

January 8, 2020

Bernadette Juarez APHIS Deputy Administrator Biotechnology Regulatory Services 4700 River Rd, Unit 98 Riverdale, MD 20737

RECEIVED

By USDA APHIS BRS Document Control Officer at 3:20 pm, Jan 10, 2020

Confidential Business Information Deleted

Re: Confirmation of Regulatory Status of Multiplex Genome-Edited Camelina Null Segregant Lines Developed by CRISPR/Cas Technology

Dear Ms. Juarez,

Yield10 Bioscience respectfully requests confi	rmation from USDA-APHIS's Biotechnology R	Regulatory
Services (BRS) that our genome-edited Came	lina sativa (L.) Crantz plant lines developed us	sing the
CRISPR/Cas9 genome editing technology do r	ot meet the definition of regulated articles u	inder 7
CFR Part 340 since the final lines do not conta	iin any DNA from a "plant pest". <i>Camelina sa</i>	<i>itiva</i> is an
oil seed crop in the family Brassicaceae that is	s not on the USDA federal noxious weed list.	The lines,
herein referred to as lines [CBI-Deleted
], were developed at Meta	bolix Oilseeds, Inc. (110 Gymnasium Place, Sa	askatoon, CBI-Deleted
SK, S7N 0W9, Canada), a wholly owned Canad	lian subsidiary of Yield10 Bioscience. We use	d
disarmed Agrobacterium tumefaciens to deliv	ver a gene encoding the endonuclease Cas9, a	as well as
three cassettes coding each for a different gu	ide RNA to direct the Cas9 enzyme to defined	d sites in
the plant genome, into plant cells. The target	, ted sites for genome editing were [CBI-Deleted
lgenes	present in Camelina. [that 2x CBI-Deleted
[CBI-Deleted
l. The inactivation of the [] genes is thus expected to [3x CBI-Deleted
].		CBI-Deleted
It has been shown previously by other resear	chers that the Cas9 enzyme produces double	strand
DNA breaks that when repaired, incorporate	small deletions or insertions of DNA. DNA see	quence
analysis has shown that lines [CBI-Deleted
] contain two to twenty-tw	o nucleotide deletions that either disrupt the	coding CBI-Deleted
sequence of the [] genes, or that delete one co	odon from CBI-Deleted
the genes. [CBI-Deleted
]. Please see Table 1 for a su	ummary of CBI-Deleted
the nature of edits on [] gen	es.	CBI-Deleted
As described below, lines [CBI-Deleted
] are null segregants that were o	btained using conventional breeding procedu	ures to CBI-Deleted

remove the genetic sequence	s that allow the CRISPR/Cas9 editing to take pla	ace such that only	the	
genome edits (two to twenty	-two nucleotide deletions) remain. Analysis of	the bulk parent		
[] seed of the line	es shows that they produce [].	2x CBI-Deleted
In parent line of lines []	edited [2x CBI-Deleted
]. In the parent line of [] the [3x CBI-Deleted
] ;	as well which leads to [].	2x CBI-Deleted
In parent plants of lines [[] edited in only the [], this leads to [].] gene, the]. Together	with [2x CBI-Deleted 2x CBI-Deleted 2x CBI-Deleted CBI-Deleted
In parent plants of [], the [Together with [] that are edited in [], this leads to [].]		2x CBI-Deleted 2x CBI-Deleted 2x CBI-Deleted CBI-Deleted
Since lines [are null segregants that do no nucleotide deletions do not g opinion that lines [] do not meet the def seek confirmation of the regu	ot contain any plant pest sequences, and since t enerate a plant pest or pose increased weeding finition of a regulated article based on 7 CFR Pa latory status of lines [] from USDA-APHIS BRS.	he two to twenty ess potential, it is o rt 340. We howe] -two our ver	CBI-Deleted CBI-Deleted CBI-Deleted CBI-Deleted CBI-Deleted
[CBI-Deleted

]		CBI-Deleted
Table 1. Summary of nucleotide deletions in genes [] in edited Camelina	CBI-Deleted
lines. Abbreviations are as follows: WT, wild type (no change in nucleotide s	sequence); Ch,	
chromosome. Numbers in table designate the size of the deletion in the tar	geted gene.	

Intended Phenotype

The intended phenotype of lines produced non-editing of the [eleu
] via inactivation of the endogenous [2x CBI-I	Deleted
] genes that []. Camelina is an allohexaploid and 2x CBI-I	Deleted
contains three subgenomes such that there are three copies, or homeologs, of each gene in the	
plant. Thus complete editing of the [] genes in a plant would contain edits in CBI-Del	eted
nine genes. Since homozygous or biallelic edits are needed for stable lines, 18 total editing targets	
would be edited in a completely edited plant. As depicted in detail in Table 1, we generated two	
lines [] that are [], such that 2x CBI-I	Deleted
[] gene targets are edited. [] lines [3x CBI-I	Deleted
] bear edits []. [] line [4x CBI-I	Deleted
], bears edits []. Finally, lines [3x CBI-I	Deleted
] show editing in []. 2x CBI-I	Deleted

Intended Activity

Upon confirmation from USDA-APHIS BRS that the [] edited Camelina lines are not regulated, CBI-Deleted Yield10 Bioscience intends to import the lines from its subsidiary in Saskatoon, Canada. In addition, we plan to conduct field releases and interstate movement of the lines.

Genetic Change in the Final Product

The genetic changes are deletions of [] <i>,</i> in	CBI-Deleted		
copies of the [] genes. The best edited lines, [2x CBI-Deleted		
], have homozygous edits in [] in total.	2x CBI-Deleted		
These edits are indistinguishable from changes that could result from native genome variability,					
conventional breeding, or chemical or radiation-base	ed mutagenesis.				

Development of the Edited Camelina Lines

The components for the CRISPR/Cas9 genome editing technology, namely an expression cassette for the gene encoding the Cas9 endonuclease and three expression cassettes for three guide RNAs to target the Cas9 to the desired sites in the Camelina genome, were delivered into the plant cells by Agrobacterium-mediated transformation using a binary vector and the floral dip method. CRISPR/Cas9 is a bacterial endonuclease. It utilizes a combination of protein-DNA and RNA-DNA pairing to direct targeted double strand breaks in the DNA sequence of interest. The guide RNA targets Cas9 to the intended site of action. The spacers of the guide RNAs ([2x CBI-Deleted] CsC1-69, [] CsC3-52) were designed to provide sufficient guide RNA specificity (Table 2), to CBI-Deleted CsC2-33, and [generate an edit in all three gene copies (6 editing targets for biallelic edits) of each gene's respective target gene. A detailed list of genetic elements, their origin, and their function is presented in Table 2. In short, the T-DNA of binary vector [] carries five expression **CBI-Deleted** cassettes:

-	An expression cassette for the two exons	of Cas9 endonuclease from Stre	ptococcus pyogenes	
	[]. The expression of the Cas9 ge].	ene is controlled by the [CBI-Deleted 2x CBI-Deleted CBI-Deleted CBI-Deleted CBI-Deleted
-	A cassette encoding the guide RNA [promoter of the U6-26 small nuclear RNA] spacer CsC1-69 under control gene from [of the polymerase III]	CBI-Deleted CBI-Deleted
-	A cassette encoding the guide RNA [promoter of the U6-26 small nuclear RNA] spacer CsC2-33 under control gene from [of the polymerase III]	CBI-Deleted CBI-Deleted
-	A cassette encoding the guide RNA [promoter of the U6-26 small nuclear RNA] spacer CsC3-52 under control gene from [of the polymerase III]	CBI-Deleted CBI-Deleted
-	An expression cassette for the [] selection marker		CBI-Deleted

Table 2. Genetic Elements of [

] used to create lines [

ate lines [2x CBI-Deleted]. The vector backbone (region outside of
]. CBI-DeletedCBI-Deleted

the T-DNA) is identical to standard binary vector [

	Genetic Element	Source	Function	
	U6-26 promoter	[]	Polymerase III promoter of the U6-26 small nuclear RNA gene to drive transcription of cassette 1 composed of the [] CsC3-52 spacer and the guide RNA scaffold which together encode the functional chimeric guide RNA	CBI-Deleted CBI-Deleted CBI-Deleted
sette 1	[] CsC3- 52 spacer	Camelina sativa	Encodes []. This "spacer" directs the Cas9 endonuclease to the [] genes for cleavage	2x CBI-Deleted CBI-Deleted CBI-Deleted CBI-Deleted CBI-Deleted
Cass	Guide RNA scaffold	Streptococcus pyogenes	Encodes crRNA-tracrRNA fusion transcript that is necessary for Cas9 binding. The [] CsC3-52 spacer and the guide RNA scaffold together constitute a functional chimeric guide RNA	CBI-Deleted
	U6-26 terminator	[]	Terminator of U6-26 small nuclear RNA polymerase III to terminate transcription of [] CsC3-52 spacer and guide RNA scaffold	CBI-Deleted 2x CBI-Deleted

	U6-26	[Polymerase III promoter of the U6-26 small nuclear RNA	CBI-Deleted
	promoter	1	gene to drive transcription of cassette 2 composed of the	CBI-Deleted
		,	[] CsC1-69 spacer and the guide RNA scaffold which	CBI-Deleted
			together encode the functional chimeric guide RNA	
	[] CsC1-	Camelina sativa	Encodes [2x CBI-Deleted
	69			CBI-Deleted
e 2]. This "spacer" directs	CBI-Deleted
ett			the Cas9 endonuclease to the [] genes for cleavage	CBI-Deleted
ass	Guide RNA	Streptococcus	Encodes crRNA-tracrRNA fusion transcript that is necessary	
	scaffold	pyogenes	for Cas9 binding. The [] CsC1-69 spacer and the guide	CBI-Deleted
			RNA scaffold together constitute a functional chimeric	
			guide RNA	
	06-26		Terminator of U6-26 small nuclear RNA polymerase III to	CBI-Deleted
	terminator	J	terminate transcription of [] CsC1-69 spacer and	2x CBI-Deleted
	116-26	Г Г	Bolymerase III promoter of the LIG 26 small puckers PNA	
	nromoter		gene to drive transcription of cassette 3 composed of the	CBI-Deleted
	promoter	J	[] CsC2-33 spacer and the guide RNA scaffold which	CBI-Deleted
			together encode the functional chimeric guide RNA	CDI-Deleteu
	[] CsC2-	Camelina sativa	Encodes [2x CBI-Deleted
	33 spacer			CBI-Deleted
3]. This "spacer" directs	CBI-Deleted
ette			the Cas9 endonuclease to the [] genes for cleavage	CBI-Deleted
ass	Guide RNA	Streptococcus	Encodes crRNA-tracrRNA fusion transcript that is necessary	
0	scaffold	pyogenes	for Cas9 binding. The [] CsC2-33 spacer and the guide	CBI-Deleted
			RNA scaffold together constitute a functional chimeric	
			guide RNA	
	U6-26	l ,	Terminator of U6-26 small nuclear RNA polymerase III to	CBI-Deleted
	terminator	J	terminate transcription of [] CsC2-33 spacer and	2x CBI-Deleted
	Г <u>1</u>	[r	
	l J	L		3x CBI-Deleted
	promoter	1		2x CBI-Deleted
		1	1. controls	CBI-Deleted
			expression of the Cas9 coding sequence	Condentieu
	[]	[3x CBI-Deleted
]		CBI-Deleted
4	[]	[[3x CBI-Deleted
tte]]]	2x CBI-Deleted
sse	[]	Streptococcus	Exon 1 of Cas9 endonuclease [2x CBI-Deleted
C	L	pyogenes]	CBI-Deleted
	[]	Solanum tuberosum		2x CBI-Deleted
] to	CBI-Deleted
	Г <u>г</u>	Ctrantagageur	optimize Cas9 expression in plants	Dy CDI Dalata d
		streptococcus	EXON 2 OF Case endonuclease [
	[]	r 1		
			L	CBI-Deleted
L	1			

Cassette 5	[] terminator [] promoter [] selection marker	[] [] []] Terminator of the [] to terminate transcription of Cas9 [] promoter, drives expression of the [] selection marker []	CBI-Deleted CBI-Deleted 3x CBI-Deleted 3x CBI-Deleted 3x CBI-Deleted 2x CBI-Deleted 2x CBI-Deleted CBI-Deleted CBI-Deleted CBI-Deleted CBI-Deleted CBI-Deleted
	[] terminator	[Terminator of the [] gene to terminate transcription of the [] selection marker	3x CBI-Deleted
	T-DNA Left Border	Agrobacterium tumefaciens Ti plasmid	Left border of the T-DNA, required for transfer of the T- DNA into the plant cell genome	2x CBI-Deleted
	aphAIII	Escherichia coli K-12	Bacterial kanamycin resistance marker, provides kanamycin resistance for plasmid maintenance in <i>E. coli</i>	
	pBR322 ori	Escherichia coli K-12	Bacterial origin of replication from plasmid pMB1, used for plasmid maintenance in <i>E. coli</i>	
	pVS1 rep	Pseudomonas aeruginosa pVS1	Replication protein from plasmid pVS1, used for plasmid replication in <i>Agrobacterium</i>	
	pVS1 sta	Pseudomonas aeruginosa pVS1	Stability protein from plasmid pVS1, used for plasmid stability in Agrobacterium	
	T-DNA Right Border	Agrobacterium tumefaciens Ti plasmid	Right border of the T-DNA, required for transfer of the T- DNA into the plant cell genome	1

The binary vector backbone is identical to the standard binary vector [] and includes both T-DNA borders.			
The next step comprised [], in	dicating the presence	CBI-Deleted CBI-Deleted
of the T-DNA containing the Cas9 expression and guid seeds were planted in soil and leaf tissue was screene	e RNA expression casse d for genome editing by	ttes. T ₁ generation Amplicon sequencing.	
Plants containing genome edits in the [] loci were iso	lated. T_1 plants were	CBI-Deleted
grown and second-generation seed was isolated and s	screened for [CBI-Deleted
]. The [] second generation	2x CBI-Deleted
seeds were further advanced through two additional g	generations to generate	e generation four and	CBI-Deleted
generation live seeds [].	
Additional analysis of the null segregant plant lines inc	cluded Amplicon seque	ncing of all nine genes	
(18 biallelic editing targets) for [] to determine the na	ature of the editing. A	CBI-Deleted
summary of lines is shown below with more specific d	letails in Table 1.		

a) Lines	5 []				CBI-Deleted
-	carry a [].	CBI-Deleted CBI-Deleted
-	The remaining [].] as well as [2x CBI-Deleted CBI-Deleted
b) Lines	5 []				CBI-Deleted
-	carry a [].	CBI-Deleted CBI-Deleted
-	The remaining [].] as well as [2x CBI-Deleted CBI-Deleted
c) Line	[]					CBI-Deleted
-	carries a [CBI-Deleted CBI-Deleted CBI-Deleted
-	J. The remaining [].] as well as [2x CBI-Deleted CBI-Deleted
d) Lines	5 []				CBI-Deleted
-	carry a [] and	d a [CBI-Deleted 2x CBI-Deleted CBI-Deleted
].					CBI-Deleted
-	The remaining [].], [] as well as [3x CBI-Deleted CBI-Deleted
e) Lines	5 []				CBI-Deleted
-	carry a [].	CBI-Deleted CBI-Deleted
-	The [].] as	well as [2x CBI-Deleted CBI-Deleted
Detailed PCR analysis was also performed using 16 primer pairs targeting multiple regions of the T-						
genes. No evidence of any T-DNA or plant vector backbone was detected in lines [CBI-Deleted						

]. Please find supporting data at CBI-Deleted

the end of this document.

Former USDA-APHIS Jurisdiction on CRISPR/Cas9 Genome Editing

In its responses to previous letters (listed below) USDA-APHIS has concluded that there is no reason to believe that targeted mutations generated by the gene editing process of Cas9 endonucleases would generate plant pests.

Reference	Date	Species
Firko to Dupont Pioneer	January 12, 2018	Zea mays - corn
Firko to USDA ARS	October 16, 2017	Glycine max - soybean
Firko to Yield10 Bioscience	August 29, 2017	Camelina sativa
Firko to Danforth Center	April 7, 2017	Setaria viridis
Firko to DuPont Pioneer	April 18, 2016	Zea mays - corn
Firko to Penn State University	April 13, 2016	<i>Agaricus bisporus</i> – white button mushroom

No Plant Pest Sequences Remain in the Edited Camelina Line

The edited Camelina lines were generated through expression of the Cas9 cassette. The [
], pVS1, T-DNA borders and [] terminator are derived from plant pest	2x CBI-Deleted		
sequences ([equences ([], <i>Pseudomonas aeruginosa</i> , [
]) (Table 2) as designated in 7 CFR 340.2. However, these sequences are not involved in					
pathogenicity and do not express proteins that would result in infection or pathogenicity of the					
edited Camelina line. Importantly, the final edited Camelina lines [
], are null segregants and do not contain					
these plant pest sequen	ces but retain the desired edits.				

USDA-APHIS has previously made the determination that genetically modified plants transformed with Cas9 via *Agrobacterium*-mediated transformation are not regulated articles if it was experimentally shown that the Cas9-bearing T-DNA was segregated away from the targeted mutation through conventional breeding and produced progeny without the inserted DNA (see USDA response letters below).

Reference	Date	Species
Firko to University of Minnesota	June 17, 2019	Glycine max - soybean
Firko to University of Minnesota	June 17, 2019	Glycine max - soybean
Firko to Illinois State University	April 19, 2019	Thlaspi arvense L pennycress
Firko to Max Planck Institute	February 25, 2019	<i>Nicotiana attenuata</i> – coyote
Firko to Intrexon Corporation	February 8, 2019	Lactuca sativa -lettuce

CBI-Deleted

CBI-Deleted

Firko to Yield10 Bioscience	September 7, 2018	Camelina sativa
Firko to Illinois State University	August 6, 2018	Thlaspi arvense L pennycress
Firko to Iowa State University	July 12, 2018	Zea mays -maize
Firko to University of Florida	May 14, 2018	Solanum lycopersicum -
		tomato
Firko to USDA ARS	October 16, 2017	<i>Glycine max</i> - soybean
Firko to Yield10 Bioscience	August 29, 2017	Camelina sativa
Firko to Danforth Center	April 7, 2017	Setaria viridis

Confidential Business Information Deleted

In addition, USDA-APHIS has previously determined that other null segregants originally generated via *Agrobacterium*-mediated transformation are not regulated articles:

Reference	Date	Species
Firko to North Carolina State University	December 29, 2017	<i>Nicotiana tabacum -</i> tobacco
Firko to Epicrop technologies	April 7, 2017	<i>Glycine max</i> - soybean
Firko to Iowa State University	May 22, 2015	<i>Oryza sativa</i> – rice
Gregoire to University of Nebraska	June 6, 2012	Sorghum bicolor

The parent lines of lines [

] of our current inquiry were developed using a similar method as described in ourCBI-Deletedformer letter of inquiry for the development of the genome-edited Camelina null segregant line [CBI-Deleted

] from June 12, 2017, as well as described in our former letter of inquiry for the development of
the null segregants of genome-edited lines containing multiple edits [CBI-DeletedCBI-Deleted

] from May 22, 2018 . In Dr. Firko's response letters dated August 29, 2017 and September 7, 2018, USDA APHIS considered these lines not regulated pursuant to 7 CFR part 340.

USDA-APHIS has previously determined that plants edited in two or more genes are not regulated articles if it was experimentally shown that the genetic material used to create the edits was removed by segregation:

Reference	Date	Species
Firko to Illinois State University	April 19, 2019	Thlaspi arvense L
		pennycress
Firko to Max Planck Institute	February 25, 2019	Nicotiana attenuata – coyote
		tobacco
Firko to Yield10 Bioscience	September 7, 2018	Camelina sativa
Firko to USDA-ARS	October 16, 2017	<i>Glycine max</i> - soybean
Firko to Iowa State University	May 22, 2015	<i>Oryza sativa -</i> rice

Confidential Business Information Deleted

Conclusions

Metabolix Oilseeds, a wholly owned Canadian sub	osidiary of Yield10 B	ioscience, generated [] CBI-Deleted
CRISPR/Cas9 edited lines of the allohexaploid spe	cies Camelina sativo	a. The lines, lines [CBI-Deleted
], contain [2x CBI-Deleted
], in the [] genes. All [] lines [4x CBI-Deleted
] are	e null segregants (genes	CBI-Deleted
enabling CRISPR/Cas9 editing were removed thro	ugh conventional bi	reeding) yet retain the des	sired
genome edits. Lines [CBI-Deleted
] do not contain any foreign DNA or plant	pest sequences.		CBI-Deleted
In order to facilitate further testing at our Wobur	n, MA facilities and	in the field, Yield10 Biosci	ences
requests confirmation from Biotechnology Regula	atory Services that o	ur edited Camelina lines [CBI-Deleted
] do not m	eet CBI-Deleted

the definition of a regulated article under 7 CFR Part 340.

We look forward to answering any questions you might have.

Sincerely,

Kee BRI. Tatuer

Karen Bohmert-Tatarev, PhD Senior Director, Rice 19 Presidential Way Woburn, MA 01801 617-583-1769 <u>kbohmert-tatarev@yield10bio.com</u>

 $\underline{\pi} \mu$

Kuster P. Snell

Kristi D. Snell, PhD VP of Research & CSO 19 Presidential Way Woburn, MA 01801 617-583-1729 snell@yield10bio.com

References

[

CBI-Deleted

CBI-Deleted

]

Supporting Data

1. Map of transformation vector showing primer binding sites.

[

CBI-Deleted

CBI-Deleted

]

2. Description of primers used for screening of null segregants and expected amplicons

Gel lane	Primer 1 (bases where primer binds in vector	Primer 2 (bases where primer binds in vector	Genetic Fragments in Expected	Expected Amplicon Size (bp)	2v CPI Dolotod
[Amplicon		CBI-Deleted
					-
					-
					-
					-
					-
					-
					_
				1	CBL-Deleted

CBI-Deleted

CBI-Deletec CBI-Deletec	CBI-Delete	CBI-Delete	CBI-Delete
3. Agarose gel electrophoresis analysis of PCR reactions of plant genomic DNA from lines [19-4925, 19-4931, 19-4935, 19-4938, 19-4973, 19-4997, 19-5000, 19-5007 and 19-5008] to demonstrate absence of transformation vector sequence in null segregants. PCR was performed with Top Taq Master Mix kit (Qiagen, Cat No./ID: 200403) with 5 µL reaction loaded on a 1.0% agarose gel. PCR cycling parameters for amplification of primer sets #4, #9, #10, #11, #12, #15 were one cycle at 95°C for 5 min, 35 cycles at 95 °C for 30 sec, 64°C for 30 s, 72 °C for 45 s followed by a final extension at 72°C of 10 min. For all other primers the annealing temperature was 60°C with other cycling conditions as described above.	a. [] control plasmid DNA		

CBI Deleted Copy

Confidential Business Information Deleted

	CBI-Deleted	CBI-Deleted] CBI-Deleted	
ted				
ential Business Information Delet				
Confide], wild-type control genomic DNA			

_

þ.

Confidential Business Information Deleted

c. Water control (no DNA template)

CBI-Deleted

] CBI-Deleted

CBI-Deleted CBI-Deleted] CBI-Deleted		

17

Line [19-4925] genomic DNA

CBI-Deleted Copy

	CBI-Deleted CBI-Deleted	CBI-Deleted
Deleted		
Information [
tial Business		
Confiden		
] genomic DNA	
	Line [
	ە	

CBI-Deleted CBI-Deleted] CBI-Deleted
4	
] genomic DN	
Line	

Confidential Business Information Deleted

<u>ч</u>. —

CBI-Deleted CBI-Deleted] CBI-Deleted
٩	
] genomic DN	
Line	

	CBI-Deleted CBI-Deleted] CBI-Deleted
mation Deleted		
Confidential Business Inforn		
] genomic DNA	
	Line [

. Ч

	CBI-Deleted CBI-Deleted] CBI-Deleted
ormation Deleted		
Confidential Business Inf		
] genomic DNA	
	Line [

	CBI-Deleted CBI-Deleted] CBI-Deleted
pa		
iness Information Delet		
Confidential Busi		
] genomic DNA	
	Line [

	CBI-Deleted	CBI-Deleted] CBI-Deleted	
n Deleted				
Confidential Business Informatio				
] genomic DNA			
	Line [

¥.

_

	CBI-Deleted	CBI-Deleted] CBI-Deleted		
n Deleted							
isiness Informatior							
Confidential Bu							
] genomic DNA						
	Line [