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1 Median effective dose

In dose-response studies, the median effective dose (ED50) is the estimated dose that pro-
duces a response in half the population. Particular types of dose-response studies are
associated with specific forms of the ED50. In accute toxicity studies, it is the median of a
latent distribution known as the tolerance distribution (Section 2). The response is usually
death, and it is termed the median lethal dose (LD50). In vaccination-challenge studies,
a median protective dose (PD50) is estimated. It can be thought of as the median of an
immunocompetence distribution, analagous to a tolerance distribution.1

Another ‘dose 50’ that should be mentioned for completeness is the tissue culture infective
dose (TCID50). In virus titrations, the TCID50 is the dose that produces evidence of
infection in half the wells to which it is applied. It is estimated in a similar way as the
preceding measures, but unlike them the TCID50 is not the median of an underlying latent

1A distribution of immunocompentences only makes sense if the response to challenge is constant in
every individual. Since that is often implausible, the distribution is in fact a mixture of immunocompetences
and susceptibilities.

1
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2 THE TOLERANCE DISTRIBUTION 2

distribution. It is simply the volume of the virus suspension that would contain an average
of 0.7 infective virus particles (e.g. PFU).

In modern times, dose-response studies are usually handled by statistical modeling to es-
timate the dose-response curve. This has obvious advantages over the non-parametric
measures discussed here. One of the most salient benefits is, of course, the estimation of
the entire dose-response curve itself, rather than a single measure of one of its features, its
center. Dose-response curves were not so easily estimated in the days before computers,
and non-parametric estimators of ED50 were important historically. A glance at this doc-
ument’s references will show that the ones discussed here were initially published between
1908 and 1938.

Of the three, the Spearman-Karber estimator is still somewhat useful today for its valuable
statistical properties. The Reed-Muench and Dragstedt-Behrens estimators are largely
of historical interest. Their use is still surprisingly widespread, however, so it is worth
being familiar with their mechanics. Users should be warned that they can be worse than
inaccurate, they can produce meaningless results.

2 The tolerance distribution

In bioassays with binary response,2 the probability of response is often thought to reflect
an underlying latent distribution known as the tolerance distribution. An individual’s
tolerance is the smallest dose that produces a response. The tolerance distribution describes
the distribution of tolerances in the population.

Consider for example an old fashioned ‘kill-em-and-count-em’ acute toxicicity assay, in
which various doses of a toxin are applied to a test species. The response is death, and
the probability of the response is conditional on the dose. The dose expected to produce a
specified response probability is a quantile of the tolerance distribution.

For individual j let yj denote its response, which is observed, and xj its tolerance, which
is not. Let di be the ith dose. Then the probability of a response is the probability that
the tolerance is no greater than the dose: Pr(yj = 1|di) = Pr(xj ≤ di). The conditional
response distribution is yj|di ∼ BERN(πi). The tolerance distribution is xj ∼ f(µ, σ2),
where f(·) is the PDF of a location-scale distribution.

The expectation of the conditional response distribution is related to the standardized
tolerance distribution by

πi = F

(
di − µ
σ

)

A binomial generalized linear model, g(πi) = α+βdi, connects the response distribution to

2In the past, the term ‘quantal’ was often used for a binary response.
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3 NON-PARAMETRIC ESTIMATORS 3

the tolerance distribution through the link function: πi = g−1(α + βdi) = F ((di − µ)/σ ).
The estimated mean and variance of the tolerance distribution are then given by the re-
gression parameter estimates, and µ = −α/β, σ = 1/β .

Logit and probit link functions correspond to logistic and normal tolerance distributions,
respectively. Since they are symmetrical, their means and medians are the same:
m = µ = −α/β . The complementary-log-log and log-log link functions correspond to
extreme value distributions, which are asymmetrical. For those distributions, the median
would be m = {log (log(2))− α}/β .
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Figure 1: The tolerance distribution.

Figure 1 illustrates this relationship. The data shown at the top of the plot are the number
of mice dying out of a group of mice administered a dose of toxin. Each point is a realization
from a binomial response distribution that is conditional on the dose administered. The
curve, estimated in this case with a logit link, represents the tolerance distribution. The
ED50 is shown by the arrow.

3 Non-parametric estimators

Three of the non-parametric estimators most commonly used to estimate ED50 are de-
scribed. The Spearman-Karber estimator is an explicit estimator of the mean, not the the
median. The mean corresponds to the ED50 only for symmetrical distributions, of course,
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3 NON-PARAMETRIC ESTIMATORS 4

and there is rarely enough data to evaluate this assumption in the types of experiments
where it is used — it is an article of faith and hope. As an estimator of the discretized
mean, it is uniform minimum variance unbiased and the maximum likelihood estimator.

The Reed-Muench and Dragstedt-Behrens estimators were intended as estimators of the
median. Miller (1973) points out the surprising result that they are, in fact, asymptotically
equivalent to Spearman-Karber and hence are estimators of the mean.

3.1 Spearman-Karber

The Spearman-Karber method (Spearman 1908; Karber 1931) gives a non-parametric es-
timate of the mean of a tolerance distribution from its empirical probability mass function
(PMF). The observed data are thought to give an empirical estimate of the cumulative
distribution function (CDF) of the tolerance distribution(Figure 2(a)).3 The empirical
probability mass function (PMF) is derived from the CDF by differencing (Figures 2(b)–
(c)).

The estimator is
∑

(x · f(x)), the usual one for the mean of a discrete distribution, except
that here f(x) is the empirical PMF obtained from the observed data. This estimator de-
pends on the complete distribution, which may not be available in a particular experiment.
If the CDF does not cover the entire support of x, a common practice is to extend it by
assuming the next lower dose would produce zero response and the next higher dose would
produce complete response. Although this is not always a good idea, it is the default in
the function SpearKarb(). While the tolerance distribution is not discrete, it is discretized
by virtue of the interval censoring inherent in experiments of this type.

3.2 Reed-Muench

The Reed-Muench method (Reed and Muench 1938) takes a different approach. It begins
with the belief that there is more information in the experiment than is given by the
observed responses. Instead, we can assume that we know how some of the mice would
have responded had they been given a different dose. A mouse that died at a lower dose
would certainly die at a higher dose, and one that survived a higher dose would certainly
survive a lower dose. This approach can only be considered quasi-statistical, since it treats
observed responses as known constants rather than random variables. There is also the
problem that some of the subjects contribute more information than others.

Here’s how it works. Accumulate the sums in both directions that represent the hypotheti-
cal number that at each dose would have died or survived. The actual numbers of observed
responses are shown in columns 1 and 2 of the table in Figure 3(a), and the hypothetical

3Note that the empirical CDF of the tolerance distribution estimated in a dilution experiment of this
type is not the same as an empirical distribution function (EDF).
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3 NON-PARAMETRIC ESTIMATORS 5

Figure 2: The Spearman-Karber method

(a) Observed CDF of tolerance distribution

0 1 2 3 4 5
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

−log (dose)d

F
ra

ct
io

n 
P

os
iti

ve

0 3 4 6 7 10

10 7 6 3 2 0

Positive
Negative

(b) Differencing the CDF
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(c) Empirical PMF
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number of known responses are shown in columns 3 and 4. (When the group sizes are
unequal, as they are in this example, an adjustment is made in the cumulative sums that
effectively averages the group sizes, as shown in columns 5 and 6.)

Next, find the doses that bracket the ED50, i.e. the one where fewer than half of the
hypothetical responses are positive and the one where more than half the hypothetical
responses are positive. The ED50 is found by interpolation between the bracketing doses
to find the dose at which the hypothetical responses would be equal. It is given by the
intersection of the line that connects the hypothetical positive responses and the line that
connects the hypothetical negative responses at the bracketing doses (Figure 3(b)).
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3 NON-PARAMETRIC ESTIMATORS 6

Figure 3: The Reed-Muench method

(a) Observed responses (Pos, Neg), hypothetical responses (CumPos, CumNeg),

adjusted hypothetical response (AdjCumPos, AdjCumNeg)

Pos Neg CumPos CumNeg AdjCumPos AdjCumNeg
0 10 0 28 0.0 27.6
3 7 3 18 2.9 17.9
4 6 7 11 6.8 11.2
6 3 13 5 13.2 5.4
7 2 20 2 20.7 2.1

10 0 30 0 30.4 0.0

(b) Hypothetical responses
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3.3 Dragstedt-Behrens

The Dragstedt-Behrens method (Dragstedt and Lang 1928; Behrens 1929) is very similar
to the Reed-Muench method and is based on the same cumulative sums. For some reason,
most microbiology textbooks present the Dragstedt-Behrens method under the name Reed-
Muench method.4

Instead of working with the cumulative sums directly, the Dragstedt-Behrens method uses
the fraction of the cumulative sums that are positive at each dose (Figure 4). The ED50is
estimated by interpolation on the line that connects the hypothetical fractions of the brack-
eting doses.

4For years I struggled to figure out why there were two distinct formulations of the Reed-Muench
method, until Don Kolbe, a microbiologist in the CVB Bacteriology lab, pointed out that one of them was
actually the Dragstedt-Behrens method.
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3 NON-PARAMETRIC ESTIMATORS 7
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Figure 4: The Dragstedt-Behrens method

3.4 The skrmdb package

The skrmdb package provides functions for the three nonparameteric estimators described
above. (See the package documentation for more details.) It is, admittedly, a bit comical
to use a computer to perform simple calculations that were devised to avoid the need for
difficult calculations. Nevertheless, these estimators persist, and the package is handy.

> require(skrmdb)

> # use data from skrmdb plots.r

> tmp <- data.frame(

+ y=c(0,3,4,6,7,10),

+ n=c(10,10,10,9,9,10),

+ x=c(0:5)

+ )

> #

> # fit the GLM

> fit <- glm(cbind(y,n-y)~x,binomial,tmp)

> ed <- -fit$coef[1]/fit$coef[2]

> #

> # Spearman-Karber estimate

> skx <- SpearKarb(cbind(y,n)~x,tmp)$ed

> #

> # Reed-Muench estimate
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> rmx <- ReedMuench(cbind(y,n)~x,tmp)$ed

> #

> # Dragstedt-Behrens estimate

> dbx <- DragBehr(cbind(y,n)~x,tmp)$ed

The model fit gives the estimate µ̂ = −α̂/β̂ = 2.6066/1.1163 = 2.3350 . The table shows
all the estimates.

ED50
GLM Fit 2.335

Spearman-Karber 2.356
Reed-Muench 2.360

Dragstedt-Behrens 2.333
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Appendix
ED50 Formulas

skrmdb package

This appendix provides formulas for calculating ED50 estimates by the methods in the
skrmdb package. See the vignette for the principles underlying the methods. Some relevant
discussion may also be found in Finney (1964).

Notation

yj Number of positives at dilution j. Positives are those with increasing
response.1

j Indexes the data from 1 . . . J, where 1 is the dilution with the lowest
response (smallest number of positives), and J is the dilution with the
greatest response.

nj Total number at dilution j.

pj = yj/nj Fraction positive at dilution j.

xj The ‘dose’ at dilution j. Most often it is the log dilution.

dj = xj+1 − xj Difference of log dilution, for j < J .2

aj = ∑j
k=1 yk Cumulative sum of the positives from the ‘bottom up’

bj = ∑j
k=J nk − yk Cumulative sum of the negatives from the ‘top down’

zj = aj

aj + bj

Fraction of cumulative sums

1If the response is decreasing, either use the complementary response (e.g. affected rather than unaffected)
or reverse the order of the data set.

2With a constant dilution factor, the log dilutions are evenly spaced. In that case, the subscript may be
dropped and d is constant.

Appendix page 1
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1 Dragstedt-Behrens

ED50 is estimated by x̃DB, defined as the dilution at which z = 1
2 The dilutions bracketing

x̃DB are xlow and xhigh. Find them by their corresponding z : zlow = max(z
−
≤ 0.5); zhigh =

min(z
−

> 0.5).

And the ED50 is found by interpolation along the z line segment connecting them.

x̃DB = xlow + dlow

1
2 − zlow

zhigh − zlow

2 Reed-Muench

ED50 estimated by x̃RM , defined as the dilution at which a = b. Find the bracketing dilutions
as for x̃DB, but instead of interpolating on the z line segment, find the intersection of the a
and b line segments.

x̃RM = xlow + dlow
blow − alow

nlow − ylow + yhigh

It is easy to see that x̃RM and x̃DB are estimating the same thing, since a = b ⇔ z = 1
2 .

However the estimates often differ slightly, since x̃DB is calculated by interpolation along a
single line segment, while x̃RM is calculated by the intersection of two line segments.3

3 Spearman-Karber

The Spearman-Karber method requires that the pj range from no response to complete
response; i.e. p1 = 0% and pJ = 100%.

The ED50 estimate is

x̂SK =
∑J−1

k=1 (pk+1 − pk) {xk − (xk+1 − xk)/2 }

In estimating the mean of the probability mass function, the first term in the summation is
the estimated mass and the second term assigns it to the midpoint of the dilution interval.

Unlike the quasi-statistical Dragstedt-Behrens and Reed-Muench methods, the variance of
the Spearman-Karber estimator can be calculated. It is:

V ar(x̂SK) = ∑J
k=1

{
(xk+1 − xk)2pk (1− pk)

}
/(nk − 1)

3See Figures 3 and 4 in the vignette

Appendix page 2
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