

By apmball for BRS Document Control Officer at 9:35 am, Jul 16, 2020

16 June, 2020

Bernadette Juarez
APHIS Deputy Administrator
Biotechnology Regulatory Services
4700 River Rd, Unit 98
Riverdale, MD 20737

Re: Confirmation of Regulatory Status of CRISPR-Cas9 Corn with Improved Drought Tolerance and Yield Stability.

Dear Ms. Juarez,

Corteva Agriscience respectfully requests confirmation from the USDA-APHIS's Biotechnology Regulatory Services (BRS) regarding the regulatory status of four maize lines developed using CRISPR-Cas9 gene editing technology to introduce targeted base pair substitutions (edits) in the I genes and that are designed to result in plants with improved **CBI Deleted** drought tolerance and yield stability. As described below, we do not consider these final plant lines to be "regulated articles" subject to APHIS oversight under 7 C.F.R. Part 3401 with respect to introduction into and/or through the U.S. because they do not contain any inserted genetic material from (i) a donor organism, recipient organism, or vector or vector agent listed in Section 340.2 and meeting the definition of "plant pest," or (ii) an unclassified organism and/or an organism whose classification is unknown. Nor is there a basis to believe that these maize lines are or will become a plant pest within the meaning of the Plant Protection Act. Moreover, the amino acid substitutions (edits) in the [l and [] genes could have been **CBI Deleted** achieved using conventional breeding techniques and therefore, the final plants lines are indistinguishable from maize plants that could have resulted from native genome variability or be developed in a conventional breeding program.

The maize [] and [] genes encode [CBI Deleted

¹ On May 18th, 2020, USDA revised its regulations at 7 C.F.R. part 340 with an effective date of August 17, 2020 (85 FR 29790-29838, Docket No. APHIS–2018–0034), with the exception of permitting and RSR processes under Sections 340.4 and 340.5, which are effective April 5, 2021. Unless otherwise indicated, the references to "Part 340" herein are as of June 16, 2020.

] By introducing the s	ame amino acid substitutions into the protein coding sequences	
of the [] and [] maize genes through gene editing we expect to develop	CBI Deleted
plants wi	th improved drought to	plerance and vield stability.	

CRISPR-Cas9 gene editing was used to introduce several targeted base pair substitutions (edits) that lead to the corresponding amino acid substitutions using the "gene edit" (SDN2) technique (Podevin et al., 2013). Four maize lines were created where each line contains one amino acid substitution of interest. The DNA repair template consisted of the sequence homologous to the targeted sequence near the double strand break (DSB) except for the specific base pair substitutions and flanked on each side by homology arms (sequences identical to the sequences immediately upstream and downstream of the genomic sequence to be edited). Homology arms induced the homology-directed recombination (HDR) DNA repair and resulted in the desired repair of the DSB.

The summary of the targeted base pair and resulting amino acid substitutions (edits) is provided in the table below. Each [] maize line contains one amino acid substitution caused by one base pair substitution. Each [] maize line also contains a single targeted amino acid substitution however, it could have been done only by changing 2 base pairs. Additionally, for each maize line, 1 or 3 additional base pair substitutions were introduced into the DNA repair template sequence. This is a typical approach to protect the DNA repair template from being cut by Cas9 as its sequence would otherwise be identical to the sgRNA target sequence². These additional base pair substitutions were intentionally designed to result in silent mutations – i.e., mutations not causing an amino acid substitution.

Gene		Targeted aa substitution*		Number of bp substitutions required to achieve the targeted aa substitution**		Number of additional bp substitutions (silent mutation) to protect the DNA repair template	Total number of targeted bp substitutions resulting in one aa substitution
[]	[]	[]	3	4
[]	[]	[]	3	4
[]	[]	[]	1	3
[]	[]	[]	1	3

CBI Deleted
CBI Deleted
CBI Deleted
CBI Deleted

CBI Deleted

CBI Deleted

^{*} aa – amino acid. Number indicates the position of the amino acid targeted for substitution.

² https://horizondiscovery.com/en/applications/crispr-cas9/homology-directed-repair-with-a-dna-donor-oligo

[]	CBI Deleted
**bp – base pair. A – adenine, C – cytosine, G – guanine, T – thymine.		

Additional Information on the Edited Lines:

Taxonomic description of organism

Maize, Zea mays, L.

Description of intended phenotype(s)

Plants with improved drought tolerance and yield stability.

Description of intended activity (movement or release)

Field trials to evaluate the efficacy of introduced mutations.

Description of intended genetic change in final product

Targeted base pair substitutions resulting in one amino acid substitution, as described above.

Description of vector or vector agent

Biolistic transformation.

Maize lines [] and [] were each created by particle	CBI Deleted
	•	tein (RNP) complex, 3 plasmids containing the	
•	•	n (selectable marker and two genes to improve	
	es), and a double stran	ded (ds) oligonucleotide serving as the DNA	
repair template.			
Maize lines [l and [I were each created by particle	CBI Deleted

Maize lines [] and [] were each created by particle bombardment with 4 plasmids containing all components of the CRISPR-Cas9 system and a double stranded (ds) oligonucleotide serving as the DNA repair template.

Description of constructs

]: Plasmid 1, Plasmid 2, Plasmid 3, and ds Oligo 1.	CBI Deleted
]: Plasmid 1, Plasmid 2, Plasmid 3, and ds Oligo 2.	CBI Deleted
]: Plasmid 2, Plasmid 4, Plasmid 5, Plasmid 6, and ds Oligo 3	CBI Deleted
]: Plasmid 2, Plasmid 4, Plasmid 5, Plasmid 6, and ds Oligo 4	CBI Deleted
]: Plasmid 1, Plasmid 2, Plasmid 3, and ds Oligo 2.]: Plasmid 2, Plasmid 4, Plasmid 5, Plasmid 6, and ds Oligo 3

Elements of the CRISPR-Cas9 technology are indicated by bold font.

Plasmid 1				
Genetic Element Origin Function				
	Enterobacteria	Gateway™ cloning system recombination site to facilitate		
ATTL1	phage lambda	vector construction process.		
UBI1ZM PRO	Maize (Zea mays)	Ubiquitin promoter.		

UBI1ZM 5UTR		
(PHI)	Maize (Zea mays)	5' untranslated region of the ubiquitin promoter.
UBI1ZM INTRON1	Maize (Zea mays)	Intron from the ubiquitin promoter.
		Neomycin phosphotransferase gene conferring resistance
		to aminoglycoside antibiotics. Used as selectable marker
NPTII	Escherichia coli	in plant transformation.
	Potato (Solanum	Proteinase inhibitor II gene terminator to terminate
PINII TERM	tuberosum)	transcription of the NPTII gene.
	Enterobacteria	Gateway™ cloning system recombination site to facilitate
ATTL2	phage lambda	vector construction process.
		Kanamycin resistance gene to facilitate identification of
		the plasmid-containing bacterial clones during the vector
KAN	Escherichia coli	construction process.
		Origin of replication to facilitate plasmid propagation in
PUC ORI	Escherichia coli	bacterial cells.

	Plasmid 2				
Genetic Element	Origin	Function			
	Enterobacteria	Gateway™ cloning system recombination site to facilitate			
ATTL1	phage lambda	vector construction process.			
ZM-PLTP PRO	Maize (<i>Zea mays</i>)	Phospholipid transfer protein gene promoter to control expression of ZM-ODP2 coding sequence.			
ZM-PLTP 5' UTR	Maize (Zea mays)	Phospholipid transfer protein gene 5' untranslated region for optimized expression of the ZM-ODP2 coding sequence.			
		Alternate version of coding sequence of the ovule			
		development protein 2 gene to improve regeneration			
ZM-ODP2 (ALT1)	Maize (Zea mays)	frequencies.			
OS-T28 TERM	Rice (<i>Oryza sativa</i>)	3'UTR and intergenic region of convergent gene pair LOC_Os03g60090.1 and LOC_Os03g60080.1 to terminate transcription of the ZM-ODP2 coding sequence.			
ATTL2	Enterobacteria phage lambda	Gateway™ cloning system recombination site to facilitate vector construction process.			
KAN	Escherichia coli	Kanamycin resistance gene to facilitate identification of the plasmid-containing bacterial clones during the vector construction process.			
PUC ORI	Escherichia coli	Origin of replication to facilitate plasmid propagation in bacterial cells.			

Plasmid 3			
Genetic Element	Origin	Function	
		Gateway™ cloning system recombination site to facilitate	
ATTL4	Escherichia coli	vector construction process.	
ZM-AXIG1 1.3KB	Maize (Zea mays)	Auxin inducible gene 1 promoter to control expression of	
PRO	Maize (Zea mays)	ZM-WUS2 (ALT1) coding sequence.	

		Alternate version of the coding sequence of the wuschel
ZM-WUS2 (ALT1)	Maize (Zea mays)	2 gene to improve regeneration frequencies.
IN2-1 TERM	Maize (Zea mays)	IN2 coding sequence terminator
	Arabidopsis	Putative insulator sequence to limit ZM-WUS2 (ALT1)
AT-5-IV-2 INS	thaliana	transcript read-through.
		Gateway™ cloning system recombination site to facilitate
ATTR1	Escherichia coli	vector construction process.
		Kanamycin resistance gene to facilitate identification of
		the plasmid-containing bacterial clones during the vector
KAN	Escherichia coli	construction process.
		Origin of replication to facilitate plasmid propagation in
PUC ORI	Escherichia coli	bacterial cells.

Plasmid 4				
Genetic Element	Origin	Function		
		Gateway™ cloning system recombination site to facilitate		
ATTB4	Escherichia coli	vector construction process.		
UBI1ZM PRO	Maize (Zea mays)	Ubiquitin promoter.		
UBI1ZM 5UTR				
(PHI)	Maize (Zea mays)	5' untranslated region of the ubiquitin promoter.		
UBI1ZM INTRON1				
(PHI)	Maize (Zea mays)	Intron from the ubiquitin promoter.		
	Simian vacuolating	Short peptide leader sequence that directs nuclear		
SV40 NLS	virus 40	localization of the Cas9 protein in the cell.		
		Exon 1 of Cas9 endonuclease. Cas9 endonuclease		
CAS9 EXON1 (SP)	Streptococcus	introduces a double-strand break in the target		
(MO)	pyogenes	endogenous DNA sequence.		
	Potato (Solanum	Intron introduced for plant-optimized expression of Cas9		
ST-LS1 INTRON2	tuberosum)	endonuclease.		
		Exon 2 of Cas9 endonuclease. Cas9 endonuclease		
CAS9 EXON2 (SP)	Streptococcus	introduces a double-strand break in the target		
(MO)	pyogenes	endogenous DNA sequence.		
		C-terminal bipartite Nuclear Localization Signal from the		
	Agrobacterium	VirD2 endonuclease, which is intended to target proteins		
VIRD2 NLS	tumefaciens	destined for transport into the nucleus.		
	Potato (Solanum	Proteinase inhibitor II gene terminator to terminate		
PINII TERM	tuberosum)	transcription of the Cas9 gene.		
ATTD4	Fach anishin as li	Gateway™ cloning system recombination site to facilitate		
ATTB1	Escherichia coli	vector construction process.		
NAINII ALLETOREE	a wath atia	Synthetic sequence of stop codons designed to stop		
MINI-ALLSTOPS6	synthetic	downstream translation of open reading frames.		
CANAN/2EC ENTIL	Cauliflower mosaic	Hastroom onboneer		
CAMV35S ENH	virus	Upstream enhancer.		
	Parlow /Hardours	Promoter of the <i>Ltp2</i> gene expressed in the aleurone		
LTD2 DDO	Barley (Hordeum	layer of kernels during the early to mid-phases of		
LTP2 PRO	vulgare)	development.		

AM-CYAN1	Anemonia majano	Cyan fluorescent protein used as a visual marker.
	Cauliflower mosaic	
CAMV35S TERM	virus	Terminator region.
		A synthetic sequence designed to facilitate PCR analysis
PSB1	synthetic	of recombined FRT sites.
		Synthetic sequence of stop codons designed to stop
MINI-ALLSTOPS	synthetic	downstream translation of open reading frames.
		Synthetic sequence of stop codons designed to stop
MINI-ALLSTOPS4	synthetic	downstream translation of open reading frames.
		Synthetic sequence of stop codons designed to stop
MINI-ALLSTOPS3	synthetic	downstream translation of open reading frames.
		Gateway™ cloning system recombination site to facilitate
ATTB2	Escherichia coli	vector construction process.
UBI1ZM PRO	Maize (Zea mays)	Ubiquitin promoter.
UBI1ZM 5UTR		
(PHI)	Maize (Zea mays)	5' untranslated region of the ubiquitin promoter.
UBI1ZM INTRON1		
(PHI)	Maize (Zea mays)	Intron from the ubiquitin promoter.
		Neomycin phosphotransferase gene conferring resistance
		to aminoglycoside antibiotics. Used as selectable marker
NPTII	Escherichia coli	in plant transformation.
	Potato (Solanum	Proteinase inhibitor II gene terminator to terminate
PINII TERM	tuberosum)	transcription of the NPTII gene.
		Gateway™ cloning system recombination site to facilitate
ATTB3	Escherichia coli	vector construction process.
		Spectinomycin resistance gene used as a selectable
		marker to facilitate identification of the plasmid-
		containing bacterial clones during the vector construction
SPC (VER2)	Escherichia coli	process.
		Origin of replication to facilitate plasmid propagation in
PUC ORI	Escherichia coli	bacterial cells.

Plasmid 5					
Genetic Element	Origin	Function			
		Gateway™ cloning system recombination site to facilitate			
ATTL4	Escherichia coli	vector construction process.			
ZM-PLTP PRO	Maize (Zea mays)	Phospholipid transfer protein gene promoter to control expression of ZM-WUS2 (ALT1) coding sequence.			
ZM-PLTP 5' UTR	Maize (Zea mays)	Phospholipid transfer protein gene 5' untranslated region for optimized expression of the ZM-WUS2 (ALT1) coding sequence.			
		Alternate version of the coding sequence of the wuschel			
ZM-WUS2 (ALT1)	Maize (Zea mays)	2 gene to improve regeneration frequencies.			
IN2-1 TERM	Maize (Zea mays)	IN2 coding sequence terminator			
	Arabidopsis	Putative insulator sequence to limit ZM-WUS2 (ALT1)			
AT-5-IV-2 INS	thaliana	transcript read-through.			

		Gateway™ cloning system recombination site to facilitate
ATTR1	Escherichia coli	vector construction process.
		Kanamycin resistance gene to facilitate identification of
		the plasmid-containing bacterial clones during the vector
KAN	Escherichia coli	construction process.
		Origin of replication to facilitate plasmid propagation in
PUC ORI	Escherichia coli	bacterial cells.

Plasmid 6					
Genetic Element	Origin	Function			
	Enterobacteria	Gateway™ cloning system recombination site to facilitate			
ATTL1	phage lambda	vector construction process.			
ZM-U6 POLIII CHR8		U6 polymerase III gene promoter to drive transcription of			
PRO	Maize (Zea mays)	[] and GUIDE RNA.			
		Sequence fragment complementary to the Cas9			
[]	Maize (Zea mays)	endonuclease recognition site in []gene.			
		Encodes crRNA-tracrRNA fusion transcript that binds to			
		Cas9 endonuclease and directs it to the target site.			
	Streptococcus] and GUIDE RNA together constitute			
GUIDE RNA	pyogenes	chimeric guide RNA.			
ZM-U6 POLIII CHR8		U6 polymerase III gene terminator to terminate			
TERM	Maize (Zea mays)	transcription of [] and GUIDE RNA.			
	Enterobacteria	Gateway™ cloning system recombination site to facilitate			
ATTL3	phage lambda	vector construction process.			
		Kanamycin resistance gene to facilitate identification of			
		the plasmid-containing bacterial clones during the vector			
KAN	Escherichia coli	construction process.			
		Origin of replication to facilitate plasmid propagation in			
PUC ORI	Escherichia coli	bacterial cells.			

		ds Oligo1		
Genetic Element	Origin	Function		
		3' (downstream) homology-directed recombination (HDR)		
[arm to facilitate replacement via the native cellular	CBI De	
]	Maize (Zea mays)	mechanism.		
[Part of the [] coding sequence containing	CBI De	
]	Maize (Zea mays)	targeted base pair substitutions.	CBI Dei	
		5' (upstream) homology-directed recombination (HDR)		
[arm to facilitate replacement via the native cellular		
]	Maize (Zea mays)	mechanism.		

ds Oligo2			
Genetic Element	Origin	Function	

CBI Deleted

CBI Deleted

CBI Deleted

CBI Deleted

eleted

leted

leted

[3' (downstream) homology-directed recombination (HDR) arm to facilitate replacement via the native cellular	CBI Deleted
]	Maize (Zea mays)	mechanism.	
[Part of the [] coding sequence containing	CBI Deleted
]	Maize (Zea mays)	targeted base pair substitutions.	CDI Deleteu
ſ		5' (upstream) homology-directed recombination (HDR) arm to facilitate replacement via the native cellular	CBI Deleted
1,1	Maize (Zea mays)	mechanism.	

ds Oligo 3				
			5' (upstream) homology-directed recombination (HDR)	
L			arm to facilitate replacement via the native cellular	CBI Deleted
]		Maize (Zea mays)	mechanism.	
[Part of the [] coding sequence containing	CBI Deleted
]	Maize (Zea mays)	targeted base pair substitutions.	CDI Deleteu
			3' (downstream) homology-directed recombination (HDR)	
[arm to facilitate replacement via the native cellular	CBI Deleted
]		Maize (Zea mays)	mechanism.	

			ds Oligo 4	
[5' (upstream) homology-directed recombination (HDR) arm to facilitate replacement via the native cellular	CBI Deleted
]		Maize (Zea mays)	mechanism.	
[Part of the [] coding sequence containing	CBI Deleted
]	Maize (Zea mays)	targeted base pair substitutions.	
[3' (downstream) homology-directed recombination (HDR) arm to facilitate replacement via the native cellular	CBI Deleted
]		Maize (Zea mays)	mechanism.	

Description of scientific methodology that you used or intend to use to confirm that the intended genetic changes were achieved.

The intended base pair substitutions are confirmed by Next Generation Sequencing (NGS) analysis. Southern-by-sequencing (SbS) is used to confirm absence of unintentionally integrated DNA from the transformation plasmids in the final maize lines.

SbS is an efficient NGS-based sequencing tool described in detail in Zastrow-Hayes et al. (2015) and Brink et al. (2019). SbS analysis covers the sequences of all plasmids used in transformation and detects unique junctions that would be created between the plant genomic DNA and unintended sequences derived from the transformation plasmids, if unintended plasmid DNA integration has occurred. Only plants with no detected unintended plasmid-derived DNA are selected and advanced for further development.

designed to not contain any genetic elements from the specifically - plant pest genetic material. Corn is not a		•	
believe that amino acid substitutions in the [plant pest, since no plant pest DNA is inserted into the	or [ne plant genom] genes would generate a ne, nor are drought tolerance	CBI Deleted
or yield phenotypes associated with or likely to result that APHIS would not consider CRISPR-Cas9 corn with			
stability as described herein to be a regulated article	•	-	
Additionally, the amino acid substitutions in the [been achieved using conventional breeding techniqu Polymorphism (SNP) mutations resulting in the same	es. As describe		CBI Deleted
	omologs in Ara ent type of mu lleles of the sp ferences betw a single amino et al., 2018). I een utilizing bo 13; Glenn et al , coupled with egrated DNA fr n maize plants	abidopsis through tations in plants and the ecies' gene pool (Glenn et een different varieties of the pacid substitution (Tenaillon Plant genomes are oth spontaneous and induced 1, 2017; Sun et al., 2018; the fact that the final genement that could have resulted	CBI Deleted

We appreciate your review of this inquiry and are ready to address any questions you may

As described above, CRISPR-Cas9 corn with improved drought tolerance and yield stability is

Sincerely,

have.

Annie Tang Gutsche, Ph.D.

US Seeds Regulatory Policy Lead Corteva Agriscience 7100 NW 62nd Avenue Johnston, IA 50131-1000 (302) 415-9434 (Mobile)

annie.gutsche@corteva.com

References

[

Estiblished CBI Deleted

| CBI Deleted | CBI

CBI Deleted

Glenn K.C. et al. (2017) Breeding new plant varieties to market: plant breeding and selection practices advance beneficial characteristics while minimizing unintended changes. Crop Science 57: 2906.

Gore M.A. et al. (2009) A first-generation haplotype map of maize. Science 326: 1115.

]

- Graham N. et al. (2020) Plant genome editing and the relevance of off-target changes. Plant Physiology. doi: 10.1104/pp.19.01194.
- Mba C. (2013) Induced mutations unleash the potentials of plant genetic resources for food and agriculture. Agronomy 3: 200.
- Morgil H. et al. (2020) Single nucleotide polymorphisms (SNPs) in plant genetics and breeding. In: Plant Genetics and Breeding, The Recent Topics in Genetic Polymorphisms, Mahmut Çalışkal et al. eds. IntechOpen, DOI: 10.5772/intechopen.91886.
- Podevin N. et al. (2013) Site-directed nucleases: a paradigm shift in predictable, knowledge-based plant breeding. Trends in Biotechnology 31(6): 375.
- Sun S. et al. (2018). Extensive intaspecific gene order and gene structural variations between MO17 and other maize genomes. Nature Genetics 50: 1289.
- Tenaillon M.I. et al. (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (*Zea mays* ssp. *mays* L.) PNAS USA 98: 9161.
- Zastrow-Hayes G.M. et al. (2015) Southern-by-Sequencing: A Robust Screening Approach for Molecular Characterization of Genetically Modified Crops. The Plant Genome 8: 1.