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Intractable distributional assumptions are generated in parametric analyses comparing groups of subjects described by nonlinear
growth models. The distributional situation becomes more complex when pointwise mean curves best describe group growth (instead
of curves based on mean parameters). An interval specific randomization test is developed to handle monomolecular growth models.
The need for the technique was motivated by a study describing longitudinal growth data from the annuli on abdominal scutes of
groups of western painted turtles. The analyses indicate that female turtles grow larger than male through the first seven years of life.
The analytical procedures developed for these turtles are useful in the description and analyses of many other growth processes.

In studies of growth it is often desirable to describe the
growth of individuals with mathematical models as a pre-
lude to further describing and comparing growth patterns
of groups of individuals.

Superb methodology and software exist for fitting and
analyzing such curves for the case where the models are
linear functions of the parameters, such as polynomial
models, and where all stochastic components involved may
be characterized as having multivariate normal distribu-
tions with particularly patterned covariance matrices.
Groups are usually described and compared in terms of

group mean parameter vectors. Laird and Ware (1982)
present an excellent overview of this parametric (multivar-
iate normal) methodology for linear growth curve models.

The growth of living organisms is more often than not
better described by nonlinear models, often sigmoid or
S-shaped curves such as the Richards model (Von Berta-
lanffy, 1941; Richards, 1959; Draper and Smith, 1981).
Parametric methodology appropriate for the analysis of
nonlinear growth curves is discussed by White and Ratti
(1977), White and Brisbin (1980), Sheiner and Grasela
(1984), Beal (1984), and Brisbin er al. (1986a, 1986b). All
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assume some variant of multivariate normality. Most des-
cribe and compare groups in terms of group curves defined
by mean parameter vectors.

Ghosh et al. (1973), Zerbe (1979a, 1979b, 1979¢), and
Zerbe and Murphy (1986) describe nonparametric (distribu-
tion-free) methods appropriate for the analysis of nonlinear
growth curves. While Ghosh’s method describes and com-
pares groups in terms of group curves defined by mean
parameter vectors, Zerbe’s method compares pointwise
mean curves over an interval of time prespecified by the
investigator.

In theory the nonparametric interval specific approach
can be applied to growth curves of any form. In practice
computational formulae have been available only for a
class of growth curves which, unfortunately, excludes the
Richards family of curves.

The objectives of this paper are to further develop the
interval specific methodology as an alternative to standard
parametric methodology for the analysis of nonlinear
growth curves. Computational formulae are provided for
the case where the growth curves are monomolecular, and
the analysis is applied to the growth of the Western Painted
Turtle.

THE USE OF NONPARAMETRIC GROWTH CURVE
PROCEDURES FOR LINEAR GROWTH CURVE MODELS

The most obvious reason for using nonparametric
(distribution-free) growth curve techniques is to avoid the
usual assumptions of normality. But there are other
reasons.

Most of the linear model growth curve literature con-
cerns itself with distinguishing between residual variability
of a subject’s observations about that subject’s regression
line (within subject variability) and variability of subject
parameter vectors (and hence curves) about mean parame-
ter vectors (between subject variability). This leads to a
mathematically neat analysis for the case where every sub-
ject is measured at the same ages (e.g., Rao, 1965; Grizzle
and Allen, 1969), but further distributional difficulties
when subjects are measured at different ages (Laird and
Ware, 1982).

To fix ideas consider a linear growth curve model of the
type discussed by Laird and Ware (1982). For subject i
define the growth curve model,

Y, = X,B, + e, (1)

where Y, is the vector of n; growth measurements ordered
by age, X; is a design matrix, the elements of which are
functions of time, B; is a vector of parameters, and e; is a
vector of residual errors about the regression line. If the
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growth curve for subject i was to be a straight line fit
through three measurements, Y;;, Y, and Y3, recorded at
ages, ti1, t:2, and t;3, respectively, then (1) would be of the form

Yy 1t e
il ill|B il
Yy = |1 t iol + |e
i2 i2||B i2
y 1t il e
i3 i3 i3

where Biois the intercept and B;; is the slope of the subject’s
regression line. The error vector e; is assumed to have a
multivariate normal distribution with expectation vector 0
and covariance matrix R;. This is the “within individual
model” accounting for residual variation of an individual’s
observations about the individual’s regression line.

To acount for between subject variability, the subject’s
parameters are considered stochastic and permitted to vary
from subject to subject according to a “between individual
model.” Let us assume a simple one,

B, = a + b,, (2)

where B; is the subject parameter vector from (1), a is the
mean parameter vector for the subject’s group, and b; is a
random deviation vector assumed multivariately normally
distributed with expectation vector 0 and covariance
matrix D. It is further assumed that the within subject
errors €; and beteen subject errors b; are independent.
Substituting (2) in (1) yields the “total mixed model,”

Y, = X,0 + X,b, + e,, (3)
or

Y, = X, + e,, (4)

where the total errors ¢;are multivariately normally distrib-
uted with mean vector 0 and covariance matrix X;DX/+R;.

Note that serial correlation may enter the total model
either through the component R; attributable to residual
errors or through the component X;DX/ attributable to
differences between parameters of different subjects. Growth
curve data is often measured so accurately and fit so well
that the between subject component of the variation domi-
nates the within subject component. As a consequence,
serial correlation in the within subject model can often be
ignored provided that the between component of variation
is appropriately considered. Hence, it often facilitates anal-
ysis to assume that R;=I¢”. Laird and Ware (1982) refer to
this as “conditional independence.” Total errors may still
be correlated and be heteroscedastic through the between
component.
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With the assumption of conditional independence, it is
natural to fit the within individual model (1) to each subject
separately, obtaining

-

By, = (Xy'X4)7*Xy'Y, (5)

for subject i’s parameter vector estimate. From the total
model (4) the parameter vector estimates will have expecta-
tion vector @ and covariance matrix DHX/X) o>, Thisisa
problem. Unless every subject is measured at exactly the
same n; times, the design matrices X; will vary from subject
to subject and as a consequence every subject’s parameter
vector estimate will have a different covariance matrix.
Then the common practice of comparing groups by treat-
ing each subject’s parameter estimates as dependent varia-
bles in a multivariate analysis of variance (or even a univar-
iate ¢ test) becomes suspect since this second stage analysis
requires that the covariance matrices of the dependent
variables remain constant for all subjects in all groups being
compared.

In order to compensate for this problem Laird and Ware
(1982) introduce a complicated iterative procedure featur-
ing the E-M algorithm in order to obtain maximum likeli-
hood estimates of the group mean parameter vector a and
likelihood ratio tests comparing such mean vectors for
several groups. Their approach has the added virtue of
fitting the total model (4) directly. It is unnecessary to fit
individual models (1) for each subject. This feature is time
saving and makes it possible to include subjects with single
observations in the analysis.

As an alternative approach to the problem, Zerbe and
Walker (1977) argue that the distributions of the estimated
parameter vectors (5) have different covariance matrices
because they are conditional on different times of mea-
surement, and that it is reasonable to base inferences upon
their unconditional distributions which will have constant
covariance matrices, but which will in general not be multi-
variate normal. This suggests the use of distribution-free
methods such as those proposed by Ghosh er al. (1973)and
Zerbe and Walker (1977).

THE USE OF NONPARAMETRIC GROWTH
CURVE PROCEDURES FOR NONLINEAR
GrowTH CURVE MODELS

Nonlinear growth curve analysis has this same problem.
The linear “within individual model” (1) is simply replaced
by a nonlinear one, say

Yy = F(Bi,ty) + ey, (6)

where F(B,, t:} is some nonlinear function of the parameter
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vector Bi. F also depends on the times of measurement t..
The “across individual model” may remain in the form (2).
Substituting a linear across individual model (2) into a
nonlinear within individual model (6) results in a total
model,

Y, = Fla + b,,t,) + e,, (7)

which is nonlinear in the between subject errors b;as well as
nonlinear in the group parameters a. The resulting “total”
distribution of Y; is almost certainly nonnormal. Hence,
parameter estimation and hypothesis testing based on the
full likelihood of the data appears mathematically intracta-
ble, although Sheiner and Grasela (1984) and Beal (1984)
have partially succeeded.

Let’s consider an intuitive approach that sacrifices any
information in the data Y; not contained in the subject
parameter vector estimates. Suppose that it is reasonable to
assume conditional independence (R,=I¢%) and to fit the
within individual model (6) to each subject separately,
obtaining iteratively

é1.3+1 = ﬁi.: + (22'24)7%2, (8)
[Y_‘L_F(éi'j,ti)]

for subject i’s parameter vector estimate, where Z;=6F/ §B;
evaluated at B=B; ;, Bi, is some initial guess of what B; s,
and B;1, B;2, ... Bij+ 1 are successive improvements of the
estimate of Bi. Then it can be argued that the parameter
vector estimates (8) will have approximately the expecta-
tion vector a and covariance matrix D+(Z/Z;) 'o%. Note
that the Z; vary from subject to subject, not only because
the times of measurement t; vary from subject to subject,
but also because the parameters B; vary from subject to
subject. Then again, the common practice of comparing
groups by treating each subject’s parameter estimates as
dependent variables in a multivariate analysis of variance
(or a univariate ¢ test) could be objected to because the
second stage analysis requires not only multivariate nor-
mality, but that the covariance matrices of the dependent
variables remain constant for all subjects in all groups being
compared. One might argue in many growth curve situa-
tions that the within component of variability is small
relative to the between component, and hence that the total
covariance is nearly constant from subject to subject. In this
situation one should also argue that it is not worthwhile to
worry about serial correlation in the small within compon-
ent.

The more scant nonlinear growth curve literature has not
faced up to this problem as well as it’s linear growth curve
counterpart. Too much emphasis has been placed on
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accounting for possibly correlated, but small, residual
errors and not enough on larger errors attributable to
differences between subjects. Brisbin et al. (1986a, 1986b)
treat parameter vector estimates obtained from nonlinear
Richards models as dependent variables in second stage
analyses of variance even though the homogeneity of covar-
iance matrices that they require is not likely obtained. In an
earlier paper White and Ratti (1977) did employ a nonli-
near growth curve model somewhat analogous to the Laird
and Ware (1982) model for linear growth curves, but unfor-
tunately treated the differing subject parameters as fixed
effects rather than more realistically as random effects.

Sheiner and Grasela (1984) and Beal (1984) are cogniz-
ant of the problem and have introduced a general nonlinear
growth curve model that accounts for both between and
within subjecl variabilily in a manner similar to that dis-
cussed by Laird and Ware (1982) for linear growth curves.
Unfortunately, the complexity of the resulting distribution
theory has forced them into some approximations that may
seriously limit its usefulness. Nonetheless, their nonlinear
mixed effects model (NONMEM) approach may be the
soundest parametric approach currently available for the
analysis of nonlinear growth curves.

Meanwhile the nonparametric approaches suggested by
Ghosh ez al. (1973), and Zerbe (1979a, 1979b, 1979¢) are
just as valid for comparing groups of nonlinear growth
curves as they are linear growth curves. These authors
differ principally in that the former compares group growth
curves defined by parameters which are the means of the
corresponding parameters for individual subjects, while the
latter compares group growth curves which are the point-
wise means of the individual curves within the groups.

THE USE OF POINTWISE MEAN CURVES

Whether it is worthwhile or not to fit individual growth
curves with biologically interpretable parameters is an old
debate. We will not take sides. We would like to point out,
however, that even if the parameters of individual subject’s
growth curves are biologically interpretable, it does not
follow that the means of these parameters are so easily
interpretable. It is possible that a group growth curve
defined by the means of the corresponding parameters for
individual subjects may have no resemblance to any of the
individual growth curves from the group it is supposed to
represent. It is also possible that within some intervals of
the age range of interest such a group growth curve may lie
entirely above (or below) all of the individual curves. A
pointwise mean curve will always lie in the midst of the
individual curves and therefore will represent its group.
They are not often used parametrically because the com-
plexity of the resulting distribution theory would preclude
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comparisons of pointwise mean curves based on multivar-
iate normal theory. Fortunately the distribution-free
approach makes such analysis feasible.

THE INTERVAL SPECIFIC RANDOMIZATION TEST

Incorporating concepts introduced by Fisher (1935),
Welch (1937), Pitman (1937), and particularly Kempthorne
(1952, 1955), Zerbe and Walker (1977) introduced a ran-
domization test appropriate for the nonparametric com-
parison of two or more groups of growth curves over a
specific interval of time. It was refined by Zerbe (1979a,
1979b) and extended to the problem of dynamically classi-
fying the growth of individuals over a specified time inter-
val by Zerbe (1979¢) and Albert (1983).

The virtues of the interval spccific randomization test are
that it is nonparametric, age interval specific, compares
pointwise mean curves, and is applicable to growth curves
of any form, linear or nonlinear in the parameters. In fact, it
is often used with growth curves generated by simple inter-
polation (e.g. Goldberg er al., 1980; Albert er al., 1982;
Chapelle et al., 1982; Hiatt er al., 1983).

To briefly describe the interval specific randomization
test, consider the one way analysis of variance model,

Yi4(t) = ult) + va(t) + es5(t), (9)

where Yj(t) is a growth curve estimated for subject j in
group i, u(t) is a grand mean growth curve, r(t) is an effect
curve for group i, and €;(t) is an error curve associated with
subject j in group i. No distribution assumptions are
required of the €;(t) and no particular form is required of
the estimated growth curves Y;(t). Zerbe and Walker (1977)
proposed testing the interval specific null hypothesis that

Talt) = T2(t) = ... = 15(t) =0
for all t & (a,b),

i.e., that the treatment effect curves are all zero throughout
some age interval of interest (a,b), with the statistic,

F = [B/(n-1)] / [W/(n-g)],

where the between (B), within (W), and total (T) sums of
squares integrated over the time interval (a,b) are defined in
Table 1.

Based on the statistical model (9) for random growth
curves Zerbe (1979a) showed that the null permutation
distribution of F could be well approximated by a standard
F distribution with certain synthesized degrees of freedom,
thus avoiding the necessity of costly recomputation of F for
every reassignment of the subjects. It has been demon-
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TABLE 1

Completely Randomized Analysis of Variance of Growth Curves Over the Time Interval (a,b)

Source Sum of Squares D.F. Mean Square Expected Mean Square
P = 2 2 -, B = 2
Between B = In, I{yi (t)-Y..(t)} dt g-1 B/ (g-1) Jo* (v)at+ (g-1) Enif{fi(t)-f.(t)} dt
i a 7 a i"a
: b = 2 b,y
Within W= ID [{y, (0)-¥, (0)}%ae n-g W/ (n-g) Jo" (erat
ij a ° a
b _ 2 .
Total T = I [{¥, (6)-Y.. ()} ae n-1
ija ™

Source: Zerbe, Gary O. (1979). Randomization of the completely randomized design extended to growth and response curves. Journal of the American

Statistical Association 74, 215-221.

strated that the interval specific test is more powerful than
any of its nonparametric competitors (Krause-Steinrauf,
1986) for vertical shift alternatives to the null hypothesis.
Also Foutzet al. (1985) and Zerbe and Murphy (1986) have
recently tackled multiple comparison problems associated
with the procedure.

Zerbe (1979a) provided convenient computational algo-
rithms and Nelson and Zerbe (1988) provided SAS com-
patible software for executing the analysis for a class of
growth curves that included polynomials, moving aver-
ages, and linearly interpolated curves as special cases.
Unfortunately, nonlinear growth curves, such as the Richards
family of curves were not members of this class.

DEVELOPMENT FOR COMPARISON OF
MONOMOLECULAR GROWTH CURVES

The computational procedures provided by Zerbe (1979a)
to cover a broad class of functional forms of growth curves
could not be directly applied to monomolecular growth
curves. We develop an analysis for monomolecular growth
curves beginning with computational formulae for Zerbe’s
between (B), within (W), and total (T) sums of squares

below:

B = )'.‘_tn,_r%,_,z(t)dt - nJ-b'Y__,’(t)dt (10)
a a
b b_

W = E,L,| Yis2(t)dt -Zans| ¥, *(t)dt (11)
a a

b
T = Eizerijz(t)dt - nJ ¥..2(t)dae. (12)
a

E

Computation of the above sums of squares requires the
following three quantities:

)
Y;:Z(t)dt=Q(i;j,i;j)
a

(13)

Y,_ 2t)dt=(1/n,2)T,23'ali,j,1,3)  (14)

a
b
Y..3t)dt=1/n3C, 5,0, "2,y 'qli, 3,1 3"(15)

Ja

where
qli,j,i',3') = rY;,(t)Yl.,.(t)dt. (16)
a

For monomolecular growth curves of the form

Y,4(t) = Ay + By, expl(-Gist),
Q(i,j,i‘,j')=FA13'B;5eXP('G;3t)]
a

[AJ.-:)"BA.';-exp('GL'j't)]dt
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As.5.Bisexp(~-Gist)

= | AisBa.s. +
Ga s

Ai4Bs.45.exp(-Gy.4.t)
+

Gioyg-

BysBs.y.exXp(-Gi4t-Gi.4.t) |b

G13+G1-j- a

The degrees of freedom, v, and v, for Zerbe’s approxi-
mate F test may be calculated as

v, = 2E*(1-E)/V - 2E

and va = (1-E)v,/E
where
E = (g-1)/(n-1),
Vv = [(r-s)p* + gk*}/o* + s,
and in turn,
e = L,(1/n4),
m = (n-1)*(n-2)(n-3),
g = [n(n+l)e - (g3+2g-2)n+g(g-2)1/m,
r = [2(g-1)n®-3n(n-1)2e+(g2-4g+6)n=
~6n-3g(g-2)1/(nm),
s = [-n(n-1)*+g®n®-2(g?-g+1)n-

glg-2)1/(nm),
o* = T/(n-1),
and p’ and k* may be determined from:
(n-1)p* = T.I,Zs Iy [ali,j,i',i")
- {(1/n)Zi"B47q(i, 3,1, 53")
- (1/n)Cy" T 3"qit, 3,4, ")
+ (1/n*)T.7E, B,y "2,  [glan, g, i, 3" 12

and
(n-1)x? = EJ.E;:IQ(i/jrilj)
= (2/n)21"23"q(iljIi“Ij“)

+ (1/n*)Z472, 77, [gdt, 3, i, 3" )2

RICKARD/ENGEMAN/ZERBE/BURY

A computer algorithm was developed to do all of the
above calculations and is available to the public (Rickard et
al., 1988).

APPLICATION TO GROWTH OF
WESTERN PAINTED TURTLES

Western painted turtles were collected 30 August to 10
September, 1976, and 26 June to 2 July, 1978, at Medical
Lake Washington. The study of the growth of these turtles
is considered important for several reasons. First, the
painted turtle is the most geographically widespread turtle
in the United States, but no growth information has been
reported in the northwestern most part of its range.
Second, Medical Lake offers a rich environment for turtles;
therefore, turtles from this location may achieve maximal
growth for the species. Third, just prior to the second
collection of turtles, the lake was “rehabilitated” (by reduc-
ing its alkalinity) for the introduction of trout. Describing
the growth of these turtles provides a baseline for studying
the effects of altering the environment on the turtles, which
are important animals at the top of the food chain in the
lake. Lastly, techniques for describing turtle growth would
be useful where other, perhaps endangered species, areinvolved
in habitat alterations.

We defined four groups of turtles for which we obtained
growth data: males 1976, females 1976, males 1978, females
1978. A record of a turtle’s growth history is contained in
the annuli on the scutes: plates covering the turtle’s shell
(Ernst and Barbour, 1972; Gibbons, 1976, 1987). Each
growing season, the germinal layer of epidermis produces
an annulus on each scute analogous to a tree ring. The
distances between the annuli on an individual abdominal
scute provide a number of years of longitudinal growth
data which we describe for each group and compare among
groups. Growth in painted turtles hasappeared in a variety
of studies including Ernst (1971), MacCulloch and Secoy
(1983), Sexton (1959) and Wilbur (1975).

The accuracy of estimating age and constructing growth
curves for annuli measurements is based on several
assumptions. First, a perceptible growth increment is
formed each year. It is also assumed that accompanying
this growth increment is the formation of only one annulus.
Although it has been reported that during the first growing
season young turtles often form one or two accessory
annuli, these false annuli can be identified because they are
not as distinct as true annuli. Last, we assume that the
earliest rings disappear first, as reported by Gibbons (1987).

Initial attempts at describing the growth data were made
using polynomial curves to describe the growth of individ-
uals and mean curves (obtained by averaging parameters)
to describe the four groups. These polynomial curves were
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inadequate for describing observed growth because unreal-
istic decreases in size were predicted as turtles reached
maturity.

Frequently, the Richards family of exponential models
works well to describe growth (e.g. Goldstein, 1979; Draper
and Smith, 1981; Brisbin er al., 1986a, 1986b), and the
behavior of the monomolecular curve, Y = A — Be™®, was
very similar to the plots of the individual turtle data. The

model,

- -G
Yisx = Asy - Byse 137193 T €493

K =1,2, ..., ny,, (17)

was fit to the observations of each individual separately
using the SAS procedure NLIN (SAS User’s Guide: Statis-
tics, 1982). The independent variable t; represents the age
in years and the dependent variable Y is the length of the
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abdominal scute for the kth observation on turtlej in group
1. The e are assumed uncorrelated random error terms
with zero expectations and variances o;”. This monomo-
lecular model visually fit the data exceptionally well (Fig-
ure 1); so well, that it would bc unrcasonablc to complicatc
the analysis by investigating possible serial correlation
among the very small residuals. Any serial correlation
associated with the larger between subjects component of
variation is accounted for in the analysis.

Since the derivative, BGe™®, of the monomolecular
growth curve was of the same monomolecular form, the
same methodology could be used to examine the velocity of
turtle growth.

Attempts to fit the more general four parameter Richards
model,

1{ = [ ;\].-rn - ( ;\].-rn - (:].-rn}

—{(l=-m)GeJr/(1—m)
e ] ,

failed. The model was over parameterized, resulting in
questionable convergence and unstable parameter esti-
mates with enormous standard errors. Since the instability
was associated with the parameter m, and since we were
obtaining such good fits with the monomolecular model
(m=0), we abandoned the more general model.

Although the monomolecular model (17) proved ade-
quate for individual data, the resulting group curves gener-
ated by averaging over the parameters tended to lie above
the individual curves in the group and therefore were con-
sidered inadequate for describing the observed growth
(Figure 2). Alternatively, taking pointwise means of the
raw data would have lost a great deal of information
because: (1) the sample sizes for each group were small, and
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Growth of male turtles 1978
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(2) means constructed at many of the time points would
have been based on only a few individuals.

Finally, we used pointwise averages of the exponential
curves fitted to the individuals to describe growth of a
group. The pointwise mean curves were consistent with the
general characteristics of the raw data for each group (Fig-
ure 3). Because the data within each group were observed
over different time segments within the range of interest (0
to 7 years), some individual curves had to be extrapolated
before taking the pointwise means. Validation of the
extrapolation procedure was accomplished by first deter-
mining the range of data time points for the turtle with the
least data in each group. Using only data within that min-
imum range for the group, each turtle’s data was refit to
equation (1). All of these refitted curves were extrapolated

over the entire range of data and were graphically com-
pared to the actual values in the extended range. These
results indicated that, even under the worse case scenario
above (minimal data points for fitting and extrapolating
curves), the procedure of extrapolating curves of turtles
with fewer data points to a larger range would pose no
problems for use in calculating pointwise mean curves.

There were three comparisons of interest among the
groups. The sexes each have different survivals, hence,
growth between sexes should be compared. Growth curves
for turtles captured in 1976 were compared to those for
turtles captured in 1978 to see if there was any difference
between cohorts. Any change in growth could have been
due to the rehabilitation of the lake during the prior year.
No turtle was in both annual cohorts.
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RESULTS

No differences in growth curves could be detected
between 1976 and 1978 within either sex (Table 2). Finding
no differences among the cohorts indicated that the effects
of the chemical treatments in 1977 (which would have
affected only a couple of months of the 1978 growing
season) did not have a detectable influence on the growth of
the turtles in our sample. It also justified combining the two
years of data for purposes of comparing sexes.

TABLE 2

Analytical Results from the Growth and
Velocity Curve Comparisons

Hypotheses P-value for P-value for
Tested Growth Comparisons Velocity Comparisons

females 78 = females 76 410 .493

males 78 = males 76 340 282

males = females (overall) .001 .010

Pointwise mean curves were constructed for the data
from the two male groups combined and the two female
groups combined. The female curve was significantly
higher than the male curve (p<0.001) over the age interval 1
to 7 years. ,

The same group comparisons were conducted for veloc-
ity curves as for the growth curves. These results are essen-
tially the same as for the growth curve comparisons (Table
2). We combined the two year groups within each sex and
computed an overall comparison of the sexes for the veloc-
ity curves. Females again were significantly higher (p<<0.010).

The consistent differences in growth between the sexes
probably reflect different reproductive strategies. When
turtles such as the painted turtle become sexually mature,
their annual growth is drastically reduced (Gibbons, 1967,
Wilbur, 1975; MacCulloch and Secoy, 1983). Wilbur
(1975) argues that the size at which males become mature
(which is smaller than that of females) is balanced between
the advantages of being able to reproduce sooner versus the
advantages of delaying reproduction in order to increase
body size. Females mature at older ages than males, and the
increased body size allows larger clutch sizes. Rapid juve-
nile growth decreases vulnerability to predators.

The present study utilized the increase in length of an
abdominal scute to construct growth curves. These mea-
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surements are generally transformed to plastron lengths in
the turtle growth literature. This transformation is based on
works by Sergeev (1937) stating that the relationship of the
abdominal scute to the plastron remains approximately
constant in painted turtles. Growth curves in this study
were constructed using the original measurements to avoid
potential bias and variation resulting from this trans-
formation.

DiscussioN

Our methodology is more appropriate for comparing
monomolecular growth than the procedures suggested in
the current literature which compare nonrepresentative
curves generated from mean parameter vectors. Moreover,
our methodology is nonparametric, not requiring multivar-
iate normality and homogeneity of variance assumptions
which can not possibly hold for parameter estimates gener-
ated from nonlinear models fit to subjects with varying
times of observation. Also the procedureis interval specific,
allowing the investigator to focus on the age interval of
major interest. Judicious comparison over several prespeci-
fied age intervals may sharpen the growth curve analysis in
much the same manner as a ’priori contrasts resolve an
ordinary analysis of variance.

The methods developed here can help determine the
effects that rehabilitation of Medical Lake has on the
growth of its turtle population when further data are col-
lected. A more general use of these growth curve methods
would be to compare growth data in this study to growth
data for other turtle populations. Examination of the
growth and velocity curves for specific populations and
comparisons between populations should add to the under-
standing of the growth process in turtles and other animals.
We are currently considering an application of these tech-
niques to growth data from a species for which some popu-
lations are considered threatened and are the focus of land
use controversies.

Another current application is to describe and compare
animal damage problems in crops. The growth of damage
(loss) in a crop over a growing season may be modeled by
an monomolecular growth curve. The efficacy of treat-
ments could be compared using damage growth and veloc-
ity curves and may indicate the optimal time to treat a crop
to minimize total damage by harvest time.

ACKNOWLEDGEMENTS

We thank P.S. Corn, D.L. Otis, W.E. Dusenberry, and
R.H. Jones for reviewing this paper.



56

REFERENCES

ALBERT. A, 1983. Discriminant analysis based on multivariate response
curves: a descriptive approach to dynamic allocation. Statistics in
Medicine 2, 95-106.

ALBERT, A., CHAPELLE, J.P., HEUSGHEM, C., KULBERTUS, H.E., & HAR-
ris, E.K. 1982. Evaluation of risk using serial laboratory data in acute
myocardial infarction. In Advanced Interpretation of Clinical Labor-
atory Data. (eds. C. Heusghem, A. Albert,and E.S. Benson), 117-130.
New York: Marcel Dekker.

BeAL.S.L. 1984. Population pharmacokinetic data and parameter estima-
tion based on their first two statistical moments. Drug Metabolism
Reviews 15, 173-193,

BrissiN, LL., WHITE. G.C. & BusH, P.B. 1986a. PCB intake and the
growth of waterfowl: multivariate analysis based on a reparameterized
Richards sigmoid model. Growrh 50, 1-11.

BriseiN, I.L., WHITE, G.C. & BusH. P.B., & MAYACK, L.A. 1986b. Sig-
moid growth analysis of wood ducks: the effects of sex, dietary protein
and cadmium on the parameters of the Richards model. Growth 80,
41-50.

CHAPELLE, J.P., ALBERT, A., SMEETS, J.P., HEUSGHEM, C., & KULBERTUS,
H.E. 1982. Effect of the hyptoglobin phenotype on the size of a
myocardial infarct. The New England Journal of Medicine 307,
457-463.

DRAPER, N.R. & SMITH. H. 1981. Applied Regression Analysis. New
York: Wiley & Sons.

ERNST, CARL H. 1971. Growth of the painted turtle, Chrysemys picta,
in southeastern Pennsylvania. Herpetologica 27, 135-141.

ERNST, C.H. & BARBOUR, R.W. 1972. Turtles of the United States.
Kentucky: University of Kentucky Press.

FisHER, R.A. 1935. The Design of Experiments. Edinburgh: Oliver
and Boyd.

Foutz,R.V.,JENSON, D.R., & ANDERSON, G.W. 1985. Multiple compari-
sons in the randomization analysis of designed experiments with
growth curve response. Biometrics 41, 29-37.

GHOSH, M., GRrIzzLE, J.E., & SEN, P.K. 1973. Nonparametric methods in
longitudinal studies. Journal of the American Statistical Association
68, 29-36.

GIBBONS, J.W.1967. Variation in growth rates in three populations of the
painted turtle, Chrysemys picta. Herpetologica 23, 296-303.

GIBBONS, J.W. 1976. Aging phenomena in reptiles. In Special Review of
Aging Research. (eds. M.F. Elias, B.E. Eleftherion, and P.K. Elias),
454-475. Bar Harbor, ME: Experimental Aging Research, Inc.

G1BBONS, J.W. 1987. Why do turtles live so long? BioScience 87, 262-269.

GOLDBERG, P., LEFFERT, F., GONZALES, M., GOGENOLA, L., & ZERBE.
G.0. 1980. Intravenous aminophylline in asthma: a comparison of
two methods of administration in children. American Journal of
Diseases of Children 134, 596-599.

GoOLDSTEIN, H. 1979. The Design and Analysis of Longitudinal Studies
Their Role in the Measurement of Change. New York: Academic
Press.

GrizzLE, J.E. & ALLEN, D.M. 1969. Analysis of growth and dose response
curves. Biometrics 25,357-381.

HiATT, W.R,, FRADL, D.C., ZERBE, G.O., BYYNY, R.L. & NIES, A.S. 1983.
Comparative effects of selective and nonselective beta blockade on the
peripheral circulation. Clinical Pharmacology and Therapeutics 35,
12-18.

KEMPTHORNE, O. 1952. The Design and Analysis of Experiments. New
York: Wiley & Sons.

RICKARD/ENGEMAN/ZERBE/BURY

KEMPTHORNE, O. 1955. The randomization theory of experimental influ-
ence. The Journal of the American Statistical Association 50,946-967.

KRAUSE-STEINRAUF, H. 1986. Comparative Power Analysis of ZWIST
and Selected Competitors Appropriate for Analysis of Time Response
Curves. M.S. Thesis, Department of Preventive Medicine & Biomet-
rics, Univeristy of Colorado.

LAIRD,N. & WARE, J. 1982. Random-effects model for longitudinal data.
Biometrics 38, 963-974.

MacCuLrocH, R.D. & Secoy, D.M. 1983. Demography growth, and
food of western painted turtles, Chrysemys picta bellii (gray), from
southern Saskatchewan. Canadian Journal of Zoology 61, 1499-1509.

NELsoN, D.E. & ZERBE, G.O. 1988. A SAS/IML program to exccute
randomization analysis of response curves with multiple comparisons.
American Statistician 42, 231.

PitMaN, E.J.G. 1937. Significance tests which may be applied to samples
from any populations. Biometrika 29, 322-335.

Rao, C.R. 1965. Some problems involving linear hypotheses in multivar-
iate analysis. Biometrika 46, 49-58.

RICHARDS, F.J. 1959. A flexible growth function for empirical use. Jour-
nal of Experimental Botany 10, 290-300.

RICKARD, R.S., ENGEMAN, R.M. & ZERBE, G.O. 1988. Nonparametric
comparison of exponential growth curves. American Statistician 42,
232.

SAS INSTITUTE INC. 1982. SAS User’s Guide: Statistics. Cary, NC: Insti-
tute Inc.

SERGEEV, A. 1937. Some materials to the problem of the reptile postem-
bryonic growth. Zool. J. Moscow 16, 723-735.

SEXTON, O.J. 1959. A method of estimating the age of painted turtles for
use in demographic studies. Ecology 40, 716-718.

SHEINER, L.B. & GRASELA, T.H. 1984. Experience with NONMEM:
analysis of routine phenytoin clinical pharmacokinetic data. Drug
Metabolism Reviews 18, 293-303.

VoN BERTALANFFY, L. 194]1. Stoffwechseltypen und Wachstumstypen.
Biol. Zentralbl. 61, 510-532.

WELCH, B.L. 1937. On the Z-test in randomized blocks and latin squares.
Biometrika 29, 21-52.

WHITE, G.C., & BRISBIN, 1.L. 1980. Estimation and comparison of
parameters in stochastic growth models for barn owls. Growth 44,
97-111.

WHITE, G.C., & RATTL J.T. 1977. Estimation and testing of parameters in
Richards growth model for western Grebes. Growth 41, 315-323.
WILBUR, H.M. 1975. Growth model for the turtle Chrysemys picta.

Copeia 2, 337-343.

ZERBE, G.0. 1979a. Randomization analysis of the completely random-
ized design extended to growth and response curves. Journal of the
American Statistical Association 74, 215-221.

ZERBE. G.0O. 1979b. Randomization analysis of randomized blocks ex-
tended to growth and response curves. Communications in Statistics,
Theory and Methods 8, 191-205.

ZEeRBE, G.O. 1979¢c. A new nonparametric technique for constructing
percentiles and normal ranges for growth curves determined from
longitudinal data. Growth 43, 263-272.

ZERBE, G.O. & WALKER, S.H. 1977. A randomization test for comparison
of groups of growth curves with different polynomial design matrices.
Biometrics 33, 653-657.

ZERBE, G.O. & MURPHY, J.R. 1986. On multiple comparisons in the
randomization analysis of growth and response curves. Biometrics 42,
795-804.



