

United States Department of Agriculture

United States Department of Agriculture

Animal and Plant Health Inspection Service

April 29, 2016

Version 1

Weed Risk Assessment for *Adonis microcarpa* DC. (Ranunculaceae) – Pheasant's-eye

Left: Red flower of *Adonis microcarpa* (source: Evenor, 2010). Right: Yellow flower of *Adonis microcarpa* (source: Martin, 2011).

Agency Contact:

Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology

Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 **Introduction** Plant Protection and Quarantine (PPQ) regulates noxious weeds under the authority of the Plant Protection Act (7 U.S.C. § 7701-7786, 2000) and the Federal Seed Act (7 U.S.C. § 1581-1610, 1939). A noxious weed is defined as "any plant or plant product that can directly or indirectly injure or cause damage to crops (including nursery stock or plant products), livestock, poultry, or other interests of agriculture, irrigation, navigation, the natural resources of the United States, the public health, or the environment" (7 U.S.C. § 7701-7786, 2000). We use the PPQ weed risk assessment (WRA) process (PPQ, 2015) to evaluate the risk potential of plants, including those newly detected in the United States, those proposed for import, and those emerging as weeds elsewhere in the world.

The PPQ WRA process includes three analytical components that together describe the risk profile of a plant species (risk potential, uncertainty, and geographic potential; PPQ, 2015). At the core of the process is the predictive risk model that evaluates the baseline invasive/weed potential of a plant species using information related to its ability to establish, spread, and cause harm in natural, anthropogenic, and production systems (Koop et al., 2012). Because the predictive model is geographically and climatically neutral, it can be used to evaluate the risk of any plant species for the entire United States or for any area within it. We then use a stochastic simulation to evaluate how much the uncertainty associated with the risk analysis affects the outcomes from the predictive model. The simulation essentially evaluates what other risk scores might result if any answers in the predictive model might change. Finally, we use Geographic Information System (GIS) overlays to evaluate those areas of the United States that may be suitable for the establishment of the species. For a detailed description of the PPQ WRA process, please refer to the PPO Weed Risk Assessment Guidelines (PPO, 2015), which is available upon request.

We emphasize that our WRA process is designed to estimate the baseline—or unmitigated—risk associated with a plant species. We use evidence from anywhere in the world and in any type of system (production, anthropogenic, or natural) for the assessment, which makes our process a very broad evaluation. This is appropriate for the types of actions considered by our agency (e.g., Federal regulation). Furthermore, risk assessment and risk management are distinctly different phases of pest risk analysis (e.g., IPPC, 2015). Although we may use evidence about existing or proposed control programs in the assessment, the ease or difficulty of control has no bearing on the risk potential for a species. That information could be considered during the risk management (decision making) process, which is not addressed in this document.

Adonis microcarpa DC. – Pheasant's-eye

Species Family: Ranunculaceae

- Information Synonyms: *Adonis aestivalis* Link ex Webb & Bertherl.; *Adonis cretica* (Huth) Imam, Chrtek & A. Slavíková (The Plant List, 2013).
 - Common names: Pheasant's-eye, red chamomile, small-fruit pheasant's-eye (NGRP, 2015).
 - Botanical description: *Adonis microcarpa* is an annual herb, usually branched, with red or yellow flowers on a leafless stalk and with approximately 10-15 achenes. For a full botanical description see Parsons and Cuthbertson (2001) and Eichler (1965).
 - Initiation: PPQ received a market access request for *Triticum aestivum* (wheat) and *T. durum* (durum wheat) seed for planting from Italy (MPAAF, 2010). A commodity risk assessment identified *Adonis microcarpa* as a potential contaminant of wheat seed from Italy. The PERAL Weed Team evaluated this species to determine its risk potential.
 - Foreign distribution and status: *Adonis microcarpa* is native to northern Africa (the Canary Islands, Algeria, Egypt, Libya), western Asia (Cyprus, Iran, Iraq, Jordan, Lebanon, Syria, Turkey), and southern Europe (France, Greece, Crete, Italy, Sardinia, Sicily, Portugal, Spain) (NGRP, 2015). It is naturalized in New South Wales (Simmonds et al., 2000) and South Australia (Groves et al., 2005), and present in Kosovo (Rexhepi, 1997), Tasmania (Boersma et al., 1999), Israel (Heyn and Pazy, 1989), and Tunisia (Brandes, 2001). We were unable to determine if *A. microcarpa* is native or naturalized in Kosovo, Tunisia, and Israel based on the available evidence.
 - U.S. distribution and status: Although one source indicates that this species was introduced to North America as an ornamental (Parsons and Cuthbertson, 2001) and another states that it can grow in Pennsylvania (Dave's Garden, 2015), we found no other evidence that it is currently cultivated or present in the United States (Kartesz, 2015; NGRP, 2015; Plant Information Online, 2007). The related species *Adonis aestivalis* and *A. annua* are confirmed as being present in the United States and, depending on their life stages, may be indistinguishable from *A. microcarpa* (Heyn and Pazy, 1989). Therefore, it is possible that the plant reported to grow in Pennsylvania is another species of *Adonis*.

WRA area¹: Entire United States, including territories.

1. Adonis microcarpa analysis

Establishment/Spr Adonis microcarpa is an annual herb that reproduces by seed (Parsons and Cuthbertson, 2001). Its seedlings require light to germinate (Parsons and Cuthbertson, 2001), and it can have high seed production (Hunter, 2014). Adonis microcarpa does not require any specialist pollinators (Martinez-Harms et al.,

¹ "WRA area" is the area in relation to which the weed risk assessment is conducted (definition modified from that for "PRA area") (IPPC, 2012).

2012; Menzel et al., 1997). While its dispersal vectors are not well understood, there is evidence that it disperses by sticking to clothing and machinery, as well as to wool and fur (Kloot, 1987; Parsons and Cuthbertson, 2001; Randall, 1999). Currently, it is easily controlled by herbicides (Simmonds et al., 2000) and cultivation practices (Parsons and Cuthbertson, 2001). For this risk element, we had very high uncertainty due to the lack of available biological information on the species. Also, little is known about the ability of *A. microcarpa* to disperse naturally.

Risk score = 10 Uncertainty index = 0.28

- **Impact Potential** Very little is known about the impacts of *Adonis microcarpa* on natural and anthropogenic systems. The majority of information about its impacts relate to production systems. *Adonis microcarpa* competes for light, water, and space, and can reduce the available area for grazing (Parsons and Cuthbertson, 2001). It is toxic to horses, sheep, goats, and pigs, producing symptoms ranging from gastrointestinal distress to death (Davies and Whyte, 1989; Parsons and Cuthbertson, 2001; Simmonds et al., 2000). *Adonis microcarpa* may impact trade, as it is currently prohibited from sale in South Australia (Groves et al., 2005) and is regulated as a seed grain contaminant in New Zealand (Biosecurity New Zealand, 2011). Although little information is available about its impact in natural and anthropogenic systems, we found enough evidence of its impact in production systems to give us an average amount of uncertainty for this risk element. Risk score = 2.4 Uncertainty index = 0.15
 - Geographic Based on three climatic variables, we estimate that about 43 percent of the United
 Potential States is suitable for the establishment of *Adonis microcarpa* (Fig. 1). This predicted distribution is based on the species' known distribution elsewhere in the world and includes point-referenced localities and areas of occurrence. The map for *Adonis microcarpa* represents the joint distribution of Plant Hardiness Zones 7-12, areas with 0-70 inches of annual precipitation, and the following Köppen-Geiger climate classes: steppe, desert, Mediterranean, humid subtropical, marine west coast, humid continental warm summers, and humid continental cool summers.

The area of the United States shown to be climatically suitable (Fig. 1) is likely overestimated since our analysis considered only three climatic variables. Other environmental variables, such as soil and habitat type, may further limit the areas in which this species is likely to establish. *Adonis microcarpa* is generally found in agricultural settings, pastures, and along roadsides and railways. In Australia, it prefers July temperatures above 40.1 °F (4.5 °C), rainfall in excess of 300 mm (30 cm), and alkaline soils free of lime (Parsons and Cuthbertson, 2001).

Entry Potential We did not find any evidence that Adonis microcarpa is present in the United States, Canada, or Mexico (Dave's Garden, 2015; GBIF, 2015; Kartesz, 2015; NGRP, 2015). Because it is an agricultural weed (Duretto, 2009; Parsons and Cuthbertson, 2001; Randall, 2007; Richardson et al., 2006), the most likely pathways for entry would be associated with agriculture. Adonis microcarpa has been unintentionally introduced to other countries as a contaminant of agricultural crops and in seed or hay for livestock consumption (Duretto, 2009; Hunter, 2014; Parsons and Cuthbertson, 2001; Offord, 2006; Randall, 2007; Richardson et al., 2006). It can also be unintentionally introduced by adhering to clothing, in mud attached to machinery and vehicles, and by sticking to wool and fur (Parsons and Cuthbertson, 2001). Adonis microcarpa was initially introduced into Australia as an ornamental (Kloot, 1987; Parsons and Cuthbertson, 2001), and one report indicated that it can grow in the United States in Pennsylvania (Dave's Garden, 2015). However, we found no evidence that it is currently cultivated anywhere in the world. For this risk element we had a very high level of uncertainty due to the lack of available information about A. microcarpa outside of agricultural systems. Risk score = 0.1Uncertainty index = 0.29

Figure 1. Predicted distribution of *Adonis microcarpa* in the United States. Map insets for Alaska, Hawaii, and Puerto Rico are not to scale.

2. Results Model Probabilities: P(Major Invader) = 41.7% P(Minor Invader) = 54.2% P(Non-Invader) = 4.1%Risk Result = High Risk Secondary Screening = Not Applicable

Figure 3. Model simulation results (N=5,000) for uncertainty around the risk score for *Adonis microcarpa*. The blue "+" symbol represents the medians of the simulated outcomes. The smallest box contains 50 percent of the outcomes, the second 95 percent, and the largest 99 percent.

3. Discussion

The result of the weed risk assessment for *Adonis microcarpa* is High Risk (Fig. 2). Little is known about *A. microcarpa* outside of agricultural settings, which contributed to the high level of uncertainty during our analysis. However, despite this uncertainty, we are confident in our determination of high risk based on the results of our uncertainty analysis (Fig.3).

Over the course of about 60 years, the number of recorded A. microcarpa individuals has steadily increased in Australia (GBIF, 2015). Originally, A. microcarpa was introduced as an ornamental in South Australian suburbs (Kloot, 1987; Parsons and Cuthbertson, 2001) and has since spread into agricultural systems (Offord, 2006; Parsons and Cuthbertson, 2001; Randall, 2012; Simmonds et al., 2000). Adonis microcarpa is toxic to horses, sheep, goats, and pigs (Davies and Whyte, 1989; Parsons and Cuthbertson, 2001; Simmonds et al., 2000). It may impact trade, as it is currently prohibited from being sold in South Australia (Groves et al., 2005) and its seeds are prohibited in New Zealand (Biosecurity New Zealand, 2011). While Adonis microcarpa can be controlled with either herbicides or cultivation (Parsons and Cuthbertson, 2001; Simmonds et al., 2000), it can reestablish in fallow fields (GBIF, 2015; Parsons and Cuthbertson, 2001). Therefore, while it may be controlled in agricultural settings, it is not necessarily eliminated. The closely related Adonis aestivalis, A. annua, and A. vernalis are all present in the United States (Kartesz, 2015) and are considered to be toxic weeds (Burrows and Tyrl, 2013; Nelson et al., 2007; Woods et al., 2004).

4. Literature Cited

- 7 U.S.C. § 1581-1610. 1939. The Federal Seed Act, Title 7 United States Code § 1581-1610.
- 7 U.S.C. § 7701-7786. 2000. Plant Protection Act, Title 7 United States Code § 7701-7786.
- Biosecurity New Zealand. 2011. Importation of Grains/Seeds for Consumption, Feed or Procession Plant Health Requirements. Pages 1-169 *in* M. B. N. Zealand, ed. MAF Biosecurity New Zealand, Wellington, New Zealand.
- Boersma, M., A. Bishop, C. Goninon, C. Ong, T. Rudman, and S. Welsh. 1999. Establishment of a weed surveillance and response protocol for new pest plant incursions in Tasmania. 12th Australian Weeds Conference, Hobart, Tasmania.
- Brandes, D. 2001. Urban Flora of Sousse (Tunisia).1-34. Last accessed December 3, 2015, http://rzbl04.biblio.etc.tu-

bs.de:8080/docportal/servlets/MCRFileNodeServlet/DocPortal_derivate_00 001189/Document.pdf.

- Burrows, G. E., and R. J. Tyrl. 2013. Toxic Plants of North America, Second Edition. John Wiley & Sons, Inc., Ames, IA, U.S.A. 1390 pp.
- Dave's Garden. 2015. PlantFiles: *Adonis microcarpa*. Dave's Garden. http://davesgarden.com. (Archived at PERAL).
- Davies, R. L., and P. B. D. Whyte. 1989. *Adonis microcarpa* (pheasant's eye) toxicity in pigs fed field pea screenings. Australian Veterinary Journal

66(5):141-143.

- Dostatny, D. F. 2013. The Role of Small Farms in Maintaining a Balance in Agroecosystems. 19th International Farm Management Congress, SGGW, Warsaw, Poland.
- Duretto, M. F. 2009. 47 Ranunculaceae, version 2009:1. In MF Duretto (Ed.) Flora of Tasmania Online. Tasmanian Herbarium, Tasmanian Museum & Art Gallery. www.tmag.tas.gov.au/floratasmania. (Archived at PERAL).
- Eichler, H., J. A. Jeanes, and N. G. Walsh. 1965. Ranunculaceae. Pages 1-21 *in* J. Kellerman, (ed.). Flora of South Australia (ed. 5). Government of South Australia; Department of Environment, Water and Natural Resources.
- El-Barasi, Y. M., I. M. El-Sherif, and A. M. H. Gawhari. 2003. Checklist and analysis of the flora and vegetation of Wadi Zaza at Al-Jabal Al Akhdar (Cyrenaica, Libya). Bocconea 16(2):1091-1105.
- Evenor, Z. 2010. File: *Adonis microcarpa* 001.jpg. https://commons.wikimedia.org/wiki/File:Adonis-microcarpa001.jpg. (Archived at PERAL).
- Farouji, A. E., and H. Khodayari. 2016. Evaluation of vegetation types in the West Zagros (Beiranshahr region as a case study), in Lorestan Province, Iran. Biodiversitas 17(1):1-10.
- GBIF. 2015. The Global Biodiversity Information Facility (GBIF): *Adonis microcarpa* DC. Global Biodiversity Information Facility (GBIF). http://www.gbif.org. (Archived at PERAL).
- Groves, R. H., R. Boden, and W. M. Lonsdale. 2005. Jumping the garden fence: Invasive garden plants in Australia and their environmental and agricultural impacts. CSIRO, Australia. 173 pp.
- Hanf, M. 1983. The Arable Weeds of Europe: With their Seedlings and Seeds. BASF, United Kingdom. 494 pp.
- Heap, I. 2015. The International Survey of Herbicide Resistant Weeds. Global Herbicide Resistance Action Committee and CropLife International. www.weedscience.com. (Archived at PERAL).
- Heyn, C. C., and B. Pazy. 1989. The annual species of Adonis (Ranunculaceae) a polyploid complex. Plant Systematics and Evolution 168:181-193.
- Hunter, H. I. 2014. Plant Policy: small-fruited pheasant's eye (*Adonis microcarpa*), South Australia. 2 pp.
- IPPC. 2012. International Standards for Phytosanitary Measures No. 5: Glossary of Phytosanitary Terms. Food and Agriculture Organization of the United Nations, Secretariat of the International Plant Protection Convention (IPPC), Rome, Italy. 38 pp.
- IPPC. 2015. International Standards for Phytosanitary Measures No. 2: Framework for Pest Risk Analysis. Food and Agriculture Organization of the United Nations, Secretariat of the International Plant Protection Convention (IPPC), Rome, Italy. 18 pp.
- Kartesz, J. T. 2015. The Biota of North America Program (BONAP). North American Plant Atlas. http://bonap.net/tdc. (Archived at PERAL).
- Kloot, P. M. 1987. The naturalised flora of South Australia. Its manner of introduction. Journal of Adelaide Botanic Garden 10(2):223-240.

- Koop, A. L., L. Fowler, L. P. Newton, and B. P. Caton. 2012. Development and validation of a weed screening tool for the United States. Biological Invasions 14(2):273-294.
- Martin, J. 2011. File: *Adonis microcarpa* EnfoqueInterior. Wikimedia Commons. https://commons.wikimedia.org/wiki/File:Adonis_microcarpa_EnfoqueInterior_2011-3-21_CampodeCalatrava.jpg. (Archived at PERAL).
- Martin, P. G., and J. M. Dowd. 1990. A Protein Sequence Study of the Dicotyledons and its Relevance to the Evolution of the Legumes and Nitrogen Fixation. Australian Systematic Botany 3:91-100.
- Martin, T. G., S. Campbell, and S. Grounds. 2006. Weeds of Australian rangelands. The Rangeland Journal 28(1):3-26.
- Martinez-Harms, J., M. Vorobyev, J. Schorn, A. Shmida, T. Kaesar, U. Homberg, F. Schmeling, and R. Menzel. 2012. Evidence of red sensitive photoreceptors in Pygopleurus israelitus (Glaphyridae: Coleoptera) and its implications for beetle pollination in the southeast Mediterranean. Journal of Comparative Physiology A 198(6):451-463.
- Menzel, R., A. Gumbert, J. Kunze, A. Shmida, and M. Vorobyev. 1997. Pollinators' Strategies in Finding Flowers. Israel Journal of Plant Sciences 45(2-3):141-156.
- Meyer, S., K. Wesche, J. Hans, C. Leuschner, and D. C. Albach. 2015. Landscape complexity has limited effects on the genetic structure of two arable plant species, *Adonis aestivalis* and *Consolida regalis*. Weed Research 55(4):406-415.
- Modzelevich, M. 2015. Flowers in Israel: *Adonis microcarpa*. Flowers in Israel. http://www.flowersinisrael.com. (Archived at PERAL).
- MPAAF. 2010. § 319.5 Requirements for submitting requests to change the regulations in 7 CFR part 319, Ministero delle Politiche Agricole, Alimentari e Forestali. 29 pp.
- Nelson, L. S., R. D. Shih, and M. J. Balick. 2007. Handbook of Poisonous and Injurious Plants. Springer, NY, U.S.A. 340 pp.
- NGRP. 2015. Germplasm Resource Information Network (GRIN). United States Department of Agriculture, Agricultural Research Service, National Genetic Resources Program. http://www.ars-grin.gov/cgibin/npgs/html/tax_search.pl. (Archived at PERAL).
- Nickrent, D. 2009. Parasitic plant classification. Southern Illinois University Carbondale, Carbondale, IL, U.S.A. Last accessed December 1, 2015, http://www.parasiticplants.siu.edu/ListParasites.html.
- Nickrent, D. L., and L. J. Musselman. 2004. Introduction to parasitic flowering plants. The Plant Health Instructor 13:300-315.
- Offord, M. 2006. Plants Poisonous to Horses: An Australian Field Guide (RIRDC Project No. OFF-1A), Sydney, Australia. 121 pp.
- Parmaksiz, A., V. Atamov, and M. Aslan. 2006. The Flora of Osmanbey Campus of the Harran University. Journal of Biological Sciences 6(5):793-804.
- Parsons, W. T., and E. G. Cuthbertson. 2001. Noxious Weeds of Australia (Second). CSIRO Publishing, Collingwood. 698 pp.
- Plant Information Online. 2007. Plant Information Online. University of

Minnesota. http://plantinfo.umn.edu/sources/scientificsearch_results.asp. (Archived at PERAL).

- PPQ. 2015. Guidelines for the USDA-APHIS-PPQ Weed Risk Assessment Process. United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ). 125 pp.
- Qasem, J. R., and C. L. Foy. 2001. Weed allelopathy, its ecological impacts and future prospects: a review. Journal of Crop Production 4:43-120.
- Radosevich, S. R., J. S. Holt, and C. M. Ghersa. 2007. Ecology of Weeds and Invasive Plants: Relationship to Agriculture and Natural Resource Management. Wiley, Hoboken, NJ., U.S.A. 454 pp.
- Randall, J. 1999. Import Risk Analysis: Importation of weed species by live animals and unprocessed fibre of sheep and goats. Ministry of Agriculture and Forestry, Wellington, New Zealand. 25 pp.
- Randall, R. 2001. Garden thugs, a national list of invasive and potentially invasive garden plants. Plant Protection Quarterly 16(4):138-171.
- Randall, R. P. 2007. The introduced flora of Australia and its weed status. CRC for Australian Weed Management, Department of Agriculture and Food, Western Australia, Australia. 528 pp.
- Randall, R. P. 2012. A Global Compendium of Weeds, 2nd edition. Department of Agriculture and Food, Western Australia, Perth, Australia. 1107 pp.
- Rexhepi, F. 1997. Mediterranean, Submediterranean and Illyric floristic elements in the Kosovo flora (Yugoslavia). Bocconea 5(2):451-456.
- Richardson, F. J., R. G. Richardson, and R. C. H. Shepherd. 2006. Weeds of the South-east: An Identification Guide for Australia. R. G. and F.J. Richardson, Meredith, Victoria, Australia. 438 pp.
- Santi, C., D. Bogusz, and C. Franche. 2013. Biological nitrogen fixation in nonlegume plants. Annals of Botany 111(5):743-767.
- Sequeira, M., D. Espriito-Santo, C. Aguiar, J. Capelo, and J. J. Honrado. 2011. Checklist da Flora de Portugal Continental, Açores e Madeira. 74 pp.
- Simmonds, H., P. Holst, and C. Bourke. 2000. The palatability, and potential toxicity of Australian weeds to goats. Rural Industries Research and Development Corporation, Barton, Australia. 156 pp.
- The Plant List. 2013. Version 1.1 [Online Database]. Kew Botanic Gardens and the Missouri Botanical Garden. http://www.theplantlist.org/tpl1.1/record/kew-2623169. (Archived at PERAL).
- Weeds in Australia. 2015. Weeds in Australia: *Adonis microcarpa*. Australian Government, Department of the Environment. http://www.environment.gov.au/biodiversity/invasive/weeds/index.html. (Archived at PERAL).
- Woods, L. W., M. S. Filigenzi, M. C. Booth, L. D. Rodger, J. S. Arnold, and B. Puschner. 2004. Summer Pheasant's Eye (*Adonis aestivalis*) Poisoning in Three Horses. Veterinary Pathology 41(3):215-220.

Appendix A. Weed risk assessment for *Adonis microcarpa* DC. (Ranunculaceae). Below is all of the evidence and associated references used to evaluate the risk potential of this *Adonis microcarpa*. We also include the answer, uncertainty rating, and score for each question. The Excel file, where this assessment was conducted, is available upon request.

Question ID	Answer - Uncertainty	Score	Notes (and references)
ESTABLISHMENT/SPREAD	Cheertanity		
POTENTIAL			
ES-1 [What is the taxon's establishment and spread status outside its native range? (a) Introduced elsewhere =>75 years ago but not escaped; (b) Introduced <75 years ago but not escaped; (c) Never moved beyond its native range; (d) Escaped/Casual; (e) Naturalized; (f) Invasive; (?) Unknown]	f - high	5	<i>Adonis microcarpa</i> is native to northern Africa (the Canary Islands, Algeria, Egypt, Libya), western Asia (Cyprus, Iran, Iraq, Jordan, Lebanon, Syria, Turkey), and southern Europe (France, Greece, Crete, Italy, Sardinia, Sicily, Portugal, Spain, Baleares) (NGRP, 2015). It is naturalized in New South Wales (Simmonds et al., 2000) and South Australia (Groves et al., 2005), and is present in Kosovo (Rexhepi, 1997), Tasmania (Boersma et al., 1999), Israel (Heyn and Pazy, 1989), Tunisia (Brandes, 2001), and Portugal (NGRP, 2015; Sequeira et al., 2011). We were unable to determine if <i>A. microcarpa</i> is native or naturalized in Kosovo, Tunisia, and Israel based on the available evidence. Kloot (1987) mentioned that this species (using the name <i>Adonis microcarpus</i> DC) spread unaided after its introduction to South Australia as an ornamental. is now widespread over several large regions of the Australia (GBIF, 2015) and listed as an (Randall, 2001). The alternate answers for the Monte Carlo simulation were both "e."
ES-2 (Is the species highly domesticated)	n - negl	0	While <i>Adonis microcarpa</i> was cultivated in Australia (Randall, 2007), we found no evidence that it has been domesticated or bred for traits conferring reduced weed potential. Because we found no evidence that it is currently being cultivated, we used negligible uncertainty.
ES-3 (Weedy congeners)	y - negl	1	The genus <i>Adonis</i> consists of 35 species (Duretto, 2009). Randall (2012) lists several species of <i>Adonis</i> as weeds, and three of these appear to be significant weeds. <i>Adonis</i> <i>aestivalis, A. flammea</i> , and <i>A. annua</i> are agricultural weeds in the Mediterranean region of Europe (Hanf, 1983). In the United States <i>A. aestivalis, A. annua</i> , and <i>A. vernalis</i> are weedy and toxic (Burrows and Tyrl, 2013; Nelson et al., 2007; Kartesz, 2015). Three horses in California died after eating hay contaminated with <i>A. aestivalis</i> (Woods et al., 2004).
cycle)	11 - 10W	U	suggesting that A. microcarpa is shade

Question ID	Answer - Uncertainty	Score	Notes (and references)
	Cheertanity		tolerant. In fact, seedlings have a "positive
			requirement for light" in order to germinate
			(Parsons and Cuthbertson, 2001). Adonis
			<i>microcarpa</i> is found in fallow fields and
			paddocks along roadsides (GBIF, 2015), in
			arable land (Hanf, 1983), and in rangelands in
			Australia (Martin et al., 2006), all of which
			are high light environments.
ES-5 (Plant a vine or scrambling plant, or	n - negl	0	Adonis microcarpa is not a vine or a plant that
forms tightly appressed basal rosettes)	- 6		forms basal rosettes; it is an annual herb that
			can grow up to 60 cm high (Parsons and
			Cuthbertson, 2001).
ES-6 (Forms dense thickets, patches, or	n - low	0	We found no information that <i>Adonis</i>
populations)			<i>microcarpa</i> can form dense thickets, patches,
F - F)			or populations.
ES-7 (Aquatic)	n - negl	0	Adonis microcarpa is not an aquatic plant it
	n negi	0	is a terrestrial herb found mainly in cereal
			crops and rangelands (Richardson et al. 2006)
			Martin et al 2006)
ES-8 (Grass)	n - negl	0	It is not a grass. It is a member of the
	n negi	U	Ranunculaceae family (NGRP 2015)
ES-9 (Nitrogen-fixing woody plant)	n - negl	0	We found no evidence that <i>Adonis</i>
Lb) (Philogen fixing woody plant)	n negi	U	<i>microcarpa</i> is a nitrogen-fixing plant. It is not
			a member of a family known to contain
			nitrogen-fixing species (Martin and Dowd
			1990: Santi et al., 2013).
ES-10 (Does it produce viable seeds or	v - negl	1	In Australia, seeds of Adonis microcarpa
spores)	J8-		begin to germinate in autumn and continue
-1)			germinating into the spring. In winter.
			seedlings can develop rapidly (Parsons and
			Cuthbertson, 2001).
ES-11 (Self-compatible or apomictic)	? - max	0	We found no evidence that <i>Adonis</i>
			<i>microcarpa</i> is self-compatible or apomictic.
			However, because its congener A. <i>aestivalis</i> is
			self-compatible (Mever et al., 2015), we
			answered unknown instead of no.
ES-12 (Requires specialist pollinators)	n - high	0	We found no evidence that Adonis
F	8		<i>microcarpa</i> requires specialist pollinators. In
			the southeast Mediterranean. plants are visited
			by glaphyrid beetles (Martinez-Harms et al.,
			2012). Other researchers report that the
			species is visited by beetles and hymenoptera
			(Menzel et al., 1997). While it is not clear if
			these taxa are acting merely as visitors or
			pollinators, because this species has
			naturalized in other countries (Australia), it
			seems unlikely to require specialist
			pollinators. Consequently, we answered no,
			but with high uncertainty.
ES-13 [What is the taxon's minimum	b - low	1	Adonis microcarpa is an annual (Parsons and
generation time? (a) less than a year with			Cuthbertson, 2001). In Australia, the seeds
multiple generations per year; (b) 1 year,			will germinate in autumn (March-May), then
usually annuals; (c) 2 or 3 years; (d) more			sporadically througth mid-winter. The

Question ID	Answer - Uncertaintv	Score	Notes (and references)
than 3 years; or (?) unknown]	y		seedlings develop fast in the winter and
			flower during the spring (August to
			November in Australia), with plants dving in
			early summer (Parsons and Cuthbertson
			2001) Based on this evidence we answered
			"h " The alternate answers for the Monte
			Carlo simulation were both "a "
FS-14 (Prolific seed producer)	? - max	0	Has high seed production (Hunter 2014) The
LS-14 (Home seed producer)	: - max	0	fruits have about "10.15 achenes [seeds]
			grouped into an oblong spike" (Parsons and
			Cuthbertson 2001) Each flower consists of
			10.50 individual achanas (Weeds in Australia
			2015) We were unable to find information
			about sood visbility rates and the number of
			about seed viability rates and the number of
			plants that grow per square meter, so we
EC 15 (Decession liberts to be discovered		1	Sanda ann adhana ta alathina and in mud
ES-15 (Propagules likely to be dispersed	y - Iow	1	Seeds can adhere to clothing and in mud
unintentionally by people)			attached to machinery and vehicles (Parsons
	1	-	and Cuthbertson, 2001).
ES-16 (Propagules likely to disperse in trade	y - negl	2	It can contaminate hay (Offord, 2006). It can
as contaminants or hitchhikers)			be a contaminant of fodder or seed (Hunter,
			2014).
ES-17 (Number of natural dispersal vectors)	1	-2	Fruit and seed description for ES-17a through
			ES-17e: Seeds are a blackish green color and
			are plump and approximately 1.5 mm in
			diameter (Parsons and Cuthbertson, 2001).
			Individual seeds are "egg-shaped, but angular,
			2.5-4 mm long, and have an irregular network
			of raised veins" (Weeds in Australia, 2015).
ES-17a (Wind dispersal)	n - mod		We found no evidence that A. microcarpa is
			wind dispersed. Because it doesn't possess
			any specific adaptations for wind dispersal
			such as wings or plumes, we answered no
			with moderate uncertainty.
ES-17b (Water dispersal)	n - mod		We found no evidence that A. microcarpa is
			water dispersed. Because it does not appear
			restricted to aquatic or riparian habitats, we
			answered no with moderate uncertainty.
ES-17c (Bird dispersal)	? - max		Unknown. We found no evidence that A.
			microcarpa is dispersed by birds.
ES-17d (Animal external dispersal)	y - negl		It adheres to wool and fur, and in muddy
			hooves (Parsons and Cuthbertson, 2001).
			Kloot (1987) mentioned it (using the name
			Adonis microcarpus DC) being dispersed by
			attaching to animals. Animals aid in
			reproduction by dispersing seeds (Simmonds
			et al., 2000). The seed adheres to wool and fur
			(Randall, 1999).
ES-17e (Animal internal dispersal)	? - max		Horses can ingest A. microcarpa through
			contaminated hay (Offord, 2006). Goats can
			ingest it (Simmonds et al., 2000). However.
			we found no evidence that the seeds can
			remain viable after passing through these

Question ID	Answer -	Score	Notes (and references)
	Uncertainty		
			animals.
ES-18 (Evidence that a persistent (>1yr) propagule bank (seed bank) is formed)	? - max	0	Seeds of <i>A. microcarpa</i> can survive unfavorable conditions and germinate when conditions are favorable again (Modzelevich, 2015); however, it is not clear from this source whether seeds form a persistent seed bank. <i>Adonis aestivalis</i> can produce seeds that ramain dormant until the following year and
			can have a "persistent long-term" seedbank (Meyer et al., 2015).
ES-19 (Tolerates/benefits from mutilation, cultivation or fire)	n - Iow	-1	We found no evidence that <i>A. microcarpa</i> benefits from mutilation, cultivation, or fire. In Australia, cultivation alone can be effective in controlling <i>A. microcarpa</i> (Parsons and Cuthbertson, 2001; Simmonds et al., 2000). <i>Adonis flammea</i> is endangered in Poland due to an increase in cultivation practices such as long-term herbicide use, improved cleaning practices, and the introduction of "prolific cereal varieties" (Dostatny, 2013).
ES-20 (Is resistant to some herbicides or has the potential to become resistant)	n - low	0	We found no evidence that <i>A. microcarpa</i> or any of its congeners have developed herbicide resistance (e.g., Heap, 2015). Currently <i>A. microcarpa</i> can be controlled with bomoxynil + MCPA or bomoxynil alone (Parsons and Cuthbertson, 2001) and broad leaf herbicides Group C (absorbed through the roots, transported to leaves, and activated by light) (Simmonds et al., 2000).
ES-21 (Number of cold hardiness zones suitable for its survival)	6	0	
ES-22 (Number of climate types suitable for its survival)	7	2	
ES-23 (Number of precipitation bands suitable for its survival)	7	0	
IMPACT POTENTIAL			
General Impacts			
Imp-G1 (Allelopathic)	n - low	0	We found no evidence that <i>Adonis</i> <i>microcarpa</i> is allelopathic. Reviews conducted on families and species that are allelopathic do not include <i>Adonis microcarpa</i> or its congeners (Radosevich et al., 2007; Qasem and Foy, 2001).
Imp-G2 (Parasitic)	n - negl	0	We found no evidence that <i>Adonis</i> <i>microcarpa</i> or its congeners are parasitic; the family Ranunculaceae is not known to contain parasitic plants (Nickrent and Musselman, 2004; Nickrent, 2009).
Impacts to Natural Systems			
Imp-N1 (Changes ecosystem processes and parameters that affect other species)	n - low	0	<i>Adonis microcarpa</i> is mainly found as a weed of agriculture systems (Offord, 2006; Parsons and Cuthbertson, 2001; Randall, 2007; Simmonds et al., 2000). Because we found no

Question ID	Answer -	Score	Notes (and references)
	Uncertainty		
			evidence that it naturalizes or is weedy in
			natural systems, we used low uncertainty for
			all questions in this sub-element. We found no
			direct evidence that A. <i>microcarpa</i> changes
			ecosystem processes and parameters.
Imp-N2 (Changes habitat structure)	n - low	0	We found no direct evidence that it changes
			the habitat structure.
Imp-N3 (Changes species diversity)	n - low	0	We found no direct evidence that <i>Adonis</i>
Lear NA (La it liles have affect for down)		0	It is applied to that it will affect Endered
Threatened and Endangered species?)	II - IOW	0	Threatened and Endangered species
Imentened and Endangered species?)	n 1011	0	It is unlikely that it will affect U.S. alabelly
imp-ino (is it likely to affect any globally	n - IOW	0	It is unlikely that it will affect U.S. globally
Jump NG (What is the taxon's wood status in	a 10m	0	We found no evidence that this encodes is
Imp-106 [what is the taxon's weed status in	a - 10w	0	we found no evidence that this species is
natural systems? (a) Taxon not a weed; (b)			weedy in natural systems, let alone being
taxon a weed but no evidence of control; (c)			controlled in them. Currently, the only
taxon a weed and evidence of control			evidence of control is in relation to
efforts			agricultural systems. The alternate answers for
			the Monte Carlo simulation were both "b."
Impact to Anthropogenic Systems (cities, su	iburbs, roadwa	ays)	
Imp-A1 (Negatively impacts personal	n - low	0	We found no evidence that Adonis
property, human safety, or public			microcarpa negatively impacts personal
infrastructure)			property, human safety, or public
			infrastructure. Currently, the majority of
			information about A. microcarpa focuses on
			its presence in agricultural systems. For this
			reason we used low uncertainty for this
			question, and questions Imp-A2 and Imp-A3.
Imp-A2 (Changes or limits recreational use	n - low	0	We found no evidence that Adonis
of an area)			microcarpa changes or limit recreational use
			of an area.
Imp-A3 (Affects desirable and ornamental	n - low	0	We found no evidence that Adonis
plants, and vegetation)			microcarpa affects desirable and ornamental
			plants and vegetation.
Imp-A4 [What is the taxon's weed status in	b - mod	0.1	In Australia, A. microcarpa occurs as a weed
anthropogenic systems? (a) Taxon not a			along roadsides, under fence lines, and in
weed; (b) Taxon a weed but no evidence of			waste places (Parsons and Cuthbertson, 2001).
control; (c) Taxon a weed and evidence of			It was introduced into South Australia as an
control efforts]			ornamental and has spread on its own (Kloot,
			1987). Although it is prohibited from sale in
			South Australia (Groves et al., 2005), and
			despite its occurrence along roadsides and
			under fences, we found no direct evidence of
			control in anthropogenic systems. So far, the
			only documented control appears to be taking
			place in agricultural systems (Parsons and
			Cuthbertson, 2001; Simmonds et al., 2000). It
			is not clear to us why it is banned for sale as
			an ornamental; whether it is due to its impact
			in agricultural areas, or some unreported
			impact in anthropogenic areas is unknown to
			us. For this reason, we answered "b" with
			moderated uncertainty. The alternate answers

Question ID	Answer - Uncertainty	Score	Notes (and references)
			for the Monte Carlo simulation were "c" and "a."
Impact to Production Systems (agriculture, nurseries, forest plantations, orchards, etc.)			
Imp-P1 (Reduces crop/product yield)	y - high	0.4	In Australia, A. <i>microcarpa</i> can compete with medicago pastures for water, light, and space. This can reduce the area that is available for grazing (Parsons and Cuthbertson, 2001). It is a strong competitor in cereal crops and medicago pastures (Randall, 1999). Martin et al. (2006) list A. <i>microcarpa</i> as a potential threat to rangeland biodiversity, but evidence is lacking as to how it can change rangeland biodiversity. We answered yes with high uncertainty because while there is concern over A. <i>microcarpa</i> role in competing for resources and reducing grazing areas, there is not enough evidence indicating how it does this.
Imp-P2 (Lowers commodity value)	? - max		Adonis microcarpa is toxic to horses, pigs, and goats (Davies and Whyte, 1989; Parsons and Cuthbertson, 2001; Simmonds et al., 2000; and see evidence under Imp-P5). Symptoms range from gastrointestinal issues to death (Davies and Whyte, 1989; Parsons and Cuthbertson, 2001; Randall, 1999; Simmonds et al., 2000). It is not clear whether, or to what extent, this toxic species lowers the value of pastures or rangeland or the value of livestock themselves. Without direct evidence, we are only able to answer this question as unknown.
Imp-P3 (Is it likely to impact trade?)	y - low	0.2	Adonis microcarpa is a weed of cereal crops (Richardson et al., 2006; Randall, 1999), including wheat and barley (Duretto, 2009). Adonis microcarpa is prohibited from being sold in South Australia (Groves et al., 2005), and the New Zealand government regulates it as a contaminant of grains (Biosecurity New Zealand, 2011). Because it is likely to disperse as a contaminant of trade goods (see evidence under ES-16), it has the potential to impact trade.
Imp-P4 (Reduces the quality or availability of irrigation, or strongly competes with plants for water)	? - max		In South Australia, it competes for water in medicago pastures (Parsons and Cuthbertson, 2001), but we found no evidence that this species is more competitive for water than other weeds or crop plants.
Imp-P5 (Toxic to animals, including livestock/range animals and poultry)	y - negl	0.1	This species is toxic due to adonin, a type of glycoside (Randall, 1999). It kills horses, sheep, and pigs. Poisoning symptoms include severe gastro-enteritis, which can lead to

Question ID	Answer - Uncertainty	Score	Notes (and references)
			death (Parsons and Cuthbertson, 2001). It is toxic to goats and potentially toxic to all grazing animals. It causes gastroenteritis, and death can occur within 12 hours. It is toxic fresh or dried (Simmonds et al., 2000). Adonis microcarpa was the cause of field poisoning in an Australian piggery; symptoms consisted of some degree of weight loss, vomiting, lethargy, shallow breath, and death (Davies and Whyte, 1989).
Imp-P6 [What is the taxon's weed status in production systems? (a) Taxon not a weed; (b) Taxon a weed but no evidence of control; (c) Taxon a weed and evidence of control efforts]	c - negl	0.6	Adonis microcarpa is an agricultural weed in Australia (Randall, 2007). It affects cereal crops in South Australia, New South Wales, Victoria, and Queensland (Randall, 2001; Richardson et al., 2006). Rare cereal weed in the Mediterranean region (Hanf, 1983). Present in Australian rangelands, but impacts are unknown (Martin et al., 2006). It is a serious weed in South Australia due to its occurrence in barley, wheat, and sown pastures (Duretto, 2009; Parsons and Cuthbertson, 2001). Cultivation alone can be effective in controlling <i>A. microcarpa</i> (Parsons and Cuthbertson, 2001; Simmonds et al., 2000). The herbicide bomoxynil + MCPA can also be used, just bromoxynil if medicagos are present or in pastures (Parsons and Cuthbertson, 2001), or broad leaf herbicides Group C (Simmonds et al., 2000). The alternate answers for the Monte Carlo simulation were both "b."
GEOGRAPHIC POTENTIAL			Unless otherwise indicated, the following evidence represents geographically referenced points obtained from the Global Biodiversity Information Facility (GBIF, 2015).
Plant hardiness zones			ž i i i
Geo-Z1 (Zone 1)	n - negl	N/A	We found no evidence that it occurs in this hardiness zone.
Geo-Z2 (Zone 2)	n - negl	N/A	We found no evidence that it occurs in this hardiness zone.
Geo-Z3 (Zone 3)	n - negl	N/A	We found no evidence that it occurs in this hardiness zone.
Geo-Z4 (Zone 4)	n - negl	N/A	We found no evidence that it occurs in this hardiness zone.
Geo-Z5 (Zone 5)	n - negl	N/A	We found no evidence that it occurs in this hardiness zone.
Geo-Z6 (Zone 6)	n - negl	N/A	We found no evidence that it occurs in this hardiness zone.
Geo-Z7 (Zone 7)	y - low	N/A	Spain (multiple points).
Geo-Z8 (Zone 8)	y - negl	N/A	Spain, Morocco, and Greece.
Geo-Z9 (Zone 9)	y - negl	N/A	Australia, Syria, Great Britain, France, Spain, Morocco, Italy, Greece (GBIF, 2015), Turkey (Sanliurfa) (Parmaksiz et al., 2006), and Iran

Question ID	Answer - Uncertainty	Score	Notes (and references)
-	j		(West Zagros) (Farouji and Khodayari, 2016).
Geo-Z10 (Zone 10)	y - negl	N/A	Australia, Israel, Jordan, Lebanon, Syria,
	, ,		France, Spain, Morocco, Greece (GBIF,
			2015), Libya (Al Jabal Al Akhdar) (El-Barasi
			et al., 2003), and Tunisia (Sousse) (Brandes,
			2001).
Geo-Z11 (Zone 11)	y - negl	N/A	Tasmania, Australia, Israel, Spain, Madeira,
			Greece (GBIF, 2015), and Libya (Al Jabal Al
	-		Akhdar) (El-Barasi et al., 2003).
Geo-Z12 (Zone 12)	y - low	N/A	Israel, Spain (Santa Cruz), and Madeira.
Geo-Z13 (Zone 13)	n - negl	N/A	We found no evidence that it occurs in this hardiness zone.
Köppen -Geiger climate classes			
Geo-C1 (Tropical rainforest)	n - negl	N/A	We found no evidence that it occurs in this
	-8		climate class.
Geo-C2 (Tropical savanna)	n - negl	N/A	We found no evidence that it occurs in this
	-		climate class.
Geo-C3 (Steppe)	y - negl	N/A	Australia, Israel, Greece, Spain, Morocco
			(GBIF, 2015), and Libya (Al Jabal Al
			Akhdar) (El-Barasi et al., 2003).
Geo-C4 (Desert)	y - negl	N/A	Australia, Israel, Greece, Spain, Morocco
			(GBIF, 2015), Libya (Al Jabal Al Akhdar)
			(El-Barasi et al., 2003), Tunisia (Sousse) (Drandas, 2001), and Iran (West Zagnas)
			(Earouii and Khodavari, 2016)
Geo-C5 (Mediterranean)	v - negl	N/A	Australia Svria Iordan (West Bank) Israel
	y negi	1 1/11	Greece, France, Spain, Morocco, Madeira
			(GBIF, 2015), Libya (Al Jabal Al Akhdar)
			(El-Barasi et al., 2003), and Turkey
			(Parmaksiz et al., 2006).
Geo-C6 (Humid subtropical)	y - negl	N/A	Australia, Italy, and Spain.
Geo-C7 (Marine west coast)	y - negl	N/A	Tasmania, Australia, Spain, and Great Britain.
Geo-C8 (Humid cont. warm sum.)	y - high	N/A	Turkey and Iran (NGRP, 2015).
Geo-C9 (Humid cont. cool sum.)	y - mod	N/A	Spain (three points).
Geo-C10 (Subarctic)	n - low	N/A	France (one point) and Spain (one point). We
			answered no for this climate class with a low
			uncertainty because Adonis microcarpa has
			been shown in Australia to prefer
			temperatures above 40.1 °F (4.5 °C) (Parsons
	1	NT / A	and Cuthbertson, 2001).
Geo-CII (Iundra)	n - Iow	N/A	France (one point) and Spain (one point). We
			uncertainty because Adonis microcarna has
			been shown in Australia to prefer
			temperatures above 40.1 °F (4.5 °C) (Parsons
			and Cuthbertson, 2001).
Geo-C12 (Icecap)	n - negl	N/A	We found no evidence that it occurs in this
			climate class.
10-inch precipitation bands			
Geo-R1 (0-10 inches; 0-25 cm)	y - negl	N/A	Australia, Israel, Jordan, Greece, Spain,
			(Brandes 2001) Libya (Al Jabal Al Aladar)
			(Dranues, 2001), Liuya (Al Javai Al Akilual)

Question ID	Answer - Uncertainty	Score	Notes (and references)
	..		(El-Barasi et al., 2003), and Iran (West
Geo-R2 (10-20 inches; 25-51 cm)	y - negl	N/A	Australia, Israel, Jordan, Syria, Greece, Spain, Morocco, Madeira (GBIF, 2015), Turkey (Sanliurfa) (Parmaksiz et al., 2006), and Iran (West Zagros) (Farouii and Khodayari, 2016)
Geo-R3 (20-30 inches; 51-76 cm)	y - negl	N/A	Tasmania, Australia, Israel, Syria, Greece, France, Italy, Spain, Morocco (GBIF, 2015), and Turkey (Sanliurfa) (Parmaksiz et al., 2006).
Geo-R4 (30-40 inches; 76-102 cm)	y - negl	N/A	Australia, Greece, France, and Spain.
Geo-R5 (40-50 inches; 102-127 cm)	y - mod	N/A	Greece (one point), Great Britain (one point), and Spain (one point).
Geo-R6 (50-60 inches; 127-152 cm)	y - high	N/A	Great Britain (one point). We answered yes with a high uncertainty because while <i>Adonis</i> <i>microcarpa</i> has been shown to prefer areas with rainfall in excess of 300 mm (30 cm) in Australia (Parsons and Cuthbertson, 2001), we found no other evidence for it in this precipitation band.
Geo-R7 (60-70 inches; 152-178 cm)	y - high	N/A	Great Britain (one point). We answered yes with a high uncertainty because while <i>Adonis</i> <i>microcarpa</i> has been shown to prefer areas with rainfall in excess of 300 mm (30 cm) in Australia (Parsons and Cuthbertson, 2001), we found no other evidence for it in this precipitation band.
Geo-R8 (70-80 inches; 178-203 cm)	n - negl	N/A	We found no evidence that it occurs in this precipitation band.
Geo-R9 (80-90 inches; 203-229 cm)	n - negl	N/A	We found no evidence that it occurs in this precipitation band.
Geo-R10 (90-100 inches; 229-254 cm)	n - negl	N/A	We found no evidence that it occurs in this precipitation band.
Geo-R11 (100+ inches; 254+ cm)	n - negl	N/A	We found no evidence that it occurs in this precipitation band.
ENTRY POTENTIAL			
Ent-1 (Plant already here)	n - mod	0	Although one source indicates that this species was introduced to North America as an ornamental (Parsons and Cuthbertson, 2001) and another states that it can grow in Pennsylvania (Dave's Garden, 2015), we found no other evidence that it is currently cultivated or present in the United States (Kartesz, 2015; NGRP, 2015; Plant Information Online, 2007).
Ent-2 (Plant proposed for entry, or entry is imminent)	n - low	0	We found no evidence that this species has been proposed for intentional import or that its entry is imminent.
Ent-3 (Human value & cultivation/trade status)	a - high	0	Adonis microcarpa was originally spread through Europe and introduced to Australia as an ornamental (Parsons and Cuthbertson, 2001). However, there is no evidence that it is currently being sold or spread as an

Question ID	Answer - Uncertainty	Score	Notes (and references)
			ornamental. Because it was cultivated in the past and because its flowers have some ornamental appeal, we answered "a" with high uncertainty.
Ent-4 (Entry as a contaminant)			
Ent-4a (Plant present in Canada, Mexico, Central America, the Caribbean or China)	n - low		Currently, there is no evidence that <i>Adonis</i> <i>microcarpa</i> is present in Canada, Mexico, Central America, the Caribbean, or China. As stated under ES-1, it is present in western Asia, Australia, and the Mediterranean region.
Ent-4b (Contaminant of plant propagative material (except seeds))	n - low	0	We found no evidence that <i>Adonis microcarpa</i> is a contaminant of propagative plant material.
Ent-4c (Contaminant of seeds for planting)	y - low	0.04	It can be a contaminant of seed (Hunter, 2014). It is mainly found in agricultural systems such as wheat, barley, and cereal crops (Duretto, 2009; Parsons and Cuthbertson, 2001; Randall, 2007; Richardson et al., 2006).
Ent-4d (Contaminant of ballast water)	n - low	0	We found no evidence that <i>Adonis microcarpa</i> is a contaminant of ballast.
Ent-4e (Contaminant of aquarium plants or other aquarium products)	n - low	0	We found no evidence that <i>Adonis</i> <i>microcarpa</i> is a contaminant of aquarium plants or other aquarium products.
Ent-4f (Contaminant of landscape products)	? - max		We found no evidence that <i>Adonis</i> <i>microcarpa</i> is a contaminant of imported landscape products.
Ent-4g (Contaminant of containers, packing materials, trade goods, equipment or conveyances)	y - low	0.02	Seeds can adhere to clothing and in mud attached to machinery and vehicles (Parsons and Cuthbertson, 2001).
Ent-4h (Contaminants of fruit, vegetables, or other products for consumption or processing)	? - max		Adonis microcarpa can contaminate seed for livestock consumption (Hunter, 2014). Depending on whether such seed is processed into a meal or fed whole to animals, it may or may not present a significant pathway.
Ent-4i (Contaminant of some other pathway)	e - negl	0.04	<i>Adonis microcarpa</i> can contaminate hay (Offord, 2006). It can contaminate fodder (Hunter, 2014).
Ent-5 (Likely to enter through natural dispersal)	n - negl	0	Because Adonis microcarpa is not present in a region adjacent to the United States (GBIF, 2015; Kartesz, 2015; NGRP, 2015), it is very unlikely for it to enter through natural dispersal. Furthermore, Hunter (2014) states that A. microcarpa relies on transport as a contaminant for its dispersal.