Puccinia graminis: Molecular Analysis

Les J. Szabo
USDA ARS Cereal Disease Lab
University of Minnesota
St. Paul, MN USA

May 20, 2009
Life cycle

Puccinia graminis

Leonard & Szabo Mol Plant Pathol 2005
Puccinia graminis

- **Broad Host range**
 - 54 genera, 360 species

- **Subdivided**
 - Spore morphology (subspecies, varieties)
 - Host range (formae speciales)
 - *P. graminis* f.sp. *tritici*
 - Wheat, barley
 - *P. graminis* f.sp *secalis*
 - Rye, quack grass
 - *P. graminis* f.sp. *avenae*
 - oat
Phylogenetic analysis

![Phylogenetic Tree]

- *Puccinia triticina* (Triticum aestivum)
- *P. persistens* (Elytrigia intermedia)
- *P. persistens* (E. repens)
- *P. agropyrina* (Elytrigia sp.)
- *P. recondita* (Aegilops ovata)
- *P. recondita* (Secale cereale)
- *P. hordei* (Hordeum vulgare)
- *P. holcina* (Holcus lanatus)
- *P. triseti* (Trisetum flavescens)
- *P. striiformis* (Poa pratensis)
- *P. striiformis* (T. aestivum)
- *P. striiformis* (Dactylis glomerata)
- *P. graminis* (T. aestivum)
- *P. graminis* (S. cereale)
- *P. graminis* (E. repens)
- *P. graminis* (P. pratensis)
- *P. graminis* (D. glomerata)
- *P. hemerocallidis*

10 changes
Race Nomenclature
Wheat Stem Rust Differentials

- Set includes 20 lines
- Most are single R gene lines with a common background
- Infection types (IT) are characteristic of particular R gene

Low IT (R) 0; 1; 1-; 11; 2; 2+; 3; 4

High IT (S)
Race Nomenclature

<table>
<thead>
<tr>
<th>Set</th>
<th>Line</th>
<th>Sr Gene</th>
<th>IT</th>
<th>Race</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ISr5Ra</td>
<td>5</td>
<td>4</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>T.m.deri.</td>
<td>21</td>
<td>3+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verstein</td>
<td>9e</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISr7bRa</td>
<td>7b</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>ISr11Ra</td>
<td>11</td>
<td>4</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>ISr6Ra</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ISr8Ra</td>
<td>8a</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CnsSr9g</td>
<td>9g</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>W2691SrTt-1</td>
<td>36</td>
<td>0</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>W2691Sr9b</td>
<td>9b</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BtSr30Wst</td>
<td>30</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comb. VII</td>
<td>17+13</td>
<td>2++</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ISr9aRa</td>
<td>9a</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td></td>
<td>ISr9dRa</td>
<td>9d</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>W2691Sr10</td>
<td>10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CnsSrTmp</td>
<td>N</td>
<td>2+</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>LcSr24Ag</td>
<td>24</td>
<td>2</td>
<td>K</td>
</tr>
<tr>
<td></td>
<td>Sr31/LMPG</td>
<td>31</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VPM1</td>
<td>38</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>McNair701</td>
<td>Mc</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Ug99 - History

First reported in Uganda in 1999
--Pretorius et al. 2000 Plant Dis 84:203

- Virulent on Sr31
- Sr31 is located on 1BL.1RS translocation.
 - 1BL.1RS translocation is widely spread in wheat worldwide due to increased adaptation and higher yield.
 - 1BL.1RS carries Lr26, Yr9.
 - Virulence to Yr9, originated in the eastern Africa in mid 80s, caused worldwide epidemics.
Ug99 - History

- In 2002 and 2004, CIMMYT nursery planted in Njoro, Kenya were severely infected by stem rust.
- Kenyan isolates from 2004 collections were characterized as race TTKS with Sr31 virulence.
 - Wanyera et al., 2006 Plant Dis.
- Ug99 (98UGA1) = race TTKS with Sr31 virulence
- Expanded set of wheat differentials developed to include Sr31 (race TTKS).
 - Jin et al., 2008 Plant Dis.
In 2006, scattered MS to S pustules with low frequency were seen in many Sr24 lines in the Kenyan stem rust nursery. Sr24 virulence was suspected.

- Seedling tests confirmed the variant was virulent on Sr 24 as well as Sr 31
- Race TTKST

Sr36 Virulence

- In 2007, scattered MS pustules were observed on Sr36 lines in Kenya plots.

- Seedling tests confirmed the variant was virulent on Sr 36 as well as Sr 31
- Race TTTKS

Jin et al., 2009. Plant Dis.
Race Nomenclature: Ug99

<table>
<thead>
<tr>
<th>Set</th>
<th>Line</th>
<th>Sr Gene</th>
<th>04KEN156 TTKSK</th>
<th>06KEN19v TTKST</th>
<th>07KEN24-1 TTTSK</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ISr5Ra</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>T.m. deri.</td>
<td>21</td>
<td>3+</td>
<td>3+</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Verstein</td>
<td>9e</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ISr7bRa</td>
<td>7b</td>
<td>3</td>
<td>3+</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>ISr11Ra</td>
<td>11</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ISr6Ra</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ISr8Ra</td>
<td>8a</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CnsSr9g</td>
<td>9g</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>W2691SrTl-1</td>
<td>36</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>W2691Sr9b</td>
<td>9b</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>BtSr30West</td>
<td>30</td>
<td>4</td>
<td>3+</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Comb. VII</td>
<td>17+13</td>
<td>2++</td>
<td>2++</td>
<td>2++</td>
</tr>
<tr>
<td>4</td>
<td>ISr9aRa</td>
<td>9a</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ISr9dRa</td>
<td>9d</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>W2691Sr10</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>CnsSrTmp</td>
<td>Tmp</td>
<td>2+</td>
<td>2+</td>
<td>2+</td>
</tr>
<tr>
<td>5</td>
<td>LcSr24Ag</td>
<td>24</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sr31/LMPG</td>
<td>31</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>VPM1</td>
<td>38</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>McNair701</td>
<td>McN</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
SSR Marker Analysis

PgtSSR47
SSR Marker Analysis

- Compared 18 isolates from Kenya representing races:
 - TTKSK (Ug99)
 - TTKST (Sr24 vir)
 - TTTSK (Sr36 vir)
- 13 SSR markers tested.
- All isolates of these 3 races had identical SSR genotypes.
- SSR genotypes for Ug99 was distinct from North American isolates.

Jin et al., 2009. Plant Dis.
Pgt Genomic Resources
Pgt Genome Sequence

- U.S. Isolate
 - CRL 75-36-700-3

- Standard ABI/Sanger sequence
 - 12X
 - Assembly (7X)
 - 4,557 contigs (81.5 Mb)
 - 392 supercontigs

- http://www.broad.mit.edu/annotation/genome/puccinia_graminis.3
“Ug99” sequencing

- Illumina
 - 75 base read length

- Isolate: 04KEN156/04
 - Race: TTKSK ("Ug99")
 - Approximately 176 million reads (16 lanes)

- Reference isolate: CDL 75-36-700-3 (Ref)
 - Race: SCCL
 - Approximately 21 million reads (2 lanes)
Comparison of DNA sequence data from reference isolate and Ug99 was used to develop a SNP database.

DNA regions containing 2 SNPs within 10 base were chosen as targets for assay development.

Primers and TaqMan probes are being tested for a selected set of target regions.
Summary
Summary

- **Ug99**
 - Lineage contains at least three members:
 - TTKSK Ug99 (vir Sr31)
 - TTKST (vir Sr31 & Sr24)
 - TTTSK (vir Sr31 & Sr36)
 - SSR genotypes of isolates from these three races are identical indicating that the variants (TTKST and TTTSK) are derived by mutation rather than sexual recombination.
Summary

- Genomic resources
 - Standard ABI/Sanger sequence
 - U.S. isolate (CRL 75-36-700-3)
 - Assembled and annotated
 - Illumina
 - Ug99 (04KEN156)
 - Reference U.S. isolate
 - Using SNP data to develop PCR assay specific for Ug99.