CHAPTER 7.3.

SLAUGHTER OF FARmed FISH
FOR HUMAN CONSUMPTION

Article 7.3.1.

Scope

These recommendations apply to the slaughter of farmed fish species for human consumption. These recommendations address the need to ensure the welfare of farmed fish, intended for human consumption, during pre-slaughter and slaughter processes, until they are dead.

This chapter describes general principles that should be applied to ensure the welfare of fish for slaughter and also applies to fish killed for disease control purposes and intended for human consumption. Specific measures applicable to emergency killing for disease control purposes not intended for human consumption are addressed in Chapter 7.4. Humane Killing for disease control purposes (under development).

As a general principle, fish should be stunned before killing, and the stunning method should ensure immediate and irreversible loss of consciousness. If the stunning is not irreversible, fish should be killed before consciousness is recovered.

Article 7.3.2.

Personnel

Persons engaged in the handling, stunning and slaughter of fish play an important role in their welfare. Personnel handling fish for slaughter should be experienced and competent in the handling of fish, and understand their behaviour patterns as well as the underlying principles necessary to carry out their tasks. Some stunning and killing methods may pose a risk to the personnel, therefore training should cover occupational health and safety implications of any methods used.

Article 7.3.3.

Transport of fish for slaughter

If fish are to be transported for slaughter, this should be done in accordance with the OIE recommendations on the welfare of farmed fish during transport (see Chapter 7.2.).
Article 7.3.4.

Design of facilities for holding fish prior to slaughter

1. The holding facilities should be designed and specifically constructed to hold a certain fish species or group of fish species.

2. The holding facilities should be of a size that allows holding a certain number of fish for processing in a given timeframe without compromising the welfare of the fish.

3. Operations should be conducted with minimal injury and stress to the fish.

4. The following recommendations may help to achieve this:
 a) Nets and tanks should be suitably designed to minimise physical injuries;
 b) Water quality should be suitable for the fish species and stocking density;
 c) Equipment for transferring fish, including pumps and pipes, should be appropriate to minimise injury.

Article 7.3.5.

Unloading, transferring and loading fish prior to slaughter

1. Fish should be unloaded, transferred and loaded for slaughter under conditions that minimise injury and stress to the fish.

2. The following points should be considered:
 a) Water quality should be assessed on arrival of fish prior to their unloading for slaughter, and corrective action taken as appropriate;
 b) Where possible any injured or moribund fish should be separated and killed humanely;
 c) The crowding periods of fish prior to slaughter should be as short and infrequent as possible;
 d) The handling of fish during transfers should be minimised;
 e) Where feasible, and when applicable, fish should be allowed to swim directly into a stunning device without handling to avoid handling stress.
 f) Equipment used to handle fish, for example nets and dip nets, pumping devices and brailing devices, should be designed, constructed and operated to minimise physical injuries.
 g) There should be a contingency plan to address emergencies and minimise stress during unloading, transferring and loading fish prior to slaughter.
Stunning and killing methods

1. General considerations

 a) The Competent Authority should approve the stunning and killing methods for the slaughter of fish. The choice of slaughter method should take account of species-specific information where available.

 b) Equipment should be maintained and operated appropriately; it should be tested on a regular basis to ensure that performance is adequate.

 c) Effective stunning should be verified by the absence of consciousness.

 d) A backup stunning system is necessary. If mis-stunned, the fish should be re-stunned as soon as possible.

 e) Stunning should not take place if killing is likely to be delayed such that the fish will recover or partially recover consciousness.

 f) While unconsciousness may be difficult to recognise, signs of correct stunning include i) loss of respiratory movement (loss in opercular activity); ii) loss of visual evoked response (VER); iii) loss of vestibulo-ocular reflex (VOR, eye rolling).

2. Mechanical stunning and killing methods

 a) Percussive stunning is achieved by a blow of sufficient strength to the head applied above or immediately adjacent to the brain in order to damage the brain. Mechanical stunning may be achieved either manually or using specially developed equipment.

 b) Spiking or coring are irreversible stunning and killing methods of fish based on physical damage to the brain by inserting a spike or core into the brain.

 c) Shooting using a free bullet may be used for killing large fish (such as tuna). The fish may either be crowded in a net and shot in the head from the surface, or individual fish may be killed by shooting in the head from under the water (commonly called lupara).

 d) Mechanical stunning is generally irreversible if correctly applied.

3. Electrical stunning and killing methods

 a) Electrical stunning involves the application of an electrical current of sufficient strength, frequency and duration to cause immediate unconsciousness and insensibility of the fish. In fresh water, the water conductivity is essential to establish parameters of the electrical current suitable to ensure appropriate stunning.

 b) The electrical stunning device should be constructed and used for the specific fish species and their environment.

 c) Electrical stunning may be reversible. In such a case fish should be killed before consciousness is recovered.
d) Fish should be confined beneath the surface of the water, and there should be a uniform distribution of electrical current in the stunning tank or chamber.

f) In semi-dry electrical stunning systems, fish should enter the device head first to ensure rapid, painless and efficient stunning.

4. Other stunning and killing methods

The following other methods are known to be used: carbon dioxide (CO₂) in holding water; chilling with ice and CO₂ in holding water; salt or ammonia baths; asphyxiation by removal from water; exsanguination without stunning. However, they have been shown to result in poor fish welfare. It is preferable to use the methods described in points 2., 3. and 4. of this Article, as appropriate to the fish species.

Article 7.3.7.

Application of some stunning methods for fish groups

The following stunning methods enable humane killing for the following fish groups:

a) Percussive stunning: carp, catfish, salmonids, halibut;

b) Spiking or coring: salmonids, tuna;

c) Free bullet: tuna;

d) Electrical stunning: carp, catfish, eel, salmonids, tilapia.
Summary of some stunning methods for fish and their respective welfare issues

A combination of methods described in the table below may be used.

<table>
<thead>
<tr>
<th>Stunning/kill method</th>
<th>Specific method</th>
<th>Key fish welfare concerns/requirements</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Percussive stunning</td>
<td>The blow should be of sufficient force and delivered above or adjacent to the brain in order to render immediate unconsciousness. Fish should be quickly removed from the water, restrained and given a quick blow to the head, delivered either manually by a club or by automated percussive stunning. The effectiveness of stunning should be checked, and fish be re-stunned if necessary. It can be a stun / killing method.</td>
<td>Immediate loss of consciousness. Well adapted to medium to large sized fish.</td>
<td>Hand operated equipment may be hampered by uncontrolled movement of the fish. Mistuning may result from a too weak blow. Injuries may occur. Manual percussive stunning is only practicable for the killing of a limited number of fish.</td>
</tr>
<tr>
<td></td>
<td>Spiking or coring</td>
<td>The spike should be aimed on the skull in a position to penetrate the brain of the fish and the impact of the spike should produce immediate unconsciousness. Fish should be quickly removed from the water, restrained and the spike immediately inserted into the brain. It is a stun / killing method.</td>
<td>Immediate loss of consciousness. Well adapted to medium to large sized fish. For small tuna, spiking under the water avoids exposure of fish to air. The pineal window of tuna facilitates spiking for this species.</td>
<td>Inaccurate application may cause injuries. Difficult to apply if fish agitated. It is only practicable for the killing of a limited number of fish.</td>
</tr>
<tr>
<td></td>
<td>Free bullet</td>
<td>The shot should be carefully aimed at the brain. The fish should be positioned correctly and the shooting range should be as short as practicable. It is a stun / killing method.</td>
<td>Immediate loss of consciousness. Well adapted to large sized fish (e.g. large tuna).</td>
<td>Shooting distance; calibre need to be adapted. Excessive crowding and noise of guns may cause stress reaction. Contamination of the working area due to release of body fluids may present a biosecurity risk. May be hazardous to operators.</td>
</tr>
<tr>
<td>Electrical</td>
<td>Electrical stunning</td>
<td>Involves the application of an electrical current of sufficient strength, frequency and duration to cause immediately unconsciousness. It can be a stun / killing method. Equipment should be designed and maintained correctly.</td>
<td>Immediate loss of consciousness. Well adapted to small to medium sized fish. Suitable for large numbers of fish, and the fish do not have to be removed from the water.</td>
<td>Difficult to standardise for all species. Optimal control parameters are unknown for some species. May be hazardous to operators.</td>
</tr>
<tr>
<td></td>
<td>Semi-dry electrical stunning</td>
<td>The head of the fish should enter the system first so electricity is applied to the brain first. Involves the application of an electrical current of sufficient strength, frequency and duration to cause immediately unconsciousness. Equipment should be designed and maintained correctly.</td>
<td>Good visual control of stunning and the ability for re-stunning of individual fish.</td>
<td>Misplacement of the fish may result in improper stunning. Optimal control parameters are unknown for some species. Not suitable for mixed sizes of fish.</td>
</tr>
</tbody>
</table>