AFRICAN SWINE FEVER
STANDARD OPERATING PROCEDURES:
1. OVERVIEW OF ETIOLOGY AND ECOLOGY
The Foreign Animal Disease Preparedness and Response Plan (FAD PReP) Standard Operating Procedures (SOPs) provide operational guidance for responding to an animal health emergency in the United States.

These draft SOPs are under ongoing review. This document was last updated in September 2013. Please send questions or comments to:

Preparedness and Incident Coordination
Veterinary Services
Animal and Plant Health Inspection Service
U.S. Department of Agriculture
4700 River Road, Unit 41
Riverdale, Maryland 20737
Telephone: (301) 851-3595 Fax: (301) 734-7817
E-mail: FAD.PReP.Comments@aphis.usda.gov

While best efforts have been used in developing and preparing the FAD PReP SOPs, the U.S. Government, U.S. Department of Agriculture (USDA), and the Animal and Plant Health Inspection Service and other parties, such as employees and contractors contributing to this document, neither warrant nor assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information or procedure disclosed. The primary purpose of these FAD PReP SOPs is to provide operational guidance to those government officials responding to a foreign animal disease outbreak. It is only posted for public access as a reference.

The FAD PReP SOPs may refer to links to various other Federal and State agencies and private organizations. These links are maintained solely for the user's information and convenience. If you link to such site, please be aware that you are then subject to the policies of that site. In addition, please note that USDA does not control and cannot guarantee the relevance, timeliness, or accuracy of these outside materials. Further, the inclusion of links or pointers to particular items in hypertext is not intended to reflect their importance, nor is it intended to constitute approval or endorsement of any views expressed, or products or services offered, on these outside websites, or the organizations sponsoring the websites.

Trade names are used solely for the purpose of providing specific information. Mention of a trade name does not constitute a guarantee or warranty of the product by USDA or an endorsement over other products not mentioned.

USDA prohibits discrimination in all its programs and activities on the basis of race, color, national origin, sex, religion, age, disability, political beliefs, sexual orientation, or marital or family status. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and telecommunications device for the deaf [TDD]).

To file a complaint of discrimination, write USDA, Director, Office of Civil Rights, Room 326-W, Whitten Building, 1400 Independence Avenue SW, Washington, DC 20250-9410 or call (202) 720-5964 (voice and TDD). USDA is an equal opportunity provider and employer.
Contents

1.1 Introduction ... 1-2
 1.1.1 Further Information ... 1-2
 1.1.2 Goals .. 1-2

1.2 Purpose .. 1-2

1.3 Etiology ... 1-2
 1.3.1 Name .. 1-2
 1.3.2 Virus Characteristics ... 1-3
 1.3.3 Morphology .. 1-3

1.4 Ecology ... 1-3
 1.4.1 Susceptible Species ... 1-3
 1.4.2 Reservoir and Carriers .. 1-3
 1.4.3 Distribution ... 1-4
 1.4.4 Introduction and Transmission of ASF ... 1-4
 1.4.5 Incubation Period ... 1-5
 1.4.6 Morbidity and Mortality .. 1-5
 1.4.6.1 Clinical Signs ... 1-5

1.5 Environmental Persistence of ASF ... 1-7

1.6 Risk of Introduction to the United States .. 1-8

Attachment 1.A References and Resources ... 1-9

Attachment 1.B Abbreviations ... 1-10
African Swine Fever
Etiology & Ecology Quick Summary

Disease
African swine fever; Pesti Porcine Africaine; Peste Porcina Africana; Pestis Africana Suum; Maladie de Montgomery; Warthog Disease; Afrikaanse Varkpes; Afrikanische Schweinepest.

Mortality & Morbidity
High morbidity and mortality, often reaching 100 percent mortality for severe forms of the disease.

Susceptible Species
All members of the pig family Suidae and arsagid (soft-bodied) ticks of the Ornithodoros species.

Zoonotic Potential?
None.

Reservoir
Wild and feral swine (warthogs and bushpigs) of Africa and Ornithodoros species ticks.

Transmission
Direct contact with infective secretions and tissues, primarily through the oronasal route. Indirect contact via fomites. Vector-borne transmission through Ornithodoros spp. ticks.

Persistence in the Environment
Highly stable and temperature resistant (requires heat-inactivation at 56°C/70 minutes or 60°C/20 minutes). Can survive at greater than pH 3.6 and less than pH 11.5.

Animal Products and By-Products
Long-lived in blood, feces, and tissues and on uncooked pork and pork products.
1.1 Introduction

African swine fever (ASF) is a highly contagious disease of wild and domestic suids with extremely high rates of morbidity and mortality. First described in the 1920s in Kenya, ASF has been listed by the World Organization for Animal Health (OIE) as a notifiable disease; a pathogen that has the high potential for rapid spread and the ability to cause devastating illness. At various times throughout the 20th Century, ASF has been endemic in Africa, Europe, South America, and the Caribbean. Recently, outbreaks have been confined to Eastern and Southern Africa, the Island of Sardinia, the Caucasus region and Russia. ASF does not pose a risk to public health.

1.1.1 Further Information

This document is intended to be an overview, focusing on ASF in domestic animal swine. Additional resources on ASF, as well as the articles referenced in this standard operating procedure (SOP), are listed in Attachment 1.A. Case definitions and laboratory criteria are also available from the Animal and Plant Health Inspection Service (APHIS) Centers for Epidemiology and Animal Health, National Surveillance Unit. These documents are available on the APHIS public website (http://www.aphis.usda.gov/animal_health/emergency_management/) or on the APHIS Intranet (http://inside.aphis.usda.gov/vs/em/fadprep.shtml for APHIS employees).

1.1.2 Goals

As a preparedness goal, APHIS will provide etiology and ecology summaries for ASF, and update the summaries at regular intervals.

As a response goal, the Unified Command and stakeholders will have a common set of etiology and ecology definitions and descriptions, to ensure proper understanding of ASF when establishing or revising goals, objectives, strategies, and procedures.

1.2 Purpose

The purpose of this document is to provide responders and stakeholders with a common understanding of the disease agent.

1.3 Etiology

1.3.1 Name

ASF is also known as Pesti Porcine Africaine, Peste Porcina Africana, Pestis Africana Suum, Maladie de Montgomery, Warthog Disease, Afrikaanse Varkpes, and Afrikanische Schweinepest. As its name implies, ASF is a disease endemic in wild and feral African swine.
1.3.2 Virus Characteristics

According to the International Committee on Taxonomy of Viruses,\(^1\) African swine fever virus (ASFV) is categorized as follows:

- **Family:** Asfarviridae
 - **Genus:** Asfivirus
- Genome characteristics: double-stranded deoxyribonucleic acid (dsDNA).

ASFV is unique in that it is the only member of the genus Asfivirus and the only known deoxyribonucleic acid (DNA) arthropod-borne virus (arbovirus).

1.3.3 Morphology

ASFV is an enveloped virus, 200 nm in diameter, with a linear, double-stranded DNA genome that encodes 160 to 175 genes. It has distinctive morphology, characterized by the dense 80 nm virion core that is composed of the viral genome and an icosahedral capsid, covered by an internal lipoprotein envelope. The outer envelope is derived through the budding process from the cellular membrane of infected cells.\(^2,3\)

1.4 Ecology

1.4.1 Susceptible Species

All members of the pig family (Suidae) are susceptible to ASFV infection, including

- Domesticated swine
- European wild boars
- Warthogs (*Phacochoerus africanus*)
- Bush pigs (*Potamochoerus porcus*)
- Giant forest hogs (*Hylochoerus* spp.).

Though members of the Suidae family and native to the Americas, peccaries (*Tayassu* spp.) are believed to be resistant to infection.

1.4.2 Reservoir and Carriers

ASF is maintained by cycling between the wild bushpigs and warthogs of Africa and *Ornithodoros* species ticks, commonly referred to as the sylvatic cycle. The wild pigs and ticks do not develop clinical illness while infected. Typically the pigs’ virus titers remain low and the infection is short-lived. Conversely, infected ticks maintain high titers which contribute to

efficient transmission of the virus to another host. For this reason, scientists have speculated that both wild and domestic swine are “accidental hosts” of ASFV.

1.4.3 Distribution

ASF is endemic in western, eastern, and sub-Saharan Africa, including the island of Madagascar. Interestingly, the epidemiology of the disease in western Africa is quite different from the rest of the continent. The sylvatic cycle is not responsible for maintaining transmission. Instead, transmission depends on a constant supply of naive pigs to infect, which is supported by the free-ranging pig husbandry practices popular in this region.4 Outside of Africa, ASF is only endemic in Sardinia, Italy. Outbreaks occurred in the Caucasus (Georgia, Armenia, Azerbaijan) and areas of northwest Russia between 2006 and 2012 (Figure 1-1). The closest ASF has been to the United States were outbreaks in the Dominican Republic (1978), Haiti (1979) and Cuba (1977–1980).

Figure 1-1. Approximate Geographic Distribution of ASF

Source: OIE WAHID 2012.

1.4.4 Introduction and Transmission of ASF

There are three modes of transmission for ASF: direct, indirect, and vector-borne. Direct transmission occurs when infected animals come into contact with healthy animals. Contact with infective saliva, respiratory secretions, urine and feces are effective means of transmission due to the high levels of virus found there. Viral titers and the length of time that swine remain

infectious depend on the virulence of the strain causing disease. Indirect transmission can occur via contaminated fomites. A means of long-distance indirect transmission is the practice of “garbage-feeding.” Domestic swine may become infected when fed food waste contaminated with pork products that have not first been cooked. Lastly, argasid ticks (Ornithodoros spp.) serve as a vector for transmission of the disease, passing the virus to swine hosts when taking their blood meal. Infected ticks are also able to transmit ASFV to other ticks (sexual transmission),5 to their offspring by passage of the virus to the eggs (transovarial transmission) and from one life cycle stage to another (transstadial transmission). Mechanical transmission via biting flies and mosquitoes has also been mentioned.6

1.4.5 Incubation Period

The incubation for ASFV varies by route of transmission. For direct contact with ASFV-infected pigs, the incubation period is between 5–15 days. When bitten by an Ornithodoros tick, the incubation period is typically 3–4 days.

1.4.6 Morbidity and Mortality

For all forms of the virus (peracute, acute, subacute, and chronic) morbidity rates are very high due to its extremely contagious nature and the high levels of viral shedding. Mortality varies by virus form. For the peracute form, infection with a highly virulent strain, mortality can reach 100 percent and occur in the absence of any clinical signs within 7–10 days after exposure. Acute forms of the virus also have mortality rates that approach 100 percent, with death occurring within 6–13 days post inoculation. The subacute form of ASF is caused by moderately virulent strains and the mortality rate is dependent on the age of the population. Younger pigs have a more severe course of infection with mortality rates ranging between 70 and 80 percent. Older pigs experience mortality rates less than 20 percent. For the chronic form of ASF, infection with a moderately or low virulent strain, mortality is typically low.7

1.4.6.1 Clinical Signs

As with mortality, clinical signs and symptoms vary by virus form (Table 1-1). As previously mentioned, for animals infected with the peracute form of ASF death is often the first indication of disease. Cases infected with the acute form may develop fever (40.5–42°C), anorexia, listlessness, cyanosis, incoordination, increased pulse and respiratory rate, leukopenia and thrombocytopenia (at 48–72 hours), vomiting, diarrhea, and abortion in pregnant sows. Any survivors become carriers for life.

Swine infected with subacute forms of ASF present with similar though less intense symptoms as described for the acute form, this includes slight fever, reduced appetite, and depression. Abortion in pregnant sows is also possible.

Cases infected with the chronic form of the virus exhibit weight loss, irregular temperature spikes, respiratory symptoms, necrosis of skin, chronic skin ulcer, arthritis, pericarditis and swelling of the joints. Pigs with chronic ASF will experience recurring episodes of acute disease, which could eventually lead to death.8, 9

Table 1-1. Clinical Signs and Symptoms Caused by the Different Forms of ASF

<table>
<thead>
<tr>
<th></th>
<th>Peracute</th>
<th>Acute</th>
<th>Subacute</th>
<th>Chronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Virulence of strain</td>
<td>High</td>
<td>High</td>
<td>Moderate to low</td>
<td>Low</td>
</tr>
<tr>
<td>Immune status</td>
<td>Death before seroconversion</td>
<td>Many die before seroconversion</td>
<td>Seropositive</td>
<td>Seropositive</td>
</tr>
<tr>
<td>Clinical signs</td>
<td>Often found moribund or dead</td>
<td>Febrile (40.5°C–41.5°C), leukopenia, anorexia, blood in feces, reluctant to move, erythemic skin progressing to cyanosis near death</td>
<td>Variable but typically similar to, though less severe than, acute ASF</td>
<td>Mild fever for 2–3 weeks; pregnant sows may abort; reddened then dark, raised, dry, and necrotic skin lesions, especially over pressure points</td>
</tr>
<tr>
<td>Gross lesions</td>
<td>Death occurs before distinct lesions form</td>
<td>Spleen enlarged (up to 3 times normal), dark and friable; multiple hemorrhages of internal organs, especially kidneys and heart; hemorrhagic lymph nodes; edema of gall bladder and lungs; congestion of meninges and choroid plexus</td>
<td>Lesions are similar but milder than acute ASF; spleen may be 1.5 times normal size; lymph nodes enlarges but only mildly hemorrhagic; few petechial on kidneys</td>
<td>Fibrinous pleuritis, pleural adhesions, caseous pneumonia, hyperplastic lymphophoreticular tissues, nonseptic fibronous pericarditis, necrotic skin lesions</td>
</tr>
</tbody>
</table>

Finally, ASF gets its classification as a viral hemorrhagic disease because of the lesions (Table 1-2) that form with the acute, subacute, and chronic cases. Lesions or hemorrhages occur throughout the body, such as on the lymph nodes, the kidneys, larynx, bladder, colon, and gall bladder.

Table 1-2. Physical Signs of Swine with ASF

<table>
<thead>
<tr>
<th>Clinical signs</th>
<th>Visual</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutaneous hemorrhage and/or necrosis</td>
<td></td>
</tr>
<tr>
<td>Kidney; cortex contains numerous coalescing petechiae and ecchymoses.</td>
<td></td>
</tr>
<tr>
<td>Heart; subendocardial hemorrhage.</td>
<td></td>
</tr>
</tbody>
</table>

1.5 Environmental Persistence of ASF

ASF virus is highly stable and temperature resistant and can persist in the environment for a long time. Table 1-3 gives an overview of ASFV susceptibility and resistance characteristics.
Table 1-3. Resistance of ASF virus to Physical and Chemical Action

<table>
<thead>
<tr>
<th>Action</th>
<th>Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Highly resistant to low temperatures. Heat inactivated by 56°C/70 minutes; 60°C/20 minutes.</td>
</tr>
<tr>
<td>pH</td>
<td>Inactivated by pH <3.9 or >11.5 in serum-free medium. Serum increases the resistance of the virus, e.g. at pH 13.4—resistance lasts up to 21 hours without serum, and 7 days with serum.</td>
</tr>
<tr>
<td>Chemicals/Disinfectants</td>
<td>Susceptible to ether and chloroform. Inactivated by 8/1000 sodium hydroxide (30 minutes), hypochlorites—2.3% chlorine (3 minutes), 3/1000 formalin (30 minutes), 3% ortho-phenylphenol (30 minutes) and iodine compounds.</td>
</tr>
<tr>
<td>Survival</td>
<td>Remains viable for long periods in blood, feces and tissues; especially infected, uncooked or undercooked pork products. Can multiply in vectors (Ornithodoros sp.).</td>
</tr>
</tbody>
</table>

1.6 Risk of Introduction to the United States

While ASF has never been detected in the United States, it was present in the Caribbean and South America in the 1970s and 1980s. Protections such as the Swine Health Protection Act, (which requires that food waste consumed by pigs be heat-treated to remove pathogens such as ASFV) and 9 Code of Federal Regulation 94.8 (which prohibits importation of uncooked pork or pork products from countries with recent outbreaks of ASF or where ASF is endemic), guard against outbreaks in the United States. However, due to the illegal importation of pork and pork products, and travel, it remains possible that ASF could enter the United States.

Though the natural argasid host is *O. porcinus porcinus*, various other *Ornithodoros* species of the tick live throughout the world and are believed to be competent vectors of the virus.¹¹ Outbreaks in the Caribbean and South America in the 1970s and 1980s demonstrate that vectors and hosts are available and that the Americas are vulnerable to another ASF incursion.

Active surveillance is ongoing in the United States for Classical Swine Fever, a disease clinically indistinguishable from ASF, but there are no active surveillance mechanisms for ASF. There are no licensed vaccines for ASF in the United States.

Attachment 1.A References and Resources

Attachment 1.B Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHIS</td>
<td>Animal and Plant Health Inspection Service</td>
</tr>
<tr>
<td>ASF</td>
<td>African swine fever</td>
</tr>
<tr>
<td>ASFV</td>
<td>African swine fever virus</td>
</tr>
<tr>
<td>CEAH</td>
<td>Centers for Epidemiology and Animal Health</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleic acid</td>
</tr>
<tr>
<td>dsDNA</td>
<td>double-stranded deoxyribonucleic acid</td>
</tr>
<tr>
<td>FAD PReP</td>
<td>Foreign Animal Disease Preparedness and Response Plan</td>
</tr>
<tr>
<td>OIE</td>
<td>World Organization for Animal Health</td>
</tr>
<tr>
<td>SOP</td>
<td>standard operating procedure</td>
</tr>
<tr>
<td>USAHA</td>
<td>United States Animal Health Association</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
<tr>
<td>VS</td>
<td>Veterinary Services</td>
</tr>
</tbody>
</table>