DRAFT CHAPTER 7.X.

ANIMAL WELFARE AND DAIRY CATTLE PRODUCTION SYSTEMS

General comment: Throughout the draft chapter, our comments offer outcome-based alternatives to the resource- or input-based language that is presented. The U.S. appreciates the opportunity to help align this chapter with the OIE’s Guiding Principles for Animal Welfare and specifically, with Article 7.1.2, item 8 which reads: “That equivalent outcomes based on performance criteria, rather than identical systems based on design criteria, be the basis for comparison of animal welfare standards and recommendations.”

Additionally, throughout the text there is reference to “animal health and [or] animal welfare”; however, according to the OIE’s own definition, ‘animal health’ is part of ‘animal welfare’, rather than being distinct from it. In particular, ‘or’ statements within the text seem to be in conflict with the OIE definition of “animal welfare”.

Article 7.X.1.

Definition

Dairy cattle production systems are defined as all commercial cattle production systems where the purpose of the operation includes some or all of the breeding, rearing and management of cattle intended for production of milk.

Article 7.X.2.

Scope

This chapter addresses the welfare aspects of dairy cattle production systems.

Article 7.X.3.

Commercial dairy cattle production systems

Commercial dairy cattle in commercial production may be kept in housed or pastured systems, or a combination of both systems include:

1. Housed or confined
 These are systems where cattle are kept housed on a formed surface indoors or outdoors in confinement and are fully dependent on humans to provide for basic animal needs such as food, shelter and water on a daily basis. The type of housing will depend on the environment, climatic conditions and management system. The animals may be loose housed, unrestrained or tethered, within this housing system.

2. Pastured
 These are systems where cattle have the freedom to roam live outdoors, and where the cattle have some autonomy over diet selection (through grazing), water consumption and access to shelter. Pastured systems do not involve exclude any housing except that required for milking.

3. Combination systems
These are systems where cattle are managed in exposed to any combination of housed, housing, confinement or pasture husbandry methods, production systems, either simultaneously, or varied according to weather, changes in climatic conditions or physiological state of the cattle.

Rationale: Unnecessary qualifiers to accurately describe this system.

Article 7.X.4.

Criteria (or measurables) for the welfare of dairy cattle

The following outcome-based criteria, specifically animal-based criteria, can be useful indicators of animal welfare. The use of these indicators and their appropriate thresholds should be adapted to the different situations where dairy cattle are managed. Consideration should also be given to the design of the production system and stockmanship. The use of these indicators and their appropriate thresholds should be adapted to the different situations where dairy cattle are managed. Consideration should also be given to the design of the system. These criteria can be considered as a tool to monitor the efficiency impact of design and management, given that both of these can affect animal welfare will be affected by both system design and stockmanship.

Rationale: Unnecessarily verbose. This alternative language parallels Article 7.9.4 in the Chapter on Animal Welfare and Beef Cattle Production systems. The addition of the word “production” is to be consistent with the language used in 7.X.3.

1. **Behaviour**

 Certain behaviours could indicate an animal welfare problem. These include decreased feed intake, altered locomotory behaviour and posture, altered lying time, human-animal relationship, altered respiratory rate and panting, coughing, shivering and huddling, grooming and the demonstration of stereotypic, agonistic, aggressive, depressive or other abnormal behaviours (Wiepkema et al., 1983; Moss, 1992; Desire et al., 2002; Appleby, 2006; Mason and Latham, 2004; Lawrence, 2008; Chapinel et al., 2009).

2. **Morbidity rates**

 Morbidity rates, including for infectious and metabolic diseases such as mastitis and metritis, lameness, metabolic diseases, parasitic diseases, post-partum and post-procedural complications and injury rates, above recognised thresholds, may be direct or indirect indicators of the animal welfare status of the whole herd. Understanding the aetiology of the disease or syndrome is important for detecting potential animal welfare problems (Blecha, 2000). Mastitis, lameness and hoof, reproductive and metabolic diseases are also particularly important animal health problems for adult dairy cows. Scoring systems, such as body condition, lameness scoring, scoring and milk quality somatic cell count, can provide additional information (Sprecher et al., 1997; Roche et al., 2004; EFSA, 2012). Both clinical examination and pathology should be utilised as an indicator of disease, injuries and other problems that may compromise animal welfare. Post-mortem examination is useful to establish causes of death in cattle.

Rationale: Lameness is a disease of the hoof, and more consistent with the other categories of diseases in that sentence. We believe that the intent of scoring “milk quality” refers to the somatic cell count of milk.
3. Mortality and culling rates

Mortality and culling rates affect the length of productive life, and like morbidity rates, may be direct or indirect indicators of the animal welfare status (Moss, 1992). Depending on the production system, estimates of mortality and culling rates can be obtained by analysing measuring the rate and causes numbers of deaths and cullings, and the their temporal temporal and spatial patterns of mortality occurrence. Mortality and culling rates should be reported recorded regularly, i.e. daily, monthly, annually or with reference to key husbandry activities within the production cycle.

Necropsy is useful in establishing causes of death.

Rationale: Mortality and culling rates can “affect” more than just the length of productive life. Reference not needed, as is the case in Article 7.9.4.5. Suggesting a clear way to describe how mortality and culling rates can be obtained.

4. Changes in milk yield, body weight and body condition and milk yield

In growing animals, body weight gain (failure to achieve appropriate changes outside the expected growth rate curve) especially excessive sudden loss may be are indicators of poor animal health and animal health or animal welfare. Future performance, including milk yield and fertility, of replacement heifers can be affected by under- or over-nutrition at different stages of rearing.

In lactating animals, body condition score outside an acceptable range, significant body weight change and significant decrease in milk yield may be indicators of compromised welfare (Roche et al., 2004; Roche et al., 2009).

In non-lactating animals, including bulls, body condition score outside an acceptable range and significant body weight change may be indicators of compromised welfare.

5. Reproductive efficiency

Reproductive efficiency can be an indicator of animal health and animal welfare status. Poor reproductive performance, compared with the performance expected standard for that particular breed, can indicate animal welfare problems. Examples may include:

- anoestrus or extended post-partum interval prolonged post-partum anoestrus,
- low conception rates,
- high abortion rates,
- high rates of dystocia,
- retained placenta,
- metritis,
- loss of fertility in breeding bulls.

6. Physical appearance

Physical appearance may be an indicator of animal health and animal welfare, as well as the conditions of management. Attributes of physical appearance that may indicate compromised welfare include:

- presence of ectoparasites,
- abnormal coat colour, texture or hair loss,
- excessive soiling with faeces, mud or dirt (cleanliness),
- abnormal swellings, injuries and lesions,
- abnormal discharges (e.g. purulent discharge from nose, eyes, reproductive tract).
feet abnormalities,

– abnormal posture indicating pain (e.g. rounded back, head low),
– emaciation and or dehydration.

Rationale: Swellings, injuries and lesions are abnormal, hence “abnormal” is an unnecessary qualifier. However, since lochial discharges are normal, “abnormal” is an appropriate qualifier for types of discharge. Hooves are the correct terminology for cattle feet. Finally, emaciation, a condition related to poor nutrition due to diet or disease condition, can occur without dehydration; conversely dehydration, a condition related lack of water or water loss due to disease condition, can occur without emaciation. Therefore, suggest deleting “and” and adding “or”.

– negative behaviour at during milking time, such as reluctance to enter the milking parlour, kicking, vocalisation,

Rationale: The deleted text detracts from the purpose of the Article, which is to give examples of indicators.

– percentage of animals injured injuries sustained during handling, such as bruising, lacerations, broken horns or tails and fractured legs,
– percentage of animals animals vocalising abnormally or excessively during restraint and handling,

Rationale: Assessments of cattle vocalization depends on whether it happens or not.

– disturbed behaviour in the chute or race such as repeated reluctance to enter behaviour,
– percentage of animals animals slipping or falling.

8. Complications due to from routine common procedures management

Surgical and non-surgical procedures may be performed in dairy cattle for improving animal performance, facilitating management, and improving human safety and animal welfare (e.g. disbudding, hoof trimming), and treatment of certain conditions (e.g. disbudding, hoof trimming, displaced abomasum). However, if these procedures are not performed properly, animal welfare can be compromised. Indicators of such problems could include:

– post procedure infection and, swelling and pain behaviour,
– reduced feed and water intake,
– post procedure body condition and weight loss,
– morbidity and mortality.

Article 7.X.5.

Provisions for good animal welfare

Ensuring high good welfare of dairy cattle is contingent on several management factors, including system design, environmental management, and stockmanship which includes responsible husbandry and provision of appropriate care. Serious problems can arise in any system if one or more of these elements are lacking.

Each recommendation includes a list of relevant outcome-based measurables derived from Article 7.X.4. This does not exclude other measures being used where appropriate.
1. Recommendations on system design and management including physical environment

When new facilities are planned or existing facilities are modified, professional advice on design in regards to animal health and welfare should be sought (e.g. Milk Development Council, 2006).

Many aspects of the environment can impact on the health and welfare of dairy cattle. These include heat and cold, air quality, lighting, noise, etc.

Rationale: Editorial.

a) Thermal environment

Although cattle can adapt to a wide range of thermal environments particularly if appropriate breeds are used for the anticipated conditions, sudden fluctuations in weather can cause heat or cold stress.

i) Heat stress

The risk of heat stress for cattle is influenced by environmental factors including air temperature, relative humidity, and wind speed, animal density (area and volume available per animal), lack of sufficient shade availability, and animal factors including breed, age, body condition, metabolic rate and stage of lactation, and coat colour and density (West, 2003; Bryant et al., 2007).

Rationale: “Lack of sufficient shade” is a pejorative phrase not consistent with other terms and phrases in the sentence. Suggest deleting and replacing with “shade availability.”

Animal handlers should be aware of the risk that heat stress poses to cattle and of the thresholds in relation to heat and humidity that may require action. As conditions change, routine daily activities that require moving cattle should be amended appropriately. If the risk of heat stress reaches very high levels the *animal handlers* should institute an emergency action plan that could include provision of shade, fans, easy access to additional drinking water, reduction of animal density, and provision of cooling systems as appropriate for the local conditions (Igono et al., 1987; Kendall et al., 2007; Blackshaw and Blackshaw, 1994).

Outcome-based measurables: feed and water intake, behaviour, including especially respiratory rate and panting, physical appearance, especially dehydration, morbidity rate, mortality rate, changes in milk yield.

ii) Cold stress

Protection from extreme weather conditions should be provided when these conditions are likely to create a serious risk to the welfare of cattle, particularly in neonates and young cattle and others that are physiologically compromised. This could be provided by extra bedding and natural or man-made shelters (Manninen et al., 2002).

During extreme cold weather conditions, *animal handlers* should institute an emergency action plan to provide cattle with shelter, adequate feed and water.

Outcome-based measurables: mortality and morbidity rates, physical appearance, behaviour, including especially abnormal postures, shivering and huddling, growth rate curve, body condition and weight loss.

b) Lighting

Confined Housed cattle that do not have sufficient access to natural light should be provided with supplementary lighting which follows natural periodicity sufficient for their health and welfare, to facilitate natural behaviour patterns and to allow adequate and safe inspection of the cattle (Arab et al., 1995; Dahl et al., 2000; Phillips et al., 2000). The lighting should not cause discomfort to
the animals. Housed dairy cows should be provided with subdued night time lighting. Entrance to restraint devices should be well lit.

Outcome-based measurables: behaviour, especially altered locomotory behaviour, morbidity, physical appearance, mobility

c) Air quality

Good air quality and ventilation are important factors for the health and welfare of cattle by and reducing the risk of respiratory discomfort and diseases. Air quality is affected by air constituents such as gases, dust and micro-organisms, and is influenced strongly by management and building design in housed systems. The air composition is influenced by the stocking animal density, the size of the cattle, flooring, bedding, waste management, building design and ventilation system.

Proper ventilation is important for effective heat dissipation in cattle and to preventing the build-up of effluent gases (e.g. ammonia and hydrogen sulphide), including those from manure storage systems, and dust in the confinement housing unit. Poor air quality and poor ventilation are risk factors for respiratory discomfort and diseases. The ammonia level in enclosed housing and production systems should not exceed 25 ppm. A useful indicator is that if air quality is unpleasant for humans it is also likely to be a problem for cattle.

Rationale: While high ammonia levels can impact animal health, prescriptive standards, such as setting a level of 25 ppm for ammonia, is contrary to the effort to develop outcome-based standards.

d) Noise

Cattle are adaptable to different levels and types of noise. However, exposure of cattle to sudden and unexpected noises, including from personnel, should be minimised where possible to prevent stress and fear reactions. Ventilation fans, alarms, feeding machinery or other indoor or outdoor equipment should be constructed, placed, operated and maintained in a manner that minimises sudden and unexpected noise.

Outcome-based measurables: behaviour especially agitation and nervousness altered locomotory behaviour, changes in milk yield.

e) Flooring, bedding, resting surfaces and outdoor areas

In all production systems cattle need a well-drained and comfortable place to rest (Baxter et al., 1983; Baxter, 1992; Moberg and Mench, 2000; Bell and Huxley, 2009; O’Driscoll et al., 2007). All cattle in a group should have sufficient space to lie down and rest at the same time (Kondo et al., 2003; Barrientos et al., 2013; Chapinal et al., 2013).

Particular attention should be given to the provisions for calving areas used for calving. The environment in such areas (e.g. floors, bedding, temperature, calving pen and hygiene) should be appropriate to ensure the welfare of calving cows and new born calves (Sepúlveda-Varas et al. accepted).

In housed systems calving areas should be thoroughly cleaned and provided with fresh bedding between each calving. Group pens for calving should be managed based on the principle ‘all in - all out’. The group calving pen should be thoroughly cleaned and provided with fresh bedding between each animal group. The time interval between first and last calving of cows kept in the same group calving pen should be minimised.

Outdoor calving pens and paddocks field should be selected to provide the cow with a clean and comfortable environment. (See also 7.x.5.1 point 2 point i.)

Floor management in housed production systems can have a significant impact on cattle welfare (Ingvartsen et al., 1993; Rushen and de Passillé, 1992; Barkema et al., 1999; Drissler et al.,
2005). Areas that compromise welfare and are not suitable for resting (e.g. places with excessive water and faecal accumulation, wet bedding (Fregonesi et al., 2007)) should not be included in the determination calculation of the area available for cattle to lie down.

Slopes of the pens should be maintained to allow water to drain away from feed troughs and not pool excessively in the pens.

Facilities – Flooring, bedding, resting surfaces and outdoor yards should be cleaned as conditions warrant, to ensure good hygiene, comfort and minimise disease risk of diseases and injuries.

In pasture systems, stock should be rotated between fields, paddocks to ensure good hygiene and minimise disease risk of diseases and injuries.

Some form of bedding should be provided to all animals housed on concrete. In eStraw, sand or other bedding systems such as rubber mats, crumbled-rubber-filled mattresses and waterbeds, the are examples of bedding should be suitable (e.g., hygienic, non-toxic) and maintained to that can provide cattle with a clean, dry and comfortable place in which to lie (Fisher et al., 2003; Zdanowicz et al., 2004; Bell, 2007; Bell and Huxley, 2009; Fregonesi et al., 2009).

Rationale: OIE standards should be outcome-based. The outcome in this case is a clean, dry and comfortable place to lie down.

The design of a standing, or cubicle, or free stall, should be such that the animals can stand and lie comfortably on a solid surface (e.g. length, width and height should be appropriate for the size of the largest animal) (Tucker et al., 2003; Tucker et al., 2004; Bell 2007; Cook et al., 2008; Tucker et al., 2009; Bernardi et al., 2009; Anderson, 2010). There should be sufficient room for the animal to rest and to rise adopting normal postures, to move its head freely as it stands up, and to groom itself without difficulty. Where possible, this design should allow for the animal to move its head freely as it stands up. Where individual spaces are provided for cows to rest, there should be at least one space per cow (Fregonesi et al., 2007).

Rationale: Jensen et al. (2005) and Munksgaard et al. (2005) estimate that the lying requirement for housed cattle to be 12 -13 hours per day. Fregonesi et al. (2007) found that stocking densities up to 120 percent resulted in an average of 12 hours or more per day of lying time. Additionally, even at a stocking density of 150 percent (Fregonesi et al., 2007), the average lying time of 11.2 hours per day was higher than lying times observed for cattle on pasture (Tucker et al., 2007). Fregonesi et al. (2007) do not suggest nor support a requirement of “at least one space per cow” for housing systems in their paper, rather they simply conclude “When there were fewer freestalls than cows, lying times were reduced and cows spent more time standing outside the stall.” Indeed when evaluating risk factors for reduced lying time, more recent research indicates stocking density is not an overwhelmingly important factor (Charlton et al., 2014; Ito et al., 2014). This research (Charlton et al., 2014; Ito et al., 2014) indicates that other factors, such as access to deep bedding, are more influential in terms of lying behavior in situations where many factors vary. This document should be outcome-based, rather than prescriptive and should emphasize the goals, rather than mandate how to achieve them. If the goal is for animals to have the ability to lie down and have access to bedding, then, as the above research has shown, this goal can be achieved without requiring one stall per cow. Additionally, this document should reflect differing production practices employed around the world. Providing for one space per cow would be incredibly difficult in various countries, especially developing countries where facilities may not be as advanced or well-equipped as those in the developed world.

References:

Alleys and gates should be designed and operated to allow free movement of cattle. Floors should be designed to minimise slipping and falling, promote foot health, and reduce the risk of claw injuries. Slippery surfaces should be avoided (e.g. grooved concrete, metal grating, not sharp; rubber mats or deep sand) to minimise slipping and falling (Rushen and de Passillé, 2006; Haufe et al., 2009).

If a housing system includes areas of slatted floor, cattle, including replacement stock, should have access to a solid lying area. The slat and gap widths should be appropriate to the hoof size of the cattle to prevent injuries (Hinterhofer et al., 2006; Telezhenko et al., 2007).

Rationale: Requiring a solid lying area for housing systems that include areas of slatted floor is a resource or input based requirement which is in direct opposition to the OIE’s Guiding Principles for Animal Welfare outlined in Chapter 7.1.2 item 8 of the Terrestrial Code. “That equivalent outcomes based on performance criteria, rather than identical systems based on design criteria, be the basis for comparison of animal welfare standards and recommendations.”

If cattle have to be tethered whether indoors or outdoors, they should, as a minimum, be able to lie down, and stand up, maintain normal body posture, and turn around groom themselves unimpeded. Cows kept in tie stall housing should be allowed sufficient untethered exercise to prevent welfare problems. When tethered outdoors they should be able to walk. Animal handlers should be aware of the higher risks of welfare problems where cattle are tethered (Loberg et al., 2004; Tucker et al., 2009).

Where breeding bulls are in housing systems, care should be taken to ensure that they have sight of other cattle with sufficient space for resting and exercise. If used for natural mating, the floor should not be slatted or slippery.

Outcome-based measurables: morbidity rates, especially (e.g. lameness, and injury rates (e.g. hock and knee injuries and skin lesions, pressure sores), behaviour, especially altered posture, grooming and locomotory behaviour, changes in weight and body condition score, physical appearance (e.g. hair loss, cleanliness score), growth rate curve.

f) Location, construction and equipment

The impacts of climate and geographical factors on dairy cattle should be evaluated when farms are established. Efforts should be made to mitigate any negative impacts of those factors, including matching dairy breed to location and consideration of alternate sites.

Farms for dairy cattle should be situated in an appropriate geographical location for the health, welfare and productivity of the cattle.

All facilities for dairy cattle should be constructed, maintained and operated to minimise the risk to the welfare of the cattle (Grandin, 1980).

In pasture and combination systems tracks and races between the milking area and paddocks, field should be laid out and managed so as to minimise the overall distances walked. Construction and maintenance of tracks and races, including their surface, should minimise any risk to the welfare of the cattle, especially from foot compromised hoof health problems.

Rationale: Hooves are the correct terminology for cattle feet.

Equipment for milking, handling and restraining dairy cattle should only be used in a way that minimises the risk of injury, pain or distress. Manufacturers of such equipment should consider animal welfare when preparing operating instructions.

Rationale: The OIE’s mandate does not extend to setting standards for manufacturers of equipment.
Electrified equipment designed to control animal behaviour (e.g. cow trainer, electrified gate) that has been associated with increased incidence of welfare problems should not be used if not designed, used and maintained properly.

Rationale: We suggest adding the word “used” to the sentence to clarify that the equipment should not be used inappropriately.

Electric electrified fences and gates should be well-designed and maintained to avoid welfare problems, and used only according to manufacturer’s instructions. Electrified fences and gates should be used only according to manufacturer’s instructions.

Rationale: Using these items only according to manufacturer’s instructions would encompass keeping them in good working order i.e. “well-maintained.”

Cattle in all housed or pastured production systems should be offered adequate space for comfort and socialisation (Kondo et al., 2003). Where access to an outdoor area, including pasture, is possible, there may be additional benefits to dairy cattle from the opportunity to graze and exercise especially and a decreased risk of lameness.

Rationale: This is not an outcome that Member countries and stakeholders can strive to meet. This statement, if retained, would be more appropriately addressed in Article 7.X.5.1.e.

In all production systems, feed and water provision should allow all cattle to have unimpeded access to feed and water (DeVries and Keyserlingk, 2005; DeVries et al., 2005, DeVries et al., 2004; Endres et al., 2005). Feeding systems should be designed to minimise agonistic behaviour. Feeders and water providers should be easy to clean and free of spoiled, mouldy, sour, unpalatable feed and faecal contamination.

Milking parlours, free stalls, standings, cubicles, races, chutes and pens should be free from sharp edges and protrusions to prevent injury to cattle.

Where possible, there should be a separated area space to closely examine where individual animals can be examined closely safely and which should have has restraining facilities.

Rationale: Suggested text clarifies the intent of the paragraph without being prescriptive. The outcome is the safe examination of an individual animal. Separation and restraining facilities are prescriptive.

A hospital area for When relevant, sick and injured animals should be provided so the animals can be treated away from healthy animals. When a dedicated space is provided this should accommodate all the needs of the animal e.g. recumbent animals may require additional bedding or an alternative floor surface.

Hydraulic, pneumatic and manual equipment should be adjusted, as appropriate, to the size of cattle to be handled. Hydraulic and pneumatic operated restraining equipment should have pressure limiting devices to prevent injuries. Regular cleaning and maintenance of working parts is essential imperative to ensure the system functions properly and safe for the cattle.

Mechanical and electrical devices used in facilities should be safe for cattle.

Dipping baths and spray races are sometimes used in dairy cattle production for ectoparasite
control. Where these are used, they should be designed and operated to minimise the risk of crowding and to prevent injury and drowning.

Collecting yards (e.g. entry to the milking parlour) should be designed and operated to minimise stress, crowding and prevent injuries and lameness.

The loading areas and ramps, including the slope of the ramp, should be designed to minimise stress and injuries for the animals and ensure the safety of the animal handlers, according to Chapters 7.2., 7.3. and 7.4.

Outcome-based measurables: handling response, morbidity rate, especially lameness, mortality rate, behaviour, especially altered locomotory behaviour, injury rate, changes in weight and body condition score, physical appearance, lameness, growth curve rate.

g) Emergency plans

Where the failure of power, water and feed supply systems could compromise animal welfare, dairy producers should have contingency plans to cover the failure of these systems. These plans may include the provision of fail-safe alarms to detect malfunctions, back-up generators, access to maintenance providers, contact information for key service providers, ability to store water on farm, access to water cartage services, adequate on-farm storage of feed and alternative feed supply.

Dairy producers should have contingency plans to cover the evacuation of animals in case of emergency (e.g. fire, flooding).

Outcome based measurables: mortality, morbidity, behaviour, vocalization.

Preventive measures for emergencies should be input-based rather than outcome based. Contingency plans should include an evacuation plan and be documented and communicated to all responsible parties. Alarms and back-up systems should be checked regularly.

2. Recommendations on stockmanship and animal management

Good management and stockmanship are critical to providing an acceptable level of animal welfare. Personnel involved in handling and caring for dairy cattle should be competent and receive up-to-date appropriate with relevant experience or training to equip them with the necessary practical skills and knowledge of dairy cattle behaviour, handling, health, biosecurity, physiological needs and welfare.

There should be a sufficient number of animal handlers to ensure the health and welfare of the cattle.

a) Biosecurity and animal health

i) Biosecurity and disease prevention

For the purpose of this chapter, biosecurity means a set of measures designed to maintain a herd at a particular health status and to prevent the entry or spread of infectious agents.

Biosecurity plans should be designed and implemented and maintained, commensurate with the best possible desired herd health status, available resources and infrastructure, and current disease risk and, for OIE listed diseases in accordance with relevant recommendations found in the Terrestrial Code.

These biosecurity plans should address the control of the major sources and pathways for spread of pathogens:
- cattle, including introductions to the herd,
- calves coming from different sources,
- other domestic animals, and wildlife and pests,
- people including sanitation practices,
- equipment, tools and facilities.
– vehicles,
– air,
– water supply, feed and bedding,
– manure, waste and dead stock disposal
– feed,
– semen and embryos.

Outcome-based measurables: morbidity rate, mortality rate, reproductive efficiency, changes in weight and body condition score, changes in milk yield, changes in feed intake.

Rationale: Feed intake is a practical measurable that producers would and do monitor.

ii) Animal health management

For the purpose of this chapter, animal health management means a system designed to optimise the physical and behavioural health and welfare of the dairy herd. It includes the prevention, treatment and control of diseases and conditions affecting the herd (in particular mastitis, lameness, reproduction reproductive and metabolic diseases).

There should be an effective programme for the prevention and treatment of diseases and conditions, formulated in consultation with a veterinarian, where appropriate. This programme should include the recording of production data (e.g. number of lactating cows, births, animal movements in and out of the herd, milk yield), morbidities, mortalities, culling rate and medical treatments. It should be kept up to date by the animal handler. Regular monitoring of records aids management and quickly reveals problem areas for intervention.

At national or regional level there should be programmes to gather records and monitor diseases of importance for animal welfare.

For parasitic burdens (e.g. endoparasites, ectoparasites and protozoa), a programme should be implemented to monitor, control and treat, as appropriate.

Lameness can be a problem in dairy cattle herds. Animal handlers should take measures to prevent lameness and monitor the state of feet hoof and claws, and take measures to prevent lameness and maintain feet hoof health (Sprecher et al., 1997; Flower and Weary, 2006; Chapinal et al., 2009)

Rationale: Hooves are the correct terminology for cattle feet.

Those responsible for the care of cattle should be aware of early specific signs of disease or distress (e.g. coughing, ocular discharge, changes in milk appearance, changes in locomotory behaviour score), and non-specific signs such as reduced feed and water intake, reduction of milk production, changes in weight and body condition, changes in behaviour or abnormal physical appearance (FAWC, UK, 1993; Ott et al., 1995; Anonymous, 1997; Blecha, 2000; EU-SCAHAW, 2001; Webster, 2004; Mellor and Stafford, 2004; Millman et al., 2004; OIE, 2005; Appleby, 2006; Broom, 2006; Gehring et al., 2006; Fraser, 2008; Blokhuis et al., 2008; Mench, 2008; Fraser, 2009; Ortiz-Pelawz et al., 2008; FAWAC, Ireland; Hart, 1987; Tizard, 2008; Weary et al., 2009).

Cattle at higher risk of disease or distress will require more frequent inspection by animal handlers. If animal handlers suspect the presence of a disease or are not able to correct the causes of disease or distress, they should seek advice from those having training and experience, such as veterinarians or other qualified advisers, as appropriate.

In the event of an OIE listed disease being suspected or diagnosed, the official veterinary services should be notified (see Chapter 1.1. of the Terrestrial Code).
Vaccinations and other treatments administered to cattle should be **carried out undertaken** by veterinarians or other people skilled in the procedures and on the basis of veterinary or other expert advice.

Animal handlers should **be competent have experience** in managing chronically ill or injured cattle, for instance in recognising and **dealing with managing non-ambulatory** cattle, especially those that have recently calved. Veterinary advice should be sought as appropriate.

Rationale: Editorial.

Non-ambulatory cattle should have access to water at all times and be provided with feed at least once daily and milked as necessary. They should be provided shade and protected from predators. They should not be transported or moved unless absolutely necessary except for treatment or diagnosis. Such movements should be done carefully using methods avoiding dragging or excessive lifting.

Animal handlers should also be competent in assessing fitness to transport, as described in Chapter 7.3.

In case of **chronic disease** or injury, when treatment has failed or been attempted and recovery deemed is unlikely (e.g. cattle that are unable to stand up, unaided or refuse to eat or drink), the animal animal should be humanely killed without delay (AABP, 2013; AVMA, 2013) and in accordance with to Chapter 7.5 or Chapter 7.6 as applicable.

Rationale: Because euthanasia may be an unpleasant task, it may be delayed. It is important that the Code specifically state that euthanasia of a suffering animal must be completed in a timely manner.

animals Animals suffering from photosensitisation should be provided with offered shade and where possible the cause should be identified.

Outcome-based measurables: morbidity rate, mortality rate, reproductive efficiency, depressive behaviour, altered locomotory behaviour, physical appearance and changes in weight and body condition score, changes in milk yield.

iii) Emergency plans for disease outbreaks

Emergency plans should cover the management of the farm in the face of an emergency disease outbreak, consistent with national programmes and recommendations of Veterinary Services as appropriate.

b) Nutrition

The nutrient requirements of dairy cattle have been well defined. Energy, protein, mineral and vitamin content of the diet are major factors determining milk production and growth, feed efficiency, reproductive efficiency, and body condition (National Research Council, 2001).

Cattle should be provided with access to an appropriate quantity and quality of balanced nutrition that meets their physiological needs. **Feeding systems should be designed to minimise agonistic behaviour.**

Where cattle are maintained in outdoor conditions, short term exposure to climatic extremes may prevent access to nutrition that meets their daily physiological needs. In such circumstances the animal handler should ensure that the period of reduced nutrition is not prolonged and that extra food and water supply are provided if welfare would otherwise be compromised.

Animal handlers should have adequate knowledge of appropriate body condition scores scoring systems for their cattle and should not allow body condition to go outside an acceptable range according to breed and physiological status (Roche et al., 2004; Roche et al., 2009).

Feedstuffs and feed ingredients should be of satisfactory quality to meet nutritional needs and
stored to minimise contamination and deterioration (CA 2004, CAC/RCP 54-2004). Where appropriate, feed and feed ingredients should be tested for the presence of substances that would adversely impact on animal health (Binder, 2007). Control and monitoring of animal feed should be implemented in accordance with relevant recommendations in Chapter 6.3.

The relative risk of digestive upset in cattle increases as the proportion of grain increases in the diet or if quality of silage is poor. Therefore, when grain or new diets is given to dairy cattle it should be introduced slowly and constitute no more than 50% of the daily diet. Palatable fibrous food such as silage, grass and hay should be available ad libitum to meet metabolic requirements in a way that promotes digestion and ensures normal rumen function.

Animal handlers should understand the impact of cattle size and age, weather patterns, diet composition and sudden dietary changes in respect to digestive upsets and their negative consequences (displaced abomasum, sub-acute ruminal acidosis, bloat, liver abscess, laminitis) (Enemark, 2008; Vermunt and Greenough, 1994). Where appropriate, dairy producers should consult a cattle nutritionist for advice on ration formulation and feeding programmes.

Particular attention should be paid to nutrition in the last month of pregnancy, with regards to energy balance, roughage and micronutrients, in order to minimise calving and post-calving diseases and body condition loss (Drackley, 1999; Huzzey et al., 2005; Bertoni et al., 2008; Goldhawk et al, 2009; Jawor et al., 2012; Vickers et al., 2013).

Liquid milk (or milk replacer) is essential for healthy growth and welfare. However, feeding calves all-liquid diets as the sole source of nutrition after 4-6 weeks of age limits the physiological development of the fore-stomach, rumen and the normal development of the process of rumination. Calves over two weeks old should have a sufficient daily ration of fibrous food and starter ration (concentrate) to promote rumen development and to reduce abnormal oral behaviours (Reece & Holleklie, 1987).

Dairy producers should become familiar with potential micronutrient deficiencies or excesses for housed and pastured production systems in their respective geographical areas and use appropriately formulated supplements where necessary.

All cattle, including unweaned calves, need an adequate supply and access to palatable water that meets their physiological requirements and is free from contaminants hazardous to cattle health (Lawrence et al., 2004a; Cardot et al., 2008).

Outcome-based measurables: mortality rates, morbidity rates, behaviour, especially agonistic behaviour (at the feeding area), changes in weight and body condition score, reproductive efficiency, changes in milk yield, growth rate, curve, vocalisation.

c) Social environment

Management of cattle should take into account their social environment as it relates to animal welfare, particularly in housed systems (Le Neindre, 1989; Sato et al., 1993; Jóhannesson and Sørensen, 2000; Bøe and Færevik, 2003; Bouissou et al., 2001; Kondo et al., 2003). Problem areas include: agonistic and oestrus activity, mixing of heifers and cows, feeding cattle of different size and age in the same pens, decreased space allowance, high stocking density, insufficient space at the feeder, insufficient water access and mixing of bulls.

Management of cattle in all systems should take into account the social interactions of cattle within groups. The animal handler should understand the dominance hierarchies that develop within different groups and focus on high risk animals, such as very young, very old, small or large size for cohort group, for evidence of agonistic behaviour, bullying and excessive mounting behaviour. The animal handler should understand the risks of increased agonistic interactions between animals, particularly after mixing groups. Cattle that are suffering from excessive agonistic activity should be removed from the group (Bøe and Færevik, 2003; Jensen and Kyhn, 2000; von Keyserlingk et al., 2008).

When other measures have failed, cattle that are expressing excessive agonistic activity or excessive mounting behaviour should be removed from the group (Bøe and Færevik, 2003; Jensen and Kyhn, 2000; von Keyserlingk et al., 2008).

Animal handlers should be aware of the animal welfare problems that may be caused by mixing
of inappropriate groups of cattle, and provide adequate measures to minimise them (e.g. introduction of heifers in a new group, mixing of animals at different production stages that have different dietary needs) (Grandin, 1998; Grandin, 2003; Grandin, 2006; Kondo et al., 2003).

Horned and non-horned cattle should not be mixed because of the risk of injury (Menke et al., 1999). When farmers intend to change the genotype or polled phenotype of their animals (by disbudding or dehorning), they should take appropriate measures to reduce this risk.

Outcome-based measurables: behaviour, especially (e.g. lying times), physical injuries and lesions, changes in weight and body condition score, physical appearance (e.g. cleanliness), lameness scores, changes in milk yield, morbidity rate, mortality rate, growth rate, curve vocalisation.

Rationale: Editorial clarification to clarify the types of changes that may occur.

d) Stocking density Space allowance

Cattle in all production systems should be offered adequate space for comfort and socialisation (Kondo et al., 2003).

High stocking densities Insufficient and inadequate space allowance may increase the occurrence of injuries and have an adverse effect on growth rate, feed efficiency, and behaviour such as locomotion, resting, feeding and drinking (Martin and Bateson, 1986; Kondo et al., 2003).

Space allowance Stocking density should be managed taking into account different areas for lying, standing and feeding, such that Crowding should not do not adversely affect normal behaviour of cattle and durations of time spent lying (Bøe and Færevik, 2003).

This includes the ability to All cattle should be able to rest simultaneously, and each animal to lie down freely, stand up and move around freely, without the risk of injuries, move freely around the pen and access feed and water. All cattle should have access to sufficient room to rest and to rise adopting normal postures, to move its head freely as it stands up, and to groom itself without difficulty. In growing animals, space allowance Stocking density should also be managed such that weight gain and duration of time spent lying is not adversely affected by crowding (Petherick and Phillips, 2009). If abnormal behaviour is seen, corrective measures should be taken, such as increasing space allowance, reducing stocking density, redefining the areas available for lying, standing and feeding.

Rationale: The recommended change is made for consistency with the proposed language in 7. X. 51 e., 13th paragraph.

In pastured systems, stocking density should depend on the available feed and water supply and pasture quality (Stafford and Gregory, 2008).

Outcome-based measurables: behaviour, especially agonistic or depressive behaviour, morbidity rate, mortality rate, changes in weight and body condition score, physical appearance, changes in milk yield, parasite burden, growth rate, curve.

e) Protection from predators

Cattle should be protected as much as possible from predators.

Outcome-based measurables: mortality rate, morbidity rate (injury rate), behaviour, physical appearance.

f) Genetic selection
Welfare and health considerations, in addition to productivity, should be taken into account when choosing a breed or subspecies for a particular location or production system (Lawrence et al., 2001; Lawrence et al., 2004b; Boissy and Le Neindre, 1997; Dillon et al., 2006; Boissy et al., 2007; Jensen et al., 2008; Veissier et al., 2008; Macdonald et al., 2008). Examples of these include nutritional maintenance requirement, ectoparasite resistance and heat tolerance.

In breeding programmes, at least as much attention should be paid to criteria conducive to the improvement of cattle welfare, including health, as to production criteria. The conservation and development of genetic lines of dairy cattle, which limit or reduce animal welfare problems, should be encouraged. Examples of such criteria include nutritional maintenance requirement, disease, ectoparasite resistance and heat tolerance.

Individual animals within a breed should be selected to propagate offspring that exhibit traits beneficial to animal health and welfare by promoting robustness and longevity. These include resistance to infectious and production related diseases, ease of calving, fertility, body conformation and mobility, and temperament.

Outcome-based measurables: morbidity rate, mortality rate, length of productive life, behaviour, physical appearance, reproductive efficiency, lameness, human-animal relationship, growth rate curve, body condition score outside an acceptable range.

g) Artificial insemination, pregnancy diagnosis and embryo transfer

Semen collection should be carried out by a trained operator in a manner that does not cause pain or distress to the bull and any teaser animal used during collection and in accordance with Chapter 4.6.

Artificial insemination and pregnancy diagnosis should be performed by a competent operator and in accordance with the provisions of Chapter 4.7.

Embryo transfer should be performed under an epidural or other anaesthesia by a trained operator, preferably a veterinarian or a veterinary para-professional and in accordance with the provisions of Chapter 4.7 and Chapter 4.8.

Outcome-based measurables: behaviour, morbidity rate, reproductive efficiency

h) Dam and Sire selection and calving management

Dystocia can be a welfare risk to dairy cattle (Proudfoot et al, 2009). Heifers should not be bred before they reach the stage of physical maturity sufficient to ensure the health and welfare of both dam and calf at birth. The sire has a highly heritable effect on final calf size and as such can have a significant impact on ease of calving. Sire selection for embryo implantation, insemination or natural mating, should take into account the maturity and size of the female.

Pregnant cows and heifers should be managed during pregnancy so as to achieve an appropriate body condition range for the breed. Excessive fatness increases the risk of dystocia and metabolic disorders during late pregnancy or after parturition.

Cows and heifers should be monitored when they are close to calving. Animals observed to be having difficulty in calving should be assisted by a competent handler as soon as possible after they are detected.

Outcome-based measurables: morbidity rate (rate of dystocia), mortality rate (cow and calf), reproductive efficiency, especially rate of dystocia, retained placenta and metritis, body condition score.

i) Newborn calves (see also 7.x.5.1e)

Calving aids should not be used to speed the birthing process, only to assist in cases of dystocia, and should not cause undue pain, distress, or further medical problems.

Newborn calves are susceptible to hypothermia. The temperature and ventilation of the birthing
area should consider the needs of the newborn calf. Soft, dry bedding and supplemental heat can help prevent cold stress.

Receiving adequate immunity from colostrum generally depends on the volume and quality of colostrum ingested, and how soon after birth the calf receives it. **Animal handlers** should ensure that calves receive sufficient colostrum—preferably from their own dam—and within 24 hours of birth to provide passive immunity. Colostrum is most beneficial if received during the first six hours after birth. Where there is risk of disease transfer from the dam, colostrum from a healthy cow should be used. Where possible, calves should continue to receive colostrum or equivalent for at least five days after birth.

Rationale: It is not necessary for health or welfare purposes for a calf to receive colostrum from their own dam. Indeed it is contraindicated if the dam’s colostrum is of poor quality such as a dam with *Mycobacterium paratuberculosis* (Tiwari et al., 2009; Collins et al., 2010). The most important factors of colostrum feeding are quantity, quality and time after birth and these factors are already referenced. The justification for feeding colostrum for five days is questioned and it could contribute to confusion about the critical colostrum feeding requirements for early in life. The United States is unaware of any sound scientific information supporting the value of colostrum feeding to newborn calves beyond 24 hours in production settings. If this is included, a credible source should be listed.

References:

Outcome-based measurables: mortality rate, morbidity rate, body condition, growth rate curve.

Rationale: Growth rates are generally most useful when measured over longer periods of time (several months). Few producers may actually document growth rates. Body condition is a more practical measure of the program (changes can be seen over days/weeks) as weight loss or lack of weight gain may be due to lack of colostrum (allowing for disease), lack of feed, sanitation (causing disease), etc.

j) Cow-calf separation and weaning

Different strategies to separate the calf from the cow are utilised in dairy cattle production systems. These include early separation (usually within 48 hours of birth) or a more gradual separation (leaving the calf with the cow for a longer period so it can continue to be suckled). Separation is can be stressful for both cow and calf (Newberry and Swanson, 2008; Weary et al., 2008).

For the purposes of this chapter, weaning means the change from a milk-based diet to a fibrous diet and the weaned calf no longer receives milk in its diet. This change should be made done.
gradually and calves should be weaned only when their ruminant digestive system has developed sufficiently to enable them to maintain growth, health and good welfare (Roth et al., 2009).

If necessary, dairy cattle producers should seek expert advice on the most appropriate time and method of weaning for their type of cattle and production system.

Outcome-based measurables: morbidity rate, mortality rate, behaviour after separation (vocalisations, activity of the cow and calf), physical appearance, changes in weight and body condition score, growth rate curve.

k) Rearing of replacement stock

Young calves are at particular risk of thermal stress. Special attention should be paid to management of the thermal environment (e.g. provision of additional bedding, nutrition or protection to maintain warmth and appropriate growth). (Camiloti, et al. 2012)

Where possible, replacement stock should be reared in groups. Animals in groups should be of similar age and physical size (Jensen and Kyhn, 2000; Bøe and Færevik, 2003).

Rationale: The deleted text is prescriptive language that dictates how animals are raised. These standards should address the outcomes that are desired by raising replacement stock in groups rather than in individual hutches or any other method. See below for related suggestions.

Whether reared individually or in group pens, when in pens, each calf should have enough space to be able to turn around, rest, stand up and groom comfortably and see and touch other animals. (See also 1.e). Whether reared individually or in group pens, each calf should have enough space to rest and to rise adopting normal postures, to move its head freely as it stands up, and to groom itself without difficulty and see other animals.

Rationale: This is for consistency with the proposed language in 7.X.5 1 e., 13th paragraph.

Replacement stock should be monitored for cross-sucking and appropriate measures taken to prevent this occurring (e.g. provision of sucking devices, revise or modify feeding practices, provide other environmental enrichments, use of nose guards or temporary separation) (Seo et al., 1998; Jemsem, 2003; De Paula Vieira et al., 2010; Ude et al., 2011).

Particular attention should be paid to the nutrition, including trace elements, of growing replacement stock to ensure good health and that they achieve an appropriate growth curve for the breed and farming objectives.

Outcome-based measurables: morbidity rate, mortality rate, behaviour, especially cross-sucking, altered grooming and lying behaviours, injuries, physical appearance, changes in weight and body condition score, growth rate curve, reproduction efficiency.

l) Milking management

Milking, whether by hand or machine, should be carried out in a calm and considerate manner in order to avoid pain and distress. Special attention should be paid to the hygiene of personnel, the udder and milking equipment (Barkema et al., 1999; Breen et al., 2009). All cows should be checked for abnormal milk at every milking.

Milking machines, especially automated milking systems, should be used and maintained in a manner which minimises injury to teats and udders. Manufacturers of such equipment should provide operating instructions that consider animal welfare.

Rationale: The OIE’s mandate does not extend to setting standards for manufacturers of equipment.

A regular milking routine should be established relevant to the stage of the lactation and the
capacity of the system, (e.g. For example, cows, female in full lactation may need more frequent milking to relieve udder pressure). All milking cows should be checked for abnormal milk at all milking times.

Animal handlers should regularly check the information provided by the milking system and act accordingly to protect the welfare of the cows.

Where a milking machine is used, it should be maintained, according to the recommendations of the manufacturer, in order to minimise teat and udder damage.

Special care should be paid to animals being milked for the first time. If possible, they should be familiarised with the milking facility prior to giving birth.

Long waiting times before and after milking can lead to health and welfare problems (e.g. lameness, reduced time to eat). Management should ensure that waiting times are minimised.

Outcome-based measurables: morbidity rate (e.g. udder health, lameness, somatic cell count, teat condition), behaviour (vocalization, slips, falls), changes in milk yield, milk quality, physical appearance (e.g. lesions).

Rationale: Lameness was specifically mentioned as a welfare problem in the preceding sentence. “Udder health” and “milk quality” are better characterised as somatic cell counts and teat condition. Improper milking techniques can cause cows to vocalize, slip or fall.

m) Painful husbandry procedures

Husbandry practices are routinely carried out in cattle for reasons of management, animal welfare and human safety. Those practices that have the potential to cause pain should be performed in such a way as to minimise any pain and stress to the animal. Example of such interventions include: dehorning, tail docking and identification.

Alternative procedures that reduce or avoid pain should be considered.

Future options for enhancing animal welfare in relation to these procedures include: ceasing the procedure and addressing the current need for the operation through management strategies; breeding cattle that do not require the procedure; or replacing the current procedure with a non-surgical alternative that has been shown to enhance animal welfare.

Rationale: OIE standards should address current practices, not those that could happen in the future. This document can be updated at a later date as practices change or as new scientific information demonstrates a need for change.

Example of such interventions include: dehorning, tail docking and identification.

i) Disbudding and dehorning (including disbudding)

Horned dairy cattle that are naturally horned are commonly disbudded or dehorned in order to reduce animal injuries and hide damage, improve human safety, reduce damage to facilities and facilitate transport and handling (Laden et al., 1985; Petrie et al., 1996; Singh et al., 2002; Sutherland et al., 2002; Stafford et al., 2003; Stafford and Mellor, 2005). Where practical and appropriate for the production system, the selection of polled cattle is preferable to dehorning.

Rationale: Breeding “polled” cattle is unproven and can be unduly burdensome. Research indicates that when animal breeders introduce new traits (such as a lack of horns), it can take many generations to ensure cows inherit the proper, desired production and health traits. There is also concern in breeding polled cattle that, in the process, undesired traits are not introduced and desired traits are not eliminated. According to the research, the most important traits in dairy cows include high quality milk production, healthy udders and legs, and reproductive health.

In the United States, for example, there are a limited number of polled cattle in the dairy herd population and care must be exercised with introducing this genetic trait into the general herd population. It would not be possible at this time to meet consumer demand by purchasing milk from polled cattle.
Performing disbudding at an early age **where practicable**, is preferred, rather than dehorning older cattle.

Thermal cauterity of the horn bud by a trained operator with proper equipment is the recommended method in order to minimise post-operative pain. This should be done at an appropriate age before the horn bud has attached to the skull.

Guidance from a _veterinarian_ or _veterinary paraprofessional_ as to the optimum method and timing for the type of cattle and production system should be sought. The use of anaesthesia and analgesia are strongly recommended when performing disbudding, and should always be used when dehorning. Appropriate restraint systems and procedures are required when disbudding or dehorning.

Other methods of disbudding include: removal of the horn buds with a knife and the application of chemical paste to cauterise the horn buds. Where chemical paste is used, special attention should be paid to avoid chemical burns to other parts of the calf or to other calves. This method is not recommended because pain management is difficult for calves older than two weeks.

Operators should be trained and competent in the procedure used, and be able to recognise the signs of pain and complications that may include excessive bleeding, or sinus infection.

Where it is necessary to dehorn dairy cattle, producers should seek guidance from veterinary advisers as to the optimum method, use of anesthesia and analgesia, and timing for their type of cattle and production system.

Performing dehorning or disbudding at an early age, where practicable, and the use of anaesthesia or analgesia, under the supervision of a _veterinarian_, are strongly recommended.

Thermal cauterity of the horn bud by a trained operator with proper equipment is the recommended method in order to minimise post-operative pain. This should be at an appropriate age before the horn bud has attached to the skull. Other methods of dehorning include: removal of the horn buds with a knife and the application of chemical paste to cauterise the horn buds. Where chemical paste is used, special attention should be paid to avoid chemical burns to other parts of the calf or to other calves.

Methods of dehorning when horn development has commenced involve the removal of the horn by cutting or sawing through the base of the horn close to the skull. Operators removing developed horns from dairy cattle should be trained and competent in the procedure used, and be able to recognise the signs of complications (e.g. excessive bleeding, sinus infection).

ii) Tail docking

Research shows that tail docking does not improve the health and welfare of dairy cattle animals, and therefore it is not recommended, as a routine procedure, to dock the tails of dairy cattle. As an alternative, trimming of tail hair should be considered where maintenance of hygiene is a problem (Sutherland and Tucker, 2011).

iii) Identification

Ear-tagging, ear-notching, tattooing, freeze branding and radio frequency identification devices (RFID) are preferred methods of permanently identifying dairy cattle from an _animal welfare_ standpoint. The least invasive approach should be adopted—whichever method is chosen (e.g. the least minimum number of ear tags per ear, and the smallest size of notch practical). It should be accomplished quickly, expertly and with proper equipment. In some situations however, hot iron branding may be required or be the only practical method of permanent identifying dairy cattle. If cattle are branded, it should be accomplished quickly, expertly and with the proper equipment. Identification systems should be established also according to Chapter 4.
Freeze branding is thought to be less painful than branding with a hot iron. Both methods should be avoided as alternative identification methods exist (e.g. electronic identification or ear-tags). When branding is used, the operator should be trained and competent in procedures used and be able to recognise signs of complications.

Rationale: The suggested “least invasive approach” actually goes through body parts (ears) or under the skin (microchips), while branding, a superficial procedure, is to “be avoided”.

While freeze branding may be less painful than hot iron branding, it is not a practical method on predominately white dairy cattle.

There are no significant outcome differences between beef and dairy cattle regarding identification, therefore the suggested text mirrors language used in 7.9.5.3.e.V.

Identification systems should be established also according to Chapter 4.1.

Outcome-based measurables: postprocedural complication rate, morbidity rate (post-procedural complications), abnormal behaviour, vocalisation, physical appearance, changes in weight and body condition score.

n) Inspection and handling

Dairy cattle should be inspected at intervals appropriate to the production system and the risks to the health and welfare of the cattle. In most circumstances, lactating cows should be inspected at least once a day. Some animals may benefit from being inspected more frequently (e.g. neonatal calves (Larson et al., 1998; Townsend, 1994), cows in late gestation (Boadi and Price, 1996; Mee, 2008; Odde, 1996, Proudfoot, K., et al. 2013), newly weaned calves, cattle experiencing environmental stress and those that have undergone painful husbandry procedures or veterinary treatment.

Dairy cattle identified as sick or injured should be given appropriate treatment at the first available opportunity by competent and trained animal handlers. If animal handlers are unable to provide appropriate treatment, the services of a veterinarian should be sought.

Recommendations on the handling of cattle are also found in Chapter 7.5. In particular handling aids that may cause pain and distress (e.g. sharp prods, electric goads) should be used only in extreme circumstances and provided that the animal can move freely. Dairy cattle should not be prodded in sensitive areas including the udder, face, eyes, nose or ano-genital region. Electric prods should not be used on calves (see also point 3 of Article 7.3.8.).

Where dogs are used as an aid for cattle herding, they should be properly trained. Animal handlers should be aware that presence of dogs can stress the cattle and cause fear and should keep them under control at all times. The use of dogs is not appropriate in housed systems, collection yards or other small enclosures where the cattle cannot move freely away.

Rationale: edit for clarity.

Cattle are adaptable to different visual environments. However, exposure of cattle to sudden or persistent movement or changes in visual contrasts should be minimised where possible to prevent stress and fear reactions.

Electroimmobilisation should not be used.

Outcome-based measurables: human-animal relationship, broken tails, morbidity rate, mortality rate, behaviour, especially altered locomotory behaviour, vocalisations, reproductive efficiency, changes in weight and body condition score, changes in milk yield.

Rationale: Human-animal relationship, by itself, is not measurable; however broken tails may indicate human mistreatment of cattle.
o) Personnel training

All people responsible for dairy cattle should be competent according to their responsibilities and should understand cattle husbandry, animal handling, milking routines, reproductive management techniques, behaviour, biosecurity, signs of disease, and indicators of poor animal welfare such as stress, pain and discomfort, and their alleviation.

Competence may be gained through formal training or practical experience.

Outcome-based measurables: human-animal relationship, morbidity rate, mortality rate, behaviour, reproductive efficiency, changes in weight and body condition score, changes in milk yield.

Rationale: Human-animal relationship, by itself, is not measurable.

p) Disaster management

Plans should be in place to minimise and mitigate the effect of disasters (e.g. earthquake, flooding, fire, hurricane). Such plans may include evacuation procedures, identifying high ground, maintaining emergency food and water stores, destocking and humane killing when necessary.

Plans should be in place to minimise and mitigate the effects of natural disasters or extreme climatic conditions, such as heat stress, drought, blizzard and flooding. Humane killing procedures for sick or injured cattle should be part of the emergency action plan. In times of drought, animal management decisions should be made as early as possible and these should include a consideration of reducing cattle numbers.

Humane killing procedures for sick or injured cattle should be part of the disaster management plan.

Reference to emergency plans can also be found in points 1 g) and 2a) iii) of Article 7.X.5.

q) Humane killing

For sick and injured cattle a prompt diagnosis should be made to determine whether the animal should be treated or humanely killed.

The decision to kill an animal humanely and the procedure itself should be undertaken by a competent person.

Reasons for humane killing may include:

- severe emaciation, weak cattle that are non-ambulatory or at risk of becoming non-ambulatory downers;
- non-ambulatory cattle that will not stand up, refuse to eat or drink, have not responded to therapy;
- rapid deterioration of a medical condition for which therapies have been unsuccessful;
- severe, debilitating pain;
- compound (open) fracture;
- spinal injury;
- central nervous system disease;
- multiple joint infections with chronic weight loss; and
- premature calves that are premature and unlikely to survive, or calves that have...
debilitating congenital defect, or otherwise unwanted calves; and,

- as part of disaster management response.

For a description of acceptable methods for humane killing of dairy cattle see Chapter 7.6.

Scientific references

Bell, N. 2007. Cubicle bedding from The Healthy Feet project, University of Bristol, United Kingdom,. http://www.cattle-lameness.org.uk/contendocs/Cubicle%20bedding.pdf

FAWAC, Ireland, http://www.fawac.ie/publications.htm

