Cellular immune responses in Asian elephants infected with *Mycobacterium* species

Jaime Landolfi, DVM, Dipl. ACVP
Karen A. Terio, DVM, PhD, Dipl. ACVP
University of Illinois Zoological Pathology Program
Current elephant TB challenges

1. Development of accurate diagnostics
2. Establishment of efficacious and tolerable treatment regimens
3. Elucidation of mechanisms underlying disease susceptibility
Tuberculosis in elephants

- *Mycobacterium tuberculosis*
- Documented U.S. zoonosis
- Worldwide prevalence unknown
- Southeast Asia
 - High human TB prevalence
 - Interaction with captive working elephants
Mycobacterium tuberculosis

- One third of world human population infected
- <10% of infected individuals ever develop clinical disease
Tuberculosis immunity

- Disease is secondary to abnormal or inadequate host immune responses that fail to control infection
- Do immune function alterations explain Asian elephant susceptibility to *Mycobacterium* spp.?
Immunity Defined

• The body’s reaction to foreign substances
 – Infectious microbes
 – Noninfectious macromolecules

• Occurs regardless of potentially detrimental physiologic or pathologic consequences
Innate vs. Adaptive

<table>
<thead>
<tr>
<th></th>
<th>Innate</th>
<th>Adaptive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specificity</td>
<td>Structures shared by related groups of microbes</td>
<td>Various microbial and nonmicrobial antigens</td>
</tr>
<tr>
<td>Diversity</td>
<td>Limited</td>
<td>Vast</td>
</tr>
<tr>
<td>Memory</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Cellular components</td>
<td>Phagocytes, NK cells</td>
<td>Lymphocytes</td>
</tr>
<tr>
<td>Biochemical components</td>
<td>Complement, cytokines, chemokines</td>
<td>Antibodies, cytokines</td>
</tr>
</tbody>
</table>
Cytokines

- Secreted proteins that modulate and coordinate immune responses
- Link between innate and adaptive immunity
- Measurable in blood and tissue samples
Cytokines in adaptive immunity

- Determine whether response cell-mediated (T_H^1) or humoral (T_H^2)

- IL-12 $\rightarrow T_H^1 \rightarrow$ IL-2, IFN-γ \rightarrow macrophage activation

- IL-4 $\rightarrow T_H^2 \rightarrow$ IL-4, IL-10 \rightarrow B cell proliferation & antibody secretion
Immune function and disease

- Tuberculosis
 - Effective immunity = Th1-dominant response
 - Disease = Th1-Th2 imbalance
Resistant

Acute
T_H1 response: local and systemic

Latent disease
Sustained local and systemic T_H1 response

Susceptible

Acute
T_H1 response: local and systemic

Progressive disease
Diminished systemic (1^{st}) and local (2^{nd}) T_H1 response
Human progressive disease

• Decreased levels of $T_H 1$ cytokines systemically: peripheral anergy

• Relative increase in levels of $T_H 2$ cytokines systemically: $T_H 2$ dominated immune response

• Decreased levels of $T_H 1$ cytokines locally: disseminated disease
Bovine TB

- Disease associated with mixed T_H1/T_H2 response
- No evidence of divergent local and systemic responses at any stage of disease
- Disease severity correlated with ↓ IFN-γ:IL-4 and ↑ IL-10
- Studies experimental and involved few animals
Study Goal

• Characterize elephant cellular immune responses by measuring and comparing cytokine levels in TB positive and negative samples
 – Understand susceptibility
 – Improve diagnostics
 – Enhance treatment monitoring
Objective 1

• Develop molecular assays for detection and quantification of elephant cytokine levels
 • Real time, reverse transcriptase (RT)-PCR
Real time RT-PCR

• Utilizes sequence-specific primers and probes to identify and amplify mRNA of interest in sample

• Sensitive technique allowing for detection and quantification of even very low levels of mRNA
mRNA detection

- Analogous to protein detection, but with greater sensitivity
- Also eliminates need for specific antibodies and reagents
Development and validation of RT-PCR assays

• Asian elephant-specific assays for measurement of cytokine levels within samples
 1. Sequencing of cytokine and housekeeping genes (Genbank FJ423082-FJ423112)
 2. Design of real time primers and probes for amplification at gene intron/exon junction sites
 3. Optimization of assay efficiency
Objective 2

• Evaluation of baseline cytokine levels
• RNA-preserved peripheral whole blood samples from 106 captive working Asian elephants in Nepal
 – TB positive: 16 (15%)
 – TB negative: 90 (85%)
• Cytokine quantification using elephant specific real time RT-PCR
Figure 1: Cytokine fold difference means and standard errors

Conclusion

- Elephant systemic immune response to TB is mixed T_H1/T_H2

- Important caveats:
 - Elephant TB status based on serology not culture
 - Elephant disease stage unknown
 - Elephant cytokines measured in unstimulated RNA-preserved whole blood
Objective 3

- Evaluation of cytokine levels in mycobacterial antigen-stimulated samples
- Asian elephant peripheral blood mononuclear cell (PBMC) cultures
 - ConA (mitogen positive control)
 - \textit{M. bovis} PPD
 - \textit{M. tuberculosis} CFP-10
Study utility

• Emulates design of majority of human and bovine TB pathogenesis studies
• Results could serve as basis for future development of new diagnostics tests
 • QuantiFERON
 • Bovigam
Progress to date

- Validation and optimization of standard PBMC culture procedures for use with elephant samples
 - Cell concentration
 - Mitogen/antigen concentration
 - Incubation time
Incubation time PPD bovis

Days

Stimulation index

Elephant 1
Samples needed!

- Peripheral whole blood from any and all TB positive Asian elephants
Elephant TB immunity

- Findings thus far suggest elephant immune response to TB is mixed T_H^1/T_H^2
- T_H^2 component may contribute to disease susceptibility
- Analysis of cytokine expression following mycobacterial antigen stimulation could provide more definitive information
Acknowledgements

• The elephants and their contributing facilities
• Elephant Care International
• Elephant TAG SSP
• Ringling Bros. Center for Elephant Conservation
• Susan Mikota
• Margot Monti
• Kelli Harvison
• Julia Chosy
• Michele Miller
• Stacy Schultz
• Images: national geographic.com; robbinspathology.com; sarcoma.org; elephant-photos.com; nimr.mrc.ac.uk; cdc.gov