United States Department of Agriculture  
Center for Veterinary Biologics  

Standard Operating Policy/Procedure  
Standard Bacterial Plate Count

Date: February 27, 2015  
Number: BBSOP0019.04  
Supersedes: BBSOP0019.03, September 9, 2011  
Contact: Sophia G. Campbell, (515) 337-7489  
Amanda L. Byersdorfer, (515) 337-7984  

Approvals:  

/s/Larry R. Ludemann  Date: 10Mar15  
Larry R. Ludemann, Section Leader  
Bacteriology

/s/Rebecca L.W. Hyde  Date: 12Mar15  
Rebecca L.W. Hyde, Section Leader  
Quality Management  
Center for Veterinary Biologics

United States Department of Agriculture  
Animal and Plant Health Inspection Service  
P. O. Box 844  
Ames, IA  50010

Mention of trademark or proprietary product does not constitute a guarantee or warranty of the product by USDA and does not imply its approval to the exclusion of other products that may be suitable.
Table of Contents

1. Purpose

2. Materials
   2.1 Equipment/instrumentation
   2.2 Reagents/supplies

3. Preparation for the Procedure
   3.1 Personnel qualifications/training
   3.2 Preparation of equipment, supplies, and reagents
   3.3 Critical Control Points

4. Performance of Procedure

5. Interpretation of Test Results

6. Record and Report of Test Results

7. Summary of Revisions

Appendices
1. Purpose

This document describes the titration methods used by the Bacteriology Section of the Center for Veterinary Biologics (CVB) to determine the colony-forming units (CFU) in final container samples. These methods use agar for determining CFUs and broths or solutions (see Appendices) as a diluent.

2. Materials

2.1 Equipment/instrumentation

Equivalent equipment or instrumentation may be substituted for any brand name listed below.

2.1.1 Vortex mixer

2.1.2 Colony counter

2.1.3 Pipetting aid

2.1.4 Incubator (Temperature and atmospheric conditions determined by bacterial species being cultured. See Appendices)

2.1.5 Laminar-flow Class II biosafety cabinet (BSC)

2.2 Reagents/supplies

Equivalent reagents or supplies may be substituted for any brand name listed below.

2.2.1 Diluent (see Appendices)

2.2.2 Plated agar media (see Appendices)

2.2.3 Reference culture(s)

2.2.4 70% ethanol

2.2.5 Sterile water in serum vials

2.2.6 Inoculum spreader

2.2.7 Disposable syringes and needles

2.2.8 Sterile disposable pipettes
Standard Bacterial Plate Count

2.2.9 Sterile screw-capped culture tubes
2.2.10 Gloves and lab coat
2.2.11 4 x 4-inch sterile gauze pads
2.2.12 Test tube rack
2.2.13 Sharps container
2.2.14 Micropipettors, 100-µL to 1.0-mL
2.2.15 Pipette tips, 100-µL to 1-mL
2.2.16 Pipetting aid
2.2.17 Candle jar or appropriate anaerobic container

3. Preparation for the Procedure

3.1 Personnel qualifications/training

Personnel must have experience or training in this protocol. This includes knowledge of aseptic biological laboratory techniques and preparation, proper handling, and disposal of biological agents, reagents, tissue culture samples, and chemicals. Personnel must also have knowledge of safe operating procedures and policies, as well as training in the operation of the necessary laboratory equipment listed in Section 2.1.

3.2 Preparation of equipment, supplies, and reagents

3.2.1 Sterilize all glassware before use.
3.2.2 Use only sterile bacteriological supplies (pipettes, syringes, needles, diluents, etc.).
3.2.3 Operate all equipment and instrumentation according to manufacturer’s instructions and maintain according to standard operating procedures (SOPs).
3.2.4 Turn on the BSC at least 30 minutes prior to use.
3.2.5 Monitor temperature of incubators and freezers according to SOPs.
3.2.6  Label all plates with sample number or name, vial number, and dilution series. Label 2 or 3 (refer to the firm’s Outline of Production (OP)) plates per dilution series for each serial.

3.2.7  Warm the samples and reference culture to room temperature before rehydrating to the appropriate volume.

3.2.8  Store plates used for making counts at refrigerator temperature. Place plates to be used for counts in a 35°± 2°C incubator overnight prior to use or dry in a BSC before use. At the time of use, plates are no more than 3 months old.

3.2.9  Prepare reference or positive controls according to the manufacturer’s instructions.

3.3  Critical Control Points

3.3.1  All bacterial suspensions must be mixed well prior to drawing an aliquot for each subsequent serial dilution.

3.3.2  All bacterial suspensions must be mixed well prior to placing an aliquot on an agar plate.

3.3.3  Inoculum must be spread evenly on the surface of the agar plates and not allowed to pool around the edges.

3.3.4  Do not use plates with fewer than 30 colonies (unless specified in the firm’s OP) as estimates for calculating CFU/dose or CFU/mL.

3.3.5  All dilutions should be plated ≤ 1 hour of sample resuspension or thawing.

4.  Performance of the Procedure

4.1  Remove 2 vials (or the number of vials stated in the OP for testing) of product to be tested and 1 vial of reference stock culture from the freezer or cooler storage and allow to warm to room temperature.

4.2  Disinfect the cap with 70% ethanol. Rehydrate the vials and allow the contents to reconstitute for at least 5 minutes. Shake the vials by inversion until thoroughly mixed.

4.3  Prepare a tenfold dilution series of the product by setting up a rack of 20 x 150-mm screw-capped tubes and pipetting 9.0 mL of the diluent into each tube using a 10-mL pipette. Label the tubes $10^{-1}$ to $10^{-x}$ as needed.
Standard Bacterial Plate Count

4.4 Transfer 1.0 mL of the first sample from Section 4.2 into the first tube of diluent by using a pipette or micropipettor with pipet tip. Cap the tube and vortex. The dilution series is continued by using a new pipette to transfer a 1.0 mL sample from this tube to the tube labeled $10^{-2}$. Repeat this method using a sterile pipette for each transfer until the required number of serial tenfold dilutions (refer to the firm’s OP) is attained.

4.5 Deposit 0.1 mL* of the sample from the last 3 dilution points of the dilution series for the product onto the surface of media (see Appendices) using a sterile pipette or micropipettor with pipet tip.

*Sometimes it is acceptable to plate larger amounts of samples onto the surface of the agar. This is dependent on the test and the firm’s OP.

4.6 Use a sterile inoculum spreader to evenly distribute the inoculum over the surface of the agar medium.

4.6.1 The same inoculum spreader may be used on plates containing the same dilution. Change spreaders for each dilution plated.

4.6.2 Avoid spreading inoculum completely to the edges of the plate. Inoculum may pool at the edges, resulting in colony growth that is difficult to quantitate.

4.7 Repeat Sections 4.4 through 4.6 with each of the rest of the vials of product.

4.8 Prepare 3 plates of media as in Sections 4.5 through 4.6 from each of 3 reference control dilutions as determined from Section 3.2.9.

4.9 Invert all plates and incubate according to the specifications in Appendix I. After incubation, count plates from each series that contains 30 to 300 CFUs**. Determine the mean CFU/mL or CFU per dose for the number of vials tested using the calculation(s) listed below.

**Exceptions to the dilution that yields 30-300 colonies per plate can be found in the firm’s OP.

\[
\frac{\text{Average count}}{(\text{Dilution plated})(\text{mL plated})} = \text{CFU/mL}
\]

or

\[
\frac{(\text{Average Count}) \times (\text{mL used to rehydrate})}{(\text{Dilution used}) \times (\text{mL plated}) \times (\text{Number of doses})} = \text{CFU/dose}
\]
Standard Bacterial Plate Count

or

\[
\frac{(\text{Average count}) \times (\text{mL per animal}) \times (\text{Challenge dilution})}{(\text{Dilution plated}) \times (\text{mL plated}) \times (\text{Number of doses})} = \text{CFU/dose}
\]

**Example:** Triplicate plates inoculated with 0.1 mL of a \(10^5\) dilution of culture yielded counts of 82, 79, and 88 colonies, respectively.

\[
\text{Average number of colonies} = \frac{82 + 79 + 88}{3} = 83 \text{ CFU}
\]

\[
83 \text{ CFU} \times \frac{1}{10^5} \times \frac{1}{0.1 \text{ mL}} = 8.3 \times 10^7 \text{ CFU/mL}
\]

5. **Interpretation of Test Results**

5.1 If on the initial test the CFU per dose is equal to or exceeds the required minimum as written in the firm’s OP, the serial or subserial is satisfactory (SAT) for bacterial count without additional testing.

5.2 If on the initial test the CFU per dose is less than the required minimum release titer as written in the firm’s OP, the serial or subserial may be retested (RT) using double the amount of new vaccine samples used in the initial test, provided that if the retest is not done, the serial or subserial is unsatisfactory (UNSAT). Compare the firm’s OP method to this SOP when retesting with the new vaccine samples. If on the RT, the average count of the new vaccine samples with the firm’s OP method is less than the required minimum, the serial or subserial is UNSAT.

5.3 If on the retest with the new vaccine samples, the average using the firm’s OP method count is equal to or exceeds the required minimum, the serial is SAT.

5.4 If on the initial test, the reference culture or positive control culture is not within the titer range determined in Section 3.2.9, but the serial being tested has a SAT result, the serial or subserial is a no test (NT) for bacterial count without additional testing and the product is released on the results of the firm’s tests. If the reference culture is not within the titer and the serial being tested is below the minimum release titer, the serial is retested without bias using the same number of new vaccine samples as the initial test. If on the initial test there is growth on the negative control plates, the serial or subserial is a NT for bacterial count without additional testing.

6. **Record and Report of Test Results**

Record and report results of the test(s) according to SOPs.

**UNCONTROLLED COPY**
7. **Summary of Revisions**

**Version .04**

- The Bacteriology Section Leader has been updated.
- **Sections 1-7**: These sections have been rewritten for clarification and updated to reflect current practices.
- **Appendix II**: Media storage conditions have been updated.

**Version .03**

- **Appendix II.6**: Ethyl alcohol has been changed to QH₂O.

**Version .02**

- The Contact has been changed from Nancy Clough to Sophia Campbell and Amanda Byersdorfer.
- **4.1**: Equipment and supplies have been added.
- **4.2**: This section has been updated to reflect current practices.
- **4.3**: This section has been updated to reflect current practices.
- **7**: This section has been added to explain interpretation of test results for firms’ vaccines.
- **Appendix I**: This has been added to list media, media numbers, incubation temperature, incubation time, and media formulations.
- **Appendix II**: Media storage information has been added.
### Appendix I

**Media, Incubation Temps/Duration**

(Or as stated in the Manufacturer’s Outline of Production)

1 for the National Centers for Animal Health (NCAH) media formulations, see Appendix II

<table>
<thead>
<tr>
<th>Organism</th>
<th>Agar</th>
<th>*NCAH Media Number</th>
<th>*NCAH Media Number</th>
<th>Incubation Temperature</th>
<th>Duration of Incubation</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Salmonella cholerasuis</em></td>
<td>Trypticase Soy Agar w/5% Bovine Blood</td>
<td>10205</td>
<td>Tryptose Phosphate Broth</td>
<td>10426</td>
<td>35°C ± 2°C</td>
</tr>
<tr>
<td><em>Escherichia coli</em></td>
<td>Trypticase Soy Agar</td>
<td>10487</td>
<td>Tryptose Phosphate Broth</td>
<td>10426</td>
<td>35°C ± 2°C</td>
</tr>
<tr>
<td><em>Pasteurella haemolytica-multocida</em></td>
<td>Trypticase Soy Agar w/5% Sheep Blood &amp; Additives</td>
<td>10596</td>
<td>Mueller-Hinton Broth</td>
<td>10225</td>
<td>35°C ± 2°C</td>
</tr>
<tr>
<td><em>Pasteurella anatipestifer</em></td>
<td>Trypticase Soy Agar w / 0.05% Yeast Extract</td>
<td>10225</td>
<td>Trypticase Soy Broth</td>
<td>10423</td>
<td>35°C ± 2°C</td>
</tr>
<tr>
<td><em>Bordetella bronchiseptica</em></td>
<td>Bordet-Gengou agar with 15% ovine blood</td>
<td>10157</td>
<td>1% Peptone Saline-Saline Solution</td>
<td>10138</td>
<td>35°C ± 2°C</td>
</tr>
<tr>
<td><em>Bordetella avium</em></td>
<td>Tryptose Agar w/ 5% Fetal Bovine Serum</td>
<td>10218</td>
<td>Tryptose Broth</td>
<td>10404</td>
<td>35°C ± 2°C</td>
</tr>
<tr>
<td><em>Streptococcus equi</em></td>
<td>Columbia CNA Agar w/5% Sheep Blood</td>
<td>10671</td>
<td>1% Peptone Saline Solution</td>
<td>10138</td>
<td>35°C ± 2°C</td>
</tr>
<tr>
<td><em>Salmonella dublin</em></td>
<td>Trypticase Soy Agar</td>
<td>10487</td>
<td>1% Peptone Saline Solution</td>
<td>10138</td>
<td>35°C ± 2°C</td>
</tr>
<tr>
<td><em>Salmonella typhimurium</em></td>
<td>Blood Agar Base with 5% Bovine Blood</td>
<td>10006</td>
<td>Trypticase Soy Broth</td>
<td>10423</td>
<td>35°C ± 2°C</td>
</tr>
<tr>
<td><em>Edwardsiella ictaluri</em></td>
<td>Trypticase Soy Agar w/5% Sheep Blood</td>
<td>10210</td>
<td>1% Peptone Saline Solution</td>
<td>10138</td>
<td>25°C ± 2°C</td>
</tr>
<tr>
<td><em>Actinobacillus pleuropneumoniae</em></td>
<td>BHIA with 5% NAD</td>
<td>10697</td>
<td>BHI broth with NAD and dextrose</td>
<td>10347</td>
<td>35°C ± 2°C</td>
</tr>
</tbody>
</table>
## Standard Bacterial Plate Count

<table>
<thead>
<tr>
<th>Organism</th>
<th>Media Details</th>
<th>Code</th>
<th>Temperature Range</th>
<th>Incubation Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>Haemophilus parasuis</em></td>
<td>Chocolate Agar II w/ Hemoglobin and Isovitalex</td>
<td>10598</td>
<td>36°C ± 3°C</td>
<td>24-72 hours anaerobically or in 4-6% CO₂</td>
</tr>
<tr>
<td></td>
<td>PPLO Broth w/o CV w/ Additives + 400 µg/mL Streptomycin sulfate</td>
<td>10600</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Flavobacterium columnare</em></td>
<td>Modified Cytophaga Agar</td>
<td>11012</td>
<td>27°C - 29°C</td>
<td>60-120 hours humidified atmosphere</td>
</tr>
<tr>
<td></td>
<td>Tryptone Water w/1% Peptone</td>
<td>10365</td>
<td></td>
<td></td>
</tr>
<tr>
<td><em>Arthrobacter spp.</em></td>
<td>Modified Tryptic Soy Agar</td>
<td>10278</td>
<td>22°C</td>
<td>5-7 days</td>
</tr>
<tr>
<td></td>
<td>0.9% Sodium Chloride</td>
<td>30192</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Standard Bacterial Plate Count

Appendix II
Media Formulations

1. **Tryptose phosphate broth, NCAH Media #10426**
   
   Tryptose phosphate broth (Difco)  29.5 g  
   H₂O  1000.0 mL  

   Autoclave 20 minutes at 121°C. Store at 2°- 7°C for up to 3 months.

2. **Trypticase soy agar with 5% bovine blood (defibrinated), NCAH Media #10205**
   
   Trypticase soy agar (BBL)  40.0 g  
   QH₂O  950.0 mL

   Autoclave 20 minutes. Cool to 47°C in waterbath. Add: defibrinated bovine blood, 50.0 mL. Store at 2°- 7°C for up to 3 months.

3. **Trypticase soy agar (TSA), NCAH Media #10487**
   
   Trypticase soy agar (BBL)  40.0 g  
   QH₂O  1000.0 mL  

   Autoclave 20 minutes at 121°C. Store at 2°- 7°C for up to 3 months.

4. **Mueller-Hinton broth, NCAH Media #10225**
   
   Mueller Hinton broth  21.0 g  
   QH₂O  1000.0 mL  

   Gently warm to dissolve and autoclave 15 minutes at 121°C. Store at 2°- 7°C for up to 3 months. Add 2.5 mL each of 1% yeast, supplement B, and 10% streptomycin solution before using in a test. Dispose of unused complete broth after use.

5. **1% Yeast Solution, NCAH Media #10999**
   
   Yeast extract (Difco)  1.0 g  
   QH₂O  99.0 mL  

   Gently warm to dissolve and autoclave 15 minutes at 121°C. Store at 2°- 7°C for up to 3 months.
6. **10% Streptomycin Solution, NCAH Media #10999**

   Dihydrostreptomycin 10.0 g  
   QH$_2$O 90.0 mL

   Filter and dispense.

7. **Bacto-Supplement B with Bacto-Supplement reconstituting fluid**, 6 x 10 mL, cat. #0276-60-4, Difco Laboratories, Detroit, MI 48232

8. **Trypticase soy agar w/ 5% sheep blood w/ additives, NCAH Media #10596**

   Trypticase soy agar 40.0 g  
   QH$_2$O 939.0 mL

   QS for blood and additives. Mix and autoclave 20 minutes at 121°C. Cool to 56°C in waterbath.

   Add:

   - Defibrinated sheep blood 50.0 mL
   - 1% yeast extract (Difco) powder 6.25 mL
   - 10% streptomycin 5.0 mL

   Yeast and streptomycin can be made in stock solutions and stored in refrigerator. Store completed agar at 2°-7°C for up to 3 months.

9. **Trypticase soy broth (TSB), NCAH Media #10423**

   Trypticase soy broth 30.0 g  
   H$_2$O 1000.0 mL

   Autoclave 20 minutes at ≥ 121°C. Store at 2°-7°C for up to 3 months.

10. **Trypticase soy agar w/ 0.05% yeast extract, NCAH Media #10543**

    Trypticase soy agar 40.0 g  
    Yeast extract 0.5 g  
    QH$_2$O 1000.0 mL

   Autoclave 20 minutes at ≥ 121°C. Cool in 46°-50°C water bath. Store at 2°-7°C for up to 3 months.
Standard Bacterial Plate Count

11. **Peptone solution 1% + 0.5% NaCl, NCAH Media #10138**

   - Bacto peptone 10.0 gm
   - NaCl 5.0 gm
   - QH₂O 1000.0 mL

   Autoclave for 20 minutes at ≥ 121°C. Store at 2°-7°C for up to 3 months.

12. **Bordet-Gengou agar with 15% sheep blood (defibrinated), NCAH Media #10157**

   - Bordet-Gengou agar 30.0 gm
   - Glycerol 10.0 mL
   - H₂O QS to 840.0 mL

   Heat to boiling. Autoclave for 15 minutes. Cool. Add 150 mL of defibrinated sheep blood. Store at 2°-7°C for up to 3 months.

13. **Tryptose broth, NCAH Media #10404**

   - Tryptose broth 26.0 g
   - H₂O 1000.0 mL

   Autoclave 20 minutes at ≥ 121°C. Store at 2°-7°C for up to 3 months.

14. **Tryptose agar with 5% fetal bovine serum, NCAH Media #10218**

   - Tryptose agar 41.0 gm
   - QH₂O 950.0 mL

   Autoclave for 25 minutes. Cool in waterbath at 56°C and add 50 mL fetal bovine serum. Store at 2°-7°C for up to 3 months.

15. **Columbia CNA agar, NCAH Media #10671**

   - Columbia CNA agar 42.5 g
   - QH₂O 950.0 mL

   Heat to boil for 1 minute. Autoclave 12 minutes at ≥ 121°C. Cool to 46°-50°C. Add defibrinated sheep blood - 50.0 mL. Store at 2°-7°C for up to 3 months.
16. **Blood agar base with 5% bovine blood, NCAH Media #10006**

Blood agar base (Difco)  
H₂O

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40.0 g</td>
<td>950.0 mL</td>
</tr>
</tbody>
</table>

Autoclave 20 minutes. Cool to 47°C. Add defibrinated bovine blood - 50.0 mL. Store at 2° - 7°C for up to 3 months.

17. **Trypticase soy agar with 5% sheep blood (defibrinated), NCAH Media #10210**

Trypticase soy agar  
QH₂O

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>40.0 g</td>
<td>950.0 mL</td>
</tr>
</tbody>
</table>

Mix well and autoclave 20 minutes at ≥ 121°C. Cool to 46° - 50°C in water bath. Add defibrinated sheep blood - 50.0 mL. Store at 2° - 7°C for up to 3 months.

18. **Brain heart infusion broth with NAD and dextrose, NCAH Media #10347**

Brain heart infusion broth  
QH₂O

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>37.0 g</td>
<td>1000.0 mL</td>
</tr>
</tbody>
</table>

Autoclave for 20 minutes at 121°C.

Aseptically add:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NAD, 5% solution</td>
<td>0.4 mL</td>
</tr>
<tr>
<td>Dextrose solution, 50%</td>
<td>10.0 mL</td>
</tr>
</tbody>
</table>

Mix and dispense as requested. Store at 2° - 7°C for up to 3 months.

19. **Brain heart infusion agar with 5% NAD, NCAH Media #10697**

Brain heart infusion agar  
NAD 5% solution (0.5 g/10.0 mL)  
QH₂O

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>52.0 g</td>
<td>10.0 mL</td>
</tr>
<tr>
<td></td>
<td>990.0 mL</td>
</tr>
</tbody>
</table>

Mix brain heart infusion agar in aspirator bottle and autoclave at ≥ 121°C for 20 minutes per L. Place in water bath and let cool to 50°C. **This is critical. NAD will break down if agar is warmer than 50°C.**

Aseptically add 10.0 mL of filtered NAD and dispense as requested. Store at 2° - 7°C for up to 3 months.
Standard Bacterial Plate Count

20. Chocolate Agar II w/ Hemoglobin and Isovitalex, NCAH Media #10598

- GC agar base (BBL) 21.6 g
- Bacto agar 2.0 g
- QH₂O 600.0 mL

Mix in an aspirator jug. Set aside.

- Hemoglobin 10.0 g
- QH₂O 400.0 mL

Mix in a screw-capped flask. Autoclave both 20 minutes at ≥ 121°C. Cool in a 56°C water bath. Aseptically combine the two solutions, and add:

- Isovitalex 10.0mL

Dispense as requested. Store at 2°C - 7°C for up to 3 months.

21. PPLO Broth w/o CV w/ Additives + 400 µg/mL Streptomycin sulfate, NCAH Media #10600

- PPLO broth w/o CV 21.0 g
- QH₂O 1000.0 mL

Mix together. Autoclave 15 minutes at ≥ 121°C. Cool to 56°C. Aseptically add:

- Horse serum (heat inactivated) 50.0 mL
- PPLO yeast extract (NCAH Media #40069) 100.0 mL
- Streptomycin sulfate 400.0 µg/mL

Mix well. Dispense as requested. Store at 2°C - 7°C for up to 3 months.

22. Modified Cytophaga Agar, NCAH Media #11012

- Typtone 10.0 g
- Yeast extract 0.5 g
- Beef extract 0.2 g
- Sodium acetate 0.2 g
- Super Q water 100.0 mL

Combine ingredients, mix well. Adjust pH to 7.3. Add:

- Bacto agar 9.0 g

Autoclave at ≥ 121°C. Dispense as requested. May also be autoclaved after dispensing. Store at 2°C - 7°C for up to 3 months.

UNCONTROLLED COPY
23. **Tryptone Water w/ 1% Peptone, NCAH Media #10365**

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tryptone</td>
<td>10.0 g</td>
</tr>
<tr>
<td>Sodium chloride</td>
<td>5.0 g</td>
</tr>
<tr>
<td>Peptone</td>
<td>10.0 g</td>
</tr>
<tr>
<td>QH₂O</td>
<td>1000.0mL</td>
</tr>
</tbody>
</table>

Mix all ingredients and dispense as requested. Autoclave 15 minutes at ≥121°C. Store at 2°-7°C for up to 3 months.

24. **Modified Tryptic Soy Agar, NCAH Media #10278**

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tryptic soy broth</td>
<td>30.0 g</td>
</tr>
<tr>
<td>Yeast extract</td>
<td>15.0 g</td>
</tr>
<tr>
<td>Antifoam</td>
<td>1.5 mL/L</td>
</tr>
<tr>
<td>RO water</td>
<td>Q.S. to 1000.0 mL</td>
</tr>
<tr>
<td>Agar</td>
<td>20.0 g</td>
</tr>
</tbody>
</table>

Combine, mix well. Autoclave at ≥121°C for 15 minutes. Store at 2°-7°C for up to 3 months.

25. **0.9% Sodium Chloride, NCAH Media #30192**

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium chloride</td>
<td>9.0 g</td>
</tr>
<tr>
<td>Q H₂O</td>
<td>1000.0 mL</td>
</tr>
</tbody>
</table>

Mix and autoclave 20 minutes at ≥121°C. Store at 2°-7°C for up to 3 months.