

October 26, 2023

By kldiggs for BRS Document Control Officer at 1:19 pm, Oct 26, 2023

Bernadette Juarez
Deputy Administrator
Biotechnology Regulatory Services
Animal and Plant Health Inspection Service
U.S. Department of Agriculture

Confidential Business Information Deleted

Subject: Request for Regulatory Status Review of Gene Edited *Brassica juncea* with Altered Pungency and Altered Texture – Revised Submission 22-159-01rsr

Dear Ms. Juarez,

Pairwise Plants Services, Inc, a food technology company based in Durham, North Carolina, USA, respectfully requests a Regulatory Status Review under 7 CFR § 340.4(a)(1) of a Pairwise product produced using CRISPR/Cas gene editing technology and described in detail below. No genetic material has been inserted in the plant as a result of the modifications.

The following description has been provided to assist in your review. Please do not hesitate to contact us if you have questions or need additional information.

Thank you in advance for your attention to this request.

Sincerely,

Nicole Juba, Ph.D.

Nicole Jula

Associate Director, Regulatory

Pairwise

Part I: Requestor

Pairwise Plants Services, Inc
Attn: Nicole Juba, Ph.D., Regulatory Manager
807 East Main Street, Suite 4-100
Durham, NC 27701
NJuba@pairwise.com
+1 (919) 321-0820

Part II: Confidential Business Information (CBI) Statement

Pairwise Plants Services, Inc. (hereafter the "Company") has marked certain information in this Regulatory Status Review as confidential business information (CBI). Information marked by the Company as CBI is exempt from release and/or public disclosure under Freedom of Information Act (FOIA) Exemption 4, 5 U.S.C. Section 552(b)(4), and is prohibited from release pursuant to the Trade Secrets Act, 18 U.S.C. Section 1905. Release of information marked by the Company as CBI would provide competitive information about the nature of the research, development, and commercialization plans of the Company and could jeopardize protection of its intellectual property rights. Access to this information would cause competitive and/or financial harm to the Company.

Information claimed as CBI is consistent with the Guidance for Claiming Confidential Business Information (CBI) in Submission to USDA APHIS BRS (Document ID BRS-GD-2020-0004) v. December 20, 2021, found at https://www.aphis.usda.gov/brs/pdf/CBI_Submission_Guidance.pdf and include, but are not necessarily limited to the following:

Gene name, sequence information, including DNA and amino acid sequences, whole or partial, of the target sequence, including the wild type and the modified sequences, and supporting citations that disclose or allude to such information have been marked as CBI.

Information in each of these categories constitutes trade secrets related to the design, production, and benefit of edited *B. juncea* which was developed at the expense of the Company. This information is commercially valuable, is used in the Company business, and is held by the Company as strictly secret. The release of this information would cause harm to the Company and provide a competitive advantage to others.

Part III: Description of the Plant

Family: Brassicaceae Genus: *Brassica*

Species: *Brassica juncea*

Common names: brown mustard, India(n) mustard, Chinese mustard, leaf mustard, oriental mustard,

vegetable mustard (CFIA, 2017; USDA-ARS, 2022)

Part IV: Genotype of the Modified Plant

No genetic material has been inserted in the plant as a result of the modifications.

Nature of the Modifications

Two modifications (Table 1) have been made to *Brassica juncea* to create the traits for altered pungency and altered texture leading to the phenotypes of reduced pungency to improve flavor and reduced trichome development on leaves and stems, respectively. The genetic differences between the modified *B. juncea* relative to a comparator plant are alterations to existing endogenous genetic sequences that could introduce non-templated insertions, deletions, inversions, and/or base pair substitution(s) resulting in reduced or complete loss of function of the native protein.

Table 1. Summary of modified B. juncea.

	Modification 1	Modification 2		
Intended Trait	Altered pungency	Altered texture		
Intended Phenotype Genetic Component	Reduced pungency to improve	Reduced trichome development on		
	flavor	leaves and stems		
Genetic Component	Dioxygenase	Transcription factor		
Target Sequence	[]	[] []		
Number of Target	[]	[]	CDI deleted	
Sequences	[]	l J	CBI-deleted	
Function of Native	Formation of alkonyl alugacinalates	Epidermal cell differentiation		
Sequence	Formation of alkenyl glucosinolates	Epidermai cell differentiation		
Function of Modified	Loss of function	Loss of function		
Sequence	Loss of fullction	Loss of fullction		
Mechanism of Action	Loss of function of a dioxygenase [] preventing the hydrolysis of glucoiberin (3-methylsulfinylpropyl glucosinolate) to sinigrin (2-propenyl glucosinolate). Absence of sinigrin prevents the downstream formation of allyl isothiocyanate, the compound responsible for the pungency of <i>B. juncea</i> .	Loss of function of a [] transcription factor [] preventing cell expansion, branching, and maturation of the trichome cell wall resulting in reduced or absent trichomes on leaves and stems.	CBI-deleted	

The trait for altered pungency leading to the phenotype of reduced pungency to improve flavor in B. juncea was achieved by creating loss of function mutations in the native [] sequences. [], the **CBI-deleted** gene encoding [dioxygenase, is responsible for the formation of alkenyl **CBI-deleted** glucosinolates by catalyzing the hydrolysis of glucoiberin (3-methylsulfinylpropyl glucosinolate) and glucoraphanin (4-methylsulfinylbutyl glucosinolate) to sinigrin (2-propenyl glucosinolate) and gluconapin (3-butenyl glucosinolate), respectively [] loss of function **CBI-deleted** would halt the conversion of glucoiberin to sinigrin thereby reducing or completely eliminating sinigrin for use in downstream reactions to produce allyl isothiocyanate, the compound responsible for the pungency of B. juncea. Naturally occurring loss of function mutations in [] sequences have been **CBI-deleted** identified in other non-pungent Brassica species, such as broccoli (B. oleracea), which has three [CBI-deleted genes, only one of which is functional as the other two copies have premature stop codons [**CBI-deleted**]. See Part V for a mechanism of action discussion. **CBI-deleted**

The trait for altered texture leading to the phenotype of reduced trichome development on leaves and stems was achieved by creating loss of function mutations in the native [] sequences. [], also called [], is part of the family of [] transcription factors that play a role in epidermal cell differentiation, specifically the development of trichomes []. Lower expression of [] has been shown to correlate with lower trichome incidence in <i>Brassica</i> species []. See Part V for a mechanism of action discussion.	CBI-deleted CBI-deleted CBI-deleted CBI-deleted CBI-deleted
B. juncea is an allotetraploid (AABB genome, 2n=36) (Jabeen, 2020) and as such there are multiple copies of the [] sequences within the genome. All known copies of the [] sequences were targeted for loss of function mutations in the same plant. In B. juncea it was	CBI-deleted
determined that there are [] copies of the [] sequence and [] copies of the [] sequence (Figure 1). The [] sequences in the <i>B. juncea</i> genome were identified using the Basic Local Alignment Search Tool (BLAST) to query the genome for similar sequences, followed by	CBI-deleted CBI-deleted
ortholog inference using phylogenetic gene tree construction. For [] sequences, Brassica rapa genes [] were used as the query sequence. For [] sequences, Arabidopsis thaliana gene [] was used as the query sequence [].	CBI-deleted CBI-deleted CBI-deleted
[
	CBI-deleted
	CBI-deleted
1	
Figure 1. Genomic location and distribution of [] sequences and [] sequences across the A and B genomes in B. juncea. Red bars represent the [] sequences. Blue bars represent the [CBI-deleted CBI-deleted CBI-deleted
Sequence of the Modifications All [] of the [] sequence and [] of the [] sequences were targeted for modification in the same plant. The nucleotide sequences of the entire edited region in FASTA format can be found in	CBI-deleted
Appendix A [].	CBI-deleted
Sequence Comparison The final product was confirmed to have modifications in [] copies of the [] sequence and [] copies of the [] sequence by amplicon sequencing (SASi). Figure 2 shows the modified [] sequence compared with the unmodified [] sequence for each of the [] copies. Figure 3 shows the modified [] sequence compared with the unmodified [] sequence for [] copies. A summary of the modifications is described in Table 2 [].	CBI-deleted CBI-deleted CBI-deleted CBI-deleted CBI-deleted

[
					CBI-deleted
Figure 2. Nucleotid	e sequence alignment	of wildtype (WT) and modified [] sequences [1	CBI-deleted
The deletion observ] in <i>B. juncea. B. jund</i> ved in each modified [] numbered [gure.].	CBI-deleted CBI-deleted
					CBI-deleted
] in <i>B. ju</i> deletion observed i	ıncea. B. juncea has [sequence is shown in the figure.] sequences [nbered []. The	1	CBI-deleted CBI-deleted CBI-deleted
Target	Modification	Effect			
]					
			_		
			-		
			-		CBI-deleted
			1		
		1	1		

Part V: Description of the New Traits

Intended Trait: Altered Pungency

Intended Phenotype: Reduced pungency to improve flavor

Glucosinolates are a class of secondary metabolites produced by plant species in the Brassicaceae family, which include crops such as broccoli, cabbage, brussels sprouts, mustard, and oilseed rape These compounds are believed to be produced by the plant's natural defenses in response to herbivory. The type and concentration of glucosinolates vary within the different Brassicaceae species and can fluctuate in response to internal and external conditions such as growth stage or drought (Brown et al., 2003; Frazie et al., 2017; Rask et al., 2000). Over 100 glucosinolates have been identified in brassicaceous plants, however, an individual species typically has only a few predominate glucosinolates. *B. juncea* has 11 major glucosinolates with sinigrin accounting for greater than 97% of the glucosinolate concentration in both baby/immature and mature leaves (Frazie et al., 2017).

When consumed as fresh leaves, *B. juncea* have a distinct flavor and are sometimes pungent due to the presence of certain compounds. This reaction is often referred to as the 'mustard bomb' (Figure 4) and requires two components be present simultaneously; the glucosinolate substrate (e.g., sinigrin) and the myrosinase enzyme that hydrolyzes the substrate, resulting in the breakdown product (i.e., allyl isothiocyanate), which is responsible for the pungent flavor. Consequently, mustard greens are typically cooked, causing inactivation of the myrosinase enzyme, in order to minimize pungency and/or consumed fresh in smaller quantities or as baby greens. Thus, prevention of the 'mustard bomb' reaction presents an opportunity to encourage broader consumption of fresh, healthy leafy greens by consumers who would otherwise be averse to doing so.

Description of the Mechanism of Action:

Using a gene editing approach, we have or preventing the biosynthesis of the biosynthesis of the properties of the prope	e glucosinolate sinigr	rin. Without the sinigrin glucosing	olate	
substrate, the 'mustard bomb' reac	tion cannot be carrie	d out, meaning no allyl isothiocya	anate	
production, resulting in B. juncea wi	ith reduced pungency	y when consumed as fresh leafy g	greens. This	
was achieved through creation of lo	ss of function mutati	ons in multiple copies of the [] sequence.	CBI-deleted
[] in th	e biosynthesis of the	glucosinolate sinigrin. [CBI-deleted
] dioxygena	ise responsible for th	e formation of alkenyl glucosinol	ates by	CBI-deleted
catalyzing the conversion of glucoib	erin (3-methylsulfiny	Ipropyl glucosinolate) and glucor	aphanin (4-	
methylsulfinylbutyl glucosinolate) to	o sinigrin (2-propenyl	glucosinolate) and gluconapin (3	3-butenyl	
glucosinolate), respectively []. Nat	turally occurring genetic modifica	itions in	CBI-deleted
[] sequences have been identi	fied in other non-pur	ngent <i>Brassica</i> species, such as br	occoli (<i>B.</i>	CBI-deleted
oleracea), which has only one funct	ional copy of the [] gene. The other two copies h	ave	CBI-deleted
premature stop codons [].			CBI-deleted

1

[

CBI-deleted

Figure 4. The 'mustard bomb' reaction. Biosynthesis of sinigrin from glucoiberin. Hydrolysis of sinigrin to form allyl isothiocyanate.

Intended Trait: Altered Texture

Intended Phenotype: Reduced trichome development on leaves and stems

A wide variety of plant species have trichomes, or epidermal 'hairs', which can vary in size, location, and number and are often associated with leaves and stems. Trichome function can also vary from species to species serving roles to increase surface area allowing for increased transpiration and photosynthetic rates, as well as acting as a feeding deterrent. When plants with trichomes, such as B. juncea, are consumed as fresh leafy greens, the trichomes can create an unpleasant oral sensation. Thus, reducing trichome development on leaves and stems is a way to improve the eating experience and encourage broader consumption of fresh, healthy leafy greens by consumers who would otherwise be averse to doing so.

Description of the Mechanism of Action:

The genetic drivers for trichome development have been studied in the model plant Arabidopsis thaliana and have led to the identification of genes involved in trichome production and suppression]. One of the earliest acting genes involved in trichome **CBI-deleted** morphogenesis is [] protein part of the family of [**CBI-deleted** transcription factors. [] is believed to enhance the expression of genes already transcribed in **CBI-deleted** epidermal cells that respond to developmental signals and stimulate cell expansion, branching, and maturation of cell wall for trichome development []. Using a gene editing **CBI-deleted** approach, we have reduced trichome development on leaves and stems. This was achieved through creation of loss of function mutations in multiple copies of the [] sequence in *B. juncea*. **CBI-deleted** Downregulation of developmental transcription factors, like [], have been shown to correlate with **CBI-deleted** reduced trichome development []. For example, in B. napus, the lower **CBI-deleted** correlates with reduced or lack of trichomes [expression of [and Arabidopsis CBI-deleted with a non-functional [] do not produce trichomes []. **CBI-deleted**

References

Brown,	P. D., Tokuhisa, J. G., Reichelt, M., & Gershenzon, J. (2003). Variation of glucosinolate accumulation among different organs and developmental stages of <i>Arabidopsis</i>	
CFIA. (2	thaliana. Phytochemistry, 62(3), 471–481. https://doi.org/10.1016/s0031-9422(02)00549-6 2007). The Biology of <i>Brassica juncea</i> (Canola/Mustard). Canadian Food Inspection Agency,	
	Biology Document BIO2007-01. https://inspection.canada.ca/plant-varieties/plants-with-novel-traits/applicants/directive-94-08/biology-documents/brassica-	
	juncea/eng/1330727837568/1330727899677	
[CBI-deleted
	,	CBI-deleted
Eronio	M. D. Vim M. I. S. V., V. M. (2017). Health Bramating Phytochamicals from 11 Mustard	CBI-deleted
rrazie,	M. D., Kim, M. J., & Ku, K. M. (2017). Health-Promoting Phytochemicals from 11 Mustard Cultivars at Baby Leaf and Mature Stages. <i>Molecules (Basel, Switzerland), 22</i> (10), 1749. https://doi.org/10.3390/molecules22101749	
[]	CBI-deleted CBI-deleted
Jabeen,	N. (2020). Agricultural, Economic and Societal Importance of Brassicaceae Plants. In: Hasanuzzaman, M. (eds) <i>The Plant Family Brassicaceae</i> . Springer, Singapore.	
	https://doi.org/10.1007/978-981-15-6345-4_2	
[CBI-deleted CBI-deleted
		CBI-deleted
	1	CBI-deleted
[CBI-deleted
		CBI-deleted
_]	CBI-deleted
[CBI-deleted
		CBI-deleted CBI-deleted
	1	CBI-deleted
Rask, L.	, Andréasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B. & Meijer, J. (2000). Myrosinase: gene family evolution and herbivore defense in Brassicaceae. <i>Plant Molecular Biology</i> , 42(1), 93–114. https://doi.org/10.1023/a:1006380021658	
[CBI-deleted
-		CBI-deleted
	1	CBI-deleted
[CBI-deleted
	1	CBI-deleted CBI-deleted
r	1	CBI-deleted
ı	1	CBI-deleted
	(2000) N. (1 10 1 10 1 10 1 10 1 10 1 10 1 10 1	

USDA-ARS. (2022). National Plant Germplasm System Germplasm Resources Information Network (GRIN Taxonomy). U.S. Department of Agriculture Agricultural Research Service (USDA-ARS) National Germplasm Resources Laboratory, Beltsville, Maryland. URL: https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomydetail?id=7654. Accessed 30 April 2022.

Appendix A

The nucleotide sequences of the entire edited region of the [] sequences and [] sequences in modified Brassica juncea in FASTA format.

Start codon has been indicated with bold text with yellow highlight.

Premature stop codon has been indicated with underlined text with grey highlight.

Region where the deletion occurred in the modified sequence relative to the native sequence has been noted as an asterisk (*) with blue highlight.

]]	1				CBI-deleted CBI-deleted
					CBI-deleted
]			CBI-deleted
[1				CBI-deleted
[CBI-deleted
					CBI-deleted
]		CBI-deleted
[1				CBI-deleted
[CBI-deleted
					CBI-deleted
]		CBI-deleted
[1				CBI-deleted
[CBI-deleted
					CBI-deleted
]				CBI-deleted
[1				CBI-deleted
[CBI-deleted
]	CBI-deleted
[1				CBI-deleted
[CBI-deleted
					CBI-deleted
					CBI-deleted
]		CBI-deleted
[1				CBI-deleted
[CBI-deleted
					CBI-deleted
					CBI-deleted
]				CBI-deleted