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Executive Summary 
Bovine tuberculosis (TB) was responsible for more losses among U.S. farm animals in the early 20th 
century than all other infectious diseases combined. The Cooperative State-Federal Tuberculosis 
Eradication Program (established in 1917 and administered by APHIS, State animal health agencies, 
and U.S. livestock producers) has nearly eradicated bovine TB from the nation’s livestock population. 
However, despite the many accomplishments of the program, bovine TB remains a serious and costly 
disease of livestock in the United States. In 1992, VS conducted an assessment to identify pathways 
for the introduction and spread of bovine TB, in order to develop the most effective strategies for 
controlling the disease. Several changes have occurred in the livestock industry since 1992, and new 
pathways for the spread of bovine TB have been identified. The goal of this assessment is to describe 
the current pathways for bovine TB introduction and spread. 
 
The pathways considered for the 2009 assessment are:  
 

 Legal and illegal importation of cattle into the United States  
 United States cattle industry practices 
 The U.S. captive cervid industry  
 Wildlife  
 Zoo and other nontraditional species  
 

Retrospective epidemiologic analyses of outbreaks in four States (California, Michigan, Minnesota, 
and New Mexico) identified several risk factors for the introduction and spread of bovine TB. In 
California and New Mexico, molecular fingerprinting techniques revealed several strains of 
Mycobacterium bovis (M. bovis), indicating multiple sources of introduction. Risk factors for California 
and New Mexico included the importation and commingling of Mexican-origin steers, management 
and biosecurity practices used by calf-raisers for dairy replacement heifers, and a large influx of 
purchased additions. In States with similar practices and risk factors, both beef and dairy herds are at 
risk for exposure to M. bovis.   
 
Conversely, Michigan and Minnesota each had just one strain of M. bovis, indicating a point source of 
introduction and local area spread. The same strains were identified in the wildlife of each State, 
making cattle contact with infected white-tailed deer (especially contact with feed contaminated by 
deer) an important risk factor for the introduction and spread of bovine TB in those States and other 
areas in which infected wildlife reside.  
 
Human-to-cattle contact has not been fully investigated in the four States analyzed, but cannot be 
ruled out as a risk factor. It is difficult to determine the original sources of these bovine TB cases 
because evidence is sparse as to whether these events were new introductions of disease or 
established cases that were undetected in wildlife or cattle.  
  
The importation of Mexican cattle continues to be a risk factor for the introduction of bovine TB into 
domestic livestock herds, especially when commingling occurs outside of slaughter channels. From 
2003-2008, the number of cases of Mexican-origin cattle identified at slaughter has decreased. This 
is consistent with the decrease in number of animals imported.  Each year 1-2 infected animals per 
100,000 animals imported from Mexico are identified through slaughter detection or epidemiologic 
investigations. 
 
Management practices play an important role in increasing or decreasing the risks of M. bovis 
infection and other pathogens in dairy and beef cow-calf operations. The introduction of new cattle to 
an operation, exposure to wildlife, and commingling with cattle from other operations increase the risk 
of introducing bovine TB to a herd. Methods for decreasing the risk of introducing bovine TB to an 
uninfected herd include minimizing the number and sources of incoming cattle, knowledge of the 
bovine TB status of source herds, testing new additions before exposing the home herd, decreasing 
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cattle and feed contact with free-ranging and captive cervids, and limiting exposure of cattle to 
animals from other operations with unknown disease status.  
 
M. bovis may also be introduced by contact between captive cervids and wildlife. The development of 
the 1999 TB Eradication Uniform Methods and Rules (UM&R) and the inclusion of captive cervids in 
Title 9 of the Code of Federal Regulations are regulatory actions taken to decrease the risk of 
introducing or spreading M. bovis in captive cervids. However, limited surveillance of these animals 
negates reliable data on the true prevalence of bovine TB in captive cervids. 
 
Exotic game ranching is a rapidly growing segment of U.S. animal agriculture. Little is known about 
the disease status or movement of animals in this industry, which may pose a risk for introducing 
bovine TB and wildlife diseases to cattle and other animals.   
 
The re-emergence of bovine TB in wildlife and cattle highlights the importance of wildlife surveillance. 
The true prevalence of disease in wildlife species is not known because bovine TB surveillance and 
control in this population is inconsistent and difficult. Feral swine and supplemental feeding or baiting 
of free-ranging cervids have been factors in the propagation and persistence of M. bovis. The 
development of TB vaccines for wildlife may help eradication efforts by decreasing disease 
transmissions among wildlife.  
 
The risk of M. bovis transmission to cattle from zoo animals is low because of limited contact; 
however, zoo species may pose a risk to humans. Game parks and other areas where animals roam 
freely or have fence-line contact with cattle or other livestock could contribute to M. bovis 
transmission. Hay and other fomites are also pathways for bovine TB given the right environmental 
conditions. Dogs, cats, wild birds, humans, and other species may act as hosts for TB and should be 
considered during epidemiologic investigations. Although bison are included under the same 
regulations as cattle, they may not enter routine slaughter channels, thereby limiting the availability of 
surveillance information. Additional research is needed to determine the true status of bovine TB in 
the captive bison industry. 
 
Eradication of bovine TB continues to be a challenge. The pathways outlined in this assessment are 
intended to help APHIS-VS identify new measures for controlling and preventing spread of this 
disease in the United States.   
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1. Overview of the Current Bovine TB Program 

1.1 Introduction 

M. bovis is the causative agent for bovine TB, a disease found in many species worldwide. Cattle and 
other bovids are thought to be reservoir hosts, but other species may also play a role in the 
epidemiology of bovine TB. Many industrialized countries have bovine TB eradication programs in 
place because of the economic and public health impact of the disease; however, only a few 
countries have been successful in achieving eradication (Spickler and Roth, 2006).   
 
In the United States, the Cooperative State-Federal Bovine Tuberculosis Eradication Program has 
been underway since 1917 and has reduced the prevalence of M. bovis infections in humans and 
cattle. Despite the successes of the program, affected herds continue to be identified. In 1992, an 
assessment was conducted to identify pathways for the introduction and spread of bovine TB to help 
develop the most effective strategies for controlling the disease. Several changes have occurred in 
the livestock industry since 1992 and new pathways have been identified for bovine TB spread. In 
January 2009, VS Centers for Epidemiology and Animal Health’s (CEAH) Center for Animal Health 
Information Analysis (CAHIA) and National Animal Health Monitoring Systems (NAHMS) were asked 
to update the assessment conducted in 1992.  

 
The objective of this qualitative assessment is to identify the pathways responsible for the recent 
introduction and spread of M. bovis in the United States as well as other pathways that might play a 
role in disease spread. Epidemiologic investigations from four States will be used to identify specific 
risk factors.  

1.2 Epidemiology of M. bovis 

M. bovis is a slow-growing, acid-fast, gram-positive, rod-to-filamentous-shaped bacterium. It has a 
very broad host range and can infect all warm-blooded vertebrates, including humans. M. bovis is an 
intracellular pathogen of macrophages (de la Rua-Domenech et al., 2006) and does not multiply 
outside the host except in cultured media. The survivability of M. bovis outside of the host depends 
largely on environmental conditions. Survival time is increased in moist environments, particularly 
those in which oxygen and organic matter are present. Sunlight, low pH, other microbes, and rising 
temperatures may decrease survival time (Morris et al., 1994). 

Cattle and other bovids are thought to be reservoir hosts of bovine TB and several wildlife species in 
many countries have been identified as reservoir hosts. Wildlife hosts include the possum in New 
Zealand, badgers in Ireland and Britain, and cervids in the United States (Brown et al., 1994; Corner, 
2006). Other species have been identified as spillover hosts, such as humans, coyotes, and cats. 
After an infection is established in reservoir hosts, it can persist in the population without any outside 
source of introduction and may also be transmitted to other species. In spillover hosts, infection in the 
population cannot persist indefinitely unless there is re-infection from another species or a change in 
the population that enhances interspecies transmission (Corner, 2006). 
 
The disease dynamics of M. bovis are not well understood despite the long history of disease 
recognition. The incubation period for bovine TB may last for several months or longer. During the 
course of infection, some animals may be asymptomatic, but disease may progress rapidly in others. 
Clinical signs (that often include progressive emaciation and weakness) may appear with stress or 
age and are dependent on the location of lymph node involvement. Enlarged lymph nodes may lead 
to abscesses. Signs of respiratory involvement include coughing, dyspnea, or exercise intolerance. 
Animals with gastrointestinal involvement may have diarrhea or constipation.  
 
Transmission of M. bovis can occur through various mechanisms based on the route of exposure and 
location of infection. A single bacillus in a droplet may be sufficient to establish infection (Morris et al., 
1994.). Some species, such as possums, badgers, buffalo, deer, and cattle, excrete bacilli through 
droplets aerosolized from respiratory infection. These species are able to maintain infection in the 
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population by spreading it to each other through nose-to-nose contact (Corner, 2006). Aerosolization 
is thought to be the most infectious route of transmission, accounting for 80 to 90 percent of infections 
in cattle (Menzies et al., 2000).  
 
Milk contaminated by bacilli from mammary infections may serve as a source of infection. In humans, 
infections acquired by milk have decreased with the introduction of pasteurization in the early 1900s. 
Animals have also become infected through wounds and exposure to contaminated urine (Corner, 
2006). Vertical transmission has been documented. Spillover hosts (such as ferrets, pigs, cats, and 
dogs) that feed on infected carcasses can acquire infection in the gastrointestinal tract and are more 
likely to shed bacteria in feces.   

The risk of exposure is greatest in enclosed areas, such as barns. However, livestock can become 
infected if they share a common watering or feeding place contaminated with saliva and other 
discharges from infected deer or other animals. In cattle, infection usually takes months to develop. In 
some instances, the organisms lie dormant within the host’s body for its lifetime without causing 
progressive disease. Communicability may be as early as 10 days post-exposure but typically occurs 
by day 87 (Neill et al, 1992: Morris et al., 1994). Excretion of bacilli may also occur in animals 
negative on a tuberculin test (Neill et al., 1992) and may be recovered as early as 3 days after 
experimental infection (Cassidy et al., 1998).  
 
Transmission rates within a herd may range from 0 to 40 percent with lesions identified in 0 to 10 
percent of the infected animals (Costello et al., 1998; Spickler and Roth, 2006). Typical postmortem 
lesions include tubercles or granulomas where bacteria have congregated. These granulomas are 
encapsulated and caseous or calcified. Lesions may be found in the lymph nodes, lung, visceral 
surfaces, or other locations. The size of the lesions in cattle is not an indicator of infectiousness. 
Animals in the early stages of disease may have no visible lesions but produce substantial amounts 
of aerosolized bacilli (Neill et al., 1992; Morris et al., 1994). In experimental infections, lesions have 
been detected as soon as 14 days after exposure (Cassidy et al., 1998).  

1.3 M. bovis activity in the United States 

The current objective of the TB program is to eradicate the disease so that it no longer poses a threat 
to livestock, wildlife, and public health (USDA-APHIS-VS, 2001). In 2001, the TB accreditation status 
for all States except Michigan and a portion of Texas was accredited-free (AF). As of April 2009, 
Texas had regained its AF status, and four States (California, Michigan, Minnesota, and New Mexico) 
were, or had portions of their State, designated less than AF (Figure 1.1). 
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Figure 1.1 Bovine TB status in the United States - April, 2009 

 
 
1.3.1 Surveillance 

New cases of bovine TB must be quickly identified through surveillance systems and contained by 
traceability of infected sources and control measures. The current goals of surveillance for bovine TB 
are to: 
 

 Detect the last cases of infection in domestic ruminants 
 Measure the progress and effectiveness of the eradication program 
 Demonstrate disease freedom or low risk for trade 
 Rapidly detect bovine TB in the event that it is introduced into the United States 

 
Slaughter surveillance: The primary case1-finding tool for bovine TB in the United States is slaughter 
surveillance. Slaughter surveillance should be sufficient to detect a 0.05 percent or lower prevalence 
with 95 percent confidence. To validate slaughter surveillance, slaughter plants are required to submit 
suspicious lesions from at least 1 in every 2,000 adult cattle slaughtered. Financial incentives are 
offered to inspectors when lesions are culture positive for M. bovis.  
 
Since 2001, the number of granuloma submissions increased from 2,030 in fiscal year (FY) 2001 to 
10,666 in FY 2008. In FY 2007, 95 percent of adult cattle slaughtered went through slaughter plants 
that met or exceeded the 1 per 2,000 submission standard. A complete evaluation of surveillance in 
AF States determined that the slaughter submission rate from adult cattle under a valid slaughter 
inspection was higher than 11 percent. This submission rate was sufficient to detect 0.0002 percent 
prevalence with 95 percent confidence (USDA–APHIS–VS, 2009). 

                                                 
1A case is defined as an individual animal culture positive for M. bovis. 
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Antemortem testing: Antemortem detection of M. bovis-infected animals currently relies on a cell-
mediated immune response of T-lymphocytes. Only in advanced stages of infection are antibodies 
detected (Neill et al., 2001). Therefore, tests that rely on cellular immunity have a greater sensitivity 
than antibody-based assays. Results of diagnostic testing may be influenced by the stage of disease, 
cross-reaction of other organisms, test interpretation, and other factors. (Table 1.1) (Norby et al., 
2004). 
 
Four tests are approved for antemortem use in the United States: 

 Caudal fold tuberculin test (CFT) 
 Comparative cervical tuberculin test (CCT) 
 Single cervical tuberculin test (SCT) (cervids only) 
 Bovine interferon gamma assay (-IFN) (cattle only) 

 
The first three tests are intradermal, which is the international standard for detection (OIE, 2004). 
Intradermal tuberculin tests detect a delayed-type hypersensitivity that develops between 3 to 6 
weeks after infection, though reactions have been noted sooner in experimental infections (de la Rua-
Domenech et al., 2006). 
 
Table 1.1  Factors associated with test misinterpretation 
 

False negative results 

Tuberculin Tuberculin expired or improperly stored 

 Desensitization from previous tuberculin test 

 
Administrator error (e.g., incorrect administration, interpretation or testing 
bias) 

Tuberculin and -IFN Corticosteroids (natural or drug administration) 

 Too early in infection for reaction to develop 

 Co-infection and hypersensitivity to M. avium 

Culture Early stage of infection, lesions may not be seen 

 Overgrowth with microbial contaminants 

False positive results 

 Infection with other Mycobacterium sp.  

 Johne’s vaccination in calves 

 Vaccination with M. bovis BCG 

 Environmental mycobacterial sp. (e.g., soil) 

 Other nonmycobacterial agents 

 
Source: Adapted from de la Rua-Domenech (2006). 

 
The CFT is often the screening test of choice and can be administered by accredited veterinarians or 
approved State or Federal veterinarians. Cattle are injected intradermally in the caudal fold of the tail 
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with purified protein derivative (PPD) and the injection site is palpated 72 hours later for any swelling, 
indicating an inflammatory response.  
 
The reported sensitivity of the CFT varies greatly (Table 1.2). Cross-reaction (which may vary by 
geographic region) is possible with other organisms that share antigenic properties. Additionally, the 
CFT is subject to the interpretation of individual veterinarians. In an effort to minimize this subjectivity, 
the 2005 Bovine Tuberculosis UM&R provides guidelines for States to monitor response rates 
reported by veterinarians. 
 
An animal with a suspicious reaction to the CFT is classified as a responder and its herd is 
quarantined. The animal must then undergo additional testing to rule out cross-reaction with other 
mycobacterial species or to rule out other reasons that might cause a false-positive response. CFT 
responders undergo additional testing by CCT or -IFN.  
 
The CCT test may only be administered by approved State or Federal veterinarians who compare the 
response to injections of bovine PPD tuberculin and avian PPD tuberculin at separate sites in the 
mid-cervical area to determine the probable presence of M. bovis. Responses to the PPD tuberculins 
are recorded on a scatter plot and are the basis of CCT test classifications as negative, suspect, or 
reactor.  
 
The -IFN test is a blood test that measures cell-mediated responses to M. bovis, M. avium PPD, and 
a negative control in an enzyme-linked immunosorbent assay (ELISA) (de la Rua-Domenech et al., 
2006). This test may be used to classify CFT responders or in parallel with the CFT. The -IFN test is 
a cytokine released by T-lymphocytes and can be measured as early as 1 to 4 weeks after infection. 
The CFT is sometimes considered more sensitive than the -IFN for diagnosing bovine TB (Whipple 
et al., 1995; Gonzalez Llamazares et al., 1999). However, the -IFN  has several advantages over the 
skin test, including a shorter time to detection, less animal handling, and antigen differentiation 
(vaccine vs. nonvaccine strains). The -IFN has been an approved test in the United States since 
2001. 
 
Table 1.2  Individual animal test sensitivity (Se) and specificity (Sp) 
 

 
Some animals may be detected on one screening test and not the other. Combining the -IFN and 
CFT in parallel may improve sensitivity, but parallel testing is not standard practice in the United 
States. However, parallel testing may be conducted as part of an affected herd plan to implement a 
test-and-removal approach. Initial testing protocols for herds more commonly include testing in series, 
with only animals positive on the previous test advancing to the next test. In some instances, 
antemortem testing is inconclusive and the animal may be held for additional testing. Cattle with 
positive antemortem test results are sent to slaughter as “USDA Suspect.” A thorough postmortem 
exam is conducted, and all head and thoracic lymph nodes and suspicious lesions are collected and 
submitted for histopathology and culture (Food Safety and Inspection Service [FSIS] Directive 
6240.1). 

 Se Sp 

Test Range (%) Median (%) Range (%) Median (%) 

CFT 63.2–100 83.9 75.5–99 96.8 

CCT 52.0–100 80 78.8–100 99.5 

-IFN 73–100 87.6 85–99.6 96.6 

 
Adapted from de la Rua-Domenech et al., 2006. 
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When testing a herd of unknown M. bovis status, testing in series reduces costs by increasing 
specificity, i.e. fewer false-positive animals are sent to slaughter. However, sensitivity is decreased 
and infected animals may be falsely identified as negative. For large herds in which all animals are 
tested, this effect may not be as significant as in smaller herds or individual animals. Consideration 
should be given to using the most sensitive technique for detecting infection in smaller herds, 
particularly high-risk herds. Table 1.3 describes the sensitivity and specificity for commonly utilized 
protocols.  These values were estimated by a beta distribution derived from the sensitivity and 
specificity in Table 1.2.  The beta distribution was applied to the model in Figure 1.2 for each testing 
in series protocol.   
 

 
Figure 1.2  Possible test outcomes based on testing in series. 

(wp=within-herd prevalence, Se=sensitivity, Sp=specificity) 
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Table 1.3  Performance of common testing in series strategies 
 

 Se  Sp  

Test protocol Range (%) Mean (%) Range (%) Mean (%) 

CFT (responders) culture* 34–95 76 99–99.9 99.9 

CFT (responders) CCT(reactors) culture* 20–86 57 99–100 99.9 

CFT (responders) -IFN (positive) culture* 32–88 65 99–100 99.9 

 
*Culture was presumed 95% sensitive and 99.9% specific  

 
Molecular techniques: Molecular genotyping techniques identify the unique genetic profiles among M. 
bovis strains. These differences may result from genetic mutations over time; therefore, epidemiologic 
related strains may have similar genetic fingerprints. Several molecular techniques can be applied to 
M. bovis to identify differences or similarities between two strains. These differences, when identified 
during an outbreak, can help determine if a common source or unrelated source is contributing to 
disease introduction and spread. Examples include IS6110 restriction fragment length polymorphism 
(RFLP), polymorphic G/C-rick sequence RFLP, spacer oligonucleotide typing (spoligotyping), and 
variable-number tandem repeat typing.  
 
Spoligotyping (using the octal code) is the molecular technique used to rapidly assist epidemiologic 
analysis and is the method referred to most in this assessment. It has a shorter turnaround time than 
the RFLP and a higher degree of differentiation. Currently, all M. bovis isolates cultured at NVSL are 
spoligotyped. This method designates the genotype strains of TB belonging to the Mycobacterium 
tuberculosis complex (MTC), which includes M. tuberculosis, M. bovis, M. africanum, M. canetti, and 
M. microti.  
 
Spoligotyping also detects variability in the direct repeat (DR) region in the MTC genome. The 36 
base-pair DR regions are interspersed with spacer sequences. There are 94 spacer sequences, of 
which 43 are used for MTC strain differentiation. Clinical isolates of MTC bacteria can be 
differentiated by the presence or absence of one or more spacers. Spoligotyping is a polymerase 
chain reaction- (PCR) based method. Because it only requires a small amount of DNA to generate 
results, it is suited for rapid turnaround in the laboratory (Vitol et al., 2006). The presence or absence 
of the spacer regions is determined through a Southern blotting technique. The resulting hybridization 
patterns are scored in a binary fashion, with the presence of spacer regions designated with a value 
of 1 and the absence of spacer regions designated 0. This binary number system can be converted to 
one of several codes—such as the 15-digit numeric octal code—for ease of comparison between 
laboratories. Spoligotyping has the limitation of not identifying differences outside of a DR cluster; 
therefore, caution must be used when interpreting the results. The confidence of this test can be 
improved by coupling spoligotyping with additional fingerprinting techniques.  
 
Of the 705 isolates identified from January 1991 through July 2008 that were typed by NVSL, 69 
different spoligotyping patterns representing 10 different species were identified in 21 States, Mexico, 
and Canada. The strain identified in the recent TB outbreak in Minnesota appears to be isolated to 
that State. The outbreaks in California and New Mexico identified several different strains that were 
also found in several other States and Mexico. Superficially, it appears that local-area spread 
occurred in Minnesota, while the outbreaks in California and New Mexico appear to be a result of 
widespread animal movement and mixing among animals in Mexico and the Southwest.   
 
Antemortem tests under development: New serologic tests intended to improve the speed and 
accuracy of bovine TB detection are being developed. When bovine TB is diagnosed by serologic 
testing, there are many different M. bovis antibodies that can be detected. To account for these 
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myriad antibodies, a multitude (cocktail) of antigens must be used. Multi-antigen print immunoassay 
(MAPIA) is a laboratory process that uses a cocktail of antigens for serological diagnosis. The 
sensitivity of detecting an antibody to one of the cocktail antigens using MAPIA is the same as 
detecting an antibody to a single antigen test (Lyashchenko, 2000). 
  
Chembio Diagnostic Systems, Inc. has developed a serological M. bovis test for a variety of species, 
but the only tests currently licensed by USDA are the Primate and Elephant TB STAT-PAK (Chembio, 
2009). The Bovid TB STAT-PAK, (currently under development) is a screening test that uses serum, 
plasma, or whole blood from bovids to detect the presence of M. bovis antibodies. The tests are small 
and portable and will yield a result within 20 minutes.   
 
The M. bovis Fluorescence Polarization Antibody Test Kit produced by Diachemix is another bovine 
TB serologic test under development. This test is designed to screen large cattle herds or for 
slaughterhouse surveillance. The test is relatively rapid with results obtained within 60 minutes. 
According to Diachemix, the sensitivity is equal to existing test methods and the specificity is 99+ 
percent, higher than any existing TB test. These tests have not been approved by USDA or any other 
regulatory or governmental entities. They are available only for research evaluation i.e., not for retail 
sale (Diachemix, 2009). 
 
PriTest’s SeraLyte-Mbv is a rapid antibody test that can be completed in approximately 2 hours. This 
test uses a protein probe to locate antibodies against specific proteins found in the sera of cattle 
infected with M. bovis. The protein probe used is highly specific to M. bovis, which helps to 
significantly reduce false-positive results caused by cross-reaction with other antibodies of 
nonpathological mycobacterium (PriTest, 2009). 
 
Another antemortem test currently under development for diagnosing bovine TB in cattle is the 
“electronic nose” (EN). The EN uses chemical sensors and a pattern recognition system to detect M. 
bovis using a serum sample from cattle or badgers. The chemical sensors produce electrical signals 
that are analyzed by pattern recognition software that search for an M. bovis pattern. It is not known 
exactly what the EN is detecting, i.e., the test may be sensing compounds released from M. bovis 
bacteria into the systemic circulation. The use of an EN is easy to perform, relatively inexpensive, can 
detect M. bovis within 3 weeks of infection, and would require only one trip to the premises instead of 
multiple trips, as is the case with CFT (Fend et al., 2005). 

1.3.2 Traceability 

Controlling bovine TB in the United States relies on rapidly detecting disease and identifying potential 
source herds (tracing). A trace may be initiated from an infected animal or an affected herd identified 
through slaughter surveillance, individual animal testing, herd testing for accreditation, or as a result 
of epidemiologic investigations. The identification of an infected animal or affected herd through any 
avenue initiates further epidemiologic investigation to determine the extent of infection.  Table 1.4 lists 
the method of detection and the number of affected cattle herds for each of the past 8 years.  
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 Table 1.4  Method for detection of affected cattle herds by fiscal year 
 

Fiscal Year 
Epidemiologic 
Investigation1 Other2 Slaughter Total 

2001 8 1 1 10 

2002 6 1 3 10 

2003 6 0 4 10 

2004 4 0 0 4 

2005 2 0 2 4 

2006 2 7 0 9 

2007 3 2 1 6 

2008 5 7 1 13 

Total 36 18 12 66 
1Area testing, trace-in, trace-out, association with an affected herd. 
2Movement, diagnostic, market, accreditation testing. 

 
A trace is considered successful when it correctly identifies the source herd of infection. 
Epidemiologic investigations should also identify all individual cattle and herds that were exposed to 
the source or to infected animals. Because bovine TB is a reportable disease, all positive TB tests in 
cattle along with the official identification, age, sex, and breed of each animal must be reported to 
State and Federal officials. Appendix I describes tracing for bovine TB and how data are captured.  
 
Figure 1.3 and 1.4 illustrate the discrepancy among the number of animals identified as culture-
positive cases and the number of herds declared affected after successful traces. Many of the cases 
are identified at slaughter; therefore, some may be traced to Mexico. Of the 329 slaughter records 
available for M. bovis culture-positive cases from 2001 to 2009 (as of February 2009), 236 were 
traced to Mexico, 3 to Canada, and the remainder were within the United States (30), or unknown or 
unrecorded (63). Mexican origin cattle will be discussed in section 3.3 U.S. cattle imports from 
Mexico. 
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Figure 1.3  Number of NVSL culture-positive cattle by State and country (1986–2008) 
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Figure 1.4  Number of confirmed positive cattle and bison herds (1990–2009) 
 

 
Slaughter traces: Individual bovine TB cases identified at slaughter undergo epidemiologic 
investigations to identify the herd-of-origin. According to the TB Uniform Methods and Rules (UM&R), 
these investigations must be completed within 90 calendar days of laboratory notification. Animals at 
slaughter are identified by ear tags or back tags to assist with traceability. Any dealer who purchases, 
deals, or sells cattle or bison must maintain records to facilitate the trace back of animals to the herd-
of-origin. Many of these records exist only on paper, and compared to electronic records, may 
increase the time and resources needed for tracing.  
 
Epidemiologic investigation: After an affected herd is identified, animal shipments into and out of the 
affected herd are typically traced back for the previous 5 years, although this may vary by situation. 
All associated cattle and bison herds must be quarantined. When an individual animal (traceout) is 
still a part of the herd it is sent directly to necropsy or tested; otherwise, the entire herd is tested. The 
UM&R suggests testing livestock and free-ranging wildlife around an affected herd within 6 months of 
diagnosis.  
 
Affected feedlots also undergo epidemiologic investigations that focus on detecting disease spread 
from the feedlot. Figure 1.5 is based on an actual trace investigation and demonstrates the 
complexity of tracing out from a feedlot. Because of the movement of animals throughout the beef 
industry, it is difficult to identify a herd-of-origin because many operations do not meet the definition of 
a herd. A herd is defined in title 9 of the Code of Federal Regulations, part 77.2 (9 CFR, 77.2) as any 
group of livestock maintained for at least 4 months on common ground for any purpose, or two or 
more groups under common ownership or supervision, geographically separated but all have an 
interchange or movement of livestock without regard to health status.   
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Figure 1.5  Trace investigation from a feed yard 
 

 
 
 
1.3.3 Control 

After suspect herds are identified, movement controls are implemented while the herds undergo 
testing to prevent further spread of disease. Wildlife in the vicinity of affected herds is also tested in 
situations when a known wildlife reservoir exists. When infection is detected in multiple herds, 
movement control occurs largely at the State level. States are classified by accreditation status (State 
status) based on the infrastructure in the State, compliance with the TB UM&R, and the prevalence of 
infection in the State (Table 1.5). Through the application of State status, movement controls and 
additional testing requirements may be implemented to prevent disease spread to additional States. A 
State animal health official may also request that a part of the State be classified differently than other 
areas of the State, a process known as zoning, regionalization, or split-State status.   
 
Application for split-State status is outlined in VS Memo 552.44. States must demonstrate the 
authority to control movement outside of the affected zone and demonstrate adequate surveillance in 
all zones within the State. At the time of this report, Michigan, Minnesota, and New Mexico have met 
the criteria outlined in 9 CFR 77 for split-State status; however, other States have reserved the right 
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not to recognize this classification and have treated the entire State as being in the lower status 
classification.  
 
Table 1.5  Bovine TB status classification 
 

Status 
Prevalence 

requirement1 (%) States (current as of 04/2009) 

Accredited Free 0 
46 States, MI (zone), Puerto Rico, 

U.S. Virgin Islands 
Modified Accredited 

Advanced 
<0.01 MN, MI, NM (zone), CA 

Modified Accredited <0.1 MI (zone), MN (zone) 

Accredited Preparatory < 0.5 None 

Non-Accredited >0.5 None 
1Of the total number of herds.  
 

 
Vaccination and treatment: A Bacillus Calmette-Guérin (BCG) vaccine for cattle exists that may offer 
some protection through oral or subcutaneous injection. However, the vaccine does not afford 
complete protection (Buddle et al., 2008) and is not approved for use in the United States. The -IFN 
may provide a means for distinguishing vaccine strains from nonvaccine strains (Sopp et al., 2008), 
but this could not be distinguished using skin tests. Further, a treatment for bovine TB with 
isonicotinic acid hydrazide in cattle exists but is also not allowed in the United States. 

1.3.4 Emergency Actions  

Despite the challenges in funding and the development of emerging issues for bovine TB control, 
progress has been made since the original pathways assessment in 1992.  
 
In October 2000, the Secretary of Agriculture issued a declaration of emergency due to bovine TB 
(Federal Register 65 63227). The declaration identified risk factors for the spread of bovine TB in the 
United States including; the emerging threat that M. bovis in free-ranging deer presents to cattle, the 
recurring infection of dairy herds in the El Paso milkshed, and the decline of M. bovis surveillance. 
The declaration outlined several additional steps necessary for eradicating bovine TB, such as 
improving diagnostic tests, animal identification, and assisting Mexico with eradication efforts. To 
ensure that funds were available to carry out these measures, the emergency declaration authorized 
the transfer of $44 million from emergency funds to expand the TB eradication program in the United 
States.  
 
This funding was intended to be part of a 4-year process to eliminate all TB from cattle, bison, captive 
deer, and elk herds in the United States. APHIS was successful in completing many of the goals set 
in the emergency declaration, yet new challenges arose that prevented total eradication (such as 
infection in large dairy herds in the Southwest). Through these funds, APHIS intended to enhance 
monitoring and surveillance in captive cervid herds and to work with States to remove affected herds. 
The voluntary buyout in the El Paso milkshed was funded and a buffer zone around the milkshed was 
created.  
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2. Recent Bovine TB Outbreaks 

2.1 Introduction 

Because eradication of bovine TB in the United States is the goal, and most States are considered 
“free” of disease, the finding of one M. bovis culture-positive animal could be classified as an 
outbreak. For the purpose of this report, an outbreak refers to finding more than one affected herd in 
a State with a subsequent reduction in State status. As of May 2009, California, Michigan, Minnesota, 
and New Mexico had less than accredited-free (AF) status in all or portions of those States.   
 
Data from multiple sources were used to describe these outbreaks (Appendix I.) In many instances, 
information (e.g., samples from wildlife, humans, and other fomites) were missing or not collected at 
the time of the epidemiologic investigation. The following summaries describe the source of disease 
introduction and its spread in each of these States.  
 
2.2 Tuberculosis in California cattle herds, 2007–2009  

2.2.1 Background 

California tuberculosis program: Before December 2007, California had not had a case of TB in a 
dairy herd since January 2003. Three dairy herds were declared affected in 2003 that led to a change 
in the State’s TB status from AF to modified accredited advanced (MAA). After a State is classified as 
MAA, it cannot regain its AF status until 2 years after the last affected herd is either depopulated or 
released from quarantine. In April 2005, California regained its AF status and in 2008, APHIS 
changed the State’s status to MAA after more TB-positive dairy cattle were discovered. 
 
Before 1994, the TB program in California consisted of area testing in which approximately  
15 percent of the State’s cattle population underwent antemortem testing each year. All herds in the 
State were tested every 6 years. This method was the primary tool used in the eradication effort until 
national prevalence levels of TB were greatly reduced. In 1994, California abandoned area testing for 
TB because the prevalence of disease in California (and overall in the United States) had reached 
such low levels that area testing was no longer efficient. 
 
The primary surveillance method for TB in the United States has since shifted from area testing to 
slaughterhouse inspection. Slaughter surveillance in California includes examining every bovid 
carcass processed through Federal- or State-inspected slaughter facilities for characteristic signs of 
disease. Any carcasses with lesions suspicious for TB are held and undergo further testing to 
determine if bovine TB is present. If a carcass is found to be infected, a traceback investigation is 
initiated by the California Department of Food and Agriculture (CFA) to determine the origin of the 
animal.  
 
Table 2.1 and Figure 2.1 highlight the slaughter surveillance program for California. Since 2002, the 
number of samples submitted for TB surveillance in California2 has met or exceeded the goal of  
1 sample per 2,000 adult cattle slaughtered or 0.05 percent.  
 
 
 
 
 
 
 
 

 
 

                                                 
2 The number of animals slaughtered in California may not reflect the total number of California-origin animals slaughtered.  
Animals may come to California from other States for slaughter or leave California to be slaughtered in other States.  



19 

 

Figure 2.1  Number of cattle slaughtered and number of samples submitted 
for suspicion of TB in California (FY 2002–2008) 

 
 
 
Table 2.1  Slaughter submissions for TB in California—All cattle (FY 2002–2008) 
 
Fiscal 
Year 

Slaughter 
Head 

Samples 
Submitted 

Percent 
Sampled 

Number 
Infected 

Percent 
Inf/Sampled 

Percent Inf/ 
Slaughtered 

2002 1,200,000 647 0.05 NA NA NA 

2003 1,213,062 1,670 0.14 NA NA NA 

2004 1,291,868 1,196 0.09 NA NA NA 

2005 1,334,117 1,328 0.10 0 0.00 0.0000 

2006 1,465,176 1,273 0.09 0 0.00 0.0000 

2007 1,611,477 2,000 0.12 3 0.15 0.0004 

2008 1,559,656 1,667 0.11 1 0.06 0.0001 

 
Slaughter surveillance identified three infected animals in California in FY 2007. Two of these animals 
were feedlot steers of Mexican origin. The third animal was traced back to a newly affected dairy in 
New Mexico. 
 
In 2008, a dairy cow from a California dairy was identified as being infected through slaughter 
surveillance and testing. Epidemiologic investigations from this cow identified four additional affected 
herds. 
 
California dairy industry: In 2008, California led the nation in terms of number of dairy cows (1.844 
million) and milk production (41,203 million lb) (Table 2.2). These numbers account for 19.8 percent 
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of U.S. dairy cows and 21.7 percent of all milk produced. Although the number of dairy operations in 
2007 (2,200) was relatively low compared to other States, the average herd size in California was 968 
cows; 50.0 percent of operations had 500 or more cows while only 5.0 percent of all operations in the 
United States had more than 500 cows.  
 
Table 2.2  California dairy industry, 2007 
 

Population Number U.S. Rank % of U.S. U.S. Total 

Dairy operations 2,200 10 3.3 67,000 

Dairy cows (millions) 1.844 1 19.8 9.315 

Average herd size 968 4  163 

Average milk production/cow (lbs.) 22,334 6  20,396 

Total milk production (million lbs.) 41,203 1 21.7 189,992 

 
Source: NASS 2007 Census of Agriculture 

 
In 2007, California had 2,165 dairy operations. At the county level, using 2007 Census of Agriculture 
Data, three California counties (Merced, Tulare, and Stanislaus) had more than 265 dairy operations 
each. Kings and San Joaquin counties had between 200 and 250 dairy operations. These counties 
make up the majority of California’s Central Valley (Figure 2.2). 
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                Figure 2.2  Number of California dairy operations per county, 2007 
 

                         
                                        Source: NASS 2007 Census of Agriculture 
 
California had the largest number of dairy cows of any State in 2007 with 1.813 million head. Tulare 
County had the largest number of cows with approximately 474,500 head, followed by Merced County 
with approximately 273,000 head (Figure 2.3).  
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Figure 2.3  Number of milk cows in California per county, 2007 
 

 
Source: NASS 2007 Census of Agriculture 

 
California testing protocols: A flow diagram outlining California testing procedures is provided in 
Figure 2.4. Cattle that may have been exposed to infected cattle are purchased for necropsy or tested 
using the CFT. Further testing is not required if the animal does not respond to the tuberculin 
injection. Alternatively, if a response or swelling is observed, either a CCT or γ-IFN blood test is used 
to determine if the animal will be euthanized and samples taken at necropsy or slaughter. Cattle that 
originate from or reside in affected herds and respond to a CFT are taken to necropsy or slaughter. If 
a herd is determined to have bovine TB, quarantine is immediately placed on the herd. Owners of 
affected herds can choose to depopulate all animals or agree to a herd management plan that details 
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required testing and restrictions on moving animals from the herd. This management plan remains in 
effect until the herd is released from quarantine. Traditionally, depopulation has been the preferred 
control method because it is the only method that ensures elimination of the disease. However, as 
dairy herds become larger, depopulation may become too costly. 
   

Figure 2.4  Bovine tuberculosis testing in California 
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2.2.2 Description of the outbreak 

Index case: A 5-year-old Jersey cow slaughtered on December 6, 2007, had lymph nodes sampled 
due to suspicious lesions found during routine slaughter surveillance. The cow was confirmed 
infected based on positive results from histopathology, PCR and culture. The herd from which the 
infected cow originated (Herd A) was immediately quarantined.  
 
Specific information from the index case and the additional seven infected cows found is shown in 
Table 2.3 and Figure 2.5. 
 
Table 2.3  M. bovis infected dairy cattle in California outbreak, 2007–2009  
 

Herd Sex Breed Age (yr) 
Date of 
Birth 

Date of 
Detection Origin 

A1 Fe Jersey 5 3/2002 12/2007 
Purchased 6/25/07 from 

Herd B via auction 

B1 Fe Jersey 2 4/2005 1/2008 Home-raised 

B1 Fe Jersey 3 1/2005 1/2008 Home-raised 

B1 Fe Jersey 3 2/2005 1/2008 Home-raised 

B1 Fe 
Jersey/ 
Holstein 

2 4/2006 1/2008 Home-raised 

C1 Fe Jersey 3 1/2005 4/2008 
Purchased 8/20/07 from 

Herd B via auction 

D2 Fe Holstein 8 1/2000 4/2008 Home-raised 

E3 Fe Holstein 4 12/2004 1/2009 Home-raised 
1, 2, 3

 Denotes different M. bovis strains identified through spoligotyping 
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Figure 2.5  California outbreaks by county (USDA-APHIS-VS, May 2009) 
 

 
 
Herd A: The dairy operation in Madera County milked approximately 1,800 Holstein and Jersey cows. 
Calves were raised offsite and usually returned at approximately 120 days-of-age. Calves were fed 
powdered colostrum before leaving for the calf ranch and were identified with bangle tags before 
leaving the dairy. Calves are normally segregated at the calf ranch, but it cannot be determined if 
segregation was occurring prior to finding the infected cow. 
 
The index cow was a Jersey born in March 2002 (5-years-old). Dairy A purchased the cow 
approximately 6 months before detection from Dairy B at a local auction yard. Dairy A had purchased 
85 cows from Dairy B between June 2005 and June 2007. Three of these cows were re-sold to two 
local dairies. Dairy A was quarantined in December 2007. Testing at Dairy A revealed no other 
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infected cows. Furthermore, cows originating from Dairy B and present on Dairy A were purchased 
and necropsied with no additional infection found. The CFT responder percentage was 2.5 percent 
(62/2450). Of the 29 cows that were CFT responders, 17.2 percent were γ-IFN positive. Quarantine 
was removed on April 15, 2008.  
 
Herd A became infected by purchasing additions, specifically cull dairy cattle. Other potential risks of 
TB introduction include commingling calves at the calf ranch. No previous TB herd testing was 
reported; however, because no other infected animals were found in the herd, it was unlikely that 
bovine TB had been present previously. 
 
Herd B: Herd B dairy was located in Fresno County and milked approximately 2,600 Holstein and 
Jersey cows. Heifers were home-raised until June 2006, and then sent to a feedlot in Nevada. At the 
time that the infected cows were sold to the other affected herds, no heifers had returned from the 
feedlot in Nevada. As a result, no conclusive link can be drawn between the feedlot and the 
introduction of infection at the dairy. Dairy B had a reputation of selling relatively high-producing 
cows, and other dairies (such as Dairy A and Dairy C) frequently bought Dairy B cattle at local auction 
markets. Based on the fact that the infected cow in Herd A originated from this herd, a quarantine 
was placed on Dairy B in December 2007.  
 
Herd testing in December 2007 detected 63 CFT responders (2.4 percent). Of these, 17 were gamma 
responders (27.0 percent). All 63 cows were necropsied and 4 cows were confirmed infected by 
culture, histopathology, or PCR. The four infected cows were CFT responders and γ-IFN positive 
within 1 month before being euthanized and necropsied. Additional whole-herd testing was performed 
in March 2008 and between December 2007 and July 2008. Approximately 170 cows were 
necropsied with no other infected cows found. There were 110 CFT responder cows identified during 
the 3 herd tests, representing 1.6 percent of cows tested.  
 
Dairy B sold approximately 3,200 cows to 208 operations from 2003 to 2007 and had purchased 
approximately 113 cattle from 60 operations. Herd B chose to depopulate, and in July 2008, 
approximately 5,000 cows and calves were sent to slaughter. At slaughter, no suspicious lesions 
were identified. The source of infection in this herd was never identified but the purchase of cattle, or 
contact with cattle from other operations, appear to be the most likely sources of introduction.  
 
Herd C: Herd C was a 500-cow dairy located in Fresno County. This herd was composed primarily of 
Jerseys and Jersey-crosses. Calves were fed pooled, unpasteurized colostrum and then sent offsite, 
returning at 120 days-of-age. Herd C bought replacement heifers and cows from sale yards and 
auctions and bought bulls directly from other dairy operations. Most cull cows were shipped directly to 
slaughter. 
 
The herd was tested because of trace-ins from Herd B, which included 16 animals purchased in 
August 2007. In March 2008, a complete herd test was conducted and 2.9 percent of the herd were 
CFT responders. No infected animals were identified. Herd B cows were removed from the herd and 
necropsied. In April 2008, a cow originating from Herd B that was CFT negative in March was 
confirmed as infected with M. bovis. The herd was quarantined in April 2008 and 1,014 cattle were 
depopulated in August 2008. No additional infected animals were detected during enhanced 
slaughter inspection.  
 
Herd C herd became infected by purchasing additions, specifically cull dairy cattle. The spoligotype 
pattern identified (n=27) from isolates from Herds A-C is similar to a strain identified in a New Mexico 
herd in 2005 and in numerous Mexican-origin cattle. In addition to California and New Mexico, this 
isolate has been found in six other States. The strain was also found in 11 cattle and 1 deer in Texas. 
Three California human isolates also matched this strain. However, the strain was not the same as 
the strain responsible for the 2002–2003 California TB outbreak. Caution should be used when 
interpreting similarities in spoligotyping patterns. Many of the isolates identified in California match 
strains identified in Mexican-origin feeder cattle from neighboring States, which indicates a possible 
linkage. However, a direct link cannot be made in the absence of epidemiologic information. 
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Additionally, some strains may not be exact matches when evaluated further using other genotyping 
methods.   
 
Herd D: Also located in Fresno County, the owner of Herd D is a well-known breeder, embryo 
supplier, exporter of registered cattle, and seller of breeding bulls throughout the United States and 
embryos throughout the world. Accredited TB-free until 2001, this herd is connected through frequent 
animal movements with additional operations managed by family members. It was identified based on 
a trace-in of a Holstein heifer sold to Herd B in 2003 through a county fair. Herd D reportedly 
purchased 14 head of cattle in the past few years but has sold thousands of bulls. Most culls (90 
percent) were sent directly to slaughter, while the remaining 10 percent were sold through sale yards. 
Calves are raised at another family member’s dairy and fed unpasteurized hospital milk.  
 
A whole-herd test was performed in April 2008 and 2.0 percent of the cattle responded to the CFT.  
Subsequent testing of CFT responders by CCT identified one reactor and two suspects. The three 
cows were sent for necropsies and M. bovis was recovered from the caudal mediastinal lymph node 
in the reactor cow. This cow and her dam, granddam, and great-granddam were all born to Herd D. 
Additional testing identified no other infected cattle. Herd D implemented an APHIS-approved TB 
management plan.  
 
Spoligotype results in this herd indicated a different strain than that found in Herds A, B, and C. This 
particular strain was identified in 40 cattle in Mexico, cattle in 6 U.S. States, 1 elk in Oklahoma, and 3 
humans in New Jersey. The source of infection in this herd has not been identified. Potential sources 
include cattle contact through family member operations that had contact with cattle from other 
operations. Employees are also a potential source of introduction. According to the herd’s owner, the 
wife of a dairy employee who worked in the calving area around the time the infected cow was born 
died from TB. 
 
Herd E: This herd is primarily Holstein cattle located in San Bernardino County with approximately 
1,500 lactating cows. The herd is also associated with two other dairy operations through a calf-
raising facility, and animals are transferred among these three operations. Herd E was tested 
because the owner purchased two 4–H heifers from Herd D in 2005. A whole-herd CFT was 
conducted in December 2008. Of the 31 cows (2.1 percent) that responded to the CFT, only one cow 
was γ-IFN positive. The animal was sent to necropsy in January 2009 and confirmed as M. bovis-
infected based on histopathology, culture, and PCR.  
 
Herd E was quarantined in October 2008 based on the identification of a trace-out from Herd D. 
Testing of this herd is still being conducted. Spoligotyping of the isolate did not match the California 
strain found in 2002 or either strain in the 2007–2009 TB outbreak. The strain did match an 
untraceable California slaughterhouse surveillance isolate discovered in 2004. A human isolate found 
in San Diego (year unknown) also matches the strain. The source of infection in this herd has not 
been identified. Potential sources include contact with cattle from family members’ operations that 
had contact with cattle from other operations and calves raised offsite. 
 
Additional herd testing: Herds were identified for testing based on exposure to one or more of the 
affected herds detailed above. As of July 30, 2009, 251 herds had been tested at least once in 
association with the outbreak. CFT testing has been performed on 418,619 cattle; 10,994 of which 
responded to the CFT. Testing by γ-IFN was conducted on samples from 10,840 cattle— 224 of 
which tested positive.  
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Table 2.4 Testing performed in California, FY 2007 through July 2009 (251 initial herd tests and 
53 retests) 
 

Test Positive1 Negative Tested 

CFT 10,994 407,625 418,619 

CCT 50 1232 1282 

γ-IFN2 224 10,559 10,840 
1 Includes suspects/reactors. 
2 Includes 57 tests with no results. 
 
2.2.3 Summary 

The outbreak in California highlights at least three major concerns for TB in the State’s dairy industry. 
First, two herds were directly infected from purchasing cattle from other operations. While not 
confirmed, the other three herds may have also been infected from purchased cattle. Second, young 
dairy calves may be exposed to Mexican -origin cattle at feeding facilities. This practice greatly 
increases the risk of spreading diseases such as TB. Third, the likelihood that employees are 
spreading the disease to cattle has not been confirmed in any of these herds. This possibility has not 
been fully investigated primarily because of the time lag between exposure and disease identification, 
and because human testing is not under the purview of USDA or the California Department of Food 
and Agriculture.   
 
Three different strains of TB were identified during the California outbreak, suggesting that multiple 
introductions of TB have occurred without any specific point source identified. Although all of the M. 
bovis strains detected in this event have been detected previously in the United States, it is not 
known if the disease has been residing in native cattle between detection or was reintroduced. To 
prevent future outbreaks, sources of TB in dairy cattle in California need to be clarified and 
eliminated.  
 
2.3 Tuberculosis in Michigan cattle herds, 1998–2009 

2.3.1 Background 

Michigan TB program: Michigan achieved TB-free status in 1979. The last occurrence of TB in cattle 
in Michigan prior to that status occurred in 1974. In November 1975, a hunter killed a 9.5-year-old 
female wild deer in Alcona County in the northeast corner of Michigan’s Lower Peninsula. The deer 
had gross lesions suggestive of TB and M. bovis was cultured (Schmitt et al., 1997). Livestock was 
not kept near the area where the deer was killed. This occurrence of M. bovis in wild deer was 
thought to be a result of spillover from cattle. At the time, very few occurrences of M. bovis in wild 
deer had occurred and it was thought that the disease could not be maintained in that population. As 
a result, the 1975 case was treated as an isolated incident and no follow-up survey of wildlife in the 
area was conducted. 
 
In 1993, a TB-positive cow identified at slaughter was traced to an Isabella County herd in which no 
further infection was found, thereby allowing Michigan to retain its AF status. Further investigation 
was not warranted at that time and genetic profiling results for this isolate are unavailable. 
 
In November 1994, a wild 4.5-year-old male deer with gross lesions suggestive of TB was killed 
during hunting season and M. bovis was cultured from this deer (Schmitt et al., 1997). The deer was 
killed in Alpena County; approximately 9 miles from the 1975 case. It was thought that the infected 
deer killed in 1994 might be associated with TB in livestock, and in spring 1995 all cattle within a 9-
mile radius of the kill site were tested. TB was not found. In fall 1995, the Michigan Department of 
Natural Resources requested hunter participation in a survey to determine if M. bovis existed in wild 



29 

 

deer within the 9-mile radius. Of the 354 deer examined, 15 had gross lesions and were culture-
positive for M. bovis. This prompted increased testing in wild deer in 1996, and regular testing of deer 
has continued with infected wild deer being found every year.  
 
The area of highest risk included 15 to 20 townships on the shared boundary of Alpena, Alcona, 
Oscoda, and Montmorency Counties in the northeast Lower Peninsula. This core area is known as 
Deer Management Unit (DMU) 452. In fall 1997, whole-herd testing of dairy and beef herds within the 
core area was initiated. In spring 1998, the first TB-positive cattle herd in the area was identified. 
Additional cattle herds were later identified and Michigan officially lost its AF- status in June 2000. As 
of 2009, Michigan is divided into three zones (Figure 2.6) with different TB statuses: the AF zone 
consists of the Upper Peninsula; the MA zone is composed of all or parts of the northernmost 13 
counties in the Lower Peninsula; and the MAA zone consists of the remainder of the counties in the 
Lower Peninsula. As of March 2009, 45 affected dairy and beef herds have been identified since 
1998.  
 
The origin of the M. bovis outbreak beginning in 1994 will probably never be known. It is generally 
accepted that the deer found in 1975 was probably not an isolated incident and M. bovis was likely 
present at low levels in wild deer in northeastern Michigan at that time. Prevalence gradually 
increased due to factors such as increased deer feeding practices that resulted in identification of the 
1994 positive deer.  
 
DMU 452 consists largely of forests, swamps, and rocky, sandy, unproductive soils. Because much of 
the land is good deer habitat, ill-suited for agriculture, and relatively inexpensive, it became an 
attractive area to establish privately owned hunt clubs. The first hunt club was established in the heart 
of DMU 452 in the 1880s when public hunting was unrestricted (O’Brien et al., 2006). The club 
provided protection for deer and deer numbers within the club increased. Other clubs were 
established, and by 1938 there were approximately 250 clubs in the area (O’Brien et al., 2006). Some 
clubs grazed cattle on their land from the 1940s to the 1960s and some could afford caretakers and 
supplemental feed for deer during harsh winters. Widespread feeding did not become commonplace 
until the 1980s and 1990s, when competition grew among clubs to attract deer to facilitate hunting for 
club members (O’Brien et al., 2006). During this time, large amounts of feed were transported to the 
area and the sale of deer feed became a significant part of the local economy (Hickling, 2002). Winter 
feeding became common, as clubs felt compelled to provide feed to prevent deer from moving to 
neighboring clubs’ feed piles. The normal deer concentration that the habitat of DMU-452 could 
support was estimated at 31 to 37 deer/sq. mi. (Schmitt et al., 1997). It was estimated that the deer 
population peaked at 50 to 60 deer/sq. mi. from 1989 to 1992 (Hickling, 2002).  
 
Disease transmission modeling based on annual prevalence results in the TB core area subsequent 
to 1994 suggests that M. bovis arose from cattle-to-deer interaction in the mid 1950s (McCarty and 
Miller, 1998). These authors reasoned that a more recent introduction within 5 to 10 years prior to 
1994 would have required relatively high transmission rates to achieve the prevalence seen in deer in 
1995. Given those transmission rates, TB prevalence in deer should have been doubling subsequent 
to 1995, which was not observed (McCarty and Miller, 1998).  
 
Another study based on extensive historical research of deer numbers, climate, forage availability, the 
establishment of hunt clubs, supplemental deer feeding, and TB occurrence in cattle in Michigan 
estimated that M. bovis in deer in the core area most likely arose in the 1930s (Miller and Kaneene, 
2006). In the 1920s, the highest TB reactor rates in the State were in Alcona and Alpena Counties, 
the heart of DMU 452 (O’Brien et al., 2006). Prevalence of TB in cattle decreased in the 1930s and 
1940s and increased in the 1950s. At one point, Michigan accounted for 30 percent of all TB reactors 
in the United States (Miller and Kaneene, 2006).  
 
While the 1950s or 1930s are both plausible time periods for the origin of infection in Michigan deer, 
the exact origin will probably never be known. However, it is commonly accepted that the infection 
was maintained in deer in the northeastern Lower Peninsula subsequent to the 1975 positive hunter-
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killed deer; therefore, the initial introduction of TB into the deer population was most likely prior to 
1975. 
 

 
 

Figure 2.6  Michigan TB zones as of April 2009 

 
 
Michigan cattle industry: Michigan was ranked sixth in the United States in number of operations with 
dairy cows and eighth in number of dairy cows, according to the National Agricultural Statistics 
Service (NASS) 2007 Census of Agriculture (Table 2.5). The State was ranked 33rd for the number of 
operations with beef cows and 38th for the number of beef cows. Less than 10 percent of cattle and 
calves in Michigan are located in the MA zone. The vast majority of cattle and calves in Michigan are 
in the MAA zone. 
 
While the cattle industry in Michigan is significant and the State is ranked among the top 10 dairy 
states in the United States, the hunting industry is also very important. Deer are highly valued in 
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Michigan and are designated as the State game mammal. A 2001 estimate of the value of deer 
hunting to Michigan’s economy was more than $506 million (U.S. Department of the Interior, 2001). In 
comparison, the value of cattle and calves sales in Michigan was $299 million in 2002. (USDA, 2004).  
 
 
Table 2.5  Michigan TB zones by cattle population, 2007 

 
 
Figure 2.7 presents a graphical depiction of the number of cattle and calves in Michigan by county 
according to the NASS 2007 Census of Agriculture.  
 

 TB Zone    

Population 
MA 

Zone1 
AF Zone 

MAA 
Zone2 

MI Total U.S. Total 
MI Rank 
in U.S. 

Four-
county 
Area3 

MA Zone 
Percent of 

MI Total 
No. farms w/ 
cattle/ 
calves 

1,191 761 12,502 14,454 963,669 26 419 8.2

No.  
cattle/calves 

69,455 48,961 929,790 1,048,206 96,347,858 30 22,179 6.6

No. farms w/ 
cows/heifers 
that calved  

922 624 8,593 10,139 818,992 31 323 9.1

No. cows/ 
heifers that 
calved 

31,746 23,978 397,980 453,733 42,101,375 32 11,099 7.0

No. farms w/ 
beef cows  

762 506 6,580 7,848 764,984 33 240 9.7

No. beef 
cows  

12,745 9,288 83,389 109,500 32,834,801 38 4,334 11.6

No. farms w/ 
milk cows  

188 150 2,309 2,647 69,890 6 93 7.1

No. milk 
cows  

18,442 12,400 308,564 344,233 9,266,574 8 6,765 5.4
1Includes all of Iosco and Ogemaw Counties, including those parts inside the MAA zone 
2Not including those parts of Iosco and Ogemaw Counties inside the MAA zone 
3Includes all of Alpena, Alcona, Montmorency, and Oscoda Counties. DMU-452 is located in these counties. 
Source: NASS 2007 Census of Agriculture 
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Figure 2.7  Number of cattle and calves in Michigan by county, 2007 

 
Source: NASS 2007 Census of Agriculture 

 
2.3.2 Description of the outbreak 

Affected herds in Michigan: Between 1998 and 2008, 45 affected cattle herds were identified on  
40 premises in Michigan (Figure 2.8). The first herd was identified in June 1998 and the most recent 
was diagnosed in December 2008. At least one new TB-positive herd has been diagnosed every year 
since 1998 (Table 2.6) with all but five identified as a result of testing in the affected areas. Of the 45 
affected herds, 68.9 percent were in Alpena and Alcona Counties (Table 2.7). Only two counties 
(Antrim and Emmet) are outside of the high-risk area bounded by Interstate 75 and Route 55 in the 
northeastern Upper Peninsula. All counties in which affected cattle herds have been found are in the 
MA zone in Michigan and infected wild white-tailed deer have been found in all of the counties in 
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which affected cattle herds were found (Figure 2.9). None of the affected herds have been larger than 
500 animals (Table 2.8). 
 
Table 2.6  Number of TB affected cattle herds in Michigan, by year 
 

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 Total 

3 1 7 8 7 6 1 3 4 3 2 45 

 
Table 2.7  Number of TB affected cattle herds in Michigan, by county and by herd type 
 

 County 

Herd 
Type Alpena Alcona Montmorency Antrim Oscoda Emmet 

Presque 
Isle Total 

Beef 16 11 1 2 3 1 1 35 

Dairy 3 1 3 1 0 1 1 10 

Total 
19 

(42.2%) 
12 

(26.7%) 
4 

(8.9%) 
3 

(6.7%) 
3 

(6.7%) 
2 

(4.4%) 
2 

(4.4%) 
45 

(100.0%) 
 
 
Table 2.8  Number of TB affected cattle herds in Michigan, by herd size and by herd type 

 

 Herd Size 

Herd Type Fewer than 50 50–99 100–500 Total 

Beef 15 12 8 35 

Dairy 2 2 6 10 

Total 17 14 14 45 

 
 
A dairy herd owner who elected not to depopulate after being declared affected in September 2000 
found additional infected animals in July 2004, after the herd had been considered TB-free. This herd 
was infected again in March 2009; however, it was not considered a newly infected herd because it 
had not been released from quarantine. Deer is the likely source for re-infection of this herd.  
 
Four depopulated beef premises were later found to be TB-positive after the herds were repopulated. 
One of the beef premises (herd 17) depopulated in September 2001 was diagnosed positive in April 
2002, less than a year after repopulation (herd 22). All but two animals in the repopulated herd 
originated outside of Michigan, with most of the cattle coming from Montana. No additional TB-
positive farms were found to be associated with this herd. Re-infection of this premises was attributed 
to deer as it is located in DMU-452.  
 
Herd 15 was in the heart of the TB core area and had the highest within-herd prevalence. Cattle in 
this herd were wild and spent most of their time away from barns and people. Part of the herd was 
tested in 1995, but several animals escaped and testing was not completed. In 2001, this operation 
was successfully whole-herd tested and 32 percent of the animals tested culture-positive. Herd 15 
was probably the source of infection for herd 20 (the one infected animal in herd 20, a bull, came from 
herd 15) and for herd 12 (all three infected cattle in herd 12 came from herd 15). However, since 
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herds 20 and 12 were located in an area in which TB was endemic in deer, the possibility of infection 
by deer could not be ruled out.  
 
Forty of the 45 affected herds in Michigan have been detected by area testing; movement and 
slaughter traces have identified very few of the infected herds. In 2000, four herds located within 2 
miles of each other were found to be affected. These herds were located along the southern 
boundary of DMU 452, and in some cases shared fence lines. One of the 4 herds (herd 11) received 
an animal from one of the neighboring TB-affected herds. Deer were most likely the source of 
infection, as the area was heavily wooded. However, the possibility of infection due to neighboring 
cattle, fence-line contact, or cattle that escaped a neighboring herd could not be ruled out. The four 
herds were all identified as TB-affected within four months of one another (June to September 2000). 
Approximately 1 year later another neighboring herd (herd 18) was diagnosed TB-positive, likely due 
to deer. Another relatively tight cluster of positive herds was identified along Highway M 65 in Alpena 
County within DMU 452 with infection in these herds attributed to deer. 
 
As a general rule, owners of infected beef herds in Michigan elect to depopulate. Beef cow-calf herds 
rely on calf sales to provide income and quarantines limit their ability to market their calves. Dairy 
herds depopulate less often, as they rely on milk sales for income and can continue to ship milk while 
under quarantine. Herds that do not depopulate and are released from quarantine are monitored 
because Michigan requires annual whole-herd testing for all herds in the MA zone. 
 
An estimate of the period prevalence of affected herds in the MA zone can be obtained using the 
2007 Census of Agriculture numbers from Table 2.5. This estimate assumes that the number of herds 
in each TB zone in Michigan has remained relatively constant since 1998. Given this assumption, the 
approximate percentage of affected dairy and beef herds in the four-county region of Alpena, Alcona, 
Montmorency, and Oscoda (all in the MA zone) since the start of the outbreak is 7.5 and 12.9 
percent, respectively. The approximate percentage of affected dairy and beef herds in the entire MA 
zone is 5.3 and 4.6 percent, respectively.
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Figure 2.8  Location of TB-affected cattle and cervid herds as of December 31, 2008 
 

 
 
Risks associated with wildlife in Michigan: Deer are the primary reservoir of infection among wildlife 
species in Michigan. Cattle contact with deer—and especially contact with feed that deer have eaten 
from—is considered the most important risk factor for M. bovis infection. Land in Michigan’s 
northeastern Lower Peninsula is of marginal quality for agricultural use. Pastures with access or close 
proximity to wooded areas are common, cattle are frequently fed in pastures, and feed is stored in 
pastures. On many operations, there is ample opportunity for deer to have contact with cattle feed.  
 
Management practices that reduce the risk of introducing bovine TB to a herd include feeding cattle 
once per day (feeding less often is higher risk because feed may be exposed to wildlife), feeding 
cattle within buildings or within deer-proof fenced areas, storing feed in enclosed areas that prevent 
wildlife access, providing water only in troughs or tanks near buildings, and maintaining a minimum of 
1 mile distance between cattle pens and wooded areas that provide good deer cover. The Wildlife 
Risk*A*Syst for Bovine TB (http://web2.msue.msu.edu/bulletins/Bulletin/PDF/FAS113.pdf) is a 
document designed for Michigan farmers to assess the risk of bovine TB infection on an operation 
with primary emphasis on deer and cattle contact.  
 
Infected deer may also transmit infection to other deer. An experimental study by Palmer et al. (2001) 
housed experimentally infected deer (group 1) with uninfected deer (group 2) in the same pens in a 
Biosecurity Level 3 facility for 4 months. Subsequently, some group 2 deer were housed with a new 
set of uninfected deer (group 3) for 6 months. At necropsy, all deer from groups 1, 2, and 3 had 
tuberculous lesions and M. bovis was confirmed by culture. Infection may have occurred through 
inhalation or ingestion by nasal secretions, saliva, or contaminated feed—all of which are possible 
routes of infection when deer congregate to eat from the same feed piles.  
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Figure 2.9  Number of free-ranging deer infected with TB in Michigan, 1975–2008 
 

 
 
In a similar study, experimentally infected deer and uninfected calves switched pens on a daily basis 
in a Biosecurity Level 3 facility, never coming in direct contact with each other (Palmer et al., 2004). 
The infected deer were given excess feed to ensure that leftover feed was available for the calves 
when pens were switched. In the second phase of the study, excess feed from experimentally 
infected deer pens was transferred to uninfected calf pens, with no movement of animals between 
pens. In the first phase of the study, in which calves and deer switched pens, all nine calves had 
tuberculous lesions or M. bovis cultured from tissues. In the second phase of the study, which 
involved only feed transfer, four of the nine calves had tuberculous lesions or M. bovis cultured from 
tissues. This study showed that M. bovis could be transmitted from deer to cattle through indirect 
contact.  
 
An observational case-control study examining environmental and farm management factors 
associated with TB on northeastern Michigan cattle farms indicated that farms with poor deer 
exclusion practices were more likely to be TB-infected (Kaneene et al., 2002). The study also 
indicated that a larger amount of open land surrounding the farm was associated with decreased risk 
of bovine TB infection. 
 
Elk are highly susceptible to bovine TB infection and are the primary reservoir involved in a bovine TB 
outbreak in Manitoba, Canada. Approximately 1,000 elk are present in the northern Lower Peninsula 
of Michigan. Elk naturally congregate in large groups (as opposed to white-tailed deer who 
congregate only in certain situations, such as supplemental feeding grounds) causing elk to be a 
species of concern with regard to TB. Although infected elk have been found in Michigan, their 
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numbers are small enough that they are not considered of great importance in sustaining the 
outbreak in Michigan.  
 
The role that other wildlife species play in cattle infection is uncertain. M. bovis has been isolated 
from wildlife species in Michigan other than deer and elk, including black bear, coyotes, foxes, 
raccoons, opossums, bobcats, and badgers. All of these animals have been found in the vicinity of 
endemically infected deer. Infection in these species is thought to be a result of feeding on infected 
deer carcasses or from feed piles in which infected deer had contact. Gross and histologic lesions 
have been rare among these species (O’Brien et al., 2006). The extent of TB lesions in an animal 
provides some indication of its ability to excrete the disease agent, and effective excretion is 
necessary to act a reservoir host (Bruning-Fann et al., 2001). Since very little disseminated infection 
has been found in Michigan animals other than ruminants, these other species are considered to be 
spillover hosts incapable of maintaining the infection. Experimental infection of mice and voles can 
result in extensive lesions, and voles shed TB significantly in feces. However, there is little 
understanding of the extent to which these rodents serve as a potential source of infection of other 
species (O’Brien et al., 2006). 
 
Testing and control measures: Since the TB outbreak, testing requirements for Michigan cattle herds 
have been more stringent than the requirements set forth in the Tuberculosis Eradication Program’s 
UM&R (USDA, 2005). Michigan required whole-herd testing of all cattle herds in the State by 
December 31, 2003 and this deadline was met. Testing of dairy herds was the first priority; therefore, 
all dairy herds in Michigan were tested by June 2001 to satisfy the requirements of the Federal 
Pasteurized Milk Ordinance. Michigan regulations also require annual whole-herd TB testing for all 
herds in high-risk areas. In 2001, Alcona, Alpena, Montmorency, and Presque Isle Counties were 
designated high-risk areas. 
 
In March 2002, the State established three areas to assist with immediate control: an infected zone 
(Alcona, Alpena, Montmorency, and Presque Isle Counties); a surveillance zone (Cheboygan, 
Crawford, Iosco, Ogemaw, Oscoda, and Otsego Counties); and a disease-free zone (all other 
counties). Each zone had different testing and movement requirements. With the exception of 
terminal operations in which animals leave the operation only for slaughter, all cattle herds in the 
infected zone were required to undergo annual whole-herd testing and all herds in the surveillance 
zone were required to undergo whole-herd testing every 2 years. Michigan also required that all herds 
in the disease-free counties bordering the surveillance zone (Antrim, Arenac, Charlevoix, Emmet, 
Gladwin, Kalkaska, and Roscommon) complete two whole-herd tests by the end of 2003. Herds in the 
disease-free zone did not have annual testing requirements other than completing at least one whole-
herd test prior to 2003. 
 
In April 2004, USDA approved split-State status for Michigan. Initially, this status was comprised of 
two zones that were designated either MA or MAA. The MA zone included all of Alcona, Alpena, 
Antrim, Charlevoix, Cheboygan, Crawford, Emmet, Montmorency, Oscoda, Otsego, and Presque Isle 
counties, as well as portions of Losco and Ogemaw counties north of the southernmost boundaries of 
the Huron National Forest and the Au Sable State Forest. This zone retained the annual whole-herd 
testing and movement restrictions formerly required in the infected zone. The MAA zone included all 
Michigan counties outside the MA zone. In September 2005, the Upper Peninsula became a separate 
AF zone, making Michigan a three zone, three-status State. Surveillance testing in the MAA zone has 
been conducted through random selection of herds within the zone and by whole-herd testing on 
selected herds (1,800 herds were tested over a 2-year period). Random selection of herds for whole-
herd testing has also been practiced in the Upper Peninsula; however, fewer herds were selected. In 
2007, 775 herds were tested in the MAA zone compared with 25 herds in the Upper Peninsula. The 
State also required annual reconciliation of herd inventories by regulatory or accredited veterinarians 
for all cattle herds in the MA zone to account for all changes in inventory.  
 
In 2008, Michigan began using risk-based surveillance for herds outside the MA zone. The goal 
during the first year was to test 500 herds and to accumulate 1,500 surveillance points. Herds were 
assigned different surveillance points based on risk. Animals tested as a result of traces from herds 
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infected within the past 10 years were assigned six points; herds within a 10-mile circle of infected 
deer found outside of the MA zone were assigned four surveillance points; herds in counties adjacent 
to the MA zone were assigned three points; and all other herds were assigned one point. Herds in the 
border counties and those with one surveillance point were selected randomly. Annual testing is still 
required for all herds in the MA zone under the risk-based system. In 2009, the risk-based system 
continued with a few modifications and refinements are proposed over the next few years. 
 
Since 2000, Michigan has had a mandatory official identification program for cattle, whereby all cattle 
are required to bear official identification ear tags before being moved. Official electronic ear tags 
became mandatory for cattle in the infected zone in 2002 (later designated as the MA zone). In March 
2007, official electronic identification ear tags became mandatory for all cattle in Michigan. 
 
The Michigan Department of Agriculture began surveillance of livestock moving into the Upper 
Peninsula in 2004 (the Upper and Lower Peninsula are connected by the Mackinac Bridge). Detailed 
surveillance of all vehicles transporting livestock across the bridge is conducted to ensure that animal 
identification and movement certificate requirements are met. The check station at the bridge is 
staffed 24 hours a day, 7 days a week, and regulatory personnel are also present at all sale yards in 
the State to verify adherence to animal identification and movement requirements. 
 
Plans for a fencing program began in spring 2001, when USDA’s Wildlife Services provided funding 
to construct fencing on eligible farms to prevent deer access to stored feed. To be eligible for funding, 
farms were required to be located in the MA zone, undergo an evaluation by Wildlife Services, 
provide documentation of damage by deer to stored feed, lie within close proximity to a bovine TB 
case, and be willing to use the fence as designed (e.g., keep gates closed when not in use). Through 
2006, 54 farms received fencing. The majority of fences built were woven wire, although a few were 
electrobraid or other types. The average cost per farm was approximately $10,000, with a total 
expenditure of $529,000. USDA funding for this program was discontinued after 2006. 
 
In August 2008, the Michigan Department of Agriculture began a cost-share program that provided 
funds for producers in the core TB area to build fences or hoop barns to protect feed from deer. 
Approximately $384,000 was available to fund up to 75 percent of fencing costs and up to 65 percent 
of hoop barn costs. Maximum funding was set at $15,000 per producer. Before applying for funding 
through the program, producers were required to complete a wildlife risk assessment through Wildlife 
Risk*A*Syst. The assessment evaluated the risk of deer access to livestock and feed storage areas 
with results in a numerical risk score. Farm owners could apply for funding if their feed storage was 
considered at risk.  
 
There have been many variations of baiting and feeding bans in areas of Michigan since 1998. 
Baiting is defined as providing feed materials for wildlife to aid in hunting, and feeding is providing 
feed for any reason other than baiting. Initially, voluntary restrictions were sought, but in 1999 a 
mandatory baiting and feeding ban was imposed in the five-county TB area. In 2001, baiting with 
small amounts of feed was allowed to increase the deer harvest (O’Brien et al., 2006). A complete 
baiting and feeding ban was imposed in 2002 in a seven-county area from which most of the TB-
positive deer had been found. This ban remains in effect. In 2008, all baiting and feeding was banned 
in the entire Lower Peninsula following the discovery of chronic wasting disease (CWD) in a captive 
deer in Kent County.  
 
The baiting and feeding bans have had mixed success. Large-scale feeding in the banned areas has 
been greatly reduced but smaller feeding sites remain (O’Brien et al., 2006). Sales of bait and feed 
are unregulated and have continued in all areas of Michigan. Enforcement efforts have included aerial 
surveillance, and although violators are fined, many view the fines as inconsequential. Repeat 
violators are subject to additional penalties (e.g., seizure of firearms) but these have not been 
consistently enforced.  
 
Spoligotyping results: TB cases identified in Michigan have predominantly been associated with a 
single genetic strain of M. bovis identified by spoligotype 640033777777600. A few isolates identified 
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in Michigan have had minor variations of this spoligotype pattern. In many instances, laboratory 
artifact was responsible for the variation, and those isolates are considered the same strain as the 
predominant Michigan strain. Other slight differences are likely due to mutations in the genome. 
Although it is likely the TB infections in Michigan are due to a single strain of M. bovis circulating 
among deer, cattle, and other wildlife, spoligotyping data alone cannot conclusively prove that all 
isolates originated from the same outbreak strain. 
 
The spoligotype pattern associated with Michigan has also been found in Mexico and is endemic in 
feral swine on Molokai Island, Hawaii. However, no proven epidemiologic links exist between the 
Michigan outbreak and Hawaii or Mexico. Additional genotyping tests demonstrate a distinct 
difference between the Michigan strain and the strain endemic in Hawaii. As spoligotyping can be a 
useful tool to demonstrate no relationship between herds in an outbreak (such as in California), the 
converse is not true (e.g., matching strains do not mean a link exists in the absence of epidemiologic 
evidence and additional genetic fingerprinting). Most available evidence points to the origin of the 
outbreak in deer in Michigan well before its discovery in 1994.  
 
Human infection: Since 1994, M. bovis with the same spoligotype profile as the outbreak strain found 
in cattle and deer has been isolated from two Michigan residents (Wilkins et al., 2008). One case 
involved a 29-year-old man who shot a deer just outside of the DMU 452 in 2004. The man had cut 
one finger with a knife while field dressing the animal. He noticed that the deer had chest lesions 
which were likely TB and subsequently buried the carcass. A few weeks later, the man’s finger 
became inflamed and he sought medical treatment. A TB skin test was administered with TB-negative 
results. The man’s finger did not respond to antimicrobial treatment and his wound was incised and 
drained on two different occasions. Approximately 2 months after the injury, M. bovis was cultured 
from the wound. The deer carcass was later recovered and cultured positive for M. bovis. 
Spoligotyping results indicated that the deer and the man were infected with the same strain that 
matched the strain circulating in Michigan cattle and deer (Wilkens et al., 2008). 
 
Another human case involved a 74-year-old man hospitalized in 2002 with persistent fever and a 
nonproductive cough. A skin test and sputum smear were both negative for TB. The man remained 
hospitalized and 5 days later acid-fast-bacteria were identified. The man died on day 16 of 
hospitalization while culture results were pending. The TB strain was later identified as identical to the 
strain circulating in cattle and deer in Michigan. The man had grown up on a farm drinking 
unpasteurized milk, but not in the current TB-endemic area of Michigan. He had moved to Detroit and 
upon retirement moved near DMU 452. He had previously hunted deer and ate venison, but not 
within 10 years of his death. However, the man fed deer and handled a deer carcass from DMU 452 
in 2000. Pathology results from a lung lobectomy for another ailment in 1999 showed no evidence of 
TB and it was surmised that infection occurred subsequent to 1999 (Wilkins et al., 2008). 
 
When infected cattle herds in Michigan are identified, the Michigan Department of Agriculture notifies 
the Michigan Department of Community Health, which in turn notifies the local health department in 
the vicinity of the affected farm. The local health departments contact owners of affected operations, 
provide information about TB, and offer TB skin tests. As of mid-2008, 30 people associated with 
affected operations had been tested—two of which had positive TB skin-test results (Ankney, 2009). 
 
2.3.3 Summary 

Michigan is the first State in which M. bovis was recognized as persistent in a wildlife reservoir. 
Bovine TB has proven very difficult to control in wild deer, and by the time this reservoir was 
confirmed, M. bovis was well-established in the wild deer population of the northeastern Lower 
Peninsula. Fifteen years have elapsed since M. bovis was discovered in Michigan deer, which 
coincides with the beginning of the current M. bovis endemic in the State. Cattle contact with infected 
deer or deer contact with cattle feedstuffs or water sources have been suggested as primary causes 
of many of Michigan’s cattle herd infections. Implementing management practices that prevent deer 
access to stored cattle feed or areas where cattle are fed are the primary means of preventing TB 
infection in these cattle herds. The role species other than deer might play in the introduction and 
spread of bovine TB is not well understood. The primary means of controlling M. bovis in Michigan 
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deer have been population control and the ban on baiting and feeding in endemic areas. Population 
control alone is not a viable option for TB eradication in the State and it is unlikely that illegal feeding 
and baiting practices will cease. An effective vaccine for deer may assist in the control efforts. 
 
Michigan has been proactive in developing testing, movement, and animal identification regulations. 
The State has requirements for electronic identification of cattle State-wide, annual whole-herd testing 
of all herds in the MA zone, and random testing of a subset of herds in the remainder of the State, 
including the AF zone. These State-imposed requirements are more stringent than the requirements 
imposed by the USDA (USDA, 2005). A risk assessment tool has also been developed to gauge the 
risk of introduction of M. bovis by wildlife onto operations. Adherence to recommended practices to 
prevent deer contact with cattle feed is recommended to prevent further infection; however, there are 
no accurate estimates as to when M. bovis might be eradicated from Michigan. 

2.4 Tuberculosis in Minnesota cattle herds, 2005–2008 

2.4.1 Background 

Minnesota TB status: In July 2005, a Minnesota beef-cattle herd in Roseau County tested positive for 
M. bovis and was officially declared affected with bovine TB. Discovered through routine slaughter 
surveillance, this was the first infected herd identified in Minnesota since 1971. Subsequent testing 
revealed infection in several adjacent and epidemiologically-linked cattle herds as well as wild cervids 
(Table 2.9). As a result, APHIS downgraded the State status from AF to MA. By February 2008, 11 
cattle herds in Minnesota were identified as TB-positive. In October 2008, Minnesota was granted 
split-State status, declaring a MA zone for portions of Beltrami, Roseau, and Marshall Counties. The 
remainder of the State was designated MAA.  
 
Table 2.9  Number of TB infected cattle and deer in Minnesota as of July 2008, by species and 
year 

 

                        Number of M. bovis Isolates 

Year Cattle Deer Total 

2005 16 0 16 

2006 9 6 15 

2007 3 11 14 

2008 7 14 21 

Total 35 31 66 

 
 
After the first affected herd was identified, State-wide surveillance was implemented to determine the 
extent of bovine TB. During this effort, 1,500 herds were tested. The affected herds were clustered in 
a small geographic area. 
 
After split-State status was granted, Minnesota purchased and depopulated 46 herds (6,200 animals) 
in the highest risk areas to minimize further propagation of bovine TB. One additional herd (herd 12) 
was identified as affected through the buyout. Information on this herd was not available at the time of 
this assessment; however, additional herds have not been found as of August 2009. Owners who did 
not accept the terms of the buyout underwent a herd risk assessment (similar to Michigan’s Wildlife 
Risk*A*Syst) to evaluate the potential for deer-to-cattle interactions on their operations. Based on the 
assessment, recommendations were made to minimize the potential for those interactions and 
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producers were obligated to follow the recommendations given by the State. Additionally, Minnesota 
provides funding to help owners construct fences to minimize deer contact with cattle or their feed.  
 
Minnesota cattle industry: Minnesota ranks fourth in the United States in the number of dairy farms 
and cattle-on-feed operations (Table 2.10). The State has more than 2.25 million cattle and calves on 
28,034 farms (Figure 2.10) that includes 881,842 adult breeding cows on 21,094 farms. There were 
approximately 7,000 cattle-on-feed operations in 2002 with an inventory of more than 500,000 cattle.  
 
Table 2.10  Number of cattle and calves and number of farms in the United States and 
Minnesota 
 

  State County 

 
U.S. MN % U.S. Rank 

Three 
County* % MN Rank 

                    Cattle and Calves, Farms 

Cattle and cows 1,018,359 28,034 2.8 12 988 3.5 21 

With cows 864,823 21,094 2.4 15 848 4.0 18 

Beef cows 796,436 15,565 2.0 17 791 5.1 11 

Dairy cows 91,989 6,474 7.0 4 82 1.3 42 

With other 875,850 25,087 2.9 10 890 3.5 21 

Cattle on feed 80,743 6,991 8.7 4 88 1.3 65 

Cattle and Calves, Animals 

Cattle and cows 95,497,994 2,265,997 2.4 13 66,389 2.9 27 

With cows 42,502,230 881,842 2.1 17 32,015 3.6 18 

Beef cows 33,398,271 403,594 1.2 27 26,452 6.6 6 

Dairy cows 9,103,959 478,248 5.3 5 5,563 1.2 47 

With other 52,995,784 1,384,155 2.6 11 34,374 2.5 35 

Cattle on feed 14,905,545 518,036 3.5 8 3,131 0.6 62 

* Beltrami, Roseau, and Marshall Counties 
  Source: NASS 2002 Census of Agriculture 
 
Beltrami, Roseau, and Marshall Counties are in the northern part of the State and contain more than 
66,000 cattle and calves on 988 farms (Table 2.10). The three counties do not account for a 
significant portion of Minnesota’s dairies or feedlots, but they are among the top 12 counties in 
Minnesota for cow-calf production. 
 
The counties currently affected are an important part of cow-calf production in Minnesota (6.6 percent 
of beef cows) and likely play a central role in the northwest Minnesota cow-calf industry (a larger area 
than the three affected counties). The expansion of the three-county outbreak would threaten 
significant dairy and cattle-on-feed populations, placing 7 to 9 percent of U.S. dairies and cattle-on-
feed operations at risk.   
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Figure 2.10  Number of Minnesota operations with cattle and calves, 2007 

 
Source: NASS 2007 Census of Agriculture 

 
2.4.2 Description of the outbreak 

The index herd was discovered when TB-suspicious lesions were found on a 5-year-old cull cow at 
slaughter. The herd consisted of nearly 600 head of purebred Tarentaise and Angus cattle. Of the 63 
caudal fold responders from the initial whole-herd test, 6 animals cultured positive, 5 of which were 
Tarentaise cows 3 to 10 years-of-age. 

Four of the 11 infected herds represented secondary infections and were found by area testing which 
began in fall 2005. These herds averaged 275 head and an average of 3 infected animals were found 
in each herd. The remaining six affected herds were recently discovered; two in fall 2006 and four in 
winter 2007–2008. Five of the six herds had at least one previously negative whole-herd test. These 
herds were smaller (97 head on average) than the index or secondary herds and typically had only 
one infected animal. 
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The index herd stands out because of its size and, unlike the other herds, the majority of animals 
added to the herd were purchased out-of-State (90 percent of trace-ins). Two of the six infected 
animals were from Iowa.  
 
In the other herds, almost all additions were from in-State (97 percent of trace-ins). The animals 
brought into Michigan from out-of-State were not culture-positive and the majority were born on the 
farm. Additionally, 5 of the 6 infected cattle in the index herd were Tarentaise whereas only 1 of 17 
infected cattle from the other 10 herds were Tarentaise (Table 2.11).  
 
Table 2.11  Infected cattle from the index herd 

 

 Sex Breed1 
Age (in years)  

when Necropsied 
Approx. 

DOB Animal Origin 

1 F TR 6 1999 Home raised 

2 F TR 10 1995 Out-of-State; purchased 11/19992 

3 F TR 3 2002 Home raised 

4 F AN 5 1999 Home raised 

5 F TR 8 1997 Out-of-State; purchased 1/2000 

6 F TR 5 2000 Home raised 
1
AN = Angus; TR = Tarentaise   

2
Likely moved January 2000 
 
The emerging epidemiological information indicates that the index herd received a large influx of 
purebred Tarentaise cows and Angus bulls, mostly through out-of-State purchases. One of these 
purchases is likely responsible for the introduction of M. bovis into the herd. Of the 96 traces into this 
herd between 1998 and 2005, more than 75 percent were from two States. Two Tarentaise cows 
purchased out-of-State were later identified as infected. They were 3- and 5-years- old and 
presumably already infected when added to the index herd. Over the next 5 years, infection spread 
throughout this operation, ultimately giving rise to 63 CFT responders, 13 CCT reactors, and 6 
additional infected cows from 4 of 8 pastures (subgroups) that make up this operation. Evidence 
suggests that infection also spread to adjacent herds, spilled over to deer, and infected other cattle 
herd operations that purchased cattle predominantly from northwest Minnesota. 
 
Another possible scenario is that bovine TB existed in Minnesota before the index herd was found. 
Slaughter surveillance was the primary surveillance program used to detect bovine TB before the 
index case was discovered. The sensitivity of slaughter inspection is reported to be just 50 percent 
(Ducrot et al., 1997). In 1999 and 2000, suspicious granuloma submissions were at the lowest point 
in the past 25 years (Kaneene et al., 2006). The median time from infection to detection of bovine TB 
by visual inspection of carcasses at slaughter is estimated at 300 weeks (5.75 years) (van Roermund 
et al., 2003; Fischer et al., 2005). The 5 years to detection is consistent with expectations found in the 
literature and may indicate bovine TB was present in Minnesota prior to the identification of the index 
herd.  
 
The discovery of six affected herds since October 2006 may be a result of secondary spread from the 
index herd or new infections from other sources. The TB outbreak may not have been contained, the 
delay in detecting the six affected herds may have been a result of poor testing sensitivity, low levels 
of surveillance, or continuous active transmission of M. bovis in northwest Minnesota.  
 
Moreover, the six herds differed from the other affected herds in several ways. They were smaller 
than the other herds and had fewer infected animals. Five of the six herds had only one infected 
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animal, while the sixth herd had two infected animals. In comparison, the index herd had six infected 
animals and the secondary herds each had three infected animals (with the exception of herd 3 that 
had only one infected animal).  
 
One reason fewer positive animals were found in the secondary herds than the index herd may be 
the duration between a herd’s exposure to TB and detection. The index herd was discovered 
approximately 5 years after exposure. The duration between exposure and detection for the 
secondary herds was approximately 2.5 years—half the time of the index herd.  
 
In herds 6, 7, and 8, infected animals were less than 2-years-old and the average time for detection 
was only 1.5 years. In herds 9, 10, and 11, infected animals were more than 3-years-old, and the 
herd could have been infected at any time since the index herd in 2000 (approximately 3 years on 
average). However, if the herds became infected after the most recent negative whole-herd test, the 
time elapsed to detection would be a little more than 1 year. Therefore, the number of infected 
animals found in these herds suggests that they were recently infected. 
 
Table 2.12  Earliest and latest dates TB was possibly transmitted to each affected herd 
 

Potential date of Exposure   

Affected 
Herd Earliest Latest 

Link to index 
herd Possible source 

1 Jan 20001   
Cows purchased at 3- and 
5-years-old 

1 Jan 20002 Jan 2005  Index animals in herd 

     

2 
Summer 
2002 

Fall 2005 
Yes - Adjacent 
premises 

 

3 Spring 2004 Fall 2005 
Yes - Adjacent 
premises 

Fence-line contact; deer exposure 

4 Spring 20023 Fall 2005 Yes - Traced out 
Three calves purchased; probably 
infected first year of life in Herd 1 

5 Spring 2000 Fall 2005 No 
Purchased young stock from herds 
1, 2, or 3 via market.4 

5 May 2005 Fall 2005 No Infected cow in herd 

6 Feb 2005 Sep 2006 
Yes - Adjacent 
premises 5 

Deer exposure; 
fence-line contact 

7 Feb 2005 Sep 2006 No5 Deer exposure 

8 Spring 2006 Sep 2007 No Deer exposure 

9 Spring 2003 Dec 2007 No  

10 Spring 2000 Jan 2008 Yes 
Area spread via deer or direct 
contact with herd 2 or 3 cattle 

11 Spring 2000 Dec 2007 No  
1Index animals brought from Iowa 
2Two were calves and a yearling at time index animals entered the herd in January 2000 
3Born on herd 1 in spring 2002, most likely infected there before being sold in February 2003 
4This herd had more traces into it than all other herds combined (159 from MN) 
5Infected animals were born spring 2005 and index herd quarantined in July 2005. Given this short window, it is just as likely (if 
not more) that the animal was exposed to deer as a young animal—especially for herd 7 which, unlike herd 6, was not adjacent 
to index herd. 
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An epidemiological link between the recently discovered herds and the index herd would provide 
evidence that transmission of TB occurred before fall 2005 and that the prior negative whole-herd 
tests were false-negatives due to poor sensitivity of the CFT.   
 
Affected herds 2, 3, and 4 were epidemiologically linked to the index herd. Two were adjacent to the 
index herd and one purchased three yearlings from the index herd in February 2003. Herd 5 did not 
have a clear epidemiological link to the index herd. Only two of the herds (6 and 10) had an 
epidemiological link to the index herd, but in both cases the link was weak.   
 
The lack of an epidemiological link between the recently discovered herds and the index herd casts 
doubt as to whether the newly discovered herds were infected during the same time as the secondary 
herds. Furthermore, an epidemiological link to deer exposure exists for several of these herds. The 
infected animals in herds 6, 7, and 8 were all young animals, which are most likely to interact with 
deer on the premises. Herds 6, 9 (summer pasture), and 10 were within 2 miles of an infected deer.  
 
Five of the six herds had a negative whole-herd test before an infected animal was discovered. Herds 
9 and 10 had two negative annual whole-herd tests before an infected animal was discovered in 
winter 2007–2008. As noted, these herds were much smaller on average than the index and 
secondary herds. The 2 largest recently discovered herds had approximately 200 adult cows. The 
other 4 herds had fewer than 40 adult cows. 
 
The prior negative whole-herd tests may indicate that the herds were truly negative. However, 
applying a screening test of low sensitivity for a low prevalence disease in small herds increases the 
risk of obtaining false negative results. The probability of correctly identifying an affected herd (herd 
sensitivity) is dependent on the test sensitivity within herd prevalence and the cutoff value for the 
number of positive tests needed to classify a herd as positive.   
 
A model was constructed in @Risk to assess the risk of false-negative herds and to determine what 
role, if any, lower herd sensitivity may have played in this incident. The model was constructed to 
simulate the expected number of false-negative herds given the situation in 2005. The specific inputs 
for the model are presented in Table 2.13. 
 
Table 2.13  Inputs for @Risk model used to simulate expected number of false negative herds 

 

Input Parameter Value Comment 

N (population at risk) 150 
Number of herds tested the first year 
after finding index herd 

   

Herd size 
Random draw from herd size 
distribution 

Based on number of animals tested for 
whole-herd test conducted in MA zone 

   

Herd prevalence 
Random draw from a pert 
distribution (0, 4, 5) over N 

Pert distribution is minimum, most 
likely, max number of infected herds 

   

Within-herd prevalence 3% 
Based on actual within-herd 
prevalence in first five infected herds 

 
Given a sensitivity of 0.82 and a specificity of 0.96 for the CFT, 2.5 is the mean number of false- 
negative herds (for 5,000 iterations). Therefore, the six herds discovered since the initial case finding 
represent twice the number of false-negative herds expected. The 95 percent confidence interval was 
0 to 6 herds, which indicates a 5 percent likelihood of missing 6 herds by whole-herd testing. 
Therefore, these herds likely represent recent TB transmission; not missed infection.  
 
Three specific aspects of the Minnesota TB epidemiology were assessed to determine if the recently 
discovered herds were infected for a longer period of time and missed, or whether active TB 
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transmission continues. A summary of the findings and their interpretation are presented in the Table 
2.14. 
 
Table 2.14  Findings and interpretation used to determine the current status of bovine TB in 
the Modified Accredited Zone 
 

 Findings Interpretation 

Epidemiology analysis 
Few animals infected 
 
Young animals infected 

Rapid detection of recent 
infection. 
Recent infection.  
(deer exposure > index herd) 

Epidemiology link to 
index herd. 

No link for several herds 
Recent infection.  
(deer exposure > index herd) 

Sensitivity of detection 
Few false negative herds 
expected 

Recent infection > missed 
infection 

 
Conclusions indicate that active transmission of bovine TB continued for 2 to 3 years after the initial 
TB case was discovered in Minnesota because of cattle exposure to infected deer.  
 
Risk associated with wildlife in Minnesota: After the identification of the index herd, the Minnesota 
Department of Natural Resources conducted surveillance of hunter-harvested white-tailed deer within 
a 15-mile radius of the first four M. bovis-infected premises; 1 of 474 deer tested was positive for M. 
bovis. The infected deer was harvested 1.2 miles south of the index herd and less than 3.1 miles from 
the other initially infected cattle herds. This prompted targeted culling and surveillance of 90 deer on 
the infected farms during spring 2006—1 additional TB positive deer was found. 
 
The infected deer appeared to be associated with M. bovis-infected cattle herds in the region based 
on proximity and the fact that the deer and cattle had the same strain of bovine TB. As a result, the 
Minnesota Department of Natural Resources instituted more rigorous sampling protocols to establish 
prevalence of M. bovis in the deer population. Before the fall hunt, approximately 15,000 deer over  
18 months-of-age inhabited the 1,728-square-mile surveillance zone. It was determined that samples 
from 1,000 of these deer would provide a 95 percent confidence interval of detecting M. bovis if 
prevalence in the deer population is less than 1 percent. 
 
As of July 2008, the Minnesota Department of Natural Resources planned to conduct hunter-
harvested deer surveillance during the fall hunting season. If M. bovis-infected deer are identified, 
targeted culling will be conducted in the spring around areas where infected deer have been found. 
Culling methods include sharpshooters, baiting, landowner shooting permits, and the use of aerial 
shootings. As of April 2008, the Minnesota Department of Natural Resources tested 4,043 deer in the 
surveillance zone and identified 18 TB-positive deer. 
 
The infected deer were 1.5 to 7.5-years-of-age, which is consistent with sampling conducted in 
Michigan in which adult deer, specifically males, were more likely to be infected with M. bovis. The 
majority of deer tested within the surveillance zone (62 percent) have been adult deer. To date, no M. 
bovis-positive fawns have been found. Deer appear to be spatially associated with known affected 
cattle herds. The average distance between affected cattle herds and M. bovis-positive deer in the TB 
management area is 4.9 miles (StDev=3.6 km (2.2 mi); Min=0.3 km (0.2 mi)). Furthermore, 61 
percent (11 out of 18) of infected deer and 63 percent (5 out of 8) of suspect deer are within 3.1 miles 
of affected cattle herds. All positive and suspect deer were within 6.8 miles of M bovis-affected herds. 
 
Based on fall hunter-harvested sampling, 0.43 percent of white-tailed deer in the MA zone tested 
positive for bovine TB from 2005 to 2007, which is similar to the overall apparent prevalence for 
Michigan white-tailed deer. However, apparent prevalence in fall hunter-harvested deer appears to be 
higher in the management zone (0.71 percent) and in the established core zone (1.97 percent) 
compared to the remainder of the proposed MA zone. These apparent prevalence estimates are 
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lower than those reported in Michigan’s core zone, which ranged from 1.2 to 4.9 percent (Michigan 
Department of Natural Resources, 2008). 
 
Spoligotyping results: Bovine TB cases identified in Minnesota have been associated with a single 
genetic strain of M. bovis identified by spoligotype 664073377777600. This relationship has been 
confirmed through additional DNA fingerprinting techniques. Although it is likely that TB infections in 
Minnesota are due to a single strain of M. bovis circulating among deer and cattle, how the isolate 
was introduced or how it continues to spread cannot be determined by spoligotyping data alone. The 
strain identified in Minnesota most closely resembles a strain identified in feeder animals of Mexican 
origin identified in the southwestern United States, which may help support the theory that this strain 
was originally introduced through cattle movement.  However, a limitation of spoligotyping is that it 
may group strains that are unrelated. Therefore, in the absence of epidemiologic evidence and results 
from other genotyping tests, a conclusion cannot be made about this relationship. 
 
2.4.3 Summary 

The initial source of infection of bovine TB in Minnesota cannot be confirmed but is thought to be from 
the introduction of infected cattle. Regardless of the source of introduction, the active transmission of 
bovine TB continues in cattle and deer within the designated MA zone. Cattle, white-tailed deer, and 
other fomites are all potentially responsible for the spread of M. bovis in the State. Because of the 
significance of the cattle industry in Northern Minnesota, controlling bovine TB in both cattle and free-
ranging white-tailed deer continues to be a priority in this area.  

2.5 Tuberculosis in New Mexico cattle herds, 2002–2009 

2.5.1 Background 

New Mexico TB status: Since the mid-1980s, concerns about bovine TB in New Mexico cattle have 
fluctuated. The State was granted AF TB status in 2000; however, two TB-positive beef steers were 
traced from west Texas feedlots to eastern New Mexico herds in 2002. Additional infection was not 
found in the herds-of-origin for these two steers. As a result, the source herds remained classified as 
unaffected. Two TB-infected cull cows subsequently discovered at slaughter were traced back to two 
dairies. Testing of the source herds confirmed the presence of TB in other cattle within each herd, 
and the two herds were classified as affected. Subsequently, the entire State was reclassified as MA. 
 
In 2005, New Mexico had split-State status with the majority of the State classified AF, and a small 
MAA zone in parts of Curry and Roosevelt Counties in the Clovis-Portales area of eastern New 
Mexico.  
 
On September 11, 2008, New Mexico’s bovine TB status was downgraded to MAA status for the 
entire State. This status downgrade was based on the discovery of an affected dairy found by 
traceback from the slaughter of a culture-positive cow in April 2007. A second affected operation was 
discovered by testing of an adult dairy cow at a sale in Texas as the cow was about to re-enter New 
Mexico. The cow had been illegally transported from the New Mexico operation to Texas and the 
operation was declared affected based on epidemiologic evidence. New Mexico subsequently applied 
for a change in split-State status (a regulatory option accepted by USDA in March 2009). This change 
designated a MAA zone that encompasses the entire area of Curry and Roosevelt counties with the 
balance of New Mexico returned to AF status.  
 
New Mexico cattle industry: New Mexico has approximately 326,000 dairy cows (Figure 2.12), 
100,000 replacement dairy heifers, 1.5 million beef cattle (Figure 2.11), and thousands of head of 
rodeo stock. Many cattle of Mexican origin are pastured in New Mexico before being shipped to 
feedlots in other States. There are 172 dairies with an average herd size of 2,100 cows in New 
Mexico, and the State ranks first in the nation in dairy herd size. There are 54 calf-raising facilities in 
New Mexico, the largest of which manages more than 10,000 heifers and 18,000 steers. The State 
has 11 public livestock auction yards. 
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According to the 2007 Census of Agriculture, New Mexico ranks 37th in the United States for number 
of farms with milk cows (272) and 9th in milk cow inventory (326,400) (Table 2.15).  
 
Table 2.15  Number of cattle and calves and number of farms in the United States and New 
Mexico, 2007 
 

  State County 

  
U.S. NM % U.S. Rank 

Two   
County % NM Rank*

Cattle and Calves, Farms 

Cattle and cows 963,999 9,508 1.0 34 580 6.1 16,7 

With cows 818,992 8,380 1.0 32 446 5.3 16,10 

Beef cows 764,984 8,208 1.1 31 390 4.8 21,11 

Dairy cows 69,890 272 0.4 37 71 26.1 3, 2 

With other 788,633 6,933 0.9 34 491 7.1 13,5 

Cattle on feed 50,009 34 0.1 39 11 32.4 2,3 

Cattle and Calves, Animals 

Cattle and cows 96,347,858 1,525,976 1.6 21 341,889 22.4 1, 4 

With cows 42,101,375 856,573 2.0 19 159,831 18.7 2,3 

Beef cows 32,834,801 530,173 1.6 21 34,809 6.6 9,12 

Dairy cows 9,266,574 326,400 3.5 9 125,022 38.3 2,3 

With other 54,246,483 669,403 1.2 23 182,058 27.2 1,4 

Cattle on feed 16,098,910 154,556 0.1 17 2,471 0.2 1,6 

*Rank of Curry, Roosevelt counties among all 29 NM counties. 
Source: NASS 2007 Census of Agriculture. 
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Figure 2.11  Number of beef cattle in New Mexico by county, 2007 

 
Source: NASS 2007 Census of Agriculture 
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Figure 2.12  Number of milk cows in New Mexico by county, 2007 
 

 
      Source: NASS 2007 Census of Agriculture 

 
 
Curry and Roosevelt counties are currently in the MAA zone and account for 342,000 cattle and 
calves on 580 farms (i.e., approximately 160,000 adult breeding cows on 446 farms in the two 
counties). Roosevelt and Curry counties also rank second and third in the number of dairies in the 
State, respectively. More than one-third of New Mexico’s dairy cows and one-fourth of farms with milk 
cows are in these two counties.  
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The affected counties are central areas of dairy production in New Mexico (comprising 38.3 percent 
of the State’s dairy cows) and have a significant calf raising industry (27.2 percent of New Mexico 
calves on farms without cows). Dairy producers in these two counties likely have strong connections 
to farms in Chaves County, the largest dairy county in New Mexico in terms of cattle and operations. 
The extent and nature of the counties’ relationship to the large number of farms with only calves and 
the overlapping beef industry in the eastern portions of New Mexico are not well described. It is 
possible that the affected population encompasses a greater area than Curry and Roosevelt counties. 
Surveillance efforts to detect new bovine TB cases should be extended to other adjacent counties 
(Chaves, Quay, and San Miguel) with significant susceptible populations. 
 
2.5.2 Description of New Mexico outbreak 

Affected herds and cases: For purposes of this section, cases and affected herds are numbered 
sequentially from 1-11. “Case” is used to refer to infected individual animals originating from herds 
that remained classified as unaffected while “herd” is used when the herd is declared affected. Since 
2002, New Mexico has identified four affected herds. Seven additional infected animals (cases) have 
been found, but these animals had no known connection to a specific herd or additional infected 
animals were not identified in the source herd.  
 
There have been three temporal clusters of infection in New Mexico: 2002, 2004, and 2007–2008. 
Most of the infected beef cattle were considered cases because additional infected animals in the 
herd-of-origin were not found. Cases 1, 2, and 5 were beef cattle identified at slaughter and traced 
from west Texas feedlots. Additional infected animals were not found in the herds-of-origin, and 
therefore not classified as affected herds. More recently, an affected mixed herd (herd 11) was 
identified, though it was discovered by a traceback of an infected adult dairy cow. The low number of 
affected beef herds may reflect the transient nature of beef feeding facilities more than the absence of 
transmission of M. bovis among beef cattle. In contrast, dairy herds are larger and relatively stable 
compared to beef feeding channels, which improves the likelihood that infection can spread and be 
detected. Tracebacks to dairy herds have usually resulted in the identification of additional cases in 
those herds and a designation of “affected herd” (herds 3, 4, and 10).  
 
The beef and dairy industries in New Mexico appear to be interconnected. Beef operations may 
purchase dairy calves and there have been multiple tracebacks to such operations from feedlots. The 
most recently discovered affected herd was a feedlot that also purchased and re-sold cull dairy cows. 
These few herds showed adequate connections between beef and dairy producers to transmit TB. 
Further, there is an overlap of the top beef and top dairy production areas in New Mexico. These 
connections must be managed with improved biosecurity practices to avoid continual TB spread 
between the two industries. 
 
Mexican-origin cattle played a predominant role in the source of M. bovis in New Mexico. Four TB-
positive animals were linked to Mexican-origin cattle based on epidemiological investigations and two 
others were linked by genotyping results. The herds from which cases 1 and 2 originated import 
Mexican steers and the herd-of-origin for case 5 and affected herd 3 had direct exposure to Mexican-
origin roping steers. M. bovis isolates from case 9 and herd 11 were most closely related to strains of 
Mexican-origin. 
 
Genotyping results show that the three temporal clusters of bovine TB cases were unrelated. For 
example, M. bovis isolates from cases 6 through 8 were considered significantly different from M. 
bovis isolates from the infected dairy herds in the 2002 cluster (herds 3 and 4). M. bovis isolates from 
the 2007–2008 cluster are different from isolates from the first two temporal clusters. Herd 10 had an 
M. bovis isolate most closely related to isolates from two other affected dairies in Texas and Arizona 
from 2004 and 2005, respectively. 
 
The number of cattle tested by CFT and the numbers of responders, by year, are presented in Table 
2.16. In total, 692,773 CFTs have been conducted since 2002.  
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Three-fourths of the CFTs (75.6 percent) from 2003 to 2008 have been conducted in dairy operations. 
More than 3 percent of test-eligible cattle on these premises were classified as suspects—more than 
twice the national average of 1.3 percent. 
 
Table 2.16  Number and percent CFT responders in New Mexico 2003-2008, by premises type 

 
 
Spoligotyping results: M. Bovis isolates identified in New Mexico from 2000 to 2008 have been 
associated with four different strains through spoligotyping. These strains have also been identified in 
Mexican-origin animals and herds in Arizona, California, Colorado, Idaho, Kansas, Missouri, 
Nebraska, New Jersey, New York, North Dakota, Oklahoma, South Dakota, Texas, and Washington. 
One of these strains is also similar to the strain seen in Hawaii and Michigan. A limitation of 
spoligotyping is that it may group strains that are unrelated. Therefore, in the absence of 
epidemiologic evidence and results from other genotyping tests, a conclusion cannot be made about 
the relationship between these four strains and outbreaks in the other States. However, based on the 
epidemiologic evidence in the herds in New Mexico, there does appear to be a relationship between 
strains in cattle of Mexican-origin and cattle in the southeastern United States.  
 
2.5.3 Summary 

In New Mexico, isolates identified by spoligotype 264073777777600 came from cases 6 through 9 
and herd 10. M. bovis strains identified by this spoligotype have been isolated from cattle in 
California, Colorado, Kansas, North Dakota, Nebraska, New Jersey, New York, Oklahoma, Texas, 
and Washington as well as Mexico between 1997 and 2008.  

 
The New Mexico cattle industry has experienced a series of M. bovis cases and affected herds since 
2002. Characteristics that appear to be typical of M. bovis occurrence in New Mexico are: 
 

 The herd-of-origin is usually affected with TB when TB-positive dairy cattle are found, but 
when positive beef cattle are found the herd-of-origin (typically a feedlot) is rarely found to be 
affected with TB   

 Mexican-origin cattle are often implicated as the most probable source 
 Genetic fingerprinting suggests a relationship between infection in cattle of Mexican-origin 

and cattle in New Mexico and other parts of the Southwest 
 The numerous cases and affected herds represent separate introductions of M. bovis (not 

uncontrolled spread of a single outbreak) 
 
Multiple risks exist for the introduction and spread of bovine TB in New Mexico; importation of 
Mexican-origin steers, dairy replacement heifer management, the biosecurity practices of calf raisers, 
and the large influx of purchased additions all pose potential risk for exposure to M. bovis. This brief 

Premises Type 
Number 

Responders 
Total Animals 

Tested 
Percent 

Responders 

Dairy 16,723 523,403 3.2 

Other premises 962 39,703 2.4 

Beef 406 65,814 0.6 

Livestock market 168 39,458 0.4 

Farm or ranch 25 7,860 0.3 

Interstate movement 44 16,523 0.3 

All 18,328 692,761 2.9 
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review of the bovine TB cases in New Mexico suggests that both beef and dairy herds face 
intermittent exposure to M. bovis.   
 
2.6 Summary of outbreaks  

 
Analyses of the four outbreaks in California, Michigan, Minnesota, and New Mexico identified several 
risk factors for the introduction and spread of bovine TB. In California and New Mexico, molecular 
fingerprinting techniques revealed several strains of M. bovis, indicating multiple sources of 
introduction. Risk factors for California and New Mexico included the importation and commingling of 
Mexican-origin steers, the management and biosecurity practices used by calf raisers for dairy 
replacement heifers, and the large influx of purchased additions. In States with similar practices and 
risk factors, both beef and dairy herds may face intermittent exposure to M. bovis.   
 
Conversely, Michigan and Minnesota each had just one strain of M. bovis, indicating a point source of 
introduction and local area spread. The same strains were identified in the wildlife of each respective 
State, making cattle contact with infected white-tailed deer (especially contact with feed contaminated 
by deer) an important risk factor for the introduction and spread of bovine TB in Michigan, Minnesota, 
or any other area in which infected wildlife reside.  
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3. Legal and Illegal Importation of Cattle  

3.1 Introduction 

In 2008, the U.S. cattle population was just over 96 million (NASS, 2009) (Figure 3.1). The top five 
cattle-producing States were Texas (13.6 million head), Nebraska (6.5 million head), Kansas (6.7 
million head), California (5.5 million head), and Oklahoma (5.4 million head). These five States 
represent 39 percent of the total U.S. cattle population. Of these States, Texas and California share a 
border with Mexico and none share a border with Canada. Cattle of Mexican origin have been 
associated with M. bovis identification through slaughter and are believed to be a risk factor for U.S. 
cattle.  

3.2 U.S. cattle imports and regulations 

Of bovines legally imported into the United States in 2008, less than 0.01 percent were from 
Australia, 70 percent were from Canada, and 30 percent were from Mexico (U.S. Department of 
Commerce, 2009). Live bovine imports from Canada include cattle and bison, although bison account 
for a very small proportion. The last time the United States imported cattle from a country other than 
Australia, Canada, or Mexico was in 2003 from New Zealand; however, import permits may have 
been issued for other countries. These permits indicate an interest in exporting to the United States 
but were not reflected in the actual import numbers. Recent trends show that the number of cattle 
imported from Canada is increasing while the number imported from Mexico is decreasing (Table 
3.1). A notable deviation was caused by the Canadian border closure during the U.S. Bovine 
Spongiform Encephalopathy (BSE) outbreak in 2004. 
 
Table 3.1  U.S. live bovine imports by country and by number of head 
 

  
                    Number of Head 

Country 2001 2002 2003 2004 2005 2006 2007 2008 

Canada 1,308,670 1,688,814 513,344 135 562,647 1,045,125 1,425,998 1,610,973 

Mexico 1,130,168 816,460 1,239,531 1,370,476 1,256,404 1,256,973 1,090,094 702,661 

Australia 12 4 0 0 0 0 0 29 

New 
Zealand 

0 0 12 0 0 0 0 0 

Norway 350 0 0 0 0 0 0 0 

Guatemala 0 1 0 0 0 0 0 0 

Total 2,439,200 2,505,279 1,752,887 1,370,611 1,819,051 2,302,098 2,516,092 2,313,663 

Source: World Trade Atlas. U.S. Dept. of Commerce Bureau of Census. Accessed 1/29/ 2009. 
 

 
Part 93 of 9 CFR states that any imported cattle not going directly to slaughter must have a health 
certificate attesting that the cattle have tested negative for bovine TB. The importation of Holstein 
steers, spayed heifers, Holstein cross steers, and Holstein cross spayed heifers from Mexico is 
prohibited. No cattle from a herd with evidence of TB or suspected TB will be allowed entry into the 
United States until the herd achieves accredited status. 
 
All cattle entering from TB zones within Mexico must be branded with an “M” unless the animals are 
headed directly for slaughter. The regulations in 9 CFR, part 93 allows the importation of intact cattle 
from Mexico if the cattle are test-negative at the port of entry. Tests are administered by the port 
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veterinarian.  In addition to border testing, some States, such as Colorado (Colorado Department of 
Agriculture, 2009) and Texas (Texas Animal Health Commission, 2008), require annual TB testing for 
any Mexican-origin rodeo and exhibition cattle used for timed events, rodeos, or team events. 
Colorado regulations also mandate that only steers and spayed heifers from Mexico be allowed into 
the State. Nebraska allows cattle from Mexico to enter if they adhere to CFR TB import regulations 
and have additional testing and identification (Nebraska administrative code, 2009). Additionally, any 
cattle imported from Canada must originate from an AF or MAA Province.3 Breeding cattle and bison 
entering from the Province of Manitoba are prohibited.4 

 
               Figure 3.1  Number of cattle in the United States (2007) and Mexico (2006), by State 
 

 

                                                 
3 VS Memo 591.64 
4 VS Notice 02-17 
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3.3 U.S. cattle imports from Mexico  

3.3.1 Cattle imports from Mexico by State of destination 

 In 2008, total cattle imports from Mexico were approximately 800,000 head.5 The top five destination 
States were Texas (450,547), New Mexico (216,764), California (64,905), Arizona (38,966), and 
Colorado (10,352). The five States represent 98.6 percent of all Mexican cattle imports; however, 
they are not necessarily the final destinations of these cattle because once cattle enter the United 
States, they move on certificate of veterinary inspection (i.e., interstate health certificate). A 2004 
study suggests that most cattle imported from Mexico into Texas and New Mexico tend to stay in 
those States (Skaggs et al., 2004). This study also refers to cattle going as far as Mississippi, Idaho, 
Oregon, Washington, and Iowa. 
 
3.3.2 Cattle imports from Mexico by type and port 

According to the VS Import Tracking System, 98.5 percent of cattle imported from Mexico in 2008 
were feeder cattle and 1.5 percent were imported for competition. Purpose categories include 
breeding, commercial, confiscated, exhibition, other, and slaughter. Feeder cattle include 
backgrounding animals and cattle destined for feedlots. Feedlot cattle usually go to slaughter in the 
United States; however, cattle on pasture may return to Mexico for further finishing or slaughter. 
 
Most cattle imports from Mexico enter through the land border ports in Texas, New Mexico, and 
Arizona (Figure 3.2). The largest numbers of cattle enter through San Jeronimo, New Mexico (27 
percent), Presidio, Texas (24 percent), Nogales, Arizona (15 percent), and Douglas, Arizona (9 
percent). These four ports account for 75 percent of all Mexico cattle imports.3  The current 
requirements for importing Mexican cattle for bovine TB are provided in VS Notice 09-07. 
 

Figure 3.2  Percentage of Mexican cattle imports, by port of entry FY 2008 
 
 

                                  
Source: Veterinary Services Import Tracking System 
 
3.3.3 Rodeo cattle from Mexico 

Competition cattle or rodeo cattle represent a very small percentage of cattle imported from Mexico. 
However, rodeo cattle move frequently throughout the United States and, therefore, are at highest 

                                                 
5 Veterinary Services Import Tracking System. Accessed 1/29/2009. 
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risk for exposure to infected animals or exposing susceptible animals to disease. Additionally, 
imported rodeo cattle are moved to pasture where they may commingle with domestic cattle 
populations during the off season. 
 
In Texas, 17 M. bovis-positive cattle were found associated with a feedyard. Many of these animals 
were from Mexico and all were used for roping and rodeo cattle (Texas Animal Health Commission, 
2009a). Of the total Mexican-origin cattle TB investigations, 11 percent were related to rodeo and 
roping purposes (Texas Animal Health Commission, 2009b). 
 
Corriente cattle represent the majority of imported rodeo or competition cattle. Corriente cattle are 
also imported into the United States for breeding purposes (DH Corriente Cattle, 2009; Jandal 
Corriente Cattle, 2009; Nota Bene Company, 2009). Offspring are used for breeding, rodeos, and 
competitions. Some in industry believe that Mexico rodeo steers pose less risk to than domestic 
steers because Mexico has additional TB testing requirements that are not required in the United 
States (Welch, 2009). The industry practice of feeder cattle being diverted to rodeo cattle is 
addressed in a later chapter of this assessment. 
 
3.3.4 Mexican TB status 

Mexico has had a bovine TB eradication program since 1972. APHIS, together with U.S. States and 
industry, has been working with Mexico for over a decade to establish equivalency between the TB 
programs in the United States and Mexico and to harmonize international TB requirements.  In 1993, 
the Binational Committee (BNC) for TB was formed under the auspices of the USAHA.  The 
committee addressed bovine TB issues on both sides of the border (Willer, 2005). The BNC meets 
twice yearly, with the first meetings held in August and October 1993.    
 
APHIS recognizes equivalent TB status of some Mexican States and zones consistent with the 
current U.S. bovine TB classification scheme: MAA, MA, AP, and nonaccredited.6  
 

                                                 
6 VS Memo 09-07 
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Figure 3.3  Mexico bovine TB status levels 

 
 
Source:  SAGARPA (Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food- Mexico) 
 
 
Slaughter cases may be identified as Mexican-origin by an official Mexican animal ID present on their 
ears at the time of slaughter, an “M” brand, or through epidemiologic investigation.  Sometimes the 
investigation can determine the specific Mexican state of origin. Since 2003, the number of Mexican-
origin cases identified at slaughter has decreased.  This is consistent with the decrease in cattle 
entering the United States.  Annually 1-2 cases per 100,000 head of cattle imported are identified  
 (Figure 3.4).   
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Figure 3.4 The number of Mexican-origin slaughter cases identified per 100,000 head of cattle 

imported from Mexico, 2001-2008 
 

 
 

  
 
3.3.5 Mexico cattle imports by State of origin 

In FY 2007, almost 85 percent of cattle imported from Mexico came from five Mexican States:7 
Chihuahua (31 percent), Sonora (23 percent), Tamaulipas (17 percent), Coahuila (9 percent), and 
Nuevo Leon (5 percent). Four of the States border the United States. Northern Sonora has MAA 
status, Southern Sonora has MA status, Tamaulipas has MA status, and Chihuahua, Coahuila, and 
the nonbordering State of Nuevo Leon have MA status and a few nonaccredited zones. 
 
Cattle entering from Chihuahua and Durango move through the San Jeronimo port in New Mexico. 
While the majority of these cattle remain in Texas and New Mexico some cattle are shipped as far as 
Mississippi, Idaho, and Oregon (Skaggs et al., 2004). 
 
3.3.6 Illegal entry of Mexican cattle 

Although data systems that collect information on illegal entry of Mexican-origin cattle are scarce, 
anecdotal references about illegal entry do exist. Reports of illegal entry go as far back as 1893 (NY 
Times, 1893). Another historical article mentions the arrest of a cattle smuggler who was charged by 
U.S. Customs in 1953 (ISA Cattle Company, 2009). An article in 2006 mentions one U.S. ranching 
family near the border turning back 468 trespassing cows from Mexico over a 2.5-year period 
(Associated Press, 2009). An article in 1999 reported on ranchers concerned about stray Mexican 
cattle causing disease and damage to crops and property (LA Times, 2009). The same article 
referred to stray Mexican cattle damaging onion fields, costing thousands of dollars. Smuggled cattle 
have also been identified through an ongoing cattle fever tick control and eradication program in 
some U.S. border States (Pelzel, 2005, Wagner, 2002).  
 

                                                 
7 Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria. 
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3.4 U.S. cattle imports from Canada  

3.4.1 Canadian cattle imports by State of destination 

In 2008, cattle imports from Canada totaled 1,586,499.3 The top five destination States were 
Nebraska (424,446), Washington (350,921), Pennsylvania (178,450), Utah (146,259), and Minnesota 
(120,017). These States represent 77 percent of all Canadian cattle imports. 

3.4.2 Canadian cattle imports by type and port 

Of the cattle imported from Canada in 2008, 57 percent were destined for slaughter, 39 percent were 
feeder cattle, and 3 percent were for breeding. Most cattle imports from Canada enter through the 
land border ports of Idaho, North Dakota, and Montana. Five ports in these States account for 70 
percent of all Canadian cattle imports3: East Port, Idaho (17 percent), Dunseith, North Dakota (15 
percent), Portal, North Dakota (14 percent), Sweetgrass, Montana (13 percent) and Pembina, North 
Dakota (11 percent) (Figure 3.5). 
 

Figure 3.5  Percentage of Canadian cattle imports, by U.S. port of entry, FY 2008 

                          
Source: USDA-APHIS-VS Import Tracking System 
 
 
3.4.3 Canadian cattle exports to the U.S. by province of origin 

In 2008, cattle exports to the United States originated in nine Canadian provinces. The top four 
exporting provinces were Alberta (30 percent), Manitoba (22 percent), Saskatchewan (22 percent), 
and Ontario (13 percent) (World Trade Atlas, 2009). All four provinces are along the United States-
Canada border and cover approximately 75 percent of the border. 
 
3.4.4 Canadian cattle populations with TB 

Canada’s animal health officials consider all of their provinces as TB-free. The Riding Mountain 
Eradication Area within Canada’s Riding Mountain National Park (Manitoba) continues to undergo 
increased TB testing because of the higher risk in this area. APHIS has classified Manitoba as MAA 
for import purposes (NCIE, 2009). 
 
VS collects slaughter data on animals with lesions consistent with bovine TB. In 2008, only three 
culture-positive animals were traced back to Canada (British Columbia). Two of these animals were 
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linked by the same owner. In total, there have only been five cases of bovine TB tracebacks to 
Canada in the past 7 years. 
 
3.4.5 Illegal Canadian cattle imports to the United States 
 
Illegal movement of cattle also occurs at the Canadian border. On August 25, 2004, two men were 
caught smuggling six Canadian cattle across the border into New York (High Plains Midwest Ag 
Journal, 2009). In June 2003, a rancher with properties in Alberta, Canada and Montana tried to 
smuggle 24 rodeo bulls from Canada through the Port of Del Bonita, Montana. In January 2004, the 
same rancher brought in an additional six bulls by the same route (Great Falls Tribune, 2004). The 
rancher told officials at the port that he was only bringing in horses (CBC News, 2004). These 
incidents occurred during the United States ban on importing live Canadian cattle because of BSE.  
  
3.5 Summary  

Approximately twice as many cattle are imported into the United States from Canada than from 
Mexico. Canadian cattle are considered to present a low risk of TB introduction to U.S. cattle due to 
the low prevalence of TB in Canada.  
 
Bovine TB in the United States has been linked to Mexico for several years through epidemiologic 
investigation and genotyping of M. bovis isolates. There are many instances in which cattle legally 
imported from Mexico were later found to be positive for bovine TB at slaughter, likely due to the poor 
sensitivity of the original screening test.  After importation Mexican rodeo cattle off the rodeo circuit 
are often pastured with domestic cattle, creating the opportunity for exposure and transmission of 
bovine TB. Many feeder cattle imported from Mexico pose the same problem due to management 
practices in the United States which present opportunities for commingling.  
 
Cattle imported legally are subjected to tests and regional restrictions established by Mexico, and the 
United States continues to work with Mexico to improve its bovine TB status. The United States and 
Mexico recently outlined a 5-year strategic plan (Strategic Plan for Reducing the Risk of Importing 
Tuberculosis-Infected Cattle from Mexico, 2008–12, USDA–APHIS–VS) to help reduce the risk of 
bovine TB introduction into the United States from Mexico. From 2001 through February 2009, 236 
out of 329 slaughter cases were traced to Mexico. The historical trend of positive bovine TB slaughter 
cases traced back to Mexico seems to be decreasing proportionally with the decrease of cattle 
imports from Mexico.  
 
Illegal cattle entries from Mexico pose a risk to the U.S. cattle industry but this is difficult to quantify 
due to a lack of available data. Illegal cattle are not tested and may originate from any region in 
Mexico that may or may not have cattle with bovine TB. The Mexican States bordering the United 
States are recognized as MA or MAA status. The higher-risk zones in these bordering States are not 
located near the border. The likelihood of illegal cattle movements from higher risk zones is low due 
to geographic proximity. These entries occur by stray cattle crossing the border in remote areas of 
Arizona, New Mexico, and Texas where fencing is limited or damaged, or through intentional entry by 
smugglers. These areas may be remote; however there is almost always a U.S. cattle ranch in the 
vicinity. If illegal Mexican cattle commingle with cattle from these ranches, the U.S. cattle may be 
exposed to bovine TB and may go undetected until U.S. ranchers take their cattle to slaughter. 
 
The importation of bovine TB, particularly from Mexican-origin animals, continues to be of concern. 
Many M. bovis-positive animals identified through slaughter channels are traced to Mexico and little 
information is available on where native U.S. cattle exposure to Mexican-origin animals may occur. 
Surveillance could target these areas if additional information is gained as to where mixing of U.S. 
and Mexican cattle occurs.  
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4. U.S. Cattle Industry Practices  

4.1 Introduction 
Multiple management practices associated with transmission of bovine TB among cattle herds have 
been identified in the scientific literature (Table 4.1). Successful transmission of disease once 
exposure occurs is highly dependent on the animal’s immune status, the herd’s stocking density 
replacement strategies, and the farm’s housing, fencing, and feed storage facilities (Phillips, 2002). 
All actions at the farm level aimed at excluding disease from the herd are referred to as biosecurity, 
while biocontainment refers to efforts aimed at controlling the spread within and between groups once 
the agent is present on the operation (Maunsell, 2008). Management choices resulting in suboptimal 
biosecurity practices may place the operation at higher risk of disease introduction. 
 
Purchasing animals as herd additions may place the herd at increased risk of disease introduction. 
Purchased animals were identified as the most likely source of bovine TB in all but 1 of 31 affected 
herds in Northeast England (Gopal, 2006). Herds in this region were repopulated using sources 
throughout the United Kingdom (UK) after the foot-and-mouth disease outbreak in 2001. The risk of 
disease introduction was attributed to a larger number of animal sources, greater geographic 
distribution of animal sources, and more circuitous routes taken by newly arrived animals (i.e., more 
potential for exposure during commingling). In 11 of 31 affected herds, reactors were estimated to be 
1 year-of-age or younger when they moved from their most likely source holding; therefore, test 
ineligible animals (those less than 12 months-of-age) should not be overlooked as a source of 
infection.  
 
In an analysis of nine outbreaks of M. bovis among cattle and cervid herds in Canada, risk factors for 
disease spread among herds were identified: sourcing animals from affected herds, contact with 
infected animals in neighboring herds, and increasing herd size (Munroe, 1999). Herds that were 
investigated because they had received animals from a reactor or affected herd8 (trace-outs) had the 
highest risk of a positive disease outcome when compared with herds tested within a given radius of 
an affected herd (area testing). Herds investigated because of pasture or fence-line contact with 
neighboring affected herds (traceback) or at the request of the owner (because the owner suspected 
contact with infected animals) also demonstrated higher risk when compared with area testing. The 
authors concluded that the movement of animals or direct contact with neighboring affected herds 
greatly increased the risk of spreading bovine TB. Larger herds were thought to be associated with 
management practices that increase the risk of transmission of bovine TB. The greater potential for 
movement of animals from a larger number of sources is realized in larger herds due to a need for 
large numbers of replacement animals and breeding stock.    
 
Dispersal of infected cattle through sales of replacements from areas in which affected herds are 
associated with a wildlife reservoir may be one explanation for the spread of bovine TB from 
Southeast England into other parts of the country. In Great Britain, cattle movement patterns were 
consistently shown to better predict bovine TB distributions than other variables (Gilbert, 2005). The 
predictive power of this variable exceeded that of distance to previous disease cases, more so than 
the total number of movements onto a farm and number of movements from an infected area.   
 

                                                 
8An affected herd was one with at least one culture-positive animal. A reactor herd had at least one animal that was positive or 
suspicious on mid-cervical, comparative cervical, or gross or histopathological test for M. bovis. 
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Table 4.1  Management practices listed in the literature related to increased risk of bovine TB 
 

Risk factors evaluated and identified as significant Reference 

Purchased animals identified as the most likely source in 30/31 
affected herds: 
 Wide range in the number of source operations  

that supplied cattle to the herd 
 Imported animals 
 Source animals were 1-year-old or younger  
 Herds restocked after depopulation 

Gopal et al., 2006 

Movements from areas in which bovine TB is reported outperform 
other predictors of disease occurrence (long distance jump-spread) 
 Proportion of movements from affected areas arriving at a 

location outside the endemic core are most closely associated 
with disease presence 

Gilbert et al., 2005 

Outside of wildlife endemic areas, the majority of TB incidents were 
attributed to purchased cattle and contiguous spread 
 The herd incidence, duration of incident, and number of 

reactors in confirmed incidents increase significantly  
with herd size 

Goodchild et al., 2001 

Increasing herd size (beef and dairy):  
 16-35 (odd ratio (OR) 2.9)  
 36-80 (OR 5.8) 
 >80 animals (OR 9.3) 
Reason for investigation as part of the outbreak: 
 Herds that purchased animals from a reactor/positive  

herd (OR 57.8) 
 Herds that had been a source of animals for a  

reactor/positive herd (OR 14.9) 
 Pasture or fence-line contact with a reactor/positive  

herd (OR 31.8) 

Munroe et al., 1999 

Cattle purchase (OR 5.8) 
The presence of mixed (dairy and beef ) operations (OR 4.9) 
compared with dairy or beef only operations 

Marango et al., 1998 

 
4.2 The role of management practices in current U.S. bovine TB outbreaks 

Recent outbreaks of bovine TB in California and New Mexico have not been attributed to a wildlife 
reservoir. Dispersal of cattle from regions of the United States where bovine TB is maintained in a 
wildlife reservoir may be a plausible hypothesis for the introduction of bovine TB into new geographic 
areas. However, molecular analyses show no connection between the TB strains in California or New 
Mexico and wildlife reservoirs have been identified. Dairy and beef herds have been identified as 
affected (Table 4.2). 
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Table 4.2  Number of herds declared affected, by herd type FY 1998–through April 2009 
 

 
Exposure of U.S. cattle to cattle of Mexican origin has also been suggested as one source of disease 
introduction. In the recent outbreak in New Mexico, the exposure of a dairy cow that had been initially 
purchased at an auction market and was housed in a feed yard with beef cattle ultimately became 
infected, suggesting that this exposure resulted in TB transmission. This reconditioned cow was 
transported illegally to Texas and sold at a replacement sale where she tested positive for bovine TB 
before being transported back to New Mexico. A reconditioned cow is a milk cow that was culled from 
a herd and sent to a cull-cow sale then purchased and diverted from slaughter channels. The 
purchaser is often a dealer who returns the cow to an acceptable body condition and health status 
then sells her to another producer to be milked. 
 
The time devoted to planning and sourcing cattle is a small fraction of the time spent planning a dairy 
expansion (Faust, 2001). Areas where dairies are expanding may be at increased risk as they 
attempt to source replacements from other areas of the United States producing surplus heifers or 
from dispersal sales in areas where the industry is contracting.  
   
In the United States, the movement of purchased cattle from farm to farm occurs over large 
geographic areas. For example, as reported in the NAHMS Beef 2007–08 Study, 19.2 percent of the 
24.1 percent of beef cow-calf operations that brought cattle or calves onto the operation reported that 
arriving shipments traveled 100 or more miles (USDA, 2009). A higher percentage of beef cow-calf 
operations in the West region9 (26.4 percent) than in the East region (9.7 percent) of the United 
States reported that arriving shipments traveled 100 miles or more. Similar movement data are not 
available for the dairy industry. 
 
The commingling of cattle from different sources creates opportunities for bovine TB exposure and 
transmission. Purchased lots of cattle may originate from several herds. Animals are grouped in 
truck-load sized lots (50,000 lb). To reach a trucking threshold, cattle purchased from areas with 
relatively small herd sizes are most likely commingled with animals from other sources (Thomson, 
2006). These cattle have a higher probability of being exposed to disease because of the increased 
number of source herds. 
   

4.3 Management practices related to TB risk in the beef cow-calf industry 
The NAHMS Beef 2007–08 study, conducted in 24 States representing 79.6 percent of U.S. cow-calf 
operations and 87.8 percent of U.S. beef cows, provides information on management practices that 

                                                 
9 Beef 2007-08 study States/Regions: 
West: California, Colorado, Idaho, Montana, New Mexico, Oregon, Wyoming.  
Central: Iowa, Kansas, Missouri, Nebraska, North Dakota, South Dakota 
South Central: Oklahoma, Texas 
East: Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Mississippi, Tennessee, Virginia 

Herd Type Number of Herds 

Beef 53 

Dairy 24 

Mixed 2 

Cervid 5 

 
Source: USDA–APHIS–VS (unpublished). 
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could be used to estimate the percentage of U.S. beef cow-calf operations engaging in practices that 
may increase the risk of exposing their herds to TB (Wells, 2000). The following describes the results 
of the NAHMS Beef study as it relates to bovine TB.  
 

4.3.1 TB awareness in the beef cow-calf industry  
In the NAHMS Beef 2007–08 study, producers were asked about their familiarity with a number of 
cattle diseases. Producers on one-half of the operations (50.1 percent) knew some basics or were 
fairly knowledgeable about bovine TB. On nearly one-third of operations (31.4 percent), producers 
recognized the name of the disease but not much else (Table 4.3).  
 
Table 4.3  Percentage of cow-calf operations by level of producer familiarity with bovine TB 
 
                       Percent Operations 

                       Level of Familiarity 

Fairly  
Knowledgeable 

Know Some 
Basics 

Recognized 
Name, Not Much 

Else 

Had Not Heard of 
Before 

 

Pct. Std. 
Error 

Pct. Std. 
Error 

Pct. Std. 
Error 

Pct. Std. 
Error 

Total 

22.8 (1.2) 27.3 (1.3) 31.4 (1.3) 18.5 (1.1) 100.0 

 
 
Approximately 1 of 20 operations that brought cattle onto the operation during the previous 3 years 
required testing for TB (5.4 percent) (Table 4.4). The percentage of operations required testing of new 
cattle for bovine TB was similar across herd sizes. These numbers reflect voluntary testing, not 
federally- or State-required testing.  
 
Table 4.4  Of cow-calf operations that introduced new cattle during the previous 3 years, 
percentage that required TB testing for new cattle 
 

Percent Operations 

Herd Size (Number of Beef Cows) 

1-49 50-99 100-199 200 or More All Operations 

Pct. 
Std. 

Error Pct. 
Std. 

Error Pct. 
Std. 

Error Pct. 
Std. 

Error Pct. 
Std. 

Error 

5.3 (2.6) 4.5 (2.6) 7.6 (2.9) 5.3 (1.9) 5.4 (1.7) 

 
 
Of operations that brought cattle onto the operation during the previous 3 years, a higher percentage 
in the Southeast region (7.3 percent) required testing for TB compared with operations in the West 
(0.7 percent) and Central (3.0 percent) regions. 
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4.3.2 Introduction of cattle onto beef cow-calf operations 

Producers may choose to replace a portion of their breeding herd or purchase and feed other classes 
of cattle to take advantage of long- or short-run economic market conditions. For these reasons and 
others, cattle movement occurs from farm to farm, either by direct sales or through livestock auction 
markets within the beef cow-calf industry. 
 
The percentage of operations that brought on any class of cattle during the 12 months preceding the 
NAHMS Beef 2007-08 study interview increased as herd size increased, with just over 1 of 4 of 
operations with 1 to 49 cows (27.6 percent) bringing cattle onto the operation and nearly 7 of 10 of 
operations with 200 or more cows (69.9 percent) bringing cattle onto the operation (Table 4.5). More 
than one third of operations (34.5 percent) brought on any class of cattle.  
 
Table 4.5  Percentage of cow-calf operations that brought any beef or dairy cattle or calves 
onto the operation during the previous 12 months, by cattle class and by herd size 
 

Percent Operations 

Herd Size (Number of Beef Cows) 

 1-49 50-99 100-199 200 or more 
All 

operations 

Cattle Class Pct. 
Std. 
Error Pct. 

Std. 
Error Pct. 

Std. 
Error Pct. 

Std. 
Error Pct. 

Std. 
Error

Preweaned  
beef calves 

w/dam 2.9 (0.6) 3.2 (1.0) 7.7 (1.7) 4.2 (1.0) 3.4 (0.5) 
Beef heifers 
weaned, not 

bred 5.6 (0.9) 6.8 (1.4) 8.3 (1.6) 10.9 (1.5) 6.2 (0.7) 

Bred beef heifers 2.4 (0.6) 4.8 (1.3) 8.1 (1.5) 7.9 (1.5) 3.5 (0.5) 

Beef cows 
(pregnant) 7.4 (1.0) 12.6 (2.0) 13.9 (2.1) 17.5 (2.4) 9.2 (0.8) 
Beef cows  

(not pregnant) 2.0 (0.5) 2.7 (1.0) 5.5 (1.5) 6.0 (1.3) 2.6 (0.4) 
Weaned  
beef bulls 14.9 (1.3) 25.7 (2.5) 33.6 (2.7) 43.1 (2.6) 19.5 (1.0) 

Weaned steers 
(all types) 2.9 (0.6) 2.8 (1.0) 4.3 (1.1) 4.9 (1.0) 3.1 (0.5) 

Preweaned dairy 
calves 0.2 (0.1) 2.2 (1.2) 0.0 (--) 0.2 (0.2) 0.5 (0.2) 

Weaned dairy 
heifers/cows 0.2 (0.1) 1.6 (0.9) 0.4 (0.3) 0.3 (0.2) 0.4 (0.2) 

Weaned  
dairy bulls 0.6 (0.3) 0.0 (--) 0.0 (--) 0.5 (0.2) 0.4 (0.2) 

Any 27.6 (1.6) 43.0 (2.8) 58.0 (2.9) 69.9 (2.3) 34.5 (1.3) 

 
Overall, the percentage of cattle and calves brought on operations was approximately one-half  
(47.8 percent) of the beef cows in inventory. This estimate is greatly influenced by the 3.1 percent of 
operations that brought on weaned steers in numbers that greatly exceeded their beef cow inventory. 
Nearly one-half of cattle brought on (49.9 percent) were weaned steers, followed by weaned but not 
bred beef heifers (15.5 percent), and pregnant beef cows (14.4 percent). Weaned steers accounted 
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for a higher percentage of cattle and calves brought on operations with 1 to 49 cows (75.4 percent) 
compared with operations with 200 or more cows (28.7 percent). 
 
For operations that brought any cattle or calves onto the operation during the previous 12 months, 
about one of three (34.8 percent) brought cattle onto the operation from a sale barn or auction (Table  
4.6). Most operations (70.3 percent) brought cattle directly from another beef operation(s). 
 
 
Table  4.6 For cow-calf operations that brought any cattle or calves onto the operation during 
the previous 12 months, percentage of operations by source of cattle and calves and by herd 
size 
 

 Percent Operations 

 Herd Size (Number of Beef Cows) 

 1-49 50-99 100-199 200 or more 
All 

operations 

Source Pct. 
Std. 
Error Pct. 

Std. 
Error Pct. 

Std. 
Error Pct. 

Std. 
Error Pct. 

Std. 
Error

Sale 
barn/auction 30.2 (3.2) 39.8 (4.4) 43.0 (3.7) 40.7 (3.4) 34.8 (2.1) 
Directly from 
another beef 
operation 

75.0 (3.0) 62.5 (4.3) 62.4 (3.6) 68.7 (3.1) 70.3 (2.0) 

Directly from a 
dairy operation 3.7 (1.3) 8.4 (3.2) 0.6 (0.4) 0.4 (0.3) 3.8 (1.0) 

Other 3.8 (1.4) 5.8 (2.2) 2.2 (1.0) 1.2 (0.8) 3.7 (0.9) 

 
4.3.3 Beef cattle contact with other animals 

Disease agents can be brought onto an operation by animals newly introduced to the herd, through 
contact with animals that are not part of the operation, or by inanimate objects such as equipment. 
Nearly all operations (96.3 percent) reported that at least some beef cattle had fence-line (nose-to-
nose) contact or commingled with one or more of the animals listed in Table 4.7. More than two-thirds 
of operations reported beef cattle contact with wild cervids and dogs (72.6 and 69.7 percent, 
respectively). Beef cattle on approximately one-half of the operations had contact with cats and 
horses (55.4 and 44.5 percent, respectively).  
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Table 4.7  Percentage of cow-calf operations by whether or not any beef cattle on the 
operation had fence-line contact (nose-to-nose) or commingled with the following animals 
during the previous 12 months. 
 

 Percent Operations 

 Contact 

 Yes Don’t Know No  

Animal Type Pct. 
Std. 

Error Pct. 
Std. 

Error Pct. 
Std. 

Error Total 
Wild cervids 
(e.g., elk, deer) 72.6 (1.3) 12.0 (0.9) 15.4 (1.1) 100.0 
Captive cervids 
(e.g., elk, deer) 3.2 (0.5) 2.5 (0.4) 94.3 (0.6) 100.0 

Captive bison 0.9 (0.3) 0.9 (0.2) 98.2 (0.3) 100.0 

Mexican-origin cattle  
 1.0 (0.3) 2.1 (0.4) 96.9 (0.5) 100.0 

Dairy cattle 3.1 (0.5) 1.5 (0.3) 95.4 (0.6) 100.0 

Pigs 12.1 (0.9) 4.8 (0.6) 83.1 (1.1) 100.0 

Sheep 5.2 (0.6) 1.3 (0.3) 93.5 (0.7) 100.0 

Goats 9.6 (0.9) 1.6 (0.3) 88.8 (0.9) 100.0 

Horses or other equids (e.g., 
ponies, donkeys, mules, 
burros, etc.) 44.5 (1.4) 2.8 (0.5) 52.7 (1.4) 100.0 
Camelids (e.g., llamas, 
alpacas, etc.) 2.8 (0.5) 1.4 (0.3) 95.8 (0.6) 100.0 
Chickens, other poultry, or 
their litter 15.3 (1.0) 2.3 (0.4) 82.4 (1.1) 100.0 

Dogs 69.7 (1.3) 9.0 (0.8) 21.3 (1.2) 100.0 

Cats 55.4 (1.4) 12.3 (0.9) 32.3 (1.3) 100.0 

Any of the above 96.3 (0.6) 0.1 (0.1) 3.6 (0.6) 100.0 

 
Nearly all beef cows (97.8 percent) were on operations in which at least some beef cattle had fence-
line contact or commingled with 1 or more of the animals listed below, and approximately 9 of 10 
cows (88.0 percent) were on operations in which contact occurred with wild cervids (Table 4.8). Dogs 
were the next most common animal that beef cattle had exposure to, followed by cats and horses. 
Fewer than 1 of 20 cows were on operations in which any beef cattle had exposure to camelids, dairy 
cattle, cattle of Mexican origin, captive bison, or captive cervids.  
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Table 4.8 For cow-calf operations in which beef cattle had fence-line contact (nose-to-nose) or 
commingled with the following animals during the previous 12 months, percentage of beef 
cattle on these operations. 
 

Animal Type Percent Beef Cows Standard Error 

Wild cervids (e.g., elk, deer) 88.0 (0.9) 

Captive cervids (e.g., elk, deer) 3.9 (0.6) 

Captive bison 2.1 (0.5) 

Cattle of Mexican origin 1.8 (0.4) 

Dairy cattle 3.8 (0.5) 

Pigs 15.4 (1.0) 

Sheep 6.9 (0.8) 

Goats 7.8 (0.7) 

Horses or other equids (e.g., ponies, donkeys, 
mules, burros, etc.) 58.2 (1.3) 

Camelids (e.g., llamas and alpacas) 2.9 (0.5) 

Chickens, other poultry, or their litter 13.5 (0.9) 

Dogs 79.9 (1.1) 

Cats 63.9 (1.4) 

Any of the above 97.8 (0.3) 

 
For operations that were aware of fence-line contact with the specific animals, the percentage of 
operations in which beef cattle had fence-line contact or commingled with wild cervids was higher on 
operations with 200 or more cows than on operations with 1 to 49 cows. A higher percentage of 
operations with 200 or more cows reported beef cattle had contact with horses than did all other 
operation sizes.  
 
Beef cattle can be exposed to disease agents through feedstuffs contaminated by other animals. 
More than 8 of 10 operations (81.2 percent) were aware that 1 or more of the animals listed in Table 
4.9 had access to cattle feed or minerals. Wild cervids most commonly had access to cattle feed or 
minerals, followed by dogs, cats, and horses or other equids.  
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Table 4.9  Percentage of cow-calf operations in which the following animals had access to the 
operations’ cattle feed or minerals during the previous 12 months 
 

 Percent Operations 

 Yes Don’t Know No  

Animal type Pct. 
Std. 
Error Pct. 

Std. 
Error Pct. 

Std. 
Error Total 

Wild cervids  
(e.g., elk, deer) 63.3 (1.4) 6.2 (0.7) 30.5 (1.3) 100.0 
Captive cervids  
(e.g., elk, deer) 2.5 (0.4) 1.2 (0.3) 96.3 (0.5) 100.0 

Captive bison 0.3 (0.1) 0.5 (0.2) 99.2 (0.2) 100.0 

 
Mexican-origin cattle 0.3 (0.1) 0.8 (0.2) 98.9 (0.2) 100.0 

Dairy cattle 1.6 (0.4) 0.5 (0.1) 97.9 (0.4) 100.0 

Pigs 7.8 (0.8) 2.2 (0.4) 90.0 (0.9) 100.0 

Sheep 3.2 (0.5) 0.6 (0.2) 96.2 (0.5) 100.0 

Goats 5.4 (0.7) 0.9 (0.3) 93.7 (0.7) 100.0 

Horses or other equids 
(e.g., ponies, donkeys, 
mules, burros) 27.5 (1.3) 1.1 (0.3) 71.4 (1.3) 100.0 
Camelids (e.g., llamas and 
alpacas) 1.9 (0.4) 0.8 (0.2) 97.3 (0.4) 100.0 
Chickens, other poultry, or 
their litter 7.9 (0.8) 1.5 (0.3) 90.6 (0.8) 100.0 

Dogs 44.1 (1.4) 8.7 (0.8) 47.2 (1.4) 100.0 

Cats 39.0 (1.4) 10.7 (0.9) 50.3 (1.4) 100.0 

Any of the above 81.2 (1.2) 0.2 (0.1) 18.6 (1.2) 100.0 

 
Approximately 9 of 10 cows (88.8 percent) were on operations in which 1 or more of the animals 
listed in Table 4.10 had access to cattle feed or minerals. Nearly 8 of 10 cows (79.5 percent) resided 
on operations in which wild cervids were known to have access to cattle feed or minerals.  
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Table 4.10  For cow-calf operations in which the following animals had access to the 
operations’ cattle feed or minerals during the previous 12 months, percentage of beef cows on 
these operations 
 

Animals 
Percent              

Beef Cows 
Standard  

Error 

Wild cervids (e.g., elk, deer) 79.5 (1.0) 

Captive cervids (e.g., elk, deer) 3.0 (0.5) 

Captive bison 1.1 (0.4) 

Mexican-origin cattle 0.8 (0.2) 

Dairy cattle 1.7 (0.3) 

Pigs 10.4 (1.0) 

Sheep 3.8 (0.6) 

Goats 4.9 (0.6) 

Horses or other equids (e.g., ponies, 
donkeys, mules, or burros) 36.0 (1.3) 

Camelids (e.g., llamas and alpacas) 1.9 (0.4) 

Chickens, other poultry, or their litter 7.4 (0.7) 

Dogs 52.2 (1.4) 

Cats 45.4 (1.4) 

Any of the above 88.8 (0.8) 

 
 
4.4 Management practices related to TB risk in the dairy industry 

Results from the NAHMS Dairy 2007 Study 
 
The NAHMS Dairy 2007 study was conducted in 17 of the Nation’s major dairy States.10 States in the 
western United States have shown the largest growth in the number of milk cows since 1992. 
Arizona, California, Colorado, Idaho, Kansas, Nevada, New Mexico, Oregon, and Utah have all 
increased dairy cow numbers since 1992. States in the southeast, including Alabama, Arkansas, 
Louisiana, and Mississippi, had the largest percentage decline in dairy cows, but these States 
represented less than 5 percent of the overall dairy population. In 2007, California had the largest 
number of dairy cows (1.79 million) followed by Wisconsin (1.245 million), and New York (628,000).  

 

 

                                                 
10 Dairy 2007 States/Regions 
West Region: California, Idaho, Texas, New Mexico and Washington  
East Region: Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, New York, Ohio, Pennsylvania, Vermont, Virginia and 
Wisconsin 
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4.4.1 The introduction of cattle onto dairy operations 

Herd replacements or additions can serve as reservoirs of economically important infectious diseases 
for the adult herd (Maunsell, 2008). Since dairy heifers in North America are typically raised in 
continuous flow systems (versus an all in-all out approach), ample opportunity exists for the 
introduction of infectious disease agents and transmission within and among age groups (Maunsell, 
2008). 
 
From 1996 to 2007, approximately 4 of 10 operations brought cattle onto the operation (Table 2.14). 
Cattle are brought onto operations for several reasons: as a source of replacements for culled cows 
or heifers (whether purchased or born on the operation and raised offsite), to replace mortality losses, 
and to increase herd size.   
 
Almost 4 of 10 operations (38.9 percent) brought at least 1 new addition onto the operation during 
2006 (Table 4.11). Approximately one of eight operations brought on bred dairy heifers, lactating 
dairy cows, or dairy bulls (12.2, 13.8, and 12.5 percent, respectively). A lower percentage of large 
operations brought on preweaned calves compared to small operations (1.0 and 3.8 percent, 
respectively), but a higher percentage of large operations brought on dairy heifers, bred dairy heifers, 
dairy bulls, and “any beef or dairy cattle” compared with medium or small operations.  
 
Table 4.11  Percentage of dairy operations that brought the following classes of cattle  
onto the operation during 2006, by herd size 
 

 Percent Operations 

 Herd Size (Number of Dairy Cows) 

 
Small  

(Fewer than 100)
Medium 

(100-499) 
Large 

(500 or More) 
All              

Operations 

Cattle Class Pct. 
Std. 
Error Pct. 

Std. 
Error Pct. 

Std. 
Error Pct. 

Std. 
Error 

Preweaned calves 
(dairy or beef) 3.8 (0.8) 2.5 (0.6) 1.0 (0.3) 3.4 (0.6) 

Dairy heifers (weaned 
but not bred) 5.3 (0.8) 7.6 (1.2) 16.3 (2.6) 6.4 (0.7) 

Bred dairy heifers 8.9 (1.0) 18.1 (1.8) 34.7 (2.6) 12.2 (0.9) 

Lactating dairy cows 13.2 (1.3) 16.0 (1.7) 13.0 (1.9) 13.8 (1.0) 

Dry dairy cows 4.1 (0.8) 4.3 (0.9) 5.5 (1.5) 4.3 (0.6) 

Beef heifers and cows 0.9 (0.3) 2.5 (0.7) 1.1 (0.6) 1.3 (0.3) 

Dairy bulls (weaned) 11.4 (1.1) 14.1 (1.6) 22.5 (2.4) 12.5 (0.9) 

Beef bulls (weaned) 1.5 (0.4) 2.2 (0.6) 1.5 (0.5) 1.7 (0.3) 

Steers (weaned) 2.0 (0.5) 1.3 (0.5) 0.7 (0.6) 1.8 (0.4) 

Any cattle 35.6 (1.7) 44.3 (2.3) 61.6 (2.8) 38.9 (1.4) 

 
On the majority of operations (89.8 percent) cow replacements born and raised on the operation 
entered the milking string during 2006 (Table 4.12). Replacements accounted for more than one-third 
of cow inventory (38.4 percent). Almost all operations (97.0 percent) had some replacements enter 
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the milking string during 2006. Just over 14 percent of operations sourced replacements from cattle 
born off the operation. 
 
Table 4.12  Percentage of dairy operations and percentage cow inventory, by source of cow 
replacements that entered the milking string in 2006 
 

Replacement Source 
Percent 

Operations 
Standard 

Error 
Percent 

Dairy Cows* 
Standard 

Error 
Born and raised             

on operation 89.8 (0.8) 27.8 (0.8) 
Born on operation raised 

off operation 6.8 (0.6) 8.0 (0.7) 

Born off operation 14.1 (1.0) 2.6 (0.2) 

Any replacements 97.0 (0.5) 38.4 (0.8) 

*Number of replacements that entered the milking string during 2006, as a percentage of the January 1, 2007, cow 
inventory. 

 
4.4.2 Heifers raised off the operation 

Raising heifers at a separate site (calf ranches) has many potential advantages. Calf-ranch personnel 
are usually dedicated to working only with calves, which can result in increased attention to the 
feeding and health of calves and also decreased exposure to adult cow disease. If calves are not 
commingled with older animals or animals from other operations, their exposure to disease agents is 
reduced.  

 
Fewer than 1 of 10 operations (9.3 percent) raised any heifers off the operation (Table  4.13). The 
percentage of operations that raised heifers offsite increased as herd size increased for all heifer 
classes. Less than 5 percent of small operations raised any heifers offsite, compared with 15.5 
percent of medium operations and 46.0 percent of large operations. Almost one-third of large 
operations (35.3 percent) raised preweaned calves offsite, compared with 7.1 percent of medium 
operations and 1.7 percent of small operations. Similar herd-size differences in the percentages of 
operations that raised heifers offsite were observed among all heifer classes. 
 
Table  4.13 Percentage of dairy operations that raised any heifers off-site, by heifer class and 
by herd size 
 

 Percent Operations 

 Herd Size (Number of Dairy Cows) 

 
Small 

(Fewer than 100)
Medium 

(100-499) 
Large 

(500 or More) 
All              

Operations 

Heifer Class Pct. 
Std. 
Error Pct. 

Std. 
Error Pct. 

Std. 
Error Pct. 

Std. 
Error 

Preweaned 1.7 (0.5) 7.1 (1.2) 35.3 (2.9) 4.6 (0.5) 

Weaned 4.3 (0.7) 14.6 (1.6) 44.2 (2.9) 8.6 (0.7) 

Bred 4.1 (0.7) 11.5 (1.5) 22.5 (2.3) 6.7 (0.6) 

Any of the above 4.7 (0.7) 15.5 (1.7) 46.0 (2.9) 9.3 (0.7) 
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Approximately 8 of 10 operations that sent heifers offsite to be raised (81.1 percent) retained 
ownership of the heifers sent. A total of 9.4 percent of operations sold heifers sent offsite and 
repurchased the same animals while 9.5 percent of operations sold the animals sent and replaced 
them with different animals.  
 
Ideally, heifer-raising facilities would house only animals from a single operation. When producers 
were asked to choose the description that best described their primary offsite rearing facility, more 
than one-fourth (27.7 percent) sent heifers to a single rearing facility where heifers did not have 
contact with cattle from other operations, but the majority (51.3 percent) sent heifers to a single 
rearing facility where heifers had contact with cattle from other operations (Table 4.14). 
 
Table 4.14  Percentage of operations that sent heifers offsite to be raised by primary off-site 
rearing facility 
 

Off-Site Rearing Facility Percent Operations Std. Error 

Heifers sent to a single rearing facility and did not 
have contact with cattle from other operations 27.7 (3.3) 

Heifers sent to multiple rearing facilities and did not 
have contact with cattle from other operations 8.5 (2.1) 

Heifers sent to a single rearing facility and had contact 
(commingled) with cattle from other operations 51.3 (4.0) 

Heifers sent to multiple rearing facilities and had 
contact (commingled) with cattle from other operations 12.5 (3.0) 

Total 100.0  

 
For operations that brought beef or dairy cattle onto the operation during 2006, approximately 15 
percent within each herd-size category required TB testing for incoming animals (Table 4.15).       
             
Table 4.15  For the 38.9 percent of dairy operations that brought beef or dairy cattle onto the 
operation during 2006, percentage of operations that tested individual animals brought onto 
the operation for TB, by herd size 
 

Percent Operations 

Herd Size (Number of Dairy Cows) 

Small  
(Fewer than 100) 

Medium 
(100-499) 

Large 
(500 or More) All Operations 

Pct. 
Std. 

Error Pct. 
Std. 

Error Pct. 
Std. 
Error Pct. 

Std. 
Error 

12.0 (1.8) 17.8 (2.7) 15.8 (2.3) 13.8 (1.4) 

 
4.4.3 Liquid diets 

Although TB of the udder has been shown to be uncommon in the United Kingdom (Goodchild, 
2001), infected cows can transmit the disease to multiple calves in a pooled milk feeding system 
(Monies, 1999). In an outbreak of TB on a dairy farm in Cornwall, calves were fed raw milk. The herd 
was under TB restriction following a herd test that identified eight infected cattle, including five calves 
less than 3 months-of-age. Twelve of 22 in-contact calves had tuberculous lung lesions at slaughter. 
One cow culled from the herd was shown to have tuberculous abscesses throughout one-fourth of the 
udder. A typical udder infected with M. bovis may excrete tubercle bacteria to the extent of 5 x 102

 to 
5 x 105 per ml of milk (Zanini, 1998). Properly pasteurizing and handling waste (nonsaleable) milk or 
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saleable milk reduces pathogen loads without affecting milk quality. However, managing a 
pasteurization system that consistently provides high-quality nutrition to the calf with decreased 
pathogens is an intensive process and requires daily monitoring of equipment and the feeding 
system.  
 
A variety of liquid diets are commonly offered to preweaned calves (Table 4.16). A higher percentage 
of large operations (28.7 percent) fed pasteurized waste milk compared with medium and small 
operations (3.0 and 1.0 percent, respectively). Small operations were more likely to feed 
unpasteurized whole (saleable) milk (32.2 percent) than medium and large operations (17.4 and  
12.1 percent, respectively). Similar percentages of operations fed unpasteurized waste milk and 
unpasteurized whole (saleable) milk (30.6 and 28.0 percent, respectively). 
   

 
Table  4.16 Percentage of dairy operations by type of liquid diet fed to heifers at any time prior 
to weaning in 2006, by herd size 
 

 Percent Operations 

 Herd Size (Number of Dairy Cows) 

 
Small 

(Fewer than 100)
Medium 
(100-499) 

Large 
(500 or More) 

All            
Operations 

Liquid Diet Pct. 
Std. 

Error Pct. 
Std. 
Error Pct. 

Std. 
Error Pct. 

Std. 
Error 

Unpasteurized 
waste (nonsaleable) 

milk 32.2 (1.7) 25.7 (2.0) 27.6 (2.8) 30.6 (1.3) 
Pasteurized         

waste (nonsaleable)  
milk 1.0 (0.3) 3.0 (0.9) 28.7 (2.7) 2.8 (0.3) 

Unpasteurized whole 
(saleable) milk 32.2 (1.7) 17.4 (1.7) 12.1 (1.9) 28.0 (1.3) 

Pasteurized whole 
(saleable) milk 1.3 (0.4) 1.6 (0.8) 2.0 (0.7) 1.4 (0.3) 

Other 2.6 (0.6) 3.5 (0.9) 4.9 (1.8) 2.9 (0.5) 

 
Pooling colostrum may increase calves’ exposure to pathogens. Approximately one of five operations 
(21.0 percent) pooled colostrum (Table 4.17). As herd size increased, the percentage of operations 
that pooled colostrum also increased, ranging from 16.0 percent of small operations to 56.9 percent 
of large operations.  
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Table 4.17  For dairy operations that normally hand-fed colostrum, percentage of operations 
that pooled colostrum from more than one cow, by herd size 
 

Percent Operations 

Herd Size (Number of Dairy Cows) 

Small 
(Fewer than 100) 

Medium 
(100-499) 

Large 
(500 or More) 

All              
Operations 

Pct. 
Std. 
Error Pct. 

Std. 
Error Pct. 

Std. 
Error Pct. 

Std. 
Error 

16.0 (1.7) 26.0 (2.4) 56.9 (3.1) 21.0 (1.3) 

 
 

4.4.4 Dairy cattle contact with other animals 

More than 40 percent of operations reported that cats, dogs, and deer or other members of the deer 
family had contact with cattle, their feed, and/or water supply (Table 4.18). Cattle on operations in the 
East region were more likely to have contact with sheep, beef cattle, cats, and deer compared with 
cattle on operations in the West region. Almost 4 of 5 operations in the West region (79.2 percent) 
and 9 of 10 operations in the East region (95.2 percent) reported that at least 1 of the listed animals 
had physical contact with cattle and/or their feed, minerals, or water.  
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Table 4.18 Percentage of dairy operations in which the following animals had physical contact 
with cattle or contact with their feed, minerals, or water supply, by region 
 

 Percent Operations 

 Region 

 West East All Operations 

Animal Type Percent 
Std. 

Error Percent 
Std. 

Error Percent 
Std. 

Error 
Chickens or other 

poultry 9.2 (2.1) 8.3 (0.8) 8.3 (0.8) 

Horses or other equids 10.2 (2.2) 13.6 (1.1) 13.3 (1.0) 

Pigs 2.0 (0.6) 2.0 (0.5) 2.0 (0.4) 

Sheep 0.1 (0.1) 1.0 (0.3) 0.9 (0.3) 

Goats 4.8 (1.6) 2.3 (0.4) 2.5 (0.4) 

Beef cattle 5.1 (1.5) 11.8 (1.0) 11.3 (1.0) 

Exotic species (e.g., 
llamas, alpacas, and 

emus) 1.0 (0.6) 0.7 (0.2) 0.7 (0.2) 

Dogs 63.4 (2.7) 69.4 (1.4) 68.9 (1.3) 

Cats 62.1 (2.8) 87.1 (1.0) 85.2 (0.9) 

Deer or other members of 
the deer family (e.g., elk 

and moose) 20.9 (2.9) 51.6 (1.5) 49.3 (1.4) 

Any animal 79.2 (2.0) 95.2 (0.6) 94.0 (0.6) 

 
Cattle that have direct contact with deer could pose a risk of transmitting diseases such as bovine TB. 
For operations in which deer or members of the deer family had contact with cattle, their feed, or 
water, the majority (90.8 percent) reported that cattle could possibly or sometimes have face-to-face 
contact with deer. There were no differences by region in the percentage of operations that reported 
face-to-face contact with deer (Table 4.19).   
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Table 4.19  For operations in which deer had physical contact with cattle and/or their feed, 
minerals, or water supply, percentage of operations by frequency that members of the deer 
family had face-to-face contact with cattle, and by region 
 

 Percent Operations 

 Region 

 West East All Operations 

Frequency Percent 
Std. 
Error Percent 

Std. 
Error Percent Std. Error 

Never 4.8 (2.1) 9.4 (1.2) 9.2 (1.2) 

Possibly 56.3 (8.0) 64.3 (2.1) 64.1 (2.0) 

Sometimes 38.9 (7.9) 26.3 (1.9) 26.7 (1.9) 

Total 100.0  100.0  100.0  

 
4.5 Summary 

TB can be introduced to cattle herds in a variety of ways. Both cow-calf operations and dairy 
operations implemented management practices that increase or decrease the risk of TB infection. 
Practices which may increase the risk of introduction include:  

 The introduction of new animals with unknown TB status onto the premises  
 Exposure to wildlife or other domestic animals 
 Exposure of feed or water to wildlife or other domestic animals 
 Offsite heifer rearing or other practices where commingling occurs 
 Feeding unpasteurized milk to calves 

 
Approximately one-third of cow-calf and dairy producers introduce new cattle to their operations, 
thereby increasing the risk of introducing bovine TB and other significant cattle diseases to cattle 
herds. Additionally, cattle on these operations are frequently exposed to free-ranging deer (72.6 and 
49.3 percent for cow-calf and dairy operations, respectively).  
 
A subset of dairy operations (9.3 percent) raised heifers offsite, and 63.8 percent of these operations 
increase the risk of disease transmission by commingling calves with cattle from other operations.To 
decrease this risk, producers should minimize the number and source of incoming cattle, be aware of 
the status of source herds, conduct disease testing prior to exposing the home herd, decrease animal 
and feed contact with members of the deer family, and limit exposure of cattle to animals from other 
operations and unknown disease status.  
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5. U.S. Captive Cervid Industry  

5.1 Introduction 

The 1992 Assessment of risk factors associated with the introduction and spread of M. bovis in the 
United States (USDA, 1992) included a discussion of the potential risks for the spread of M. bovis that 
could be associated with captive wildlife operations, including captive cervids. The purpose of this 
chapter is to provide an update of the 1992 risk assessment as it pertains to the captive cervid 
industry. Several options for consideration were identified in the risk assessment as suggestions to 
improve future risk assessments and improve the likelihood of detection of M. bovis in captive cervids 
through surveillance. These options and their current status are: 
 

 Acquire farm-level data for a more accurate assessment 
Farm-level data have been difficult to acquire and this consideration has not been 
successfully pursued on a national level. 

 Establish procedures for tracking the movement of captive Cervidae 
Tracking movements of captive cervids is currently limited to information obtained in 
health certificates prior to interstate movement and to the tuberculin testing reporting 
requirements for obtaining accredited herd status. 

 Consider slaughter indemnity for Cervidae 
Slaughter indemnity is not currently available for Cervidae 

 Focus efforts to develop a reliable screening test for bovine TB in Cervidae 
There has been progress made in developing a reliable serologic test for cervids; 
however, the tests are not yet available for general use (O’Brien et al., 2009). 

5.2 Captive cervid distribution 

The total number of captive cervids maintained on premises decreased in the United States between 
2002 and 2007 (NASS, 2009) (Table 5.1). Between 2002 and 2007, the inventory of captive deer 
declined from 286,863 to 269,537 and the number of captive elk declined from 97,901 to 68,251. The 
total number of captive deer farms increased from 4,901 in 2002 to 5,654 in 2007, while the total 
number of captive elk farms decreased from 2,371 in 2002 to 1,917 in 2007. Comparisons for 
previous years are not available, as captive cervid inventory was not a part of the Census of 
Agriculture before 2002. 
 
Table 5.1  Inventories of captive deer and elk, 2007 
 

 2002 U.S. Inventory 2007 U.S. Inventory 

 
Number of 
Premises 

Number of 
Animals 

Number of 
Premises 

Number of 
Animals 

Captive deer 4,901 286,863 5,654 269,537 

Captive elk 2,371 97,901 1,917 68,251 

Source: 2007 Census of Agriculture. 

 
Notable increases in the number of captive deer farms occurred in Alabama (49 to 77), Missouri (137 
to 204), Ohio (224 to 303), and Pennsylvania (525 to 810), while considerable decreases were seen 
in the number of captive deer farms in Michigan (403 to 304) and Wisconsin (512 to 250). 
 
Figures 5.1 through 5.3 illustrate the location of captive cervids according the NASS 2007 Census of 
Agriculture. Figure 5.4 illustrates the location of cattle in the United States. 
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Figure 5.1  Number of captive cervid farms by county, 2007 

 
Source: NASS 2007 Census of Agriculture 
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Figure 5.2  Number of captive deer by county, 2007 

 
Source: NASS 2007 Census of Agriculture 
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The number of captive elk farms declined markedly in Colorado (120 to 69), Iowa (125 to 71), 
Minnesota (404 to 199), Montana (94 to 39), Nebraska (40 to 20), South Dakota (52 to 30), and 
Wisconsin (373 to 202). Texas reported a notable increase in the number of captive elk farms (247 to 
354). 

 
 

Figure 5.3  Number of captive elk per county, 2007 

 
Source: NASS 2007 Census of Agriculture 
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For comparison, a map of cattle distribution is provided below: 
 

Figure 5.4  Number of cattle per county, 2007 

 
Source: NASS 2007 Census of Agriculture 
 
Increased regulations, CWD, and the loss of antler-velvet export markets have contributed to the 
overall decline in the number of captive cervid farms in the United States.  
 
It should be noted that another source has estimated the total number of captive cervid farms at 
7,828 (Texas A&M University, 2007). The survey conducted by Texas A&M University concluded that 
the captive cervid industry is growing and has an overall economic impact of $2.3 billion annually. 
The difference in conclusions between this study and the Census of Agriculture may be due to growth 
in particular segments of the industry, such as hunting preserves and hobby farms that would not 
necessarily be captured in the Census of Agriculture data. Differences may also exist in the collection 
methods.  

5.3 Regulations and regulatory authorities 

Captive cervids are regulated by APHIS under 9 CFR, part 77, subpart C and the TB UM&R, 1999. 
The SCT and the CCT are currently the only recognized official tests for captive cervids. Both of 
these tests have practical challenges because they require capturing the animals twice; once to 
administer the test and again 72 hours later (+/- 6 hr) to read the test results. Bacteriologic culture of 
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M. bovis is considered the gold standard for confirming an infected animal, but PCR in combination 
with strong epidemiologic evidence may lead to an animal being declared infected. Specific rules and 
testing requirements for herd status levels and interstate movements are detailed in the documents 
listed above and are beyond the scope of this document.  
 
5.4 Bovine TB surveillance in captive cervids 

SCT and CCT test submissions data from the TB Eradication Program were obtained for FY 2005 to 
FY 2008 (NVSL, 2009) (Table 5.2). Skin tests are typically conducted prior to movements, as part of 
the herd status requirements, prior to sale, or for travel to shows or exhibitions. CCT tests, the only 
approved antemortem test approved for followup testing to the SCT in captive cervids, were 
submitted less frequently. 
 
Table 5.2  TB tuberculin tests for captive cervids 
 

TB Eradication Program FY2005 FY2006 FY2007 FY2008 

SCT  tests 27,795 27,291 13,037 20,609 

SCT responders 3 1 4 1 

CCT tests 680 330 435 566 

CCT reactors 10 2 1 4 

 
In addition to testing requirements for accreditation and interstate movements, some passive 
surveillance of captive cervids occurs through the slaughter channels. These submissions are not 
required, as there is no official slaughter surveillance program for cervids. Instead, they are submitted 
through routine slaughter inspection that does not include animals that were sent to slaughter after 
being TB-tested and receiving a suspect or reactor classification. The total number of samples 
submitted through slaughter surveillance is not available. 
 
Slaughter surveillance has identified three positive cultures of M. bovis since FY 2001 (NVSL, 2009). 
An adult elk with mediastinal lesions typical of TB was found at slaughter in Colorado in 2002. 
Samples from the elk confirmed M. bovis infection. The second case was recently identified in FY 
2009 in Nebraska. The 2-year-old female elk had gross lesions at slaughter and was confirmed 
positive by both histopathology and isolation of M. bovis. An affected herd was also identified in 
Indiana. This herd was traced to two additional cervid herds identified as affected. A cattle herd in 
Indiana was also linked to these cervid herds through identification of the same genotyping results.  
 
An epidemiologic survey of TB in captive cervids was conducted in Michigan and reported in 2002 
(Kaneene et al., 2002). This study used a combination of skin tests and slaughter on 96 privately 
owned cervid ranches in northeastern lower Michigan. This area was selected because endemic TB 
in the wild white-tailed deer population was identified in 1995. The cervid farms in this area are 
surrounded by a reservoir of TB in free-ranging deer. Some cervid farms were thought to have 
inadvertently fenced in wild deer at the initiation of their operations. This may have introduced M. 
bovis-infected animals into the herds. The study detected only 1 farm with TB-infected cervids and 
the reported apparent prevalence was 1.1 percent (21 cases out of 1,867 cervids tested). Three 
additional Michigan herds have since been identified. The authors concluded that the single positive 
herd was likely a result of fencing in wild white-tailed deer at herd initiation in 1992. 
 
Several States have recently implemented a TB surveillance protocol that uses the mandatory 
sampling requirement of their State’s CWD programs. Many CWD programs require that all captive 
cervids over 12 to 16 months-of-age that die or are slaughtered must be tested for CWD. The lymph 
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nodes collected for this CWD surveillance are then also tested for TB. This has proven to be a cost- 
effective approach for TB surveillance in captive cervids. 
 
5.4.1 Cattle interaction 

TB is most commonly transmitted between animals by the respiratory route, generally through the 
inhalation of aerosols coughed or exhaled by an infected animal. However, physical contact with feed, 
water, or minerals that has been contaminated by saliva or other discharges can also be a source of 
infection. Face-to-face contact is another possible route between cattle and captive cervids. 
 
A cross-reference of 2002 Census of Agriculture data indicated that 21.5 percent of operations that 
owned captive cervids also owned beef cattle. The same data source also estimated that 2.6 percent 
of captive cervid operations had dairy cattle on their premises (USDA–NASS, 2009). In contrast, the 
1992 TB risk assessment quoted that an estimated 50 percent of North American Elk Breeders 
Association members owned both cattle and elk (USDA, 1992). 
 
In the recent NAHMS Dairy 2007 Study, nearly one-half of all dairy operations (49.3 percent) reported 
that deer or members of the deer family (including elk and moose) had physical contact with dairy 
cattle or their feed, minerals, or water supply (Table 5.3). The survey did not distinguish between 
captive and free-ranging deer. Dairy operations surveyed in the eastern United States more 
frequently reported physical contact with deer or members of the deer family (or contact with their 
feed, minerals, or water supply) than States in the western United States. 
 

 
Table 5.3  Percentage of dairy operations in which dairy cattle had physical contact  
with deer or other members of the cervid family, by region 
 

Percent Operations 

Region 

West East All Operations 

Pct. Std. Error Pct. Std. Error Pct. Std. Error 

20.9 (2.9) 51.6 (1.5) 49.3 (1.4) 

Source: USDA, 2007. 

 
On operations in which deer or members of the cervid family had contact with dairy cattle or their 
feed, minerals, or water, 90.8 percent reported that cattle could possibly or sometimes have face-to-
face contact with deer. Less than one-half of all dairy operations (48.5 percent) limited cattle contact 
with other livestock, elk, and deer. 
 
A similar national survey was conducted by USDA-APHIS-VS for the beef cow-calf industry in 2008 
(USDA, 2009). In contrast to the previous dairy study, participants were asked to distinguish between 
wild cervid contacts and captive cervid contacts. Only 3.2 percent of cow-calf operations reported that 
their beef cattle had fence-line contact or commingled with captive cervids within the previous  
12 months. Contact with wild cervids was reported on 72.6 percent of operations (Table 5.4). 
 

 



 

90 

 

Table 5.4  Percentage of beef operations in which beef cattle had physical contact with captive 
or wild cervids 
 

 Percent Operations 
 Contact 
 Yes Don’t Know No 

 Pct. Std. Error Pct. Std. Error Pct. Std. Error

Captive cervids 3.2 (0.5) 2.5 (0.4) 94.3 (0.6) 

Wild cervids 72.6 (1.3) 12.0 (0.9) 15.4 (1.1) 

Source: USDA, 2009. 

 
On an individual-animal basis, only 3.9 percent of beef cattle had fence-line contact or commingled 
with captive cervids within the previous 12 months. Beef cattle were much more likely to come in 
contact with wild cervids (88.0 percent) (Table 5.5). 
 
Table 5.5  Percentage of beef cows on operations in which cows had fence-line contact or 
commingled with captive or wild cervids 
 

 Percent Beef Cows Std. Error 

Captive cervids 3.9 (0.6) 

Wild cervids 88.0 (0.9) 

Source: USDA, 2009. 
 

5.5 Historical occurrences of M. bovis in captive cervids in the United States 

Bovine TB in captive Cervidae has been sporadically reported in the United States as early as 1923. 
However, most of the early cases did not report the specific mycobacterial organisms involved. 
 
A detailed report of a captive fallow deer herd in Michigan was written in 1965 (Towar et al., 1965). 
The premises held a variety of species including spider monkeys, llamas, wild sheep, reindeer, 
donkeys, and bears. The article described advanced lesions in the lungs and lymph nodes of the deer 
and suggested an aerosol or oral route of infection. Laboratory results confirmed that the causative 
agent was M. bovis.  
 
A report of bovine TB in a captive elk herd in Colorado was published in 1992 (Rhyan et al., 1992). 
The herd was depopulated after TB lesions were found in 8 of 10 SCT responders. More than one-
half of the depopulated adults had gross lesions suggestive of TB and laboratory results confirmed M. 
bovis infection in the herd. The gross lesions varied and were described as resembling bovine TB in 
cattle or as lesions that more closely resembled ovine abscesses or caseous lymphadenitis. 
 
Ten captive cervid herds have been identified as having one or more isolations of M. bovis since the 
implementation of cervid regulations in 1999 (NVSL, 2009). Four of the herds were found in Michigan, 
one in Kansas, one in New York, one in Nebraska and three in Indiana. 
  
The 2007 Michigan herd was a trophy-hunting white-tailed deer operation. Tissues were submitted 
from a 3-year-old female for routine CWD and TB surveillance. Histologic lesions compatible with TB 
were found. The deer was PCR-positive for M. tuberculosis complex, but no fresh tissue was 
available for culture of M. bovis. The 100-acre ranch had been fenced in 1997 and all wild deer were 
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removed prior to stocking with purchased white-tailed deer. The last purchased deer entered the 
property in 1999 and no live deer left the property. However, evidence of fence-line contact with free-
ranging wild deer was found. Extensive incursions by raccoons into the grain feeding and storage 
areas were also evident. 
 
The 2008 New York herd had a 14-year-old female fallow deer that tested positive on a SCT for sale 
and movement. Necropsy revealed extensive gross lesions, and histologic and PCR testing were 
compatible with TB. The premises also contained red deer, horses, donkeys, cattle, pigs, and 
alpacas. Multiple whole-herd tests were conducted on the deer from the formation of the herd in 1993 
until 2008. Only one deer, a yearling that tested negative for TB, was known to have entered the herd 
in the 10 years prior to discovery of the positive case. 
 
No detailed epidemiology reports were available for the other three positive herds at the time of this 
report.  
 
5.6 Mitigation and future needs 

A rapid and reliable live-animal test would be a valuable tool for surveillance and control of TB in 
captive and wild cervids. There are at least seven serologic tests for TB in development by private 
companies. Some of these have the potential for use in the cervid industry. However, recent reports 
indicate that the sensitivities of currently available tests range from 46 to 68 percent, with highly 
variable positive predictive values (O’Brien et al., 2009). A gamma interferon test has also been 
evaluated for use in cervids, but overall performance has not been favorable and the test is not yet 
approved for official use (Waters et al., 2008). Further evaluation and improvement of these tests are 
underway. 
 
Fencing that prevents ingress or egress of wildlife is an important component in reducing the risk of 
TB infection to and from other livestock or wildlife. Reports of potential TB transmission through 
fence-line contact from wild to captive cervids have caused concern (USDA, 1992; Rhyan et al., 
1995). However, a recently published study suggests that this risk may be minimal (Vercauteren et 
al., 2007). The study evaluated fence-line contact between captive and wild white-tailed deer in 
Michigan using animal-activated cameras. Only two naso-oral contacts were documented after 
77,165 hours of camera monitoring on six high-fenced farms, even though an average of 5.69 wild 
deer visitations occurred every 1,000 hours. No contacts between wild elk and farmed deer or elk 
were recorded. This single study does not eliminate the possibility that fence-line contact is a 
significant risk for TB transmission in captive cervids, but it does offer evidence that the risk may be 
low. 
 
The hope of a vaccine that would prevent or reduce the spread of TB is also promising. Recent 
reports of vaccination of white-tailed deer with M. bovis bacillus Calmette-Guerin (BCG) indicate that 
both oral and parental vaccination is effective (Palmer et al., 2007; Nol et al., 2008). Gross lesions 
were reduced significantly in vaccinates versus controls following a challenge dose of M. bovis and 
the vaccinated deer were significantly less likely to be culture-positive. The authors of one study 
concluded that BCG vaccination “shows great potential in controlling disease caused by M. bovis 
infection” (Nol et al., 2008).  
 
5.7 Summary 

Based on the small number of positive cases identified in captive cervids in recent history, and the 
relatively small percentage of cattle that reportedly have physical contact with these animals, it 
appears that captive cervids pose a relatively low risk for TB transmission to cattle. However, the 
recent case in Indiana demonstrates the need for additional surveillance in this industry to truly 
understand the risk. Increased slaughter surveillance could be helpful in more accurately predicting 
the risk of TB transmission. A reliable serum test and the potential of vaccination of captive cervids 
would also provide powerful tools in identifying TB and preventing its spread.  
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6. Free-ranging Wildlife  

6.1 Introduction 

Bovine TB has one of the broadest host ranges of all known pathogens, affecting many groups of 
mammals, including humans (O’Reilly and Daborn, 1995). In some parts of the world, bovine TB has 
spilled over from cattle into wildlife, where it has persisted as a reservoir of infection and frustrated 
efforts to eradicate the disease from sympatric livestock populations. Major free-ranging hosts of 
endemic bovine TB include the European badger (Meles meles) in the UK and Ireland, brushtail 
possum (Trichosurus vulpecula) in New Zealand, Cape buffalo (Syncerus caffer) and greater kudu 
(Tragelaphus strepsiceros) in southern Africa, bison (Bison bison) in Canada’s Wood Buffalo National 
Park, and white-tailed deer (Odocoileus virginianus) in Michigan. Many other species, including 
humans, are susceptible to bovine TB but do not maintain infection in the population (O’Reilly and 
Daborn, 1995) without a change in population dynamics that enhances disease spread (Cousins and 
Florisson, 2005). The host status of a species with regard to M. bovis may differ between regions or 
change over time depending on population density or management regime (Cousins and Florisson, 
2005). This, in turn, is the basis for efforts to manage or eradicate TB in wildlife and domestic 
animals. 

6.2 Diagnostic methods for bovine TB in wildlife 

6.2.1 Current methods 

Cousins and Florisson (2005) summarized diagnostic tests that have been applied to the detection of 
TB in a variety of livestock and nonlivestock species. Even though culture of M. bovis remains the 
gold standard, this technique is impractical for bovine TB diagnosis in live animals. Instead, 
intradermal tuberculin testing continues to be the tool of choice for most bovine TB control programs. 
Cell-mediated immunity tests, including the interferon-gamma assay and the lymphocyte 
transformation assay, have been developed for cattle and wildlife. Additionally, various antibody-
based tests, including ELISA and fluorescence polarization assay, have been applied to wildlife with 
limited success. Because of the lack of well-validated data for the diagnosis of bovine TB in animals 
other than cattle, Cousins and Florisson (2005) concluded that many of the current tests would fail to 
meet the validation criteria required by the World Organization for Animal Health (OIE). 

6.2.2 New methods 

Poor performance of the gamma-interferon assay was a critical limitation for a bovine TB test-and-cull 
program begun in 2004 for white-tailed deer in Michigan. As an alternative, O'Brien et al. (2009) 
compared the performance of several blood assays to culture results for M. bovis in white-tailed deer. 
Blood-test sensitivities were moderate (46 to 68 percent), whereas specificities and negative 
predictive values were all quite high (higher than 92 percent). The authors concluded that such tests 
could be useful in a well-equipped climate-controlled laboratory with skilled laboratory personnel, but 
they would be of limited value in field operations performed in adverse weather by staff unskilled in 
laboratory techniques. 
 
DNA fingerprinting of M. bovis isolates has proved a valuable epidemiological tool for identifying 
sources of bovine TB infection, especially where wildlife sources are suspected (O’Reilly and Daborn, 
1995). A novel PCR-based DNA fingerprinting technique for M. bovis strains known as DVR 
spoligotyping has recently been developed. This technique involves the use of a large number of sets 
of primers and the amplification of target oligonucleotides in order to detect polymorphisms in the 
spacer regions between the DR (direct repeat) sequences. Advantages of PCR-based DNA 
fingerprinting methods over standard genomic hybridization methods include the speed with which 
results can be obtained and the fact that very little DNA sample material is required for analysis, since 
PCR techniques involve the in vitro amplification of DNA. However, DNA fingerprinting techniques do 
not determine the direction of transmission from wildlife to domestic animals or from domestic animals 
to wildlife. 
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6.3 Wildlife and livestock interactions and epidemiology 

An infected wildlife population can be defined either as a maintenance or spillover host, depending on 
the dynamics of the infection (Morris and Pfeiffer, 1995). In a maintenance host, once an infection is 
established it can persist in the population without any outside source and may also be transmitted to 
other species. In a spillover host, infection cannot persist indefinitely unless there is re-infection from 
another species or a change in the population that enhances interspecies transmission (Corner, 
2006). Identifying whether a species or population has the status of a maintenance or spillover host is 
critical to assessing whether disease control measures within the host are necessary, or in predicting 
whether infection will persist once the source of infection is removed or the behavior of the population 
is altered. The host status of a species may differ geographically or change over time depending on 
habitat, population, and management. Maintenance and spillover hosts can both act as reservoirs of 
disease for other species (Cousins and Florisson, 2005). 
 
Corner (2006) identified several key pieces of information needed to determine the status of an 
infected wildlife species as a potential reservoir for bovine TB. It is important to determine the nature 
of the infection in individual animals, the dynamics of infection in the population, the geographic 
distribution of the wildlife species, and the nature of its interactions with domestic animals and other 
wildlife. Bovine TB exhibits a range of epidemiologic patterns in different wildlife populations, and the 
presence of infection in a population does not necessarily mean it will spread to other species. 
 
The mode of transmission and route of infection within and between species is one of the main 
factors in the epidemiology of TB (de Lisle et al., 2001). Where lesions are located can reveal how an 
animal acquired the disease. For example, a predominance of lesions in the lungs and thorax is 
evidence of infection by aerosol transmission. Animals with predominantly mesenteric lesions were 
probably infected orally. Tuberculous lesions in retropharyngeal lymph nodes, as frequently seen in 
deer, may indicate either aerosol or oral transmission because these nodes receive lymphatic 
drainage from nasal and oral cavities. Some animals have infected superficial body lymph nodes that 
could indicate infection through bite wounds or systemic spread from another primary source of 
infection (de Lisle et al., 2001). 
 
6.4 Bovine tuberculosis of wildlife in North America 

6.4.1 Cervidae 

Bovine TB has been identified in nine geographically distinct wildlife populations in North America and 
is endemic in four cervid populations (Table 6.1, Figure 6.1). Before the1990s, bovine TB had only 
rarely been reported among free-ranging Cervidae in North America. In Canada, Hadwen (1942) 
confirmed M. bovis infection in elk (Cervus canadensis), moose (Alces alces), and mule deer (O. 
hemionus) that ranged with M. bovis-infected bison in the Wainwright Buffalo Park in east-central 
Alberta. Belli (1962) reported bovine TB in a white-tailed deer in Ontario. In the United States, Levine 
(1934) and Friend et al. (1963) each reported two cases of bovine TB in white-tailed deer in New 
York, and Ferris et al. (1961) reported two cases in white-tailed deer in Illinois. In Michigan, a TB-
infected white-tailed deer was documented in 1975 (Schmitt et al., 1997) and in Montana, a free-
ranging mule deer living near a bovine TB-infected elk ranch was diagnosed with M. bovis (Rhyan et 
al., 1995). 
 
Traditionally, it was assumed that M. bovis would not persist in free-ranging deer or elk unless they 
had continued contact with infected bison, cattle herds, or captive deer (Bleem et al., 1993, Essey 
and Vantiem, 1995). This paradigm shifted in the mid-1990s after M. bovis was diagnosed in a 
hunter-killed white-tailed deer in Michigan’s northeast Lower Peninsula. Hunter-harvest surveillance 
by the Department of Natural Resources identified an endemic focus of bovine TB in free-ranging 
white-tailed deer within a five-county area of the Lower Peninsula (Schmitt et al., 1997; O’Brien et al., 
2001, 2002; Palmer et al., 2002). In response, the State declared a special deer management unit 
that encompassed the core area of infected deer. This focus of infection represented the first known 
reservoir of M. bovis in free-ranging wildlife in the United States and the first known epizootic of TB in 
white -tailed deer in the world (Palmer, 2007). 
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Figure 6.1 Reported locations of bovine TB in North American wildlife 
 

 
Sources: See Table 6.1 
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Table 6.1  Reported cases of M. bovis infection in free-ranging wildlife in North America 
 

  Prevalence1 (%) Year Species Citation 

United States     

Hawaii 2 Endemic <5.0 1970, 1971, 1972, 1981, 1998 axis deer 
Sawa et al., 1974, Essey et al., 1981, Whipple and Palmer 
2000 

  20.0 2–3.8 1980, 1994, 1999–present feral swine Essey et al., 1981, 1983, Whipple and Palmer, 2000; 
      

Michigan 3 Endemic 4.9–0.2 1975, 1994–present white-tailed deer 
Schmitt et al., 1997, Thoen, 2006; Ankney, 2008, O’Brien, 
2006 

  52–4.8 1996-1999; 2003–05 coyote Bruning-Fann, 1998, 2001; VerCauteren, 2008; O’Brien, 2006
  4.6-2.4 1996-2003 raccoon Bruning-Fann et al., 1998, 2001,O’Brien, 2006 
  3.3-2.4 1996-2003 black bear Bruning-Fann et al., 1998, 2001; O’Brien, 2006 
  12.5-7.0 1996-2003 bobcat Bruning-Fann et al., 1998, 2001; O’Brien, 2006 
  16.6-10.0 1996-2003 red fox Bruning-Fann et al., 1998, 2001; O’Brien, 2006 
  2.4 1996-2003 opossum O’Brien, 2006 
  0.3 2000, 2001, 2003 Rocky Mountain elk O’Brien, 2006 
  NA 2000 feral cat Kaneene, 2002 
      
Minnesota 4 Likely Endemic 1.6–0.5 2005–present white-tailed deer USDA, 2008; Carstensen 2008 
      
Montana Reported 4.9 1994 mule deer Rhyan et al., 1995 
  4.3 1994 coyote Rhyan et al., 1995 
      
New York Reported NA 1933, 1937, 1961 white-tailed deer Levine, 1934; LeDune 1937; Friend, 1963; Wagner, 1993 
      

Canada      
Alberta 5 Endemic 5.5 1939–40 Manitoban elk Hawden, 1942; Tessaro, 1986 
  5.6 1939–40 Canadian moose Hawden, 1942; Tessaro, 1986 
  0.8 1939–40 mule deer Hawden, 1942; Tessaro, 1986 
  49.0–42.0 1925–present wood bison Tessaro et al., 1990; Joly et al., 2004 
  53.7 1923–37 plains bison Hawden, 1942; Tessaro 1986 
      
Manitoba 6 Endemic NA 1937 plains bison Tabulenas, 1983 
  NA 1978 wolf (pups) Carbyn, 1982; Lutze-Wallace, 2005 
  3.6–0.4 1992, 1998–2005 Manitoban elk Thoen et al., 2006; Lees et al., 2003 
  <0.5 1998–2005 white-tailed deer Thoen et al., 2006; Lees et al., 2003 
      
Ontario Reported 0.2 1958 white-tailed deer Belli, 1962 
      
1 Prevalence reported by specific study. 
2 Foci of infection occurs only on the island of Molokai and is considered endemic. Initial surveys indicated   
prevalence as high as 20% in feral swine, but this was reduced to 3.8% after culling. 
3 Currently considered endemic in Michigan with a foci of infection occurring in northeastern Michigan. 

4 A foci of infection occurs in northwest Minnesota with an estimated prevalence in white-tailed deer of 
1.6 percent in the core area and an overall prevalence of 0.5 percent. 

5 Endemic infection occurs in bison populations of Wood Bison National Park. 
6 Endemic foci of infection occurs in and around Riding Mountain National Park. 
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A similar situation exists in Manitoba, Canada, where a herd of 2,500 to 4,000 elk (C. c. 
manitobensis) was implicated in an outbreak of bovine TB among 11 cattle herds surrounding Riding 
Mountain National Park (Lees et al., 2003). Commingling of elk and cattle that feed on the same hay 
bales was considered the most likely mode of transmission between species. Strain typing of M. bovis 
isolates from wildlife and cattle indicates that it is a unique strain seemingly unrelated to other strains 
previously identified in Canada. Management tactics employed to help reduce the transmission of M. 
bovis between wildlife and cattle have included reducing the elk population through extended hunting 
seasons and predator conservation, barrier fencing to protect hay-storage yards from wild elk and 
deer, legislation to prevent baiting and unnatural cervid herding behavior, and habitat improvement in 
the Park through prescribed burning (Nishi et al., 2006). In Michigan, a small population of elk resides 
within the bovine TB-endemic area for white-tailed deer. Although a few of the more than 1,400 elk 
tested have been M. bovis-positive, it appears these are spillover cases possibly affected by ingesting 
contaminated feed (O’Brien et al., 2006). In the absence of strong congregating factors, elk and deer 
generally maintain spatial separation with little potential for direct interaction and transmission of TB 
(Miller, 2002). 
 
It is believed that M. bovis was transmitted from cattle to deer in Michigan sometime during the early 
to mid-1900s when TB was widespread among cattle in the State. Epidemiologic models estimate 
that spillover from cattle to deer occurred around 1955 when Michigan’s deer population was 
beginning to increase well beyond normal carrying capacity (Palmer, 2007). In the region the 
outbreak occurred, deer densities increased two- to threefold during the three decades preceding the 
outbreak and functional deer densities resulting from winter yarding of deer undoubtedly were much 
higher (Peterson, 2003). Bovine TB likely smoldered within the deer population during this period and 
finally became evident when prevalence grew to detectable levels. Deer population increases were 
due to a combination of limited doe harvest and extensive supplemental feeding by hunt clubs 
(Schmitt et al., 1997; O’Brien et al., 2002). 
 
Michigan adopted two principal management strategies to deal with bovine TB in the affected five-
county area (O’Brien et al., 2006). First, it increased hunter harvests to reduce deer population 
density, and second, it placed restrictions on supplemental feeding and baiting of deer. Voluntary 
restrictions were initially sought from the public and hunt clubs, followed by a regulatory ban on 
feeding and baiting within the TB area and the remainder of the State. Additionally, Michigan adopted 
a moratorium on establishing new captive cervid facilities. Hunter-harvest has reduced the five-county 
deer population by approximately 50 percent and, concurrent with these management actions, bovine 
TB prevalence has declined significantly in adult and yearling deer (O’Brien et al., 2006). 
 
Research indicates that supplemental feeding and baiting have been major factors in the propagation 
and persistence of bovine TB in Michigan’s white-tailed deer population (O’Brien et al., 2006). Deer 
groups with the highest prevalence of M. bovis were clustered on private land where feeding and 
baiting were common practices. M. bovis can survive for months on foodstuffs commonly used for 
deer (O’Brien et al., 2006) and transmission between deer by shared feed has been documented 
(Palmer et al., 2004b). Shared feed also appears to be the primary route of transmission from deer to 
cattle (Palmer et al., 2004a; O’Brien et al., 2006). Bucks are much more likely to be infected with M. 
bovis than comparably aged does, and the fact that their risk increases with age suggests they play 
an important role in disseminating TB (O’Brien et al., 2002). Unfortunately, baiting continues to be 
widespread, even in banned areas. 
 
In 2006, bovine TB was discovered in white-tailed deer in Minnesota in conjunction with an outbreak 
of bovine TB in beef cattle (USDA–APHIS–VS–CEAH, 2008). One of 474 hunter-harvested deer 
tested in the vicinity of affected cattle herds was positive for M. bovis, and targeted culling and 
surveillance identified another positive deer. Epidemiologic linkages between M. bovis-infected deer 
and cattle were supported by the proximity of deer and cattle cases and M. bovis strain identity 
between cattle and deer. The State responded by initiating more rigorous sampling protocols to 
establish prevalence of M. bovis in the deer population. Currently, Minnesota conducts hunter-
harvested deer surveillance during the fall hunting season. If M. bovis-infected deer are identified, 
targeted culling is conducted in the spring around areas where infected deer have been found. As of 
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2009, Minnesota tested more than 4,000 deer in the surveillance zone and identified 18 TB-positive 
deer and an additional 8 suspects. Based on fall hunter-harvested sampling, the average estimated 
apparent prevalence of bovine TB in white-tailed deer in the affected area was less than 1 percent, 
similar to the overall apparent prevalence of M. bovis reported for white-tailed deer in Michigan 
(O'Brien et al., 2002). 
 
6.4.2 Bovidae 

Hadwen (1942) documented a severe and prolonged outbreak of TB among bison in Alberta, 
Canada’s Wainwright Buffalo Park during the early to mid-1900s. The bison herd was maintained in a 
semi free-ranging condition, within a fenced natural area co-inhabited by elk, deer, and moose. More 
than one-half of approximately 12,000 bison culled between 1923 and 1939 had TB lesions at meat 
inspection, as did approximately 5 to 6 percent of elk and moose and less than 1 percent of mule 
deer culled in 1939 and 1940. Epidemiologic investigations suggested that the source of infection 
could have been bison introduced to the park from another infected herd where a buffalo calf was 
nursed by a domestic cow. Owners of buffalo herds commonly exchanged calves, many of which 
were fed milk in transit or fed on nurse cows. The bison herd was eventually destroyed and the park 
disbanded in 1940 (O’Reilly and Daborn, 1995). 
 
Canada’s largest remaining reservoir of bovine TB is the free-ranging bison population in and around 
Wood Buffalo National Park, bordering northern Alberta and southern Northwest Territories. M. bovis 
infection was introduced to the Park between 1925 and 1928 when more than 6,600 plains bison (B. 
b. bison) were imported from the infected herd at Wainwright (O’Reilly and Daborn, 1995). An 
unfortunate side effect of this action, in addition to the introduction of TB and brucellosis, was the 
mixing of plains bison genes into the indigenous wood bison (B. b. athabascae) population (Nishi et 
al., 2006). The bison population in Wood Buffalo Park grew to an estimated 12,000 to 15,000 animals 
in the late 1940s and then declined to approximately 5,000 by 1968 (Tessaro, 1986). Prevalence of 
TB lesions was 39 percent among 3,400 bison necropsied in the Park between 1950 and 1967 
(Broughton, 1987). Additionally, 22 percent of 192 bison slaughtered in the adjacent Slave River 
Lowlands during 1964 and 1965 were M. bovis-positive (Peterson, 2003). Tessaro et al. (1990) 
isolated M. bovis from 21 percent of 72 bison found in and around Wood Buffalo National Park during 
1983 and1985. They concluded that bovine TB was endemic in the bison population and was a 
growing threat to uninfected bison and cattle. 
 
6.4.3 Other species 

Bruning-Fann et al. (2001) conducted necropsies of 294 carnivores from the M. bovis-endemic area 
of Michigan. Seven animals had microscopic lesions suggestive of TB and nine had lymph node 
cultures positive for M. bovis; six coyotes (Canis latrans), two raccoons (Procyon lotor), one red fox 
(Vulpes vulpes), and one black bear (Ursus americanus). RFLP patterns of M. bovis isolates were 
identical in carnivores and deer, indicating that both groups were infected with the same strain. 
Moreover, most of the lesions in affected carnivores were in mesenteric lymph nodes, suggesting 
exposure through ingestion of scavenged material. The location of lesions, variety of species 
involved, and geographic spacing of cases are indicative of disease spillover rather than endemic 
bovine TB in these carnivores (Bruning-Fann et al., 2001). 
 
A broader survey of 175 coyotes in Michigan found that 58 (33 percent) were either culture-positive 
for M. bovis or had granulomatous lesions. Prevalence of M. bovis in coyotes varied regionally from 
19 to 52 percent. Lesions occurred most commonly in the gastrointestinal tract; however, one coyote 
had advanced disease with lesions occurring in the lung and liver (VerCauteren, 2008). A study by 
Johnson et al. (2009) found that captive coyotes orally inoculated with 1 X 105 CFU of M. bovis did 
not become infected or shed M. bovis in feces or oronasally. Similarly, researchers at the USDA 
APHIS National Wildlife Research Center (NWRC) found no evidence of shedding of M. bovis from 
naturally infected coyotes from Michigan (M. Dunbar, personal communication). 
 
Birds may also be involved in the transmission cycle of M. bovis, but their relative importance is not 
well understood (Butler et al. 2001, Clark et al., 2003, Clarke et al., 2006). In the El Paso, Texas, 



 

100 

 

milkshed, pigeons, blackbirds, and other species were thought to be responsible for introducing 
bovine TB into U.S. dairies from dairies in Cuidad Juarez, Mexico, through mechanical transport of 
contaminated material or infected birds shedding M. bovis into cattle feed (Figure 6.2) (Pillai et al., 
2000). However, follow-up surveys of tissues from 252 pigeons, 9 European starlings, and 1 common 
grackle from the 14 affected dairies in El Paso failed to identify M. bovis (Pillai et al., 2000). 
Blackbirds were not sampled in the survey. Currently, this is the only reported survey of wild avian 
species for bovine TB. The study did not address the potential of birds to mechanically transport M. 
bovis-contaminated material. 

 
Figure 6.2 Blackbirds feeding with dairy cattle in the southwestern United States 

 

Photos: USDA/APHIS/Wildlife Services  
 
Limited research concerning the ability of avian species to become infected and subsequently shed 
bacterium has been conducted. Experimental infections of pigeons resulted in 2 of 12 developing 
microscopic lesions after a high dose inoculation (Fitzgerald et al, 2003). Pigeons were also shown to 
shed M. bovis in feces. Intraperitoneal inoculations of European starlings and American crows 
resulted in three of four starlings and two of four crows developing histologic lesions suggestive of 
mycobacteriosis, without the presence of acid-fast bacilli (Butler et al., 2001). In separate studies, wild 
turkeys and mallard ducks were shown to be resistant to M. bovis (Fitzgerald et al., 2005a; Clarke et 
al., 2006). 
 
6.5 Bovine TB in Wildlife of Europe, Africa, and Oceania 

6.5.1 Cervidae 

Contact with domestic animals has resulted in bovine TB becoming endemic in a few wild populations 
of deer outside North America, including New Zealand, Ireland, the UK, Hungary, Switzerland, and 
Spain (O’Reilly and Daborn, 1995; Hermoso et al., 2006; Parra et al., 2006). Bovine TB has been 
recognized as an important animal and public health problem in New Zealand since the early 1900s 
and probably was introduced through the importation of infected cattle (Palmer, 2007). M. bovis was 
first isolated from feral red deer (C. elaphus) in the 1970s (O’Reilly and Daborn, 1995) and spread 
through the movement of farmed and captured wild deer (de Lisle et al. 2001). Red deer in New 
Zealand appear to be a spillover host infected by contact with brushtail possums, which are the 
primary wildlife reservoirs for this disease (O’Brien et al., 2002). 
 
O’Reilly and Daborn (1995) highlighted several reports of M. bovis isolation among free-ranging deer 
in Europe, including red deer in Hungary, roe deer (Capreolus capreolus) in Switzerland, fallow deer 
(Dama dama) in Ireland, and both Sika (C nippon) and roe deer in England. Despite the fact that wild 
deer in the UK were found in proximity to infected cattle, crossover infection from wild deer to cattle 
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was rare (O’Reilly and Daborn, 1995). Parra et al., (2006) examined more than 50,000 carcasses of 
red deer in western Spain over a 5-year period and noted a doubling of apparent bovine TB 
prevalence from 0.8 to 1.7 percent. They attributed this increase to management practices that led to 
artificially high numbers of wild game. Sawa et al. (1974) reported M. bovis infection from wild axis 
deer (Axis axis) and feral cattle on Hawaii’s Molokai Island. They concluded that the deer contracted 
M. bovis from infected cattle, as deer were not allowed to be transported onto or off of the island. 
 
6.5.2 Bovidae 

The African (Cape) buffalo is the most studied maintenance host of M. bovis on the African continent 
(de Lisle et al., 2001). Guilbride et al. (1963) published the first report of bovine TB in this species 
after finding eight cases among buffalo shot in Uganda’s Ruwenzori-Queen Elizabeth National Park. 
At the time of the study, the authors estimated that TB caused an annual mortality of 1 percent of the 
Park’s buffalo. Three decades later, Bengis et al. (1996) reported a case of bovine TB in a free-
ranging Cape buffalo in Kruger National Park, South Africa. A young bull, found sick and emaciated in 
1990, was euthanized for necropsy. After researchers confirmed M. bovis in the animal, they 
conducted a survey by culling 57 buffalo from 2 herds. Nine of the animals (16 percent) had lesions 
compatible with bovine TB, suggesting that the disease had been in the herd for several years or 
perhaps decades. The authors considered TB-infected cattle along the southern boundary of the Park 
the most likely source of infection. 
 
De Vos et al. (2001) stated that while M. bovis probably was imported to South Africa with European 
cattle breeds sometime during the late 1700s, it likely entered the Kruger National Park ecosystem 
after 1960. Once there, it became established in an immunologically naïve and susceptible population 
of African buffalo. The authors believed the infection originated along the Park’s southern boundary 
where bovine TB-infected cattle were found beginning in the early 1960s. After a slow start, the 
disease gained a foothold and spread northward in the buffalo population at a rate of approximately 6 
km/yr. Although bovine TB has occasionally infected other species including chacma baboons (Papio 
ursinus), lions (Panthera leo), cheetahs (Acinonyx jubatus), leopards (Panthera pardus), and kudu, 
none is considered a maintenance host. Surprisingly, bovine TB has not been found in the Park’s 
population of warthogs (Phacochoerus africanus), which were highly susceptible to bovine TB in 
Queen Elizabeth National Park (de Vos et al., 2001). 
 
Mean herd prevalence of bovine TB among buffalo during a survey in Kruger National Park was 
approximately 24 percent, with a range of 2 to 76 percent (de Vos et al. 2001). Herds in southern 
regions of the Park, where M. bovis presumably gained entrance, had higher prevalence than 
northern herds farther away from the origin of the outbreak. Coughing was a prominent clinical 
feature of highly infected buffalo herds, although clinical signs in early stages of the disease were 
often subtle (as in cattle). Older animals were more likely to be infected, similar to bison in Wood 
Buffalo National Park, Canada, and African buffalo in Queen Elizabeth National Park, Uganda (de 
Vos et al., 2001). The majority of M. bovis isolates were the same genotype found within cattle near 
the Park’s southern boundary, supporting the theory that cattle were the main source of the outbreak 
in buffalo. Guilbride et al. (1963) likewise concluded that cattle were the source of the bovine TB 
outbreak among buffalo in Queen Elizabeth National Park. Given the wide distribution and status of 
the buffalo as a maintenance host, bovine TB should be considered endemic in wildlife within Kruger 
National Park (de Vos et al., 2001). 
 
Other potential maintenance hosts of M. bovis in Africa include the lechwe antelope (Kobus leche) 
and greater kudu. High levels of M. bovis infection have been observed among lechwe in Lochinvar 
National Park, Zambia since 1956 (Gallagher et al., 1974; Clancey, 1997). Before the park was 
created, thousands of cattle (some infected with bovine TB) grazed the park and surrounding 
rangelands. Lechwe most likely acquired M. bovis while sharing these rangelands and now appear to 
be maintenance hosts of bovine TB (Gallagher et al., 1974; Stafford, 1991). A recent study (Munyeme 
et al. 2009) found that cattle commingling with lechwe in the Kafue Basin region of Zambia were 
nearly seven times more likely to be infected with bovine TB than cattle grazed in a region where 
there was little contact with infected wildlife. 
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The greater kudu was among the first African wildlife species known to be infected with bovine TB (de 
Lisle et al., 2001). Cases were recognized in the 1920s in the Eastern Cape Province of South Africa 
in an area shared with infected cattle (Paine and Martinaglia, 1928). Kudu are unique in that TB-
infected animals can be visually identified by mumps-like swellings of their parotid lymph nodes (Keet 
et al., 2001). While kudu are more solitary than typical maintenance hosts, they may nevertheless 
sustain M. bovis at low levels (de Lisle et al., 2001). Kudu feed principally by browsing on shrubs, and 
infectious purulent material draining from facial abscesses may contaminate thorns and leaves during 
feeding activities where it can be passed on to other browsers (de Lisle et al., 2001). 
 
Australia’s Northern Territory is inhabited by a large population of feral Asian water buffalo (Bubalus 
bubalus) in which bovine TB is endemic. Numbering as many as 250,000, these animals descended 
from domestic stock imported in the early 1800s. In the 1970s, TB was endemic over much of the 
buffalo range and prevalence exceeded 25 percent in some areas. While cattle and buffalo grazing 
ranges overlapped extensively during the dry season, the two species did not interact and there was 
little opportunity for transmission (Corner, 2006). Australia received its bovine TB-free status in 1997 
after eradicating the disease in domestic cattle (de Lisle et al., 2001). Test-and-slaughter was the 
predominant control method, although some chronically infected herds were depopulated. Inspection 
of feral buffalo meat between 1959 and 1979 revealed a prevalence of TB between 1.7 and 16.4 
percent. Thoracic lesions and generalized cases of TB indicated that the buffalo were a likely 
maintenance host of M. bovis. Although TB infection in buffalo apparently cycled independently from 
that in cattle, the buffalo were extensively culled as part of Australia’s bovine TB eradication program 
(de Lisle et al., 2001). Depopulation was easily justified, as the animals were an introduced species 
with little economic value and caused significant damage to ecologically sensitive wetlands (Corner, 
2006). 
 
6.5.3 Suidae 

M. bovis has been isolated from feral swine (Sus scrofa) in many regions including Australia, New 
Zealand, Hawaii, and several European countries (Aranaz et al., 1996; Corner et al., 1981; Essey et 
al., 1981; Letts, 1964; O'Reilly and Daborn, 1995; Palmer, 2007; Serraino et al., 1999). In northern 
Australia, a relatively high prevalence of bovine TB infection in feral swine was attributed to close 
association with infected feral water buffalo, which are M. bovis maintenance hosts (Letts, 1964). 
Hundreds of buffalo died at the end of each dry season, providing food and a source of M. bovis 
infection for scavenging swine. Researchers concluded that these pigs were spillover hosts, rarely 
transmitting the infection to other species (Corner et al., 1981). This conclusion was evidenced by a 
major decline in prevalence of M. bovis infection among feral swine (from 19 percent in 1972 to less 
than 1 percent in 1992). The decline coincided with the culling of water buffalo and a marked 
reduction of bovine TB among cattle (de Lisle et al., 2001). In New Zealand, M. bovis-infected feral 
swine were also considered spillover hosts, contracting the disease by scavenging carcasses of 
infected brushtail possums (Wakelin et al., 1991). 
 
On Molokai, Hawaii, the epidemiologic role of feral pigs in a multispecies outbreak of bovine TB was 
investigated but never clearly defined (de Lisle et al., 2001). Although M. bovis was efficiently 
transmitted among pigs (estimated prevalence 20 percent), the disease was controlled in cattle by 
depopulating infected cattle and culling infected pigs and axis deer (Essey et al., 1981; 1983). Post-
culling bovine TB prevalence in feral swine was 3.2 percent (Essey et al., 1983) and although TB 
continues to be identified in swine, spillover into cattle on the island has been mitigated by 
maintaining spatial separation of swine from cattle. 
 
Recently, M. bovis was isolated from 15 of 63 wild boars in northern Italy, an area where the disease 
existed in cattle (Serraino et al., 1999). A common M. bovis isolate was found in both cattle and wild 
boar, leading the authors to conclude that feral pigs were probably infected by commingling with 
pastured cattle. In Spain, Aranaz et al. (1996) used DNA fingerprinting of M. bovis isolates to 
demonstrate transmission of bovine TB among cattle, deer, and wild boar. Parra et al. (2006) noted 
an increase in the apparent prevalence of bovine TB (from 1.4 to 2.3 percent) among feral swine in 
western Spain, and Hermoso et al. (2006) reported that M. bovis persisted in free-ranging Iberian wild 
boar where cattle and deer were absent. Naranjo et al. (2008) presented several lines of evidence 
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indicating that free-ranging Mediterranean wild boar are true maintenance hosts of bovine TB, able to 
maintain and transmit infection to other species. 

6.5.4 Other species 

The European badger has been implicated as a source of bovine TB infection among British cattle, as 
incidence of the disease has increased over the past decade (Cheeseman et al., 1989; Delahay et 
al., 2000; Palmer, 2007). M. bovis was first isolated from badgers in Switzerland in 1957, where it is 
believed they were infected by contact with TB-infected roe deer (Bouvier, 1963). The first TB-
infected badger in Britain was identified in 1971 (Muirhead et al., 1974) on a farm that had reactor 
cattle with TB lesions (Muirhead et al., 1974). Three years later, M. bovis-infected badgers were 
confirmed in Ireland (Noonan et al., 1975). Woodroffe et al. (2005) reported overall prevalence of 12 
percent M. bovis infection (n=2,692) among adult badgers in southwestern England. Adult males 
were at greater risk of infection (prevalence 14 percent) than adult females (prevalence 10 percent). 
In another study, Delahay et al. (2000) calculated an annual bovine TB prevalence of 10 to 18 
percent in badgers; between 1 and 8 percent of animals were culture-positive and excreting bacilli. It 
is thought that badgers in Britain became infected with M. bovis during the late 1800s and early 
1900s when the disease spilled over from British cattle, many of which were infected with bovine TB 
(Palmer et al., 2007). 
 
Woodroffe et al. (2005) provided the first clear evidence of an association between M. bovis infection 
in cattle and badgers. Not only were patterns of infection in the two species spatially correlated, but 
there were also close linkages in the distribution of M. bovis strain types in the two species. The data 
did not allow an assessment of the relative importance of badger-to-cattle vs. cattle-to-badger M. 
bovis transmission. 
 
Culling badgers has been a central component in attempts to control bovine TB in British cattle for 
many years (Vicente et al., 2007). A large-scale field experiment (the Randomized Badger Culling 
Trial) was initiated in 1998 to compare the effects of different methods of bovine TB control. Three 
different treatments for badgers were tested; no culling, targeted culling in areas that TB had been 
identified in cattle, and proactive culling designed to reduce badger densities to low levels across 
entire trial areas. After 5 years, it was determined that reactive culling was causing increased levels of 
TB in cattle, and this portion of the trial was terminated (Donnelly et al., 2003). The failure of reactive 
culling to reduce TB incidence may have been caused by disruption of badger social organization, 
resulting in increased movement and greater contact between groups (Tuyttens et al., 2000). Social 
restructuring of M. bovis-infected badger populations has been linked to increased disease 
transmission among badgers (Rogers et al., 1998) and could have similar effects on disease 
transmission between badgers and cattle (Palmer, 2007; Woodroffe et al., 2005). 
 
New Zealand has a comparable TB situation with the brushtail possum, an exotic species imported 
from Australia to establish a fur industry. Between 1837 and 1922, at least 30 groups of possums 
were brought to New Zealand, bred in captivity, and released in 160 sites around the country. 
Possums thrived because of abundant food and lack of predators and competition; thereby quickly 
expanding their range. There are an estimated 60 to 70 million possums nationwide and the species 
occupies more than 90 percent of New Zealand’s land area. Possum density estimates in some areas 
are 20 times that of their native habitats in Australia (O’Neill and Pharo, 1995, cited by Palmer, 2007). 
 
Bovine TB was probably introduced to New Zealand through the importation of cattle in the 1800s. By 
the early 1900s, bovine TB was seen as a serious animal and public health problem (Palmer, 2007). 
The first reported case of TB in a wild possum in New Zealand was in 1967 (Ekdahl et al., 1970). 
However, the susceptibility of brushtail possums to infection with M. bovis had been established much 
earlier (Bolliger et al., 1948). Apparent prevalence estimates of TB in possums, based solely on 
lesions, are usually quite low (less than 5 percent). However, true prevalence may be much higher 
because possums usually die within months of showing clinical signs (de Lisle et al., 2001). Possums 
in New Zealand probably acquired M. bovis from cattle or other wildlife, as M. bovis infection has 
never been found among possums in Australia (Palmer, 2007). 
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TB in possums and cattle has been epidemiologically linked (Collins et al., 1988) and there is ample 
evidence supporting the role of possums as maintenance hosts of bovine TB in New Zealand (Morris 
and Pfeiffer, 1995). This evidence includes:  clear spatial and temporal association between TB 
infection in possums and incidence of infection in domestic stock;  persistent TB infection in possums 
without any evidence of spillback infection from domestic animals or wildlife;  prolonged reduction in 
bovine TB incidence in cattle following control programs to reduce densities of tuberculous possums; 
and  an epidemiologic pattern, verified through M. bovis DNA analysis, consistent with long-term 
maintenance of bovine TB infection among groups of possums with repeated infection of other 
species, including cattle. 
 
Bovine TB occurs in wild ferrets (Mustela putorius) in New Zealand, and tuberculous ferrets occupy 
many areas inhabited by other infected wildlife. Caley and Hone (2005) concluded that ferrets in 
some areas were at high enough densities to be maintenance hosts of bovine TB. Since rabbit 
hemorrhagic disease was introduced in 1997, rabbit densities have declined by an average of 50 
percent on New Zealand’s South Island. It is likely that this decline in rabbits has also led to a 
reduction in ferret densities, which lessens their chances of acting as maintenance hosts for TB. The 
role of ferrets as a source of bovine TB infection for domestic livestock remains undetermined 
(O’Reilly and Daborn, 1995). 
 
In Africa, one of the more serious effects of bovine TB may be on spillover hosts, particularly top 
predators and scavengers (de Lisle et al., 2001). Predators are apt to target TB-debilitated prey 
species like buffalo or kudu, or may scavenge infected carcasses, thus receiving frequent high 
exposures to M. bovis. Keet (1998) found that lions in Kruger National Park became infected with TB 
as a result of spillover from infected buffalo. In some parts of the Park, more than three-fourths of 
randomly-tested lions had positive tuberculin skin tests. TB has also been diagnosed in cheetah, 
leopard, and chacma baboon in the Park. Baboons most likely became infected by scavenging the 
remains of infected buffalo. Similarly, TB was observed in olive baboons (P. anubis) in the Masai 
Mara Game Reserve, where the likely source of infection was M. bovis-infected waste material from a 
cattle abattoir (Keet et al., 2000). The greater the prevalence of TB in maintenance hosts, the greater 
the exposure and infection rate among predators and scavengers. Bovine TB may affect these low-
density populations by reducing longevity and altering social structures (de Lisle et al., 2001). 
 
6.6 Mitigating bovine TB in wildlife populations 

6.6.1 Vaccination 

Although disease eradication may be the ultimate goal of wildlife immunization, lowering the rate of 
pathogen transmission is a more practical and immediate aim (Palmer et al. 2007). This objective can 
be achieved with a vaccine that reduces infection and bacterial shedding, rather than preventing 
primary infection (Buddle et al., 2006). 
 
BCG has been used as an anti-TB (M. tuberculosis) vaccine in humans since the early 1920s. 
Despite its variable effectiveness, it is still one of the most widely used vaccines throughout the world. 
BCG has been tried as a means of controlling bovine TB in cattle in many countries but has been 
abandoned because it is poorly efficacious and induces sensitivity in vaccinated animals that 
interferes with tuberculin testing. Nevertheless, the search for a more effective TB vaccine continues, 
and BCG remains the gold standard against which all experimental TB vaccines are compared. 
Currently, there are no accepted TB vaccination programs for livestock (Nol et al., 2008). 
 
Several countries are conducting research on BCG vaccine efficacy in wildlife, including New 
Zealand, the UK, the Republic of Ireland, the United States, and South Africa. Griffin et al. (2001, 
2006) demonstrated that BCG, administered subcutaneously to red deer, provided significant 
protection against intratonsillar M. bovis. Likewise, Palmer et al. (2007) found that subcutaneous BCG 
yielded moderate protection to white-tailed deer against bovine TB. Especially promising are recent 
studies showing the efficacy of orally-delivered BCG in wildlife. Nol et al. (2008) found that a lipid-
formulated oral bait preparation containing BCG offered significant protection to white-tailed deer 
against M. bovis. Similar bait preparations have induced protection against bovine TB in brushtail 
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possums and European badgers (Buddle et al., 2006; Corner, 2006). These studies bring closer the 
possibility of an oral vaccine that is both effective and practical for controlling bovine TB in free-
ranging animal populations. 
 
Oral immunization of wildlife presents many challenges but has several advantages over traditional, 
hands-on vaccination. Benefits include the ease of vaccine distribution at a relatively low cost, the 
capacity for multiple dosing, a lower rate of disturbance and trauma to animals, and the potential 
stimulation of mucosal immunity. Improved levels of delivery and efficacy can be achieved by 
developing selective baiting techniques, optimizing the frequency of vaccine and bait distribution, and 
improving vaccine efficacy through genetic engineering. The disadvantages of oral vaccination are 
the difficulties in controlling vaccine exposure of target and non-target animals (including humans) 
and preserving vaccine efficacy and stability in the environment. Oral immunization using 
recombinant Vaccinia-rabies glycoprotein has achieved widespread success in controlling rabies 
epizootics in wildlife, including canids and raccoons (Slate et al., 2005). This success could provide a 
model for managing TB and other wildlife diseases. 
 
6.6.2 Nonlethal deterrents 

Historically, lethal control (i.e., culling or hunting) has been the primary method for controlling wildlife-
disease conflicts with humans and livestock. However, in most situations, the public supports 
nonlethal methods to control wildlife conflicts (Reiter et al., 1999; Loker et al., 1999). Extensive 
research has been devoted to developing methods to mitigate contact between livestock and free-
ranging cervids. Mitigations to reduce or prevent livestock interactions are generally grouped into four 
categories: 1) fencing, 2) frightening devices, 3) biological methods, and 4) livestock management. 
 
Fencing: To prevent cervids from accessing cattle feed, physical barriers are generally employed as 
fencing around stored cattle feed or cattle dry lots (winter yards) (Figure 6.3). Fencing that is effective 
at preventing deer from accessing stored cattle feed has been developed (Beringer et al., 2003; 
VerCauteren and Lavelle 2003; VerCauteren et al., 2006). However, for these methods to be 
successful, producers must maintain fencing and ensure that gates to stored feed are kept closed. 
The data suggest that up to 50 percent of landowners actively using fences to protect stored cattle 
feed do not close the gate to feed-storage areas, resulting in potential sharing of feed sources 
between deer and cattle (Berentsen, personal communication). 
 
The NWRC is developing new methods to prevent deer from accessing stored cattle feed. These 
include replacing conventional gates with bump gates that will allow farmers to drive machinery into 
and out of feed-storage areas without manually closing the gates. However, recent testing of bump 
gates combined with deer guards (e.g., cattle guards) found that over time the gates failed and deer 
learned to walk or jump across deer guards (VerCauteren,et al., 2009). Additional research is being 
conducted to test the use of polyvinyl chloride (PVC) curtains to prevent deer from accessing stored 
feed areas. PVC curtains are used in place of gates and are designed to allow producers access to 
stored feed without relying on gates (Berentsen, personal communication). 
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Figure 6.3  Examples of fencing to prevent deer from accessing cattle feed 
 

Good design: No gaps in gate door and material without 
rungs prevent entry to stored hay. 
 
Photo by USDA-APHIS-WS-NWRC 

Poor design: Large gap in gate and between rungs of 
gate allow deer entry to stored hay. 
 
Photo by USDA-APHIS-VS-CEAH 

  
 
Frightening devices: Frightening devices are used to create psychological stimuli that train wildlife to 
avoid areas where the deterrents are used. Available deterrents include propane exploders, lasers, 
motion-activated yard guards, and bio-acoustic devices. Many studies have evaluated the 
effectiveness of these devices (Belant et al., 1996; VerCauteren et al., 2003; VerCauteren,et al,, 
2009; Beringer, 2003; Gilsdorf et al., 2002). However, developing a system that is consistently 
effective has proven difficult. Most devices are effective only for a short duration (a few days to 
weeks) until deer become habituated to the device. Currently, the most promising stimuli for 
frightening deer are animal-activated devices that stimulate vision and hearing (Gilsdorf et al., 2002). 
 
Biological management: Guard dogs have been used for centuries to protect domestic sheep from 
predators (Green and Woodruff, 1990; Andelt, 1992). More recently, dogs have successfully 
prevented deer from damaging tree plantations (Beringer, 1994). This concept is currently being 
evaluated by NWRC as a tool to prevent deer from visiting areas of stored cattle feed and farm yards, 
specifically to mitigate transmission of M. bovis. Preliminary results from studies in Michigan indicate 
that dogs may prevent deer from utilizing stored cattle feed (VerCauteren et al., 2008). 
 
6.6.3 Lethal control of Cervidae 

It is uncertain what effect intensive culling efforts has on the control or reduction of M. bovis in free-
ranging cervid populations. Nonspecific culling and increased hunter-harvest has often been used in 
an attempt to control or eliminate disease from free-ranging populations, based on the assumption 
that lower density means less transmission of disease (Barlow, 1996; Essey et al.; 1983; Wobeser, 
2002). However, this assumption is rarely tested, and it is unclear if M. bovis transmission in free-
ranging deer populations is primarily density dependent, frequency dependent, or some combination 
of the two. Partial nonspecific culling of host populations can cause eradication of a pathogen with 
primarily density-dependent, but not frequency-dependent transmission, unless selective culling of 
known infected individuals in a population is conducted (Schauber and Woolf, 2003; Gross and Miller, 
2001). Additionally, public support for lethal control methods can be controversial and often difficult to 
implement long term from a social perspective (Reiter et al. 1999; Loker et al., 1999). 
 
Nonselective partial culling of a free-ranging population assumed to have density-dependent disease 
transmission is optimally employed when the basic reproductive rate (R0) of the pathogen can be 
estimated. Knowledge of R0 for a population is not required for culling to be successful, but it does 
provide valuable information related to the number of individuals that must be removed to maximize 
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the probability that a pathogen is forced to extinction. R0 has not been estimated for M. bovis infection 
in free-ranging cervid populations in North America. Estimates of R0 not only are important for efforts 
to control infection by culling but are also necessary for other control measures (e.g., vaccination) that 
attempt to reduce or eliminate a pathogen from a host population. 
 
The efficacy of culling strategies for controlling M. bovis infection in North American cervid species 
has not been reported in the research literature. Efforts to eradicate M. bovis from white-tailed deer 
populations by culling and hunter-harvest in Minnesota and Michigan have been unsuccessful 
(USDA, 2008, Payeur et al., 2002). An effort to eradicate M. bovis from feral swine on Hawaii’s 
Molokai Island reduced apparent prevalence of M. bovis in feral swine populations from 20 to 3.2 
percent, but failed to completely eradicate the pathogen from the population (Essey et al., 1983). 
Nonspecific culling of badgers in the UK has often resulted in increased spread of M. bovis in both 
badger and cattle populations and further complicates control efforts (Tuyttens et al., 2000; Donnelly 
et al., 2006, 2007). Increased hunting of elk in Riding Mountain National Park, Canada, along with 
test-and-cull strategies intended to control M. bovis infection also failed to eradicate this pathogen 
(Thoen, 2006). 
 
Research is sparse on the effectiveness that culling and associated strategies (nonspecific or 
targeted) have in eradicating pathogens from free-ranging cervid populations in North America. 
Currently, the only published field studies on culling strategies in North American cervid populations 
focus on CWD in Colorado mule deer (Wolfe, 2004; Conner, et al., 2007), brucellosis in Rocky 
Mountain elk in the Wyoming portion of the Greater Yellowstone ecosystem (Scurlock, 2006, 2007, 
2008), bovine TB in elk in Riding Mountain National Park (Thoen, 2006), and bovine TB in white-
tailed deer in Michigan (Schmitt, 2004). Except for Conner et al. (2007), all of these studies have 
addressed only test-and-cull strategies for control of pathogens in wild populations and have not 
tested more targeted culling strategies (e.g. removing high-risk individuals, removing family groups, 
and focal culling). 
 
In cases in which testing and culling have been studied and reported in North American Cervidae, this 
strategy has not been shown to be very effective in eradicating a pathogen from a population (Wolfe, 
2004; Scurlock, 2006, 2007, 2008; Schmitt, 2004). Trapping, marking (e.g. radio collaring or GPS 
collaring) and testing wildlife populations is exceedingly expensive and difficult to implement at the 
landscape or population scale. Moreover, bovine TB tests with adequate sensitivity and specificity for 
use in live cervids are currently unavailable; thereby complicating identification of TB-positive 
individuals. Recapturing and removing test-positive animals is also expensive, labor intensive, and 
often fails (Schmitt, 2004). An accurate trapside test for TB in cervids would be helpful to avoid the 
need to recapture and handle infected animals more than once. 
 
Models of culling strategies for CWD in mule deer have indicated that nonselective culling may not 
eliminate CWD from free-ranging populations (Gross and Miller, 2001). These models suggest that 
early and aggressive targeted culling shows the best promise of preventing the establishment of new 
endemic foci of infection. However, the models have been widely debated, largely because of 
assumptions regarding transmission (density vs. frequency dependent) (Schauber and Woolf, 2003, 
Wasserberg, 2009). While CWD differs biologically from bovine TB, it possesses similar 
epidemiologic characteristics, including an extended latency period, environmental persistence, and 
tolerance to environmental exposure. Several culling strategies designed to control CWD in mule 
deer are being tested (M.W. Miller, personal communication). Research on culling strategies related 
to control of CWD may provide some insight for management of M. bovis infection in free-ranging 
deer populations. 
 
The effects of intensive culling and hunter-harvest on cervid movements and dispersal are unknown. 
Numerous studies have shown that recreational hunting has an effect on animal behavior and may 
increase or alter animal movements at both the population and individual animal level (Roland et al., 
1988; Root et al., 1988; VerCauteren et al., 1998; Kilpatrick et al., 1999; Conner et al., 2001). 
Changes in animal behavior resulting in increased movement or dispersal have been reported for a 
wide range of disturbances for many wild ungulate populations in North America. Culling or increased 
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hunting of cervids in response to disease problems is generally more intensive than recreational 
hunting and may result in greater or more pronounced animal movements. It is currently unclear if 
intensive culling and increased hunting of infected populations may serve primarily as a population 
sink (i.e., removing infected animals from a population) or if these practices serve to disperse 
potentially infected animals outside of the area of infection, further exacerbating the problem. 
 
6.6.4 Risk Identification 

Risks from wildlife trade: Illegal wildlife trade presents a serious risk of introducing foreign animal 
diseases into the United States. Entry and feral establishment of a new host species, particularly the 
brushtail possum, would have disastrous ecologic and economic consequences, all but nullifying 
efforts to control M. bovis in North America. After it was introduced to New Zealand, the brushtail 
possum rapidly expanded its range and now occupies nearly the entire country. Due to its 
abundance, susceptibility to TB, and shared habitat with farm animals, the brushtail possum is the 
most important wildlife disease reservoir in New Zealand (de Lisle et al., 2001). The U.S. Fish and 
Wildlife Service and VS have prohibited the import of the brushtail possum since 2002. 
 
Risks from feral swine: There is conflicting scientific evidence regarding the role of feral swine in the 
epidemiology of bovine TB. In Australia and New Zealand, wild pigs are spillover hosts, contracting 
TB through consumption of infected buffalo and possums (Corner, 2006). While M. bovis was highly 
prevalent (>40 percent) among feral pigs in some parts of northern Australia, the predominant lesions 
were confined to mandibular lymph nodes, indicating oral infection through scavenging (Corner et al., 
1981). Therefore, even though bovine TB infection could be transmitted between pigs by cannibalism, 
there was no significant shedding of the bacteria and the animals did not play a significant role in the 
epidemiology of the disease. This was confirmed when bovine TB disappeared from swine after it 
was controlled in cattle and water buffalo (McInerney et al., 1995; Corner, 2006). 
 
In contrast, Naranjo et al. (2008) reported that wild boar in Mediterranean ecosystems sustained TB 
infection and appeared capable of transmitting the disease to other species. Supporting evidence 
included high TB prevalence among wild boar fenced from contact with other species, lesions in 
thoracic lymph nodes and lungs suggesting respiratory infection and transmission, and extensive 
lesions in juvenile pigs that likely represented the main shedders of M. bovis. Likewise, Aranaz et al. 
(2004) and Hermoso et al. (2006) concluded that feral swine in Spain were maintenance hosts of M. 
bovis based on ecological factors and lesion characteristics. Circumstances favoring M. bovis 
transmission between wildlife and livestock included artificial increases in wild game populations 
stimulated by a robust hunting industry, lack of natural predators, and intensive cattle grazing in game 
preserves with susceptible wildlife hosts. These findings contrasted with other studies of wild boar in 
Spain (Gortazar et al., 2003) and in Italy (Serraino et al., 1999) that found TB lesions were more 
localized to the alimentary system. The predominance of well-encapsulated and calcified lesions in 
wild boar indicated a prolonged and chronic infection in this species (Parra et al., 2006). 
 
Given the range expansion of feral swine in the United States (Figure 6.4), there is a great deal of 
concern about the animals’ almost limitless capacity for carrying diseases that impact agriculture and 
human health. Feral swine may carry more than 30 bacterial and viral diseases in addition to 
numerous parasites that affect people, pets, other farm animals, and wildlife. Feral pigs have been 
documented in at least 44 States, nearly doubling the number occupied since 1988 (Hutton et al., 
2006). Particularly worrisome is the recent appearance of feral swine in Michigan, where the potential 
exists for interaction with TB-infected white-tailed deer and cattle. Once a population of wild pigs 
becomes established, it is next to impossible to eradicate. Prevention of escapes or releases and 
timely elimination of new populations are the best management practices known at this time. In view 
of the risks presented by these animals, Hutton et al. (2006) argued for a federally- coordinated, 
comprehensive feral swine control program. To succeed, such a program would require legislation 
and regulatory changes, a sustained multidimensional public education effort, overt and covert law 
enforcement, and an aggressive, adequately funded control effort. 
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Figure 6.4  Current range of feral swine in the United States 

 
Source: Data compiled and provided by APHIS Wildlife Service’s National Wildlife Disease and Emergency Response 
Program, Southeastern Cooperative Wildlife Disease Study and State reports. 
 
 
Risks from birds: Although the potential role of birds in the transmission of M. bovis has not been 
extensively studied, published and unpublished surveillance and clinical data suggest that birds are 
less susceptible than mammals to M. bovis infection and do not play a large role in the transmission 
of bovine TB. This assessment is supported by the observation that despite the abundance and 
mobility of wild birds and their extensive contact with other animals and humans, the distribution of 
bovine TB is relatively circumscribed and can be explained on the basis of terrestrial animal 
movements, both natural and anthropogenic. There may be special situations in which birds do play a 
role in the epidemiology of bovine TB. There has been considerable interest, for example, in wild 
birds commonly associated with cattle production (i.e., farm visitation), and research has 
demonstrated a wide range of susceptibility to M. bovis infection among such peridomestic species 
(Butler et al., 2001; Fitzgerald et al., 2005b; Clarke et al., 2006). Data on M. bovis susceptibility are 
still lacking for some species, such as European starlings which are believed to transmit E. coli O157 
between dairies (LeJeune et al., 2008) and frequently move, sometimes long distances, between 
feedlots (Gaukler et al., 2008). Similarly, blackbirds often congregate in very large numbers on 
feedlots and dairies but have not been investigated for their possible role in TB transmission (Clark et 
al., 2003). Research is particularly needed on the role of such birds in mechanical transport of M. 
bovis-contaminated feces, feed, or other material between farms, feedlots, and dairies in regions with 
TB-infected cattle populations. 
 
Areas at risk due to historic M. bovis infection in wildlife: Bovine TB infections in free-ranging wildlife 
may be silent, existing for years or even decades before being detected in hunter-killed animals or 
emerging or re-emerging in local cattle populations. Examples include Michigan, where TB is thought 
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to have been spilled over from cattle to white-tailed deer 40 to 50 years before it was recognized as a 
serious threat, and on Hawaii’s Molokai Island, where TB apparently smoldered for years in feral 
swine before spilling back into cattle. In Riding Mountain National Park, Manitoba, bovine TB was 
identified in 1937 in plains bison and again in the 1970s in wolf pups (Tabulenas, 1983; Carbyn, 
1982). During the 1950s and 1960s, M. bovis was endemic in Canadian cattle herds and several 
outbreaks occurred in cattle surrounding the Park (Thoen, 2006). Manitoba was declared TB-free in 
1986, but tuberculosis resurfaced 5 years later in cattle and elk, more than 50 years after TB was first 
discovered in wildlife. Lack of surveillance, poor diagnostic tests, and the long latency period for 
bovine TB may pose risks for re-emergence of this pathogen in areas where it has historically existed. 
 
Bovine TB was reported in free-ranging white-tailed deer in New York in 1933, 1937, and again in 
1961 (Levine, 1934; LeDune, 1937; Friend, 1963; Wagner, 1993). These reports occurred from 
hunters reporting unusual findings in deer after harvest. Moreover New York has been plagued by 
periodic outbreaks of bovine TB in cattle and in confined deer herds—the most recent in 2008. 
Extensive surveys of New York’s wild deer populations have not been conducted to determine if a 
wildlife reservoir is present. The periodic identification of bovine TB in wild deer and the continued 
occurrence of bovine TB in confined populations raise the likelihood that bovine TB is present in New 
York’s deer population. 
 
In 1994, bovine TB was identified in free-ranging mule deer and coyotes surrounding an infected, 
confined elk farm in southern Montana (Thoen, 1992; Rhyan, 1995). The mule deer and coyote 
populations surrounding the farm were culled and surveyed for the presence of bovine TB, resulting 
in the identification of bovine TB in both populations. Elk populations near the farm were also 
surveyed with no findings of bovine TB (Rhyan, 1997). At the time, it was assumed that the infection 
would not persist in wild populations without a domestic livestock source for bovine TB. However, 
recent evidence from Michigan and other areas with endemic bovine TB in wildlife populations 
indicates that it may be possible for deer populations to maintain the disease. 
 
Risks from unregulated game ranching and transport: Exotic game ranching is a rapidly growing 
segment of the U.S. animal agriculture industry. This expanding industry is largely unregulated in the 
United States and poses a risk for introducing and establishing additional areas of endemic wildlife 
diseases, including bovine TB. In some locations, exotic hoofstock or native cervids are released or 
baited into a semi-free-ranging environment (maintained by three-sided fencing) for recreational 
hunting. The animals are fed corn or other protein and often commingle with cattle and feral swine 
(Figure 6.5). This is an ideal environment for pathogen exchange. In south Texas, exotic and native 
hoofstock game ranching is often combined with cattle production, and in some areas these 
nontraditional ranching operations have replaced cattle production as a form of animal agriculture. 
The exotic game ranching industry is also expanding to other southern and Midwestern States (Teer, 
1991, Mungall, 2000; 2007). 
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Figure 6.5 Example of livestock and wildlife use of a protein feeder in South Texas. 

 
Source: Anonymous private ranch in South Texas. 
 
Because game ranching has limited regulation, little is known about species locations, numbers, how 
animals are managed and moved, or what diseases or parasites they may carry. Few animals on 
game ranches are routinely tested for TB or other endemic or foreign animal diseases, and 
unregulated transport of animals between farms or movement of potentially infected carcasses by 
hunters present a risk for spread and introduction of pathogens (Jennelle, 2009; VerCauteren, 2008). 
It has been estimated that Texas has more than 70 species of exotic ungulates, numbering close to 
200,000 animals (Traweek, 1995). Incomplete fencing and poor maintenance of high fences has 
allowed many animals to escape. At least five species of exotic ungulates exist as free-ranging 
populations in Texas and other regions of the United States where they are commonly farmed or 
have been intentionally released (Traweek, 1995; Gray, 1980; Mungall, 2000; 2007; Teer, 1991; 
Witmer and Lewis, 2001; Chapman, 1995; Feldhamer, 1988; Leslie, 2008). 
 
The extensive unregulated interaction of domestic livestock with native and exotic game animals 
(e.g., along fence-lines, at sales, and at feeding stations), raises the risk of bovine TB introduction 
and may result in serious economic and ecological consequences. Additionally, Texas and other 
southern and Midwestern States frequently receive cattle from Mexico that are often infected with 
bovine TB. Because of the unregulated and unsurveyed nature of exotic ungulates and the potential 
introduction of bovine TB from Mexico, States with exotic livestock may be at risk for the emergence 
of disease in free-ranging wildlife populations. To address this situation, a national survey of exotic 
ruminants, both ranched and free-ranging populations, should be considered as well as a compilation 
of State and Federal regulatory requirements for keeping and moving exotic game. Estimating contact 
rates between domestic ruminants, exotic animals, and native wildlife would require a more extensive 
research effort, but may also be useful. 
 
 



 

112 

 

Risks from recreational and institutional feeding: Recreational and institutional feeding of deer and elk 
may also contribute to the establishment of bovine TB in wildlife. Feeding and baiting of white-tailed 
deer in Michigan helped to establish bovine TB in that State and other States that use this practice 
would be at risk if bovine TB were introduced (Miller, 2003; Schmitt, 1997; Hickling, 2002; Palmer, 
2004). Recreational feeding of wildlife for wildlife viewing or hunting is common throughout North 
America and has only been banned or restricted in 16 States. The remaining 34 States have limited 
or lax regulations for wildlife feeding (Figure 6.6). 

 
 

Figure 6.6  State regulations allowing recreational feeding of wildlife 
 

 
 
 
The Federal and State feeding grounds in Wyoming (where brucellosis is an ongoing problem in elk) 
are of particular concern regarding feeding of wildlife. Winter feeding of elk in Wyoming has a long 
history. In 1912, the National Elk Refuge was the first feedground created to mitigate damage to hay 
stored for wintering cattle. The number of feedgrounds has continued to increase, comprising 1 
federally- and 22 State-operated feeding grounds in 3 counties. On average, these feeding grounds 
support 20,500 elk annually, and an estimated 80 percent of the total elk population winters on or 
near these grounds (Dean, 2004; Smith, 2001; Boyce, 1989). Social and political constraints have 
allowed the continued operation of the Wyoming feeding grounds, which have become a source of 
brucellosis infection (Smith, 2001). If bovine TB were introduced to these areas by infected livestock 
or other sources, it could quickly become established and spread to other populations, where it would 
be very difficult to eradicate (Peterson, 2003). During severe winters when animal mortality is 
expected to be high, many other western States also periodically feed populations of elk, deer, and 
sheep (Smith 2001). Although less of a risk because of the infrequent nature of feeding programs, 
these practices pose a risk of spreading of bovine TB if introduced. 
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6.7 Discussion 

6.7.1 Disease surveillance 

Bovine TB has been identified in nine geographically distinct wildlife populations in North America and 
is endemic in at least five of these populations. M. bovis has been detected in free-ranging wildlife 
often decades before it has re-emerged in local cattle populations. An example is Riding Mountain 
National Park in Manitoba, Canada, where bovine TB was identified in plains bison in 1937 and again 
in the 1970s in wolf (Canis lupus) pups (Tabulenas, 1983; Carbyn, 1982). During the 1950s and 
1960s, bovine TB was endemic in Canadian cattle herds and several outbreaks occurred in cattle 
surrounding the Park (Thoen, 2006). Manitoba was declared TB-free in 1986, but 5 years later TB 
resurfaced in cattle and elk, more than 50 years after TB was first discovered in wildlife. Recent 
evidence suggests that the same strain of M. bovis has been circulating in Cervidae, cattle, and 
wolves for at least three decades (Lutze-Wallace, 2005). 
 
A similar situation exists in the United States. In 1975, a white-tailed deer with TB was killed by a 
hunter in Michigan. No systematic surveys were conducted after this event and it was nearly two 
decades before an endemic focus of bovine TB became evident in free-ranging deer and had spread 
to the State’s cattle herds (Thoen, 2008). New York has been plagued by periodic outbreaks of 
bovine TB in cattle and in confined deer herds, the most recent in 2008. Bovine TB was reported in 
free-ranging white-tailed deer in the State in 1933, 1937, and again in 1961 (Levine, 1934; LeDune, 
1937; Friend, 1963; Wagner, 1993). These events highlight the risk of TB re-emergence in areas 
where it has historically existed in wildlife and cattle. This risk is exacerbated by poor diagnostic tools 
and a lack of sufficient funds for robust wildlife disease surveys. 
 
6.7.2 Population and behavior management 

The development of effective mitigation measures to prevent or reduce contact between livestock and 
free-ranging cervid populations has been challenging. In addition to technical difficulties, public 
participation and compliance have impeded progress. More research is needed to develop effective, 
practical, and economic mitigations. Some of the best solutions may prove to be the simplest, e.g., 
the use of livestock protection dogs. 
 
Although culling is sometimes controversial, it can be an important management tool to reduce 
disease spread. Research has not addressed issues related to optimal culling strategies for disease 
control in North American free-ranging cervid populations. Studies on the behavioral effects of 
intensive culling or hunting, specifically for reducing disease transmission, are needed to better 
determine the effects on deer populations and the dynamics of M. bovis infection in these 
populations. Selective culling strategies that target high-risk animals or groups should be investigated 
to design practical and effective culling programs, such as deer that frequent farms where they might 
contact cattle, or targeting cohorts (e.g., males or family groups) that are more likely to be infected 
and spread disease to herd-mates. 
 
6.7.3 Vaccination  

Progress has been made in the search for new TB vaccines, including vaccines designed for humans 
and others intended for use in cattle and wildlife (Buddle et al., 2006). Some vaccine strategies 
involve supplementing the human TB vaccine (BCG) with DNA or protein subunits. The complete 
genomes of M. tuberculosis and M. bovis have been sequenced, and since these pathogens are so 
closely related a vaccine effective against one organism may also be effective against the other. 
Significant challenges remain, including a better understanding of wildlife immune responses to 
different vaccines and vaccination methods, as well as more effective delivery methods and adjuvants 
that stimulate immunity (Buddle et al., 2006). Results of recent oral vaccination studies in deer and 
other wildlife are promising. In the United States, further development and licensing of an oral BCG 
vaccine for white-tailed deer may be a valuable tool for addressing bovine TB issues in Michigan and 
Minnesota. 
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6.8 Summary 

Bovine TB is a readily controlled disease when there is no reservoir of M. bovis infection in wildlife 
(O’Reilly and Daborn, 1995). Conversely, once bovine TB has been introduced into an ecosystem 
with free-ranging maintenance hosts, the infection is almost impossible to eradicate without extreme 
measures. The most economical and effective control measure for bovine TB in wildlife may be mass 
oral vaccination with progressive reduction in susceptibility of target species. A robust program of 
feral swine control and better regulation and surveillance of the game ranching industry is also 
needed. The 2008 outbreak of wildebeest-associated malignant catarrhal fever in Texas cattle is a 
clear indication that changes are necessary to protect animal agriculture from further spread of bovine 
TB and other diseases in the United States.  
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7. Zoo, Exotic, and Pet Animals  

7.1 Introduction 

The last assessment of risk factors for M. bovis in the United States was performed in 1992 (USDA, 
1992). At that time, it was noted that failure to eradicate bovine TB from exotic hoofstock was a 
concern, and the presence of M. bovis in exotic species represented a reservoir of infection for cattle, 
other domestic animals, and was a public health hazard. M. bovis has still not been eradicated from 
exotic and wild animals. The status and risk factors of M. bovis in captive exotic animals, wild 
animals, and pets are discussed in this chapter. 
 
7.2 Current tuberculosis situation in captive exotic, wild, and pet animals 

Many captive exotic animals are susceptible to M. bovis, such as members of the Bovidae, Giraffidae, 
Cervidae, and Camelidae families, and other animals including primates, rhinoceros, hippopotamus, 
elephants, tapirs, and swine. The transmission of TB is facilitated by conditions of captivity including 
crowding, common feed and water sources, and facilities that are difficult and expensive to sanitize. 
The first case of TB in captive exotic, wild, and pet animals was recorded in a chimpanzee (Thoen et 
al., 1976) only 10 years after the first modern zoo was established in London in 1826. . 

   
7.2.1 Captive exotic animals in zoos, exhibits, and private collections 

In the United States, NVSL records show that M. bovis was diagnosed in zoo and captive animals 
between 1993 and 2008 for antelope, goat, gerenuk, sitatunga, llama, snow leopard, elephant, and 
rhinoceros.11  Recently, outbreaks of M. bovis have occurred in zoos or wild animal parks worldwide. 
An epizootic of M. bovis in a zoological park in Louisiana affected four white rhinoceroses and two 
Colobus monkeys. Personnel at the park who were exposed to the affected animals were found TB-
positive by intradermal skin test results (Stetter et al., 1995). A report from France showed M. bovis 
was diagnosed in baboons, leopards, and a sea lion (Thorel et al., 1998). In Australia, M. bovis was 
found in three seals with documented transmission to one of the trainers (Thompson et al., 1993). A 
German wild animal park detected M. bovis in three pot-bellied pigs, a red deer, a buffalo, and two 
European lynxes, but sentinel animals (fox, badger, ferret, and rodents) were negative (Schmidbauer 
et al., 2007). Other mycobacterial species within the M. tuberculosis complex also cause outbreaks in 
zoological parks. For example, six animals (two Asian elephants, three Rocky Mountain goats, and 
one black rhinoceros) were infected with M. tuberculosis at the Los Angeles Zoo; (Oh et al., 2002). 

 
TB in zoo and circus elephants is a concern for public health and animal welfare. Most cases are 
caused by M. tuberculosis (Shimshony, 2008; Gavier-widen et al., 2006)12 and only rarely by M. bovis 
(Lyashchenko et al., 2006). There is one report of Mycobacterium szulgai as a cause of atypical TB in 
African elephants at Lincoln Park Zoo in Chicago, Illinois (Lacasse et al., 2007). One strain of M. 
tuberculosis was thought to spread between humans and elephants (Michalak et al., 1998.)   
 
Camelids, including llamas, alpacas, guanacos, vicunas, dromedary, and Bactrian camels are present 
in relatively small numbers in the United States. Reports of M. bovis in camelids are rare; however, 
an outbreak of M. bovis in a dromedary racing herd was reported in 2005 in Dubai (Wernery et al., 
2007). Llamas and alpacas are “common exotic” animals and are usually kept as hobby or working 
animals. Increased numbers and decreased value for llamas and alpacas has slowed their once 
explosive growth as breeding animals, and exports from South America are no longer allowed. Since 
1992, there were only three cases of M. bovis in llamas reported by NVSL and a case of generalized 
tuberculosis in a llama in Switzerland caused by Mycobacterium microti (Oevermann et al., 2004). 
Few cases of TB are diagnosed in camelids, and testing procedures for these species are not 
validated and rarely utilized. 
 

                                                 
11 National Veterinary Services Laboratories, unpublished official microbiology records, 2009. 
12 http://www.elephantcare.org/TBrefs.htm 
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7.2.2 Pet animals  

Bovine TB is occasionally reported in pet animals. M. bovis was isolated by NVSL from a cat that 
resided on a feed yard in Texas and experimental infection is known to occur in guinea pigs. 
Disseminated M. bovis was also detected in a cat in Michigan, likely a result of exposure to infected 
wildlife (Kaneene, 2002). Two unusual cases of M. bovis in dogs exist; in New Zealand (Gay et al., 
2000) M. bovis was isolated from a farm dog, and in the UK, a dog apparently became infected with 
M. bovis from its owner, who may have contracted the disease from handling a badger (Shrikrishna et 
al., 2009). These findings are likely exceptional, however. In a 2002 study from Michigan, 18 cats and 
5 dogs residing on 9 bovine TB-affected farms were tested for M. bovis and all were negative (Wilkins 
et al., 2008). 

 

7.3 Applicable regulations and testing 

The Federal government and all State governments regulate interstate animal movement, usually by 
permit and testing. Domestic Bovidae and Cervidae are regulated under the APHIS regulations for 
required TB testing; however TB tests for other species are not required.   
 
Approved antibody tests are available only for elephants and nonhuman primates. For all other 
animals, most diagnoses originate from culture or necropsy. Although not approved in many exotic 
species, skin tests may still be useful indicators, albeit with greatly reduced sensitivity and specificity. 
Private sales and public auctions are not obligated to require TB test results for transfer of ownership 
or for presence on sale grounds. Routine tests of exotic animals on private reserves, game parks, or 
wild animal exhibits are also not required. As a part of APHIS-Animal Care (AC) requirements, 
elephants held by licensees or registrants are required to be TB tested annually. For elephants, a 
triple sample trunk wash and microbiological testing along with the antibody test are the 
recommended diagnostic tests.  
 
Members of the American Association of Zoos and Aquariums (AZA) often follow additional testing 
and movement guidelines, such as the “Tuberculosis Surveillance Plan for Non-Domestic Hoofstock” 
(National Tuberculosis Working Group, 2001). This document was updated and approved by the 
United States Animal Health Association (USAHA) in 2008 (National Tuberculosis Working Group 
2008). It establishes a surveillance plan, which in turn, sets a standard for intradermal tuberculin 
testing of exotic hoofstock, collecting data, estimating the prevalence and incidence of TB in 
zoological collections, guiding personnel exposed to TB-infected animals, and preventing 
transmission of TB between zoological collections. The National Association of State Public Health 
Veterinarians also publishes a compendium outlining measures to reduce disease and injury 
associated with animals in public settings (NASPHV, 2005). 
 
7.4 Summary 

M. bovis is important in animal and public health because it is the second most pathogenic 
mycobacterium, has a wide host range, and many of the animals it affects can become sources of 
infection and live in the human environment (Isaza, 2003; Corner, 2006). Risk of M. bovis 
transmission from captive exotic animals to domestic cattle is difficult to estimate because of a lack of 
uniform surveillance. However, this risk is perceived to be low because captive exotic animals are not 
usually located near domestic cattle.  
 
In addition to elephant testing requirements, non-AZA-member exotic animal exhibitors should be 
regulated, either by separate legislation or by requiring membership in AZA to obtain an exhibitor’s 
license for other species. Points of public sale and aggregation are difficult to regulate without 
approved tests; therefore, methods of quarantine, movement restriction, or limits on the number of 
animals in contact with each other may be appropriate. An effective vaccine may assist in reducing 
the prevalence of M. bovis. 
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The risk from pet animals is extremely low to negligible. Very few case reports exist of any strain of 
mycobacteria in dogs and cats, even when they reside on affected premises. It appears that the 
primary risk of TB in dogs and cats may be by infected owners (a reverse zoonosis). 
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8. Conclusions 
This assessment evaluated five pathways for M. bovis spread into and within the United States. Of 
the pathways explored, additional understanding of each is needed to truly recognize the extent of 
risk. Additional pathways, such as the U.S. bison industry, human interaction, and fomites should also 
be considered as potential pathways; however, data limitations have prevented further exploration of 
these pathways.  
 
Legal and Illegal Imports: Additional investigation is needed to determine where Mexican-origin cattle 
commingle with U.S. cattle. Genotyping analyses continue to suggest a relationship between infection 
in cattle from Mexico and U.S. cattle, particularly in the Southwest United States. Limitations of the 
current antemortem tests indicate the need for mitigations on both sides of the U.S.-Mexico border.  
 
U.S. Cattle Industry: The outbreaks in California and New Mexico highlight the risk of bovine TB 
spread through current industry practices. The risk factors identified were commingling with Mexican-
origin steers, offsight heifer-raising, and the large number of purchased additions introduced to herds. 
Many producers are not familiar with bovine TB or do not perceive a risk of bovine TB transmission. 
Therefore, current management practices are not geared toward minimizing the risk of TB 
transmission.  
 
U.S. Captive Cervid Industry: In the past decade, APHIS has implemented actions to reduce the risk 
of bovine TB spread through the captive cervid industry, such as movement restrictions associated 
with the CWD eradication program and development of the 1999 UM&R for bovine TB. However, 
surveillance of captive cervids is minimal, and little is known about the true prevalence of bovine TB 
in the captive cervid industry. Captive cervids may pose a risk of bovine TB transmission to local 
wildlife and potentially cattle. 
 
Wildlife: It is likely that wildlife in the United States will continue to serve as a risk factor for bovine TB 
transmission. The disease has been identified in white-tailed deer in Michigan and Minnesota and has 
been found intermittently throughout other areas of the United States. The lack of surveillance in 
wildlife makes it difficult to understand the extent of this pathway for bovine TB spread throughout the 
country (e.g., surveillance of wildlife around affected herds remains inconsistent). Eradication of 
bovine TB in other countries that have wildlife reservoirs has proven to be almost impossible.  
 
Zoo, exotic, and pet animals: Tuberculosis has been a concern in elephants throughout the zoological 
community. Testing has been implemented in elephants, but several other zoo specimens are also 
susceptible to mycobacterial organisms. While these species may have little exposure to domestic 
cattle, they do pose a public health risk. Game ranches are also a sector in which little to no bovine 
TB surveillance has been done. If infected, this sector poses a risk to wildlife, cattle, and captive 
cervids. Examples of M. bovis in cats and dogs have been reported; however, these animals are 
usually infected as a result of exposure to infected cattle or humans. It is possible that cats and dogs 
pose a public health risk, but they are inefficient hosts and likely demonstrate little risk to domestic 
cattle.  
 
Of the pathways evaluated in this assessment, all call for additional research and mitigation 
measures. Without better surveillance throughout these pathways, the true risk to U.S. cattle cannot 
be estimated. It is likely that some level of bovine TB will continue to circulate through the U.S. cattle 
industry based on current industry practices, the large amount of mixing that occurs, and exposure 
from wildlife and Mexican-origin animals. Current efforts are underway to implement changes to the 
bovine TB program and address the risks associated with the pathways outlined in this assessment.  
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Appendix I: State regulations for captive and free-ranging hoofstock 
 

Figure A3.  States that allow exotic hoofstock 

 

 
 
 
 
 

Figure A4.  States that require bovine TB testing for  
movement of wildlife or exotic hoofstock 

 

 
 

 
Figure A5.  States that allow recreational feeding of wildlife 
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Figure A6.  States with high fence requirements for exotic hoofstock or cervids 
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Figure A7.  States with confined hunting regulations 
 

 


