gov Invasive species

VerCauteren, Kurt (970) 266-6093 
kurt.c.vercauteren@usda.gov Project Leader: feral swine, ungulates 

Vernati, Giulia (970) 266-6140
giulia.vernati@usda.gov Biosafety

Volker, Steve (970) 266-6170 
steven.f.volker@usda.gov Chemistry

Washburn, Brian (419) 625-0242 ext. 12 
brian.e.washburn@usda.gov

Aviation safety, bird movements, 
raptors

Werner, Scott (970) 266-6136 
scott.j.werner@usda.gov Project Leader: repellents

Young, Julie (435) 797-1348 
julie.k.young@usda.gov Project Leader: carnivores
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Appendix 3 

Acronyms and Abbreviations

AIV	 avian influenza virus

ALHT	 Asian longhorned tick

AMR	 antimicrobial resistant

APHIS	 Animal and Plant Health 		
	 Inspection Service

AQ	 anthraquinone

ARP	 American Rescue Plan

ASF	 African swine fever

BMI	 body mass index

CDC	 Centers for Disease Control  
	 and Prevention

DAPA	 2,6-diaminopimelic acid

DNA	 deoxyribonucleic acid 

eDNA	 environmental DNA

EPA	 U.S. Environmental Protection 		
	 Agency

GPS	 global positioning system

IAV	 Influenza A virus

LOD	 limit of detection

LOQ	 limit of quantification	

NEXRAD	 Next Generation Weather Radar

NVSL	 National Veterinary Services 		
	 Laboratories

NWDP	 National Wildlife Disease Program

NWSD	 National Wildlife Strike Database

NWRC	 National Wildlife Research Center

ONRAB	 Ontario rabies vaccine

ORV	 oral rabies vaccine

qPCR	 quantitative real-time polymerase 	
	 chain reaction 

RVNA	 rabies virus neutralizing antibody

SN	 sodium nitrite

USDA 	 U.S. Department of Agriculture

WS	 Wildlife Services



 

 

In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, 

the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are 

prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender 

expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public 

assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity 

conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by 

program or incident. 

Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large 

print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA’s TARGET Center at  

(202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, 

program information may be made available in languages other than English. 

To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, 

found online at How to File a Program Discrimination Complaint (www.ascr.usda.gov/filing-program-discrimination-

complaint-usda-customer) and at any USDA office, or write a letter addressed to USDA and provide in the letter all of 

the information requested in the form. To request a copy of the complaint form, call (866) 632-9992. Submit your 

completed form or letter to USDA by: (1) mail: U.S. Department of Agriculture, Office of the Assistant Secretary for Civil 

Rights, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410; (2) fax: (202) 690-7442;  

or (3) email: program.intake@usda.gov.  

USDA is an equal opportunity provider, employer, and lender. 

Mention of companies or commercial products does not imply recommendation or endorsement by USDA over others not mentioned. USDA neither 
guarantees nor warrants the standard of any product mentioned. Product names are mentioned solely to report factually on available data and to provide 
specific information.

This publication reports research involving pesticides. All uses of pesticides must be registered by appropriate State and/or Federal agencies before they can 
be recommended.

CAUTION: Pesticides can be injurious to humans, domestic animals, desirable plants, and fish or other wildlife if they are not handled or applied properly. 
Use all pesticides selectively and carefully. Follow recommended practices for disposal of surplus pesticides and pesticide containers.
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	This past year has been a tumultuous one for health care professionals and disease specialists. The global impacts of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, the virus that causes COVID-19) to public health have been enormous and have shown how interconnected we are to one another and the environment.
	This past year has been a tumultuous one for health care professionals and disease specialists. The global impacts of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, the virus that causes COVID-19) to public health have been enormous and have shown how interconnected we are to one another and the environment.
	-
	-
	 

	Approximately 75 percent of emerging infectious diseases in people come from animals. Because of this, Wildlife Services (WS) and other APHIS programs support a collaborative One Health approach to addressing animal diseases and pathogens, including SARS-CoV-2. Working across multiple disciplines and levels, the One Health approach seeks to achieve optimal health for people, animals, plants, and the environment by recognizing and considering the many interconnections among them. 
	-
	-
	-

	Globally, hundreds of organizations are furthering the One Health approach through initiatives, policies, programs, and platforms. In the United States, Congress has appropriated millions of dollars to APHIS to lead efforts to combat the threat of zoonotic diseases and advance emergency preparedness. 
	I’m proud to share that WS employees, including National Wildlife Research Center (NWRC) researchers, biologists, and technicians, have risen to the challenge. They are providing scientific expertise in a variety of disciplines, such as wildlife disease, genetics, modeling, and animal behavior and ecology, to help guide wildlife disease surveillance and monitoring efforts, disease diagnostics, and agency responses to disease outbreaks. In this year’s report, you’ll learn how NWRC researchers are partnering 
	-
	-
	-

	Unfortunately, SARS-CoV-2 is not the only infectious pathogen causing animal and human health concerns. NWRC’s expertise is also helping with efforts to mitigate the impacts of chronic wasting disease on deer and elk, African swine fever on domestic and feral swine, and rabies on terrestrial wildlife, such as raccoons, foxes, skunks, and mongooses. Working together with our Federal, State, and Tribal partners, WS and other APHIS programs are increasing and enhancing the Nation’s ability to prevent, detect, 
	-

	It is with pleasure that I present to you the 2021 research accomplishments for NWRC. 
	Jason SuckowDirector National Wildlife Research CenterWildlife Services, APHIS-USDAFort Collins, CO
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	The health of animals, people, and the environment is connected. The One Health approach is a collaborative effort of the human health, veterinary health, and environmental health communities. Through this collaboration, APHIS achieves optimal health outcomes for both animals and people. 
	The health of animals, people, and the environment is connected. The One Health approach is a collaborative effort of the human health, veterinary health, and environmental health communities. Through this collaboration, APHIS achieves optimal health outcomes for both animals and people. 
	 
	Source: Wikipedia 


	The National Wildlife Research Center (NWRC) is part of Wildlife Services (WS), a program within the U.S. Department of Agriculture’s (USDA) Animal and Plant Health Inspection Service (APHIS). Our researchers are dedicated to finding biologically sound, practical, and effective solutions for resolving wildlife damage management issues. The following spotlights feature some of WS NWRC’s expertise and our holistic approach to addressing today’s wildlife-related challenges.
	The National Wildlife Research Center (NWRC) is part of Wildlife Services (WS), a program within the U.S. Department of Agriculture’s (USDA) Animal and Plant Health Inspection Service (APHIS). Our researchers are dedicated to finding biologically sound, practical, and effective solutions for resolving wildlife damage management issues. The following spotlights feature some of WS NWRC’s expertise and our holistic approach to addressing today’s wildlife-related challenges.
	SPOTLIGHT: SARS-CoV-2 Research in Wildlife 
	On March 11, 2021, President Biden signed into law the American Rescue Plan (ARP) Act, also known as one of the COVID-19 stimulus bills. The ARP is a multifaceted, $1.9 trillion plan created to mount a national vaccination program, identify and address emerging strains of COVID-19, and safely reopen schools, among other activities. Under the umbrella of USDA activities funded in the legislation, the Secretary of Agriculture designated APHIS as the lead agency to develop a plan to conduct monitoring and surv
	WS, along with other APHIS programs, is leading efforts to develop and carry out a robust early warning surveillance system to alert public health partners of potential disease concerns in animals and potentially prevent or limit the impacts of SARS-CoV-2 and future zoonotic disease outbreaks in people and animals. The system leverages and expands upon WS and APHIS’ Veterinary Services disease monitoring and surveillance capabilities and expertise.
	The following sections highlight WS surveillance and research related to SARS-CoV-2 in wildlife.
	-
	 

	Initial SARS-CoV-2 Surveillance
	In fall 2020, before Congress passed the ARP, outbreaks of SARS-CoV-2 were confirmed on mink farms in Utah, Michigan, Wisconsin, and Oregon. WS National Wildlife Disease Program (NWDP) wildlife biologists and NWRC researchers conducted wildlife surveillance for the virus in small to medium-sized carnivores and other species around the infected farms. 
	Per One Health principles, which highlight the interconnections among people, animals, and the environment, we conducted this surveillance as part of investigations involving the Centers for Disease Control and Prevention (CDC); the U.S. Geological Survey; and State departments of agriculture, natural resources, and health. APHIS supports a One Health approach to addressing animal diseases and pathogens, including SARS-CoV-2.
	More than 200 wild and invasive free-ranging animals found near infected mink farms—including raccoons, minks, skunks, opossums, rodents, and feral cats—were captured, sampled, and tested for SARS-CoV-2 at APHIS’ National Veterinary Services Laboratories (NVSL) in Ames, IA. Presumed escaped minks were closely associated with nearby barns and designated as domestic escapees based on their location, behavior, genetics, and appearance. Researchers identified wild minks by their brown coat color and size (small
	-
	 

	Surveillance results showed that 11 mink escapees in Utah and 1 in Oregon tested positive for antibodies to SARS-CoV-2. Further testing showed several of the mink not only had SARS-CoV-2 antibodies but also were positive for the SARS-CoV-2 virus. One wild mink from Utah also tested positive for the virus. No other sampled species had a detectable antibody response or tested positive. While it is thought that infected farm workers introduced the virus to the farmed minks, it is unknown how the virus was tran
	 
	-

	APHIS is working closely with Federal, State and industry partners to develop a SARS-CoV-2 infection avoidance and monitoring program for mink farms. The voluntary program will offer incentives, guidance, and support to mink farmers dealing with the virus and may be adapted for other species and industries affected by it or other zoonotic pathogens. 
	White-Tailed Deer Exposure to SARS-CoV-2
	Close to 300 million white-tailed deer live in the United States. They are found in every State except Alaska and enjoyed by many wildlife watchers, recreationalists, and hunters. Studies conducted in 2020 and early 2021 showed that white-tailed deer have protein (ACE-2) receptors capable of binding to SARS-CoV-2, allowing the virus to enter susceptible cells, and that captive deer experimentally exposed to the virus are susceptible to infection. Given these findings and the fact that white-tailed deer ofte
	“Widespread human infections with SARS-CoV-2 combined with human-wildlife interactions create the potential for spillover between people and animals,” says NWRC’s assistant director, Dr. Tom DeLiberto. “Studying the susceptibility of certain mammals to SARS-CoV-2 helps to identify species that may serve as reservoirs or hosts for the virus, as well as understand the origin of the virus and predict its impacts on wildlife and the risks of cross-species transmission.”
	We obtained serum samples from wild, free-ranging white-tailed deer opportunistically as part of wildlife damage management activities WS conducted in 32 counties in Illinois, Michigan, New York, and Pennsylvania from January 2020 to 2021. These samples were tested at NWRC and NVSL. Antibodies to SARS-CoV-2 were detected in 33 percent of the 481 samples collected. The results varied by State (in Illinois, 7 percent of 101 samples contained antibodies; in Michigan, 67 percent of 113 samples; in New York, 19 
	-

	Additionally, in late 2021, NVSL confirmed SARS-CoV-2 infection in wild white-tailed deer in Ohio, based on samples collected between January and March 2021 by The Ohio State University College of Veterinary Medicine as part of ongoing deer damage management activities.
	The finding that wild white-tailed deer were exposed to and infected with SARS-CoV-2 was not unexpected given that white-tailed deer are susceptible to the virus, are abundant in the United States, often have close contact with people—and that more than 114 million Americans were estimated to have been infected with the SARS-CoV-2 virus by the summer of 2021, according to the CDC.   
	Further research is needed to understand the significance of SARS-CoV-2 in free-ranging white-tailed deer, including how the deer are exposed to the virus and potential impacts, if any, to overall deer populations, other wildlife, and people. APHIS is working closely with Federal and State partners, including the U.S. Department of the Interior, the CDC, and the Association of Fish & Wildlife Agencies, to determine next steps.
	Investigating SARS-CoV-2 in Other Wildlife
	Although wild animals were likely the origin of SARS-CoV-2, it is largely unknown how the virus affects most wildlife species and if wildlife could serve as a reservoir for maintaining the virus outside the human population. 
	Through a series of experimental infection studies, Colorado State University, NWRC, and University of Queensland researchers evaluated the susceptibility of nine wildlife species to SARS-CoV-2. Results of captive animal studies showed that several species that frequently come into close contact with humans and human dwellings, including deer mice, bushy-tailed woodrats, and striped skunks, are susceptible to infection and can shed the virus in respiratory secretions. In contrast, cottontail rabbits, fox sq
	Wildlife Disease Dynamics: NWRC’s Newest Research Project
	The SARS-CoV-2 virus, highly pathogenic avian influenza, and rabbit hemorrhagic disease are just a few of the emerging infectious pathogens and diseases making headlines these days. WS’ NWDP and NWRC have been at the forefront of the Nation’s efforts to monitor and understand the impacts of these pathogens on wildlife. 
	-
	 

	Since NWDP’s inception in 2003, NWRC has supported the program through cutting-edge disease research. In recognition of that strong partnership, NWRC formed a new research project in 2020 titled “Wildlife Disease Dynamics, Epidemiology, and Response,” led by research biologist and wildlife epidemiologist Dr. Susan Shriner. 
	-

	“Our project supports NWDP, identifies and characterizes wildlife pathogens at the wildlife-agricultural interface, and develops tools for the identification and mitigation of disease risks to agricultural, public, and wildlife health,” says Shriner. “We work hand in hand with the program’s wildlife disease biologists to help address emerging wildlife disease issues.”
	Over the next 5 years, Shriner anticipates the project will focus on understanding the dynamics of wildlife pathogens such as avian influenza virus and SARS-CoV-2, as well as evaluate current wildlife disease surveillance methods and conduct outbreak investigations. Her team will also assess North American wildlife and livestock’s ability to serve as hosts for emerging agricultural and zoonotic pathogens, including SARS-CoV-2. 
	-

	Next Steps—With the passage of the 2021 ARP and efforts to strengthen our Nation’s ability to quickly detect and respond to emerging and zoonotic diseases in animals, NWRC will continue to provide leadership and expertise on wildlife diseases through several of its research projects. Next steps will likely include broader SARS-CoV-2 surveillance in wildlife such as deer, red fox, and other common species, as well as more in-depth studies to better understand the significance of the virus in free-ranging wil
	Spotlight: WS Wildlife Tissue and Serum Archives 
	WS’ National Wildlife Disease Program (NWDP) participates in wildlife disease monitoring and surveillance in all regions of the United States. The program’s wildlife disease biologists are trained in epidemiology, wildlife health, animal handling, surveillance, and sampling techniques. They collect thousands of tissue, serum, hair, and other samples annually from numerous wildlife species, including rodents, waterfowl, feral swine, deer, coyotes, raccoons, and other species. Such samples have great historic
	-

	NWDP established the WS Wildlife Tissue and Serum Archives in 2005. The initial contents included samples from avian influenza surveillance in wild birds, feral swine disease surveillance, and plague and tularemia monitoring. The archives have since expanded to include samples for diseases such as swine tuberculosis, pseudorabies, West Nile virus, leptospirosis, and others. The collection is unique in its quantity of samples, the diversity and broad geographic range of the species sampled, and the breadth o
	The following sections highlight how NWDP’s archived samples have been used in NWRC’s wildlife research.
	Age and Environmental Factors Drive Avian Influenza 
	A challenge for many wildlife managers and disease ecologists is knowing the relative importance of wildlife population and environmental factors, and how they influence the spread of pathogens at local, regional, and continental levels. 
	NWRC, APHIS’ Veterinary Services, and university scientists combined data on low pathogenic avian influenza virus (AIV) from wild waterfowl samples in the WS Wildlife Tissue and Serum Archives with waterfowl banding and recovery data to identify the factors most likely to influence AIV’s spread in the United States. 
	Researchers studied: (1) demographics (age, sex); (2) environmental reservoirs (water temperature and local aggregation of birds); (3) hot spots (areas of high AIV prevalence); and (4) contact networks (flow and clusters of birds connected by similar migration patterns). These factors form the basis for five hypothetical systems used to explain the distribution of AIV over space and time.
	-

	Researchers tested the five hypotheses using statistical models and found that bird age and environment reservoirs were the two primary factors influencing continental-scale AIV infection in migratory waterfowl. Water temperatures, plus the seasonal movement and aggregation of young that had never been exposed to AIV, drove the spread of the virus. Researchers recommended that AIV surveillance and monitoring efforts focus on assessing local densities of younger birds and water temperatures instead of tracki
	“Having access to avian influenza surveillance data from across the country and across multiple years allowed us to successfully model the movement of the virus on the landscape,” says NWRC project leader Dr. Alan Franklin. “The WS Wildlife Tissue and Serum Archives make this type of research and analysis possible.” 
	-

	SARS-CoV-2 in Deer
	Much is still being learned about SARS-CoV-2 (the virus that causes COVID-19 in people), but scientists know it can spread from people to animals in some situations, especially during close contact. Studying the susceptibility of certain mammals to this virus helps to identify species that may serve as reservoirs or hosts. It also helps us understand the origin of the virus and predict its impacts on wildlife and the risks of cross-species transmission.
	The spotlight “SARS-CoV-2 Research in Wildlife” discusses recent surveillance for the virus in white-tailed deer. In addition to opportunistically collecting and analyzing samples from deer during WS wildlife damage management activities in 2020 and 2021, NWRC researchers evaluated 143 archived deer serum samples from the WS Wildlife Tissue and Serum Archives. The samples were collected in Illinois, Michigan, New York, and Pennsylvania from 2011 to 2020, before SARS-CoV-2 was detected in the United States. 
	-
	-

	The archived samples were screened using a commercially available SARS-CoV-2 antibody screening test known to be highly accurate when used for other species. However, it had not yet been validated for deer. To help allay concerns that the commercial test may have detected antibodies to another virus (a phenomenon known as cross-reacting), a subset of samples was tested at NVSL using a different test specific to SARS-CoV-2. Both analyses resulted in identical findings. Researchers detected SARS-CoV-2 antibod
	“When you graph the data, it’s clear that deer started to become exposed to the SARS-CoV-2 virus after the virus became prevalent in people in the spring of 2020,” says NWRC’s assistant director, Dr. Tom DeLiberto. “However, it’s important to note that we still do not know if the deer were exposed through people, the environment, or other wildlife. Having the WS Tissue and Serum Archives was invaluable in this retrospective study and helped us determine when deer in the United States were first exposed.”
	Mining Genetic Information From Feral Swine Archive
	In 2015, NWRC’s Wildlife Genetics Project started to archive feral swine genetic samples. These samples have been opportunistically collected by WS field specialists and wildlife disease biologists in 39 States, Guam, and Puerto Rico while conducting feral swine damage and disease management activities. To date, WS personnel have collected nearly 27,000 feral swine genetic samples. Additional samples from feral swine in Canada and Mexico have been acquired through collaboration. 
	The archived samples provide NWRC geneticists with enough DNA to genotype or “genetically fingerprint” individual feral swine, allowing scientists to identify and distinguish among current feral swine populations as well as determine their origins.
	Using archived samples, NWRC genetic analyses show that feral swine are overwhelmingly wild boar and domestic pig hybrids, which may have greater potential than domestic pigs to establish and become invasive. NWRC geneticists are leveraging the archival genomic resources to identify genes that likely contribute to a hybrid pig’s heightened invasiveness. 
	-

	NWRC geneticists have also used archived samples to develop a statistical test to differentiate the unique genetic attributes of feral swine from domestic breeds. Such a test helps States such as Missouri, Michigan, and Minnesota enforce local prohibitions on the possession or transport of feral swine. It also serves to deter the establishment of captive herds, which can lead to invasive populations should animals escape or be released. 
	“The genetic insights we’re gathering from these archived feral swine samples help us determine the effectiveness of current management efforts, as well as how feral swine may be spreading across the country,” says NWRC geneticist Dr. Tim Smyser. “Is a population the result of a failed eradication attempt or the illegal movement of feral swine by people? Did feral swine that were detected in Great Lakes States originate in Texas or Canada? The answers may help guide future management actions, policies, or r
	-
	-

	Another line of NWRC research combines high-resolution genetic analysis with serological disease diagnostics. Specifically, researchers are evaluating whether genetic attributes influence feral swine susceptibility or resistance to infection from diseases, such as pseudorabies and brucellosis. If such genetic underpinnings exist, researchers plan to develop predictive models that use feral swine genetics data to determine potential disease risks across the country. 
	-
	 

	Next Steps—NWRC geneticists are working to incorporate feral swine-specific genetic markers into environmental DNA assays so that researchers and natural resource managers can identify the source of swine DNA found in water samples. Additionally, geneticists are examining the genomes of pigs in Africa that are susceptible and resistant to African swine fever. The information will be used to help determine the susceptibility of U.S. feral swine to the virus. 
	Spotlight: Wildlife Forensics 
	The field of wildlife forensics uses science-based processes and techniques to examine, identify, and compare evidence found at sites associated with wildlife incidents. While traditionally used to solve crimes against wildlife, such as poaching or illegal selling of animals or animal products, wildlife forensics also aids in wildlife damage management. DNA samples from saliva, hair, or blood on clothing and other items from people involved in wildlife attacks or from animal carcasses at predation sites can
	-

	NWRC’s Wildlife Genetics Project uses wildlife forensics to address wildlife damage management issues. The summaries below highlight NWRC’s recent wildlife forensics efforts.
	-

	Investigating Animal Attacks on People
	As urban wildlife and feral animal populations increase, so do associated conflicts. Often, agencies that end up handling these issues do not have access to useful wildlife damage management tools, such as forensic analysis. Attacks on people by coyotes and packs of feral dogs can challenge the resources and preparedness of these agencies. 
	On February 28, 2020, the Kentucky Department of Fish and Wildlife Resources requested NWRC’s assistance in a forensic evaluation of a suspected wild animal attack that resulted in the death of a 13-year-old child. Researchers from NWRC’s Wildlife Genetics Project swabbed numerous bite marks and collected hairs from the child’s shoes, T-shirt, and jacket. Additional samples were taken by authorities from the child. The child lived with a dog, so the Kentucky State police collected oral swabs from the pet. T
	“We identified three individual dogs’ DNA associated with the bite marks,” says Dr. Toni Piaggio, a geneticist and project leader of the Wildlife Genetics Project. “Of the samples collected from nine feral dogs in the area where the incident occurred, three matched samples obtained from the bite marks on the child, his T-shirt, jacket, and shoes.”
	-

	The feral dogs were captured and euthanized. This was the second human fatality in a rural area due to a feral dog pack attack (the first was in Florida in 2019). Feral dogs may be an emerging issue in wildlife damage management because they impact native wildlife and are considered one of the biggest threats to biodiversity worldwide.
	-

	In Chicago that same year (2020), a young boy was purportedly attacked by a coyote in a city park. Again, experts with the Wildlife Genetics Project were asked to determine the species involved and to compare DNA collected from the child’s clothing to that of a coyote that had been captured in the area. Laboratory results showed the DNA from the child’s clothing and wounds matched that of the coyote being held. 
	After the incident, NWRC and WS Illinois Operations helped Chicago Animal Care and Control develop a coyote attack preparedness plan and DNA sampling protocol for any future attacks. The plan has been requested by other entities in Illinois and elsewhere. 
	Protecting Endangered Species From Predators
	Millions of dollars are spent each year in the United States to boost endangered and threatened species populations and their habitats. In some situations, local populations of these species are vulnerable to extinction due to predation by native and invasive wildlife.
	-

	Predation on ground-nesting birds and their eggs is a major concern for conservationists and wildlife managers. Accurately identifying the predatory species responsible is key to effective management. For instance, the greater sage-grouse (Centrocercus urophasianus) is a ground-nesting bird at risk of extinction in multiple U.S. States and Canada. Predation on sage-grouse nests is rarely seen, and it is difficult to identify the responsible predator species from nest remains. 
	-

	To help identify common mammalian predators, NWRC geneticists analyzed predator saliva DNA on sage-grouse eggshells and bird carcasses in Wyoming. Researchers monitored sage-grouse nests and hens using infrared trail cameras and radio telemetry. They also sampled for DNA on egg remains and/or hen carcasses when a nest failed or a hen was eaten. 
	-

	For 79 percent of the nests and 47 percent of the carcass samples, researchers identified the mammalian predator species using DNA. Eighty-six percent of the detected mammal predators were canids, including coyotes and dogs. Other predators included rodents, striped skunks, and cattle. 
	NWRC researchers acknowledge that identifying nest and hen predators is challenging given the lack of species-specific signs at nests and the difficulty in differentiating predators from scavengers using DNA evidence. The results suggest that the best approach to reducing nest and hen predation is to use multiple techniques, including field surveys, camera monitoring of depredation events, and DNA forensics-based methods. 
	-

	In similar efforts, NWRC geneticists assisted U.S. Army Reserve biologists at Camp Ripley in Minnesota with identifying predators responsible for attacking endangered Blanding’s turtle (Emydoidea blandingii) nests and hatchlings. DNA samples taken from five hatchling carcasses collected in 2021 identified several predators, including crows, chipmunks, and mice. The findings gave the biologists valuable information that helped them implement management strategies to reduce predation by these species.
	-

	Collecting DNA From Livestock Carcasses
	WS aids landowners, State and Federal agencies, and others who request help with wildlife damage management issues, including livestock depredation by animals such as coyotes, wolves, mountain lions, and bears. Often, WS field specialists can determine the predator species responsible by looking at bite marks and other patterns on a carcass. But sometimes, the clues left at the scene are not enough, and more high-tech methods are needed. Knowing which species is responsible ensures that immediate and future
	-
	-

	WS is investigating new uses for noninvasive DNA sampling (for instance, collection of hair, scat, and saliva) in predation damage management. Salivary DNA samples can identify the predator species and individual animal responsible for killing livestock. However, studies show that samples with low DNA quality and quantity can create challenges. 
	-
	-

	To improve salivary DNA sample collection techniques, NWRC geneticists collaborated with NWRC’s Utah Field Station and the nonprofit Wildlife Science Center in Minnesota to investigate differences in coyote, wolf, and mountain lion salivary DNA deposits and degradation on cattle and sheep carcasses. 
	“We found that wolf DNA was the most abundant and easily collected of the three species sampled,” says Piaggio. “For best results, the DNA should be collected within the first 12 hours of deposit; otherwise, it degrades, and our chances of identifying the animal’s genetic signature is reduced. This can be overcome, however, by taking more samples.”
	-

	Better results are also achieved when the parts of a carcass hide with saliva deposits are swabbed for DNA in the laboratory and not in the field. NWRC recommends that field specialists working on depredation incidents remove and ship sections of carcass hides to the NWRC genetics lab for DNA collection and analysis.
	These findings resulted in new protocols for collecting DNA samples from depredated carcasses. To view the protocols for field collection of hides from depredated carcasses, see Appendix 1 in Piaggio et al. 2019, , published in the Journal of Mammalogy.
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	Next Steps—NWRC’s Wildlife Genetics Project continues to provide technical expertise and services to new stakeholders, including urban wildlife managers, local municipalities, and police departments. Researchers are also assisting WS Operations with shorebird depredation investigations and management. Future work includes a collaboration with NWRC’s Utah Field Station and Utah State University to evaluate whether prey DNA can be detected by swabbing the oral cavities of coyotes that recently fed on depredat
	-


	Figure
	WS surveillance in wildlife around SARS-CoV-2-infected mink farms led to the discovery of an infected wild mink. This was the first free-ranging native wild animal confirmed with SARS-CoV-2 in the United States.
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	Figure
	WS surveillance for SARS-CoV-2 in wild, free-ranging white-tailed deer showed deer were exposed to the virus in 2020. Further research is needed to understand how the deer were exposed to the virus and potential impacts, if any, to overall deer populations, other wildlife, and people. 
	WS surveillance for SARS-CoV-2 in wild, free-ranging white-tailed deer showed deer were exposed to the virus in 2020. Further research is needed to understand how the deer were exposed to the virus and potential impacts, if any, to overall deer populations, other wildlife, and people. 
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	Figure
	In studies with experimentally infected captive animals, results showed that deer mice, bushy-tailed woodrats, and striped skunks (pictured) are susceptible to SARS-CoV-2 infection and can shed the virus in respiratory secretions.
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	The WS Wildlife Tissue and Serum Archives are an important source of specimens for wildlife disease, genetics, and population studies.
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	Figure
	Five hypothetical systems driving the spread of avian influenza virus: (1) demography hypothesis, (2) environmental reservoir hypothesis, (3) hot-spots hypothesis, (4) contact network hypothesis, and (5) multiple mechanism hypothesis. 
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	Figure
	Graph showing positive (red) and negative (blue) tests results by year for SARS-CoV-2 antibodies in deer serum samples. Note that positive samples were not detected until 2020. One sample in 2019 was at the minimum threshold of detection and was determined to be a false positive. 
	Graph showing positive (red) and negative (blue) tests results by year for SARS-CoV-2 antibodies in deer serum samples. Note that positive samples were not detected until 2020. One sample in 2019 was at the minimum threshold of detection and was determined to be a false positive. 
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	Figure
	Feral swine hair samples are collected opportunistically as part of WS’ operational efforts to control feral swine damage. Hair is plucked from the back of the animal and used in genetic studies to help determine the origins of specific feral swine populations.  
	Feral swine hair samples are collected opportunistically as part of WS’ operational efforts to control feral swine damage. Hair is plucked from the back of the animal and used in genetic studies to help determine the origins of specific feral swine populations.  
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	Wildlife forensics, which involves the use of genetic technologies, aids in wildlife damage management.
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	Figure
	Given their expertise, wildlife managers sometimes assist law enforcement and public health officials with responding to animal attacks on people. Wildlife forensics is an important tool for identifying the species and individual animal involved in such incidents.
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	Figure
	Local populations of endangered and threatened species can be vulnerable to extinction due to predation by native and invasive wildlife. To help identify common predators of greater sage-grouse, NWRC geneticists analyzed predator saliva DNA on sage-grouse eggshells and bird carcasses. 
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	Figure
	NWRC geneticists developed new protocols for collecting DNA samples from depredated livestock carcasses. Knowing which predator species is responsible ensures that management actions to prevent depredations are appropriate. 
	NWRC geneticists developed new protocols for collecting DNA samples from depredated livestock carcasses. Knowing which predator species is responsible ensures that management actions to prevent depredations are appropriate. 
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	2021 Accomplishments in Brief 
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	WS NWRC employs about 150 scientists, technicians, and support staff who are currently devoted to 16 research projects (see Appendix 1). Below are brief summaries of select findings and accomplishments from 2021 not already mentioned in this year’s report. 
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	-

	Devices 
	 Best Management Practices for Trapping. Traps and trapping are an important component of wildlife damage management, wildlife research, and conservation. The Association of Fish & Wildlife Agencies published more than 20 years’ worth of research on live-restraining traps used to capture mammals in a comprehensive monograph titled (Wildlife Monographs, volume 201, issue 1). WS Operations and research personnel, as well as experts from many other State and Federal agencies, were an integral part of the resea
	•
	-
	-
	Best Management Practices for 
	Best Management Practices for 
	Trapping Furbearers in the United States 


	 Key findings from the publication include the following: 
	• Selectivity was high for all trap types.
	• Most traps had high capture efficiency. 
	• Cage traps had the lowest average injury score. 
	• Added-, offset- and laminated-jaw foothold traps performed better than standard jaw models. 
	• Trap-related mortality or significant injury to furbearers and nontarget animals was rare.
	 

	 Though the data spans two decades, interest in evaluating trap designs and trapping techniques to improve animal welfare, capture efficiency, selectivity, practicality, and user safety remains high. To ensure these tools remain available, wildlife managers and others must address concerns and knowledge gaps through public outreach, trapper education, adaptive management, ecological research, and trap research and development. 
	Contact: Thomas DeLiberto
	 Improved Strategies for Handling Entire Feral Swine Sounders. As feral swine populations expand throughout North America, researchers are increasingly tasked with trapping and marking entire sounders (family groups) to monitor them and gather information for management purposes. Capture and marking procedures are challenging, dangerous for both researchers and animals, and time consuming. NWRC researchers developed an integrated pig-handling system to efficiently sort, weigh, chemically immobilize, and mar
	•
	-

	Contact: Michael Lavelle
	Pesticides
	 Repellents for Perching Birds.  NWRC researchers are investigating anthraquinone (AQ), a naturally occurring plant compound, for use in surface repellents to reduce fecal contamination from perching birds. European starlings, house sparrows, and pigeons often gather in groups, resulting in hazards to human health and safety, as well as monetary losses, due to the accumulation of their feces. The acidic nature of bird feces is corrosive to building materials and can cause unsafe walking surfaces. NWRC resea
	•

	 Results showed all three formulations reduced fecal accumulations beneath treated perches. Researchers recommend further testing of these repellent formulations under field conditions.  
	-

	Contact: Scott Werner
	 Crop Features Impact Repellent Applications and Effectiveness. Blackbirds cause significant damage to sunflower crops. Although their consumption of sunflower achenes (seeds) has been reduced by more than 80 percent in laboratory trials when the seeds are fully coated with an AQ-based repellent, researchers have been unable to replicate these results with intact sunflowers or in field trials. NWRC and North Dakota State University researchers evaluated the efficacy of an AQ-based repellent that is applied 
	•
	-

	 Researchers also tested the ability of ground rigs equipped with drop nozzles to deposit a repellent effectively in a field setting. Applications varied by tractor speed, tank pressure, spray action, nozzle type, tank mixture, and repellent application rates. Seeds and disk flowers were collected at application to determine repellent coverage and residues. Results showed that repellent coverage did not differ among treatments, that the amount of repellent residue on the seeds was considerably less than tha
	Contact: Page Klug
	 Repellent Seed Treatment To Prevent Feral Swine Damage to Corn.  Feral swine damage corn more than any other crop in the United States. Most of the damage occurs immediately after farmers plant seeds, when pigs root them up to eat. NWRC researchers evaluated the effectiveness of an AQ-based repellent to reduce feral swine consumption of unplanted seed corn in Alabama and Texas. Three AQ concentrations (0.5, 1.5, and 3 percent) were tested. Results showed that the 3-percent concentration had the greatest re
	•

	 Overall, the results show promise for developing an AQ-based repellent for seeds to reduce feral swine damage. Future studies will test the repellency of the 3-percent AQ concentration on seed corn planted underground.
	Contact: Scott Werner
	 Impacts of Sodium Nitrite on European Starlings. Sodium nitrite (SN) is an inorganic salt commonly used to cure meat. SN is the active ingredient in a toxic bait called HOGGONE, which is being evaluated in Australia and the United States for use with invasive feral swine. To better understand the impacts of SN on nontarget bird species, NWRC researchers investigated the toxicity of this chemical in European starlings. Findings showed that SN presented a moderate toxic hazard to European starlings. The expo
	•

	 Researchers note that SN has moderate potential to be developed as a toxicant for invasive European starlings, depending on its cost-effectiveness. Future studies with other North American songbird species are recommended to determine the nontarget risk of SN toxicity at bait sites and to limit the availability of SN bait to birds from the spillage that feeding feral swine cause. Researchers note nontarget risks can be minimized by following best practices for vertebrate pest baiting.
	-
	-
	 

	Contact: Scott Werner
	Other Chemical and Biological Methods
	 Determining Mosquito Blood Meal Hosts Using Genetics.  Sequencing the DNA of fresh blood meals in invertebrates, such as mosquitoes, allows researchers to detect and identify host species and pathogens. Multiple vector-borne pathogens that occur in Puerto Rico—including dengue, Zika, chikungunya, and West Nile viruses—pose a potential threat to people and animals. Identifying species that mosquitoes feed on helps present a snapshot of how urban wildlife may contribute to pathogen transmission and provides 
	•
	-

	 NWRC, Colorado State University, and University of Southern Mississippi researchers collected 604 blood-engorged mosquitoes from 240 traps placed throughout neighborhoods in the San Juan Metropolitan Area during 2018 and 2019. Two mosquito species were collected: the southern house mosquito (Culex quinquefasciatus) and the yellow fever mosquito (Aedes aegypti). By analyzing the DNA in the mosquitoes’ blood meals, researchers determined that the southern house mosquito fed on 17 bird species, 7 mammal speci
	-
	-

	 These findings provide a snapshot of the animal community in the San Juan Metropolitan Area, which potentially plays a role in the spread of mosquito-borne pathogens. 
	Contact: Toni Piaggio
	 Virus Isolation Using Chicken Eggs Can Skew Results. The growth and cultivation of viruses (also known as virus isolation) in model organism cells or tissues for research purposes is a common practice. Unlike bacteria which can be grown on agar (an artificial nutrient medium), viruses require a living host cell for replication. For instance, influenza A viruses are often grown in embryonated chicken eggs that are free of specific pathogens. Such growth in alternative host tissues and cells, however, basica
	•

	Contact: Toni Piaggio
	 Framework for Invasive Species Surveillance Using eDNA. Every year, invasive species cause billions of dollars in economic losses and other damages in the United States. A significant portion of invasive species management is dedicated to assessing the presence of these species, whether it is initial detection of alien species of concern, tracking their spread, or monitoring for survivors of eradication efforts. Advances in molecular technologies allow for detecting a species through its environmental DNA 
	•

	Contact: Toni Piaggio
	 Standardizing Assay Limits of Detection and Quantification for eDNA. eDNA studies often use quantitative real-time polymerase chain reaction (qPCR) to detect low levels of target species’ eDNA in water, soil, or air samples. NWRC researchers and partners proposed a standardized process and reporting method for calculating and interpreting eDNA assay limit of detection (LOD) and limit of quantification (LOQ) for single-species qPCR studies. Standardizing how LOD and LOQ are determined, interpreted, and repo
	•

	Contact: Toni Piaggio
	 Impacts of Surgical Sterilization on Coyote Behavior. Coyotes (Canis latrans) that feed on livestock often do so out of necessity, to provide adequate amounts of food for their pups. Surgical sterilization methods that preserve gonadal hormones, such as vasectomies, have successfully reduced livestock depredation by free-ranging coyotes without affecting behaviors such as territoriality and mate fidelity. To learn more about the impacts of sterilization on coyote behavior, NWRC and Tufts University researc
	•

	 The behavioral findings showed that sterilization treatments did not create intolerance between coyote pairs or break down pair bonds. Testosterone concentrations of neutered and vasectomized males differed significantly from those of intact males, indicating that the sterilization treatments were successful and that the different techniques impacted hormones differently. There were no differences in estradiol or progesterone levels among female treatment groups. No sterilized pairs produced pups, but the 
	-
	-

	Contact: Julie Young
	 
	 Combined GonaCon and Rabies Vaccination for Feral Cats. Overpopulation of free-roaming and feral cats is a global problem, negatively impacting animal health and welfare, human health, and wildlife resources. Among many other things, these cats can spread diseases—such as rabies, toxoplasmosis, and leptospirosis—to people and other animals. NWRC and Israeli researchers examined the safety and efficacy of GonaCon immunocontraceptive vaccine (GonaCon) used in combination with a rabies vaccine in 16 mature fe
	•
	 

	 Results showed that in the short term, the combined vaccinations were safe and effective in the treated cats. Over the study period, no negative health concerns were detected. There were no differences in serum rabies antibody titers among groups, and the cats kept a protective titer throughout the study. Anti-gonadotropin-releasing hormone antibodies were detected in all but one of the GonaCon-vaccinated cats. Although fertility tests were not conducted, an evaluation of vaginal cells and ovarian tissues 
	-

	Contact: Doug Eckery
	 Training Ferrets To Detect Avian Influenza. The spread of highly pathogenic avian influenza in commercial poultry and backyard flocks in the United States in 2015 resulted in more than $800 million in damage and control costs, as well as the lethal removal of nearly 50 million domestic birds. Fecal sampling of wild waterfowl and their habitats is an integral part of surveillance for the early detection of emerging avian influenza viruses (AIV) that pose a threat to human and poultry health. To aid in devel
	•
	-

	 Results show that ferrets can identify this signature odor and that it is specific for AIV infection. This odor identity is not compromised by days since infection, exposure dosage, individual duck identity, or husbandry methods. These findings suggest that using trained detector dogs could add a layer of surveillance screening to the current early detection system that would improve efficiency by decreasing the number of samples tested. 
	Contact: Susan Shriner
	Disease Diagnostics, Surveillance, Risk Assessment, and Management
	 Influenza A Virus Reassortment in Birds and Mammals. When influenza A viruses (IAV) infect the same host simultaneously, some of their genetic segments can mix—a process known as reassortment. This process is an important source of viral diversity and can lead to the spread of viruses to new host species. To investigate taxonomic differences in IAV reassortment, NWRC and Emory University researchers examined reassortment of two distinct avian IAVs within their natural host (mallards) and a mammal (guinea p
	•

	 Results revealed abundant reassortment in mallards, giving rise to highly diverse viral populations. In guinea pigs, reassortment rates were lower, with fewer unique genotypes and lower diversity. These findings indicate that mallards provide a more suitable host environment for avian IAV reassortment than mammals.
	-

	Contact: Susan Shriner 
	 Dispersal of Antimicrobial-Resistant Bacteria by Gulls. Disease experts suspect that gulls serve as reservoirs and disseminators of antimicrobial-resistant (AMR) bacteria, given the birds’ wide-ranging movements, use of human waste sites and agricultural production systems, and known propensity to carry pathogens. U.S. Geological Survey and NWRC researchers investigated the risk of long-distance dispersal of AMR bacteria (Escherichia coli) by landfill-foraging gulls in Alaska. Fecal material from glaucous-
	•
	-

	 Using a combination of phenotypic, genomic, and animal telemetry approaches, researchers determined that gulls likely acquire AMR bacteria from landfills. They may then disperse it across and between continents through their migratory movements. The frequency of AMR Escherichia coli detections in gulls was strongly correlated with the number of people in the local community. Satellite telemetry tracking of gulls inhabiting Alaska landfills showed that during the period they shed AMR bacteria, they migrated
	-
	-
	 

	Contact: Jeff Chandler
	 Responding to an African Swine Fever Detection in Feral Swine. African swine fever (ASF) is a deadly pig disease that can significantly impact swine producers, their communities, and the economy. There is no ASF treatment or vaccine available. The only tools to stop the spread of the disease are depopulation and movement bans. Because feral swine can carry and spread ASF, any response to an outbreak in the United States would include surveying and culling them. In collaboration with the National Feral Swin
	•
	-

	 The product of this modeling effort is an application that allows users to enter values for the various factors and receive an optimal culling radius for disease elimination. The application also shows the size of the culling area and the number of feral swine targeted for removal under different management conditions to aid in ASF preparedness and planning.
	 

	Contact: Kim Pepin
	 Contact Among Feral Swine: Implications for Disease Risk. Feral swine are an invasive, social species that can transmit devastating diseases such as ASF to domestic swine. Contact among individual animals plays a fundamental role in the spread of infectious disease, affecting the length and severity of an outbreak within a population. NWRC researchers and partners placed proximity loggers and GPS devices on 48 feral swine in Florida and South Carolina to determine the effects of social structure, spatial d
	•

	 Modeling results found that social group membership was the primary factor influencing contact rates among feral swine. In fact, contact rates among members of the same social groups (sounders) were 10 times higher than those among individuals in different sounders. Fewer contacts occurred among sounders whose home ranges were greater than 1.2 miles/2 kilometers (km) apart, while no contact occurred among sounders whose home ranges were greater than 2.5 miles/4 km apart. When contact and management data we
	-
	 

	 In a related study, NWRC researchers and partners from the University of Florida, Colorado State University, Archbold Biological Station-Buck Island Ranch, and APHIS’ Veterinary Services placed GPS collars on 20 feral swine and 11 cattle on a cow-calf ranch in Florida. Important microbes feral swine carry that pose a risk to cattle include pseudorabies virus, Mycobacterium tuberculosis, Brucella abortus (agent of brucellosis), and antimicrobial-resistant strains of Escherichia coli or Salmonella sp. bacter
	-
	 

	Contact: Kim Pepin
	 Modeling Rabies in Mongooses. Small Indian mongooses (Urva auropunctata) were introduced from Asia to several Caribbean islands during the 19th century to control rodent populations on sugar plantations. These opportunistic carnivores quickly became invasive in Caribbean ecosystems, where they cause substantial damage to native species. In Puerto Rico, Cuba, Grenada, and the Dominican Republic, mongooses are the primary reservoir for rabies virus. To help inform applied research for mongoose rabies managem
	•

	 The analysis revealed that transmission rates, infection mortality, and the location and size of initial outbreaks strongly influence rabies virus spread and persistence in mongoose populations. Other important mongoose population variables include habitat-specific densities and habitat influences on home range and dispersal. Researchers suggest using these results to design ecological studies and collect data to (1) improve models for spatial simulation of mongoose rabies dynamics and (2) control and guid
	-
	 

	Contact: Amy Gilbert
	 Evaluating ONRAB for Mongooses in Puerto Rico. Since their introduction in the 19th century, small Indian mongooses have become agricultural pests on Puerto Rico and a reservoir for rabies virus. As part of WS efforts to develop and refine tools for mongoose rabies control, NWRC researchers evaluated the rabies antibody responses of mongooses following the delivery of Ontario Rabies Vaccine (ONRAB) via Ultralite baits. These baits are used to control rabies in other wild carnivores, such as skunks, in Nort
	•

	 Ultralite baits containing ONRAB were presented to 18 captive mongooses; sham baits were given to 6. Thirteen of the 18 mongooses and all 6 that were given shams punctured and/or ate the baits. Researchers collected blood samples from the mongooses and analyzed them for rabies antibodies at 0, 14, and 30 days after vaccination. By day 30, rabies antibodies were detected in 85 percent of the mongooses that had punctured and/or eaten the baits. However, further refinement of the bait may be warranted, as som
	-
	-

	Contact: Are Berentsen
	 Evaluating ONRAB for Raccoons and Striped Skunks. Since the 1990s, oral rabies vaccination (ORV) has been used to halt the westward spread of the raccoon rabies virus variant from the eastern continental United States. To help expand available ORV products, NWRC researchers conducted experimental field trials in West Virginia of ONRAB for use with raccoons (Procyon lotor) and striped skunks (Mephitis mephitis). As a follow-up to the first year and U.S. experimental trials of ONRAB in rural West Virginia, t
	•
	2

	 The increase in bait density from 75/km to 300/km corresponded to an increase in average post-ORV RVNA prevalence for both raccoon and skunk populations. Raccoon population RVNA levels increased from 53 to 82 percent, and skunk population RVNA levels increased from 11 to 39 percent. Raccoon rabies virus was locally eliminated in the study area during the trial and up to 3 years post-trial. Researchers concluded that multiple years of ORV application may be needed to achieve and maintain RVNA seroprevalence
	2
	2

	Contact: Shylo Johnson
	 Rat Lungworm in Hawaii. Angiostrongylus cantonensis, or rat lungworm, is the most common cause of eosinophilic meningitis in people. This condition causes headaches, a stiff neck, tingling or pain in the skin, fever, nausea, and vomiting, and can be permanently debilitating or even lethal. People usually become infected with this parasite by ingesting its larvae in raw or insufficiently cooked snails, slugs, freshwater prawns, frogs, or fish. Infection may also occur by eating contaminated fresh produce, s
	•

	 Results showed the overall infection prevalence was 86 percent in snails and 64 percent in rats (77 percent in Polynesian rats and 48 percent in black rats). Infections varied with environmental and host-related factors. Body mass was a strong predictor of infection in all three species, with different patterns seen between sexes and species of rats. Infection prevalence and intensity for snails were high in May and February, but generally lower and more variable during the intervening months. Understandin
	Contact: Shane Siers
	Wildlife Damage Assessments
	 Using Weather Radar To Predict Bird Damage. Weather radar isn’t just for forecasting the weather. Next Generation Weather Radar (NEXRAD) is also used by researchers to track large flocks of blackbirds, which could help reduce bird damage to sunflower crops. Using weather surveillance radar data from 2012 to 2019, NWRC, University of Oklahoma, and University of Notre Dame researchers monitored one large blackbird roost near Bismarck, ND. 
	•
	-
	-

	 Results showed the blackbird numbers routinely peaked in mid- to late October—around the same time unharvested sunflower crops reach maturity. The estimated maximum number of blackbirds in the flock ranged from nearly 347,000 to more than a million per day. Researchers determined that if producers could harvest their sunflower 2 weeks earlier, they could save as much as $1,800 a year in damages from this single roost. Planting early, choosing early maturing sunflower varieties, and desiccating the crop cou
	-

	Contact: Page Klug
	 Feral Swine Impacts to Water Quality. Riparian habitats play a vital role in filtering pollutants and sediment from water, which improves water quality and ensures adequate nutrient cycling. Riparian areas also provide valuable habitat for plants and animals, surface water storage, resources for agriculture and livestock production, and recreational opportunities for people. However, the livestock and wildlife living in and near riparian areas can contaminate streams through direct contact or indirectly th
	•
	-

	 Results showed that watersheds with feral swine had elevated dissolved organic carbon and total nitrogen levels attributable to feral swine feces. Furthermore, watersheds with feral swine had Escherichia coli values that were 40 times higher than watersheds without feral swine. This study is the first to definitively link feral swine to the introduction of fecal material and waterborne pathogens in watersheds.
	Contact: Kurt VerCauteren
	 Using Federal Crop Insurance Data To Estimate Wildlife Damage. Wildlife damage to crops is a persistent and costly problem for many U.S. farmers that varies substantially across crops, regions, and years. Most existing estimates of crop damage have relied on field studies conducted by trained biologists or surveys distributed to farmers. However, NWRC researchers developed a new method of estimating wildlife damage that uses Federal crop insurance data. As a case study, researchers estimated damage for cor
	•
	-

	Contact: Stephanie Shwiff
	 Why Some Animals Thrive in Urban Areas. Some species, such as striped skunks, raccoons, and coyotes, thrive in urban areas. These adaptable species are considered “ecological generalists” that can readily modify their diets and habitat use—traits that allow them to live in challenging environments, including urban settings, where they may encounter novel, complex, and changing situations. To better understand these species’ adaptive behaviors, NWRC, university, and artificial intelligence researchers condu
	•

	 Raccoons in the study generally engaged with the device and successfully navigated the change. Although the sample size for skunks was limited, researchers found that they were willing to approach and engage with the device rather quickly. Nevertheless, skunks did not complete a high number of reversals: only one of three demonstrated learning. Despite efforts to habituate six coyotes and motivate them to interact with the device, only one did so. This study demonstrates that raccoons and skunks have the i
	Contact: Shylo Johnson
	 Black Vulture Conflict and Management in the United States. Black vulture (Coragyps atratus) populations are increasing and expanding their range in North America. This development, combined with the birds’ ability to adapt well to human landscapes, has contributed to increasing numbers of human-vulture conflicts. NWRC researchers collaborated with WS Operations biologists to summarize the status of and trends in black vulture conflicts, review available management strategies, identify knowledge gaps, and 
	•

	 Results showed vulture conflicts with livestock are on the rise, as well as vulture damage to private and public property and collisions between vultures and aircraft. Researchers have learned more about rancher perceptions of vulture predation on livestock, including estimates of economic damage and use of mitigation strategies. However, a basic understanding of the underlying mechanism driving the conflict and the evaluation of existing tools and methods to mitigate damage are limited. For damaged proper
	-
	-

	Contact: Bryan Kluever
	 Vulture Roosts. Turkey vultures (Cathartes aura) and black vultures often roost in groups of several hundred or more. Two factors that may influence where they choose to roost are air currents and distance to food sources. A roost near roads, for instance, may be an attractive option because it provides the thermal currents that emanate from paved surfaces as well as carrion from vehicle collisions. To assess the role of human-based and natural landscape features on roosting habitat selection, NWRC researc
	•
	-

	Contact: Bryan Kluever
	 Cost of Cormorant Damage to Catfish Farms. To reduce losses, catfish farmers in the southern United States often attempt to scare away fish-eating birds, such as double-crested cormorants (Phalacrocorax auratus), from their farms. Despite these efforts, cormorants continue to feed on farmed catfish. NWRC and university scientists conducted an economic analysis to determine the costs of bird damage management, based on survey responses from 88 percent of all farms in the Delta region of Mississippi and Arka
	•
	-

	 Catfish farmers spent on average $704/hectare (ha) (plus or minus $394/ha) to scare birds, making it one of the top five costs of raising catfish. The most expensive aspects of scaring birds were manpower (39 percent of all bird-scaring costs) and trucks used to scare birds (34 percent). The profitability of the catfish farms improved by 4–23 percent over 27 different production categories when the effects of bird predation were removed. In fact, all but one of the previously unprofitable farm production c
	Contact: Brian Dorr
	 Cost of Scaup Damage to Baitfish and Sportfish Farms. Although the lesser scaup (Aythya affinis) is not widely known to be a fish-eating bird, it will eat farmed fish. NWRC researchers estimated the cost of scaup damage to various species of baitfish and sportfish using data on the abundance, distribution, and dietary habits of scaup that visited Arkansas baitfish and sportfish farms during the winters of 2016–2017 and 2017–2018. Total annual costs to scare birds from baitfish and sportfish farms were $622
	•
	-

	 Researchers also used the data to analyze and model the distribution and abundance of scaup using baitfish and sportfish farm characteristics. Results showed that scaup appeared more frequently at larger golden shiner and fathead minnow ponds stocked at greater densities. Farm-level models suggested that farms further from major rivers and with an average pond size of approximately 20 acres/8 ha were most likely to attract scaup. Producers can apply these findings to implement bird harassment efforts at ti
	Contact: Brian Dorr
	 Food Habits of Wintering Cormorants in the Mississippi Delta. Double-crested cormorants impact U.S. commercial aquaculture and are considered the primary bird predator in catfish aquaculture facilities in the Mississippi Delta. The Delta covers 35,000 square miles and includes parts of Mississippi, Arkansas, and Louisiana. Recent changes in aquaculture practices, regulatory policies, and decreased overall acres in production prompted NWRC and university researchers to assess cormorant consumption of catfis
	•
	-

	 Stomach content analysis showed, on average, that catfish made up 33 percent of a cormorant’s overall diet, which is less than reported in previous studies. There was no difference between the amount of channel catfish (Ictalurus punctatus) versus hybrid catfish (I. punctatus x I. furcatus) eaten. Most catfish were eaten during the months of February and March. Analysis showed the best model for predicting catfish consumption was based on the amount of catfish aquaculture within 19 miles/30.6 km of a night
	-

	Contact: Brian Dorr
	 Estimating Wildlife Strike Costs at U.S. Airports. Costs associated with aircraft-wildlife collisions, or wildlife strikes, in the United States are widely acknowledged by the aviation community. Estimating the cost of wildlife strikes to civil aviation relies on strike- and cost-related information reported by aircraft operators and airport staff to the Federal Aviation Administration’s National Wildlife Strike Database (NWSD). The accuracy of these estimates, however, is undermined by the skewed nature o
	•
	-
	-

	Contact: Stephanie Shwiff
	Wildlife Management Methods and Evaluations
	 Use of Sonic Net To Disperse Blackbirds.  Blackbird damage to agricultural crops is common across the United States. NWRC and College of William and Mary researchers evaluated the use of a novel tool called a Sonic Net to deter mixed-species blackbird flocks from predating on maturing sunflower crops in North Dakota. The Sonic Net masks communication among birds by delivering “pink noise”—basically white noise (with reduced higher frequencies) that overlaps with the frequencies the birds use to communicate
	•

	 The Sonic Net treatments reduced damage to sunflowers by 27 percent, 64 percent, and 23 percent, respectively. Researchers predict that the effect of the Sonic Net treatment may be greater in other crop phases and types, such as in the establishment phase or ground cover crops. Both lack high vegetation, which can obstruct the Sonic Net’s sound. 
	Contact: Page Klug
	 Avoiding Nontargets While Baiting Feral Swine. Toxic baiting of invasive feral swine (Sus scrofa) is a potential new tool for population control and damage reduction in the United States. However, there are concerns that nontarget species, especially songbirds, may be exposed to these baits. NWRC researchers conducted an analysis of a 2018 baiting study to identify daily and landscape factors that may have influenced the use of bait sites by nontarget songbirds, ground birds, raccoons, and white-tailed dee
	•
	-

	Contact: Nathan Snow
	 Hunter Tolerance for Feral Swine. In the United States, recreational hunters play a unique role in both controlling and spreading invasive feral swine. Many States encourage hunting to help manage feral swine populations; others may want to maintain or establish feral swine populations for future hunting opportunities. NWRC and Texas A&M AgriLife Extension Service researchers surveyed 37,317 Texas resident and nonresident licensed hunters about their “tolerance” for feral swine—that is, their ability and w
	•

	• motivations and preferences for hunting feral swine
	• level of concern for feral swine damage
	• overall attitudes toward feral swine
	 The most important motivations for hunting feral swine were to obtain a trophy animal, followed by obtaining meat. Respondents’ overall concern about feral swine damage was high, with the greatest concern about damage to pastures. Their overall attitudes toward feral swine were largely negative. Researchers note, however, that this should not be interpreted to mean that most hunters support efforts to rid Texas of feral swine. This finding has significant implications for feral swine management in Texas, a
	Contact: Stephanie Shwiff
	 Evaluating the Effectiveness of Mountain Beaver Management. Mountain beavers (Aplodontia rufa) are burrowing rodents found in the humid, wet forests and steep mountain areas of the Pacific Northwest. Their clipping and browsing of new conifer seedlings reduce seedling growth or kills trees, which reduces stocking density and delays stand development. NWRC and Oregon State University researchers evaluated the effectiveness of trapping and toxicant baiting to reduce mountain beaver damage across two mountain
	•

	 Overall, mountain beavers damaged 76 percent and 46 percent of seedlings in untreated and treated plots, respectively. Seedling heights also differed after 1 year: seedlings in untreated plots were 4 inches/10.6 centimeters (cm) shorter on average than those in areas with trapping and baiting. The mean cost associated with preventing mountain beaver damage through trapping and baiting in the study was $62/acre ($154/ha)—less than the estimated mean cost of $74/acre ($182/ha) to replant seedlings in gaps wh
	Contact: Jimmy Taylor
	 Evolutionary Impacts of Human-Wildlife Conflict. Human-wildlife interactions, including conflicts, are increasingly common as growing urban and suburban areas create more opportunities for these encounters. Wildlife damage management techniques often aim to deter, relocate, or remove the animals causing the conflict, which may lead to selective pressures that shape animal population size, structure, and distribution. Moreover, the intensity of conflict management can vary considerably by species, public pe
	•

	Contact: Stewart Breck
	 Using Beavers as a Management Tool. Using beavers as natural engineers to increase damming is becoming a popular management strategy known as beaver-related restoration. Methods used include beaver translocations, mimicking beaver dams with human-made equivalents, and increasing woody food/construction material for beavers. Expected outcomes from increased beaver dams are highly variable but may include improving watershed conditions (the result of raising the water table in valley floors), improving fish 
	•
	-
	-
	-

	Contact: Jimmy Taylor
	 Factors Leading to Successful Island Rodent Eradications. Eradications of invasive rodents on islands eliminate their negative impacts on native plants and animals. However, these efforts have been less successful in the tropics than in temperate regions, triggering research and reviews. A team of international scientists, including a researcher with the NWRC Hawaii Field Station, evaluated 35 eradication attempts on 17 tropical islands. Researchers compared the project management of each attempt, as well 
	•
	-
	-

	 The findings on factors leading to eradication successes (for instance, expert-reviewed plans, realistic funding and permits, and high standard baiting operations) reflect current best practice recommendations. Researchers note that strict adherence to best practices can increase overall rates of eradication success.
	-

	Contact: Shane Siers
	 Hard Versus Soft Bait for Rodent Eradications. Rodenticide-based eradications can fail if rats do not eat enough bait. A recent review of a failed attempt to eradicate invasive Polynesian rats from Wake Atoll suggests that some rats may not have eaten a lethal dose of rodenticide due to dietary and/or sensory preferences developed from regular access to human food. Human food may be higher in fats and oils and be softer or chewier than the hard pellet formulation of the rodenticide Brodifacoum 25W Conserva
	•
	-

	 To test this theory, NWRC researchers captured rats from two areas on Wake Atoll: one where rats may have regular access to human food, and another uninhabited part of the island where rats presumably have less access and, therefore, are less likely to be preconditioned. The rats were fed both a “soft” sachet formulation of a brodifacoum-based bait (FINAL Soft Bait with Lumitrack) and the harder pellet formulation of B-25W. The rats overwhelmingly preferred the pellet formulation. No rats in the trial ate 
	Contact: Shane Siers
	Wildlife Population Monitoring Methods and Evaluations
	 Asian Longhorned Tick Surveillance.  Haemaphysalis longicornis, the Asian longhorned tick (ALHT), is native to eastern Asia but has become invasive in several countries, including Australia, New Zealand, and the Eastern United States. The medical and veterinary communities are concerned about the establishment of ALHT in the United States because of its potential as a livestock pest and vector for disease. WS research and operations personnel, in cooperation with other collaborators, conducted ALHT surveys
	•
	-
	-

	Contact: Sarah Bevins
	 Factors Influencing Pronghorn Fawn Survival. Pronghorns (Antilocapra americana) are an iconic symbol of U.S. deserts and plains and a valued game animal for hunters in many Western States. In Idaho, pronghorn populations have not rebounded from intensive hunting in the late 1980s. Because fawn survival impacts population growth, NWRC, Utah State University, and Idaho Department of Fish and Game researchers investigated factors affecting the survival rate of 217 radio-collared pronghorn fawns in Idaho. Data
	•
	-
	-

	Contact: Eric Gese
	 European Starling Use of Urban and Rural Landscapes. Since their intentional introduction into the United States in the 1800s, European starlings (Sturnus vulgaris) have become the fourth most common bird species in both urban and rural areas. Wildlife resource managers need better information about starling movement and habit-use patterns to effectively manage populations of these birds and the damage they cause. NWRC researchers compiled data from six radio-telemetry studies conducted between 2005 and 20
	•

	 Key findings indicated that urban roosts contained smaller numbers of birds (fewer than 30,000) than more rural roosts (more than 100,000). Birds from city-center roosts occasionally switched to the outlying major roosts. Human-related food sources (for instance, feedlots, shipping yards, and landfills) were their primary foraging sites. Birds traveling to roosts from primary foraging sites in rural landscapes would often pass over closer minor roosts to reach major roosts in stands of emergent vegetation 
	2
	-

	Contact: Page Klug
	 Genetic Variation in European Starlings. European starlings were introduced to New York in 1890 and subsequently became one of the most widespread and numerous bird species in North America. Genetic comparisons of starling individuals and populations can identify factors that helped facilitate this rapid and successful expansion. NWRC and Cornell University researchers investigated patterns of genomic diversity and differentiation using genome sequencing of 166 starlings from dairies and feedlots in 17 Sta
	•
	-
	-
	-

	Contact: Scott Werner
	 Feral Swine Movement Behavior and Resource Selection. Understanding how invasive species such as feral swine move through and use resources in the landscape provides insights into how their populations survive and expand. It also allows managers to predict the movements of animals in different landscapes and optimize damage management activities. NWRC and Savannah River Ecology Laboratory researchers used GPS data from 49 feral swine in the Southeastern United States and hidden Markov models to define move
	•
	-

	 Female feral swine were most active during twilight hours in the high-forage season and showed more variable movements in the low-forage season, while male feral swine exhibited nocturnal activity patterns in both seasons. The feral swine used bottomland hardwoods and dense canopy cover while resting, foraging, and traveling during both seasons. Males used shrub and grassy habitats, as well as bottomland hardwoods, while foraging in the low-forage season compared to the high-forage season and used roads, p
	-

	Contact: Kim Pepin   
	 Black Bear Impacts on Mountain Lion Feeding Behavior. Black bears (Ursus americanus) and mountain lions (Puma concolor) are both considered apex predators (species that have no natural predators). For more than 80 years, mountain lions have been the sole apex predators in the Great Basin of Nevada. However, black bears have recently recolonized the area and are known to scavenge on mountain lion kills. To evaluate the impacts of these bears on mountain lion foraging behavior in the Great Basin, NWRC resear
	•
	-
	-

	 Results showed that the duration of mountain lion feeding bouts was driven primarily by the size of the prey being eaten, local bear density, and the presence of dependent kittens. The proportion of mule deer in mountain lion diets across all study areas declined over time, was lower for male mountain lions, increased with the presence of dependent kittens, and increased with higher bear densities. In sites with feral horses (Equus ferus), a novel large prey, mountain lion consumption of these animals incr
	Contact: Julie Young
	Registration Updates
	 Broadening Acetaminophen Application Scenarios for Brown Treesnake Control.  In 2003, acetaminophen was registered as a pesticide by the U.S. Environmental Protection Agency (EPA) for use in brown treesnake control on Guam. The original approved usage was limited to inserting single 80 milligram (mg) tablets into dead newborn mice and hand-placing them in PVC pipe bait stations in and around forested areas and along fence lines. Over the years, the label has been amended to allow for (1) manual or automate
	•

	Contact: Emily Ruell
	 Feral Swine Toxicant Development Update. WS continues to make steady progress toward registering a toxic bait for feral swine called HOGGONE, which contains sodium nitrite (SN) as the active ingredient. The program has partnered with Australia’s Centre for Invasive Species Solutions and Animal Control Technologies Australia to have HOGGONE registered for operational use in that country. Meanwhile, NWRC is working through the EPA requirements for a U.S. registration. Although effective at reducing feral swi
	•
	-

	 The bait station has been modified to accept small, compacted trays that limit the ability of feral swine to spill the bait on the ground while feeding. HOGGONE (now renamed HOGGONE 2) has also been reformulated to reduce the risks to nontarget species by (1) increasing the microencapsulation coating around the SN, (2) decreasing the SN concentration by 50 percent to minimize the amount of SN deployed, and (3) using more finely milled grains to reduce the bait’s attractiveness to birds. The baiting strateg
	 Concurrently, NWRC continues working to complete the remaining registration data for the Section 3 registration application, including an additional winter-spring field trial in 2023, product chemistry, ecological effects, toxicology, and food residue data required after EPA designated HOGGONE a “food-use” pesticide in 2018. The reformulation of HOGGONE into HOGGONE 2 also necessitated repeating some of the product chemistry registration data developed for the original formulation. 
	-

	 WS anticipates submitting the full year-round Section 3 registration application to EPA in the fall of 2023. EPA has 25 months to evaluate the submitted registration data and food tolerance petitions. WS anticipates a final decision from the agency by late 2025 or early 2026. 
	Contact: Emily Ruell
	 GonaCon-Deer Pesticide Label Updated. In April 2021, the EPA approved a label amendment for the GonaCon-Deer registration. The label changes will help improve field use of GonaCon-Deer to manage white-tailed deer. Changes include:
	•
	-

	• allowing for “booster” doses to be administered by hand injection or remote darting. (The first vaccination of a female deer must still be administered by hand injection.)
	• clarifying language that requires the marking of vaccinated animals.
	• adding instructions for remote darting, including requiring that applicators retrieve darts whenever possible.
	 We expect use of remote darting to improve the feasibility and cost effectiveness of controlling deer populations with GonaCon-Deer. Hand injection of GonaCon-Deer is costly and time consuming; it also limits the percentage of a population that can receive booster vaccinations, thereby reducing the effectiveness of the product for population control. Also, hand injection requires capturing and immobilizing the animal, which can be a safety risk to animals and applicators. Allowing booster doses to be admin
	Contact: Emily Ruell
	Technology Transfer 
	 Patents, Licenses, and New Inventions. In fiscal year (FY) 2021, NWRC scientists were awarded one U.S. patent and eight foreign patents. In addition, NWRC scientists submitted four utility patent applications. See the following table for details on issued patents and patent applications. NWRC scientists also submitted three U.S. provisional patent applications and one invention disclosure to the NWRC Technology Transfer Office.
	•
	 

	Contact: John Eisemann 
	 Technology Transfer Agreements. WS partners with universities, private companies, and others to promote research and development for new products that help manage wildlife damage. WS formalizes these partnerships through a variety of intellectual property agreements. In FY 2021, NWRC entered into two Confidentiality Agreements, four Data Sharing Agreements, six Material Transfer Agreements, eight Material Transfer Research Agreements, and two Cooperative Research and Development Agreements. 
	•
	 

	Contact: John Eisemann
	Awards
	 2021 NWRC Publication Award. Each year, the NWRC Publication Awards Committee, composed of NWRC scientists, reviews over 125 publications generated by NWRC colleagues. The resulting peer-recognized award honors outstanding contributions to science and wildlife damage management. In 2021, the committee presented the award to Dr. Kurt VerCauteren for his work on the book Invasive Wild Pigs in North America: Ecology, Impacts, and Management (CRC Press, 479 pp). 
	•

	 This publication arose from a multidisciplinary collaboration between NWRC, the University of Georgia, Auburn University, Michigan State University, and Mississippi State University. VerCauteren and his co-editors assimilate and organize information on wild pigs (also known as feral swine)—the most destructive vertebrate species ever introduced into the United States. The book addresses all aspects of wild pig biology, ecology, damage, and management in a single, comprehensive volume that managers, researc
	-
	-
	 

	 NWRC Employee of the Year Awards. The winners of this award are nominated by their peers as employees who have clearly exceeded expectations in their contributions to the NWRC mission. The winners this  year are:
	•

	• Dr. Susan Shriner research grade scientistWildlife Disease Dynamics, Epidemiology, and Response ProjectFort Collins, CO
	 
	 
	 

	• Dr. Tim Smyser support scientist Wildlife Genetics ProjectFort Collins, CO
	 
	 
	 

	• Kathlyn Staufferbiological science technician Managing Ungulate Damage and Disease Project Fort Collins, CO
	 
	 
	 

	• Corey Perrilliouxfacility managerAdministration Unit Fort Collins, CO
	 
	 
	 

	 Presidential Migratory Bird Federal Stewardship Award. APHIS received the Presidential Migratory Stewardship Award in recognition of WS’ efforts to conserve large native migratory birds and protect the people of Hawaii. The Council for the Conservation of Migratory Birds, led by the U.S. Fish and Wildlife Service and composed of many Federal agencies with migratory bird responsibilities, chose the winner in  May 2021. 
	•

	 WS conducted a joint research-operational project to reduce human-wildlife conflicts associated with two culturally significant bird species: the Hawaiian goose, or , and the Laysan albatross, or . Since both species are large, they pose a potential aircraft strike risk near airfields in some areas of Hawaii. WS research and operations personnel collaborated with numerous partners not only to reduce the aircraft strike hazards these species present, but also to identify, preserve, enhance, and support impo
	nēnē
	mōlī


	Figure
	The Association of Fish & Wildlife Agencies published more than 20 years’ worth of research on live-restraining traps for mammals. Traps and trapping are an important component of wildlife damage management, research, and conservation.
	The Association of Fish & Wildlife Agencies published more than 20 years’ worth of research on live-restraining traps for mammals. Traps and trapping are an important component of wildlife damage management, research, and conservation.
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	Figure
	NWRC researchers developed an integrated pig-handling system to efficiently sort, weigh, chemically immobilize, and mark feral swine.
	NWRC researchers developed an integrated pig-handling system to efficiently sort, weigh, chemically immobilize, and mark feral swine.
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	Figure
	European starlings, house sparrows, and pigeons often gather in groups, causing property damage and human health and safety hazards due to the accumulation of their feces. NWRC researchers evaluated three surface-application repellent formulations to reduce bird damage. 
	European starlings, house sparrows, and pigeons often gather in groups, causing property damage and human health and safety hazards due to the accumulation of their feces. NWRC researchers evaluated three surface-application repellent formulations to reduce bird damage. 
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	Figure
	NWRC and North Dakota State University researchers evaluated the efficacy of an anthraquinone-based repellent applied directly to mature sunflower plants using a sprayer similar to that used by farmers to treat their crops.
	NWRC and North Dakota State University researchers evaluated the efficacy of an anthraquinone-based repellent applied directly to mature sunflower plants using a sprayer similar to that used by farmers to treat their crops.
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	Figure
	By analyzing the DNA in mosquito blood meals, researchers determined that the southern house mosquito (pictured) fed on a wide range of animal species in San Juan, Puerto Rico. The findings provide a snapshot of the animal community in San Juan, which could play a role in the spread of mosquito-borne pathogens.
	By analyzing the DNA in mosquito blood meals, researchers determined that the southern house mosquito (pictured) fed on a wide range of animal species in San Juan, Puerto Rico. The findings provide a snapshot of the animal community in San Juan, which could play a role in the spread of mosquito-borne pathogens.
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	Figure
	Advances in molecular technologies allow for species detection via environmental DNA (eDNA; that is, DNA shed by an organism into water, soil, or air). The genetic material could come from mucus, urine, feces, shed skin, hair, or scales.
	Advances in molecular technologies allow for species detection via environmental DNA (eDNA; that is, DNA shed by an organism into water, soil, or air). The genetic material could come from mucus, urine, feces, shed skin, hair, or scales.
	 
	 
	Photo: Adobe Stock


	Figure
	Coyotes that feed on livestock often do so out of necessity, to provide adequate amounts of food for their pups. Sterilization of select coyotes holds potential as a future management strategy to help reduce livestock depredation.
	Coyotes that feed on livestock often do so out of necessity, to provide adequate amounts of food for their pups. Sterilization of select coyotes holds potential as a future management strategy to help reduce livestock depredation.
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	Figure
	As a proof-of-concept study, NWRC, Colorado State University, and Monell Chemical Senses Center researchers trained domestic ferrets to discriminate between the feces of avian influenza-infected and noninfected mallards. Efforts are underway to similarly train detector dogs to help with early detection of the virus in the environment.
	As a proof-of-concept study, NWRC, Colorado State University, and Monell Chemical Senses Center researchers trained domestic ferrets to discriminate between the feces of avian influenza-infected and noninfected mallards. Efforts are underway to similarly train detector dogs to help with early detection of the virus in the environment.
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	Figure
	U.S. Geological Survey and NWRC scientists investigated the  risk of dispersal of antimicrobial-resistant bacteria (Escherichia coli) by landfill-foraging gulls in Alaska.
	U.S. Geological Survey and NWRC scientists investigated the  risk of dispersal of antimicrobial-resistant bacteria (Escherichia coli) by landfill-foraging gulls in Alaska.
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	Figure
	Contact among individual animals plays a fundamental role in the spread of infectious disease, affecting the length and severity of an outbreak within a population. NWRC researchers and partners investigated direct and indirect contact between feral swine and livestock.
	Contact among individual animals plays a fundamental role in the spread of infectious disease, affecting the length and severity of an outbreak within a population. NWRC researchers and partners investigated direct and indirect contact between feral swine and livestock.
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	Figure
	As part of WS’ efforts to develop and refine tools for mongoose rabies control, NWRC researchers evaluated the rabies antibody responses of mongooses after the delivery of Ontario Rabies Vaccine (ONRAB) via Ultralite baits. 
	As part of WS’ efforts to develop and refine tools for mongoose rabies control, NWRC researchers evaluated the rabies antibody responses of mongooses after the delivery of Ontario Rabies Vaccine (ONRAB) via Ultralite baits. 
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	Figure
	NWRC and Auburn University research found watersheds with feral swine had greater amounts of Escherichia coli than watersheds without feral swine. 
	NWRC and Auburn University research found watersheds with feral swine had greater amounts of Escherichia coli than watersheds without feral swine. 
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	Figure
	To better understand the mechanisms underlying a species’ adaptive behavior, NWRC, university, and artificial intelligence researchers designed and used an automated device in a series of trials with captive skunks, raccoons (pictured), and coyotes. The ability to modify and change behavior allows some species to live in challenging environments.   
	To better understand the mechanisms underlying a species’ adaptive behavior, NWRC, university, and artificial intelligence researchers designed and used an automated device in a series of trials with captive skunks, raccoons (pictured), and coyotes. The ability to modify and change behavior allows some species to live in challenging environments.   
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	Figure
	Tarps offered to visitors at Everglades National Park help prevent vulture damage to cars. Black vulture populations are increasing and expanding their range in North America. This, combined with the birds’ ability to adapt to human-dominated landscapes, has contributed to increased conflicts.  
	Tarps offered to visitors at Everglades National Park help prevent vulture damage to cars. Black vulture populations are increasing and expanding their range in North America. This, combined with the birds’ ability to adapt to human-dominated landscapes, has contributed to increased conflicts.  
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	Figure
	To assess the role of human-based and natural landscape features on roost selection, NWRC researchers and partners analyzed data from black and turkey vultures fitted with GPS satellite transmitters.  
	To assess the role of human-based and natural landscape features on roost selection, NWRC researchers and partners analyzed data from black and turkey vultures fitted with GPS satellite transmitters.  
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	Figure
	NWRC and university research findings about correlations between cormorant night roosts and catfish consumption help inform cormorant management decisions. 
	NWRC and university research findings about correlations between cormorant night roosts and catfish consumption help inform cormorant management decisions. 
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	Figure
	NWRC and College of William and Mary researchers evaluated the use of a novel tool called a Sonic Net (such as the one pictured here) to deter mixed-species blackbird flocks from maturing sunflower crops in North Dakota.
	NWRC and College of William and Mary researchers evaluated the use of a novel tool called a Sonic Net (such as the one pictured here) to deter mixed-species blackbird flocks from maturing sunflower crops in North Dakota.
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	Figure
	Toxic baiting is a potential new tool for feral swine population control and damage reduction in the United States. To avoid nontarget species, such as songbirds, from eating the bait, NWRC researchers evaluated the effectiveness of inflatable scare devices (pictured) placed near baiting stations.  
	Toxic baiting is a potential new tool for feral swine population control and damage reduction in the United States. To avoid nontarget species, such as songbirds, from eating the bait, NWRC researchers evaluated the effectiveness of inflatable scare devices (pictured) placed near baiting stations.  
	 
	Photo: USDA, Nathan Snow
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	More than 37,000 Texas resident and nonresident licensed hunters were surveyed about their tolerance for feral swine. 
	More than 37,000 Texas resident and nonresident licensed hunters were surveyed about their tolerance for feral swine. 
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	Figure
	An integrated, proactive approach that includes trapping and baiting may be the most efficient strategy for addressing mountain beaver damage to new conifer seedlings. 
	An integrated, proactive approach that includes trapping and baiting may be the most efficient strategy for addressing mountain beaver damage to new conifer seedlings. 
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	Figure
	Investigating human-wildlife conflict as an evolutionary phenomenon may offer insights into how conflict arises and how management plays a critical role in shaping urban wildlife characteristics. 
	Investigating human-wildlife conflict as an evolutionary phenomenon may offer insights into how conflict arises and how management plays a critical role in shaping urban wildlife characteristics. 
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	Figure
	Using beavers as natural engineers to increase damming is becoming a popular management strategy known as beaver-related restoration. A multidisciplinary team of researchers recently developed an assessment framework to help wildlife managers determine if beaver-related restoration is appropriate. 
	Using beavers as natural engineers to increase damming is becoming a popular management strategy known as beaver-related restoration. A multidisciplinary team of researchers recently developed an assessment framework to help wildlife managers determine if beaver-related restoration is appropriate. 
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	Figure
	NWRC, Utah State University, and Idaho Department of Fish and Game researchers determined that enhancing forage quality may aid in reestablishing pronghorn herds. 
	NWRC, Utah State University, and Idaho Department of Fish and Game researchers determined that enhancing forage quality may aid in reestablishing pronghorn herds. 
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	Figure
	European starling being fitted with a radio-telemetry harness. NWRC researchers compiled data from six radio-telemetry studies conducted between 2005 and 2010 to compare radio-tagged starling movements and habitat use in urban and rural habitats. 
	European starling being fitted with a radio-telemetry harness. NWRC researchers compiled data from six radio-telemetry studies conducted between 2005 and 2010 to compare radio-tagged starling movements and habitat use in urban and rural habitats. 
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	Figure
	Understanding how invasive species, such as feral swine, move through and use resources in the landscape gives insights into how their populations survive and expand. 
	Understanding how invasive species, such as feral swine, move through and use resources in the landscape gives insights into how their populations survive and expand. 
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	Figure
	NWRC researchers and partners in Utah and Nevada found that higher black bear densities reduced mountain lion feeding bout durations and influenced their prey selection. 
	NWRC researchers and partners in Utah and Nevada found that higher black bear densities reduced mountain lion feeding bout durations and influenced their prey selection. 
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	Figure
	Some invasive brown treesnakes in Guam weigh up to 2,000 grams. NWRC research indicates that these larger snakes require higher doses of registered acetaminophen to ensure mortality. In 2020, the EPA label was amended to allow multiple acetaminophen tablets to be applied per bait when targeting unusually large brown treesnakes. 
	Some invasive brown treesnakes in Guam weigh up to 2,000 grams. NWRC research indicates that these larger snakes require higher doses of registered acetaminophen to ensure mortality. In 2020, the EPA label was amended to allow multiple acetaminophen tablets to be applied per bait when targeting unusually large brown treesnakes. 
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	Figure
	The EPA label for GonaCon-Deer has been amended to allow remote darting for booster vaccinations.  
	The EPA label for GonaCon-Deer has been amended to allow remote darting for booster vaccinations.  
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	Figure
	APHIS received the 2021 Presidential Migratory Stewardship Award in recognition of WS’ efforts to conserve large native migratory birds and protect people in Hawaii. 
	APHIS received the 2021 Presidential Migratory Stewardship Award in recognition of WS’ efforts to conserve large native migratory birds and protect people in Hawaii. 
	 
	Photo: USDA, Wildlife Services
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	The transfer of scientific information is an important part of the research process. NWRC scientists and other WS experts publish in a variety of peer-reviewed journals that cover a wide range of disciplines, including wildlife management, genetics, analytical chemistry, ornithology, and ecology. (Note: 2020 publications that were not included in the 2020 NWRC accomplishments report are listed here.)
	The transfer of scientific information is an important part of the research process. NWRC scientists and other WS experts publish in a variety of peer-reviewed journals that cover a wide range of disciplines, including wildlife management, genetics, analytical chemistry, ornithology, and ecology. (Note: 2020 publications that were not included in the 2020 NWRC accomplishments report are listed here.)
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	AIV avian influenza virus
	AIV avian influenza virus
	ALHT Asian longhorned tick
	AMR antimicrobial resistant
	APHIS Animal and Plant Health    Inspection Service
	AQ anthraquinone
	ARP American Rescue Plan
	ASF African swine fever
	BMI body mass index
	CDC Centers for Disease Control  and Prevention
	 

	DAPA 2,6-diaminopimelic acid
	DNA deoxyribonucleic acid 
	eDNA environmental DNA
	EPA U.S. Environmental Protection    Agency
	GPS global positioning system
	IAV Influenza A virus
	LOD limit of detection
	LOQ limit of quantification 
	NEXRAD Next Generation Weather Radar
	NVSL National Veterinary Services    Laboratories
	NWDP National Wildlife Disease Program
	NWSD National Wildlife Strike Database
	NWRC National Wildlife Research Center
	ONRAB Ontario rabies vaccine
	ORV oral rabies vaccine
	qPCR quantitative real-time polymerase   chain reaction 
	RVNA rabies virus neutralizing antibody
	SN sodium nitrite
	USDA  U.S. Department of Agriculture
	WS Wildlife Services
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