CONFIRMATION OF INTRODUCED AGAMA PICTICAUDA IN FLORIDA BASED ON MOLECULAR ANALYSES

Leroy P. Nuñez¹,², Kenneth L. Krysko¹, and Michael L. Avery³

ABSTRACT

As of 2010, Florida had the largest number of introduced and established non-indigenous herpetofaunal species in the world. With the advent of molecular methodologies, researchers now are able to test hypotheses regarding introduction pathways, species identity, and native range origins. African Agamas, Agama Daudin 1802, found in Florida are hypothesized to be the African Rainbow Lizard, A. agama africana Hallowell 1844, based on color patterns and hypothesized native range origins (i.e., Benin, Ghana, and Togo) of imported specimens for the pet trade. However, recent systematic studies within the native range of the Agama complex have resulted in multiple taxonomic revisions, which calls into question the species identity of introduced populations in Florida. The purpose of this study is to determine the species identity of African agamas within Florida, as well as the native range origins of Florida populations. We conducted a comparative maximum likelihood analysis between individuals from Florida and individuals from the native range. Based on our results we determined that the species found in Florida is Agama picticauda from western Africa.

Key words: invasive species, Florida, native range origins, species identity, phylogenetics, Agama.
INTRODUCTION
Florida has the largest number of established non-indigenous amphibian and reptile species in the United States in part due to its subtropical/tropical climate (Myers and Ewel, 1990; Simberloff, 1997), taxonomic similarities amongst established species (Lockwood, 1999), major ports of entry, popularity of certain species in the pet trade and zoos, and an inadequate enforcement of laws preventing biological invasions (Krysko et al., 2011a). New species are included to this list of non-indigenous species as research, particularly phylogenetics, splits existing recognized single species into multiple species, or elevates subspecies to full species status (Fujita et al., 2012; Krysko et al., 2011b; Hamner et al., 2007). Taxonomic similarities among established species sometimes make correct identification difficult (Lockwood, 1999).

African agamas, Agama Daudin 1802, are indigenous throughout the continent of Africa (Wagner et al., 2009). Lizards in this genus were first introduced in Florida circa 1976 via the pet trade in Miami, Miami-Dade County (Wilson and Porras, 1983; Krysko et al., 2011a). The known Florida population was tentatively identified as the Common Agama, Agama agama (Linnaeus 1758) (Wilson and Porras, 1983). Agama sp. now occurs in numerous localities throughout Florida, including Duval County in the northern peninsula, Hillsborough and Seminole counties in the central peninsula, Charlotte and Lee counties in the southwestern peninsula, Saint Lucie, Martin, Palm Beach, Broward, and Miami-Dade counties in the southeastern peninsula, and Key Largo and Long Key in the Florida Keys, Monroe County (Campbell et al., 2008; Enge et al., 2004; Krysko et al., 2011a, 2011b; Connor et al., 2013). Enge et al. (2004) identified many of these Florida populations as the African Rainbow Lizard, A. agama africana Hallowell 1844, relying on known color patterns and localities of imported specimens for the pet trade. Based on interactions with pet importers they hypothesized that the native range origins of A. agama africana in Florida were Benin, Ghana, and Togo in western Africa.

Recent systematic revisions have resulted in taxonomic changes within the Agama complex (Mediannikov et al., 2012; Leaché et al., 2014), thus, it is uncertain which lineages are associated with introduced Florida populations. Mediannikov et al. (2012) revised the genus using a single mitochondrial (mtDNA) gene (16S; 570 base pairs [bp]) and elevated A. africana to species status. Subsequently, Leaché et al. (2014) revised the genus using two mtDNA genes (16S and ND4 region; 1207 bp) and four nuclear genes (NT3, CMOS, PNN, and R35; 2793 bp), and suggested that certain Agama lineages found by Mediannikov et al. (2012) deserved different taxonomic names.

These recent taxonomic overhauls obfuscate species identifications of Agama introduced to Florida. Identity and native range origins of introduced populations are important to identify locality-level and species-level characteristics such as life histories and ecological traits, which may contribute to future management efforts (Cassey, 2002; Lockwood et al., 2001), and assess risks of similar species being introduced or the repeated introductions of the current species. This study tested the species identity and native range origins hypothesis proposed by Enge et al. (2004).

MATERIAL AND METHODS
We conducted comparative DNA analyses of 14 Florida individuals held in the collections of the Florida Museum of Natural History, University of Florida (UF-Herpetology) (Table 1). We obtained DNA isolations using ZR Genomic DNA ™-Tissue Microprep Kit (Zymo Research, LLC). Total cellular DNA templates for polymerase chain reaction (PCR) followed the methodology of Saiki et al. (1988). We amplified DNA and sequenced the 16S mitochondrial (mtDNA) gene (570 base pairs [bp]; primers A2290, B2860, Aga-difF, and Aga-difR (Table 2; Mediannikov 2012). PCR was conducted in 25 µl reactions: 9.5 µl H₂O, 12.5 µl GoTaq® Master Mix (Promega Corp, Madison, Wisconsin, USA), 1.0 µl each primer (10 µM), and 1.0 µl DNA template.

Sequence trace files from the automated sequencer (Genomics Division, Interdisciplinary Center for Biotechnology Research, University of Florida) were assembled and edited as necessary
Table 1. Species, mitochondrial DNA (mtDNA) haplotype, voucher/sample ID, locality, and GenBank accession numbers for *Agama* from Florida used in molecular analyses.

<table>
<thead>
<tr>
<th>Species</th>
<th>mtDNA Haplotype</th>
<th>Voucher/Sample</th>
<th>Locality</th>
<th>GenBank 16S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agama picticauda</td>
<td>A</td>
<td>UF 132696/AA2</td>
<td>U.S.A., Florida, Miami-Dade Co., Homestead, Redland Middle School</td>
<td>KP191665</td>
</tr>
<tr>
<td>Agama picticauda</td>
<td>A</td>
<td>UF 132699/AA5</td>
<td>U.S.A., Florida, Miami-Dade Co., Homestead, Redland Middle School</td>
<td>KP191666</td>
</tr>
<tr>
<td>Agama picticauda</td>
<td>A</td>
<td>UF 141218/AA14</td>
<td>U.S.A., Florida, Miami-Dade Co., Homestead, Redland Middle School</td>
<td>KP191664</td>
</tr>
<tr>
<td>Agama picticauda</td>
<td>A</td>
<td>UF 141219/AA15</td>
<td>U.S.A., Florida, Miami-Dade Co., Homestead, Redland Middle School</td>
<td>KP191663</td>
</tr>
<tr>
<td>Agama picticauda</td>
<td>A</td>
<td>UF 174515/AA17</td>
<td>U.S.A., Florida, Miami-Dade Co., Homestead, Coral Castle</td>
<td>KU664597</td>
</tr>
<tr>
<td>Agama picticauda</td>
<td>A</td>
<td>UF 175601/AA19</td>
<td>U.S.A., Florida, Monroe Co., Key Largo</td>
<td>KU664596</td>
</tr>
<tr>
<td>Agama picticauda</td>
<td>B</td>
<td>UF 173222/AA16</td>
<td>U.S.A., Florida, Brevard Co., Palm Bay</td>
<td>KP191669</td>
</tr>
<tr>
<td>Agama picticauda</td>
<td>B</td>
<td>UF 136983/AA8</td>
<td>U.S.A., Florida, Seminole Co., Sanford</td>
<td>KP191668</td>
</tr>
<tr>
<td>Agama picticauda</td>
<td>B</td>
<td>UF 136984/AA9</td>
<td>U.S.A., Florida, Seminole Co., Sanford</td>
<td>KP191667</td>
</tr>
<tr>
<td>Agama picticauda</td>
<td>C</td>
<td>UF 174561/AA18</td>
<td>U.S.A., Florida, Collier Co., Naples</td>
<td>KU664595</td>
</tr>
<tr>
<td>Agama picticauda</td>
<td>D</td>
<td>UF 176424/AA20</td>
<td>U.S.A., Florida, Hillsborough Co., Apollo Beach</td>
<td>KU664594</td>
</tr>
</tbody>
</table>
with Geneious software (ver. 9.0.1, http://www.geneious.com, Kearse et al., 2012). Sequences were aligned using Clustal with MEGA software (ver. 6, Tamura et al. 2013) and edited manually when necessary using SeaView (ver. 4.2.5, Gouy et al., 2010). We compared Florida specimens to three different data sets; 68 samples downloaded from GenBank incorporating the data set of Mediannikov et al. (2012), 111 samples downloaded from GenBank incorporating the data set of Leaché et al. (2014), and 200 unpublished donated samples (Leaché, pers. comm.).

We analyzed 472 bp of sequence data. We estimated relationships among haplotypes using Maximum Likelihood (ML) methodology with the Tamura-Nei model, complete deletion mechanism, nucleotide substitution, nearest-neighbor interchange heuristic method, very strong branch swap filter, and 1000 nonparametric bootstrap replicates (Felsenstein, 1985) to assess node support using MEGA (ver. 6, Tamura et al., 2013). The most credible support of phylogenetic relationships was confined to nodes with nonparametric bootstrap values ≥70% (Hillis and Bull, 1993; Felsenstein, 2004).

RESULTS

We found four haplotypes of *Agama* in Florida. One haplotype (A) was found in Charlotte, Miami-Dade, and Monroe counties; one (B) from Brevard and Seminole counties, one (C) in Collier County, and one (D) in Hillsborough County (Fig. 1). Our molecular data, when compared to the dataset from Mediannikov et al. (2012), illustrate that Florida samples are most closely related to individuals identified as *Agama agama* (Fig. 2). However, when Florida samples were compared to the dataset from Leaché et al. (2014), they were most closely related to individuals identified as *A. picticauda* Peters, 1877 (Fig. 3).

The ML analyses illustrate that Florida samples are most closely related to individuals from western Africa, although none of the Florida samples had haplotypes identical to those in the native range. Specimens from Brevard and Seminole counties are most closely related to samples from Ghana, Ivory Coast, and Liberia (Figs. 2–3; Mediannikov et al., 2012; Leaché et al., 2014; A. Leaché pers. comm.). Specimens from Charlotte, Miami-Dade, and Monroe counties are most closely related to samples from Benin (Fig. 2, Mediannikov et al., 2012) and Cameroon, Democratic Republic of the Congo, and Gabon (Fig. 3, Leaché et al., 2014; A. Leaché, pers. comm.). Specimens from Collier and Hillsborough counties are most closely related to samples from Benin, Niger, and Togo (Fig. 2, Mediannikov et al., 2012) and Niger (Fig. 3, Leaché et al., 2014).
DISCUSSION

Our molecular data support the native range origin hypothesized by Enge et al. (2004), where introduced Agama in Florida originated from Benin, Ghana, and Togo. However, we identified additional source localities: Liberia, Ivory Coast, Niger, Cameroon, Democratic Republic of the Congo, and Gabon. Multiple haplotypes of Agama throughout Florida indicate multiple independent introduction events from different origins in Africa.

Because of recent taxonomic revisions, our data do not support the species identification hypothesis of Enge et al. (2004) where introduced individuals in Florida were identified as Agama agama africana. Mediannikov et al. (2012) arbitrarily labeled all specimen samples from western Africa as A. agama (Leaché et al., 2014). However, because there is no known holotype locality for the nominate species A. agama, this species name has been applied to populations in central Africa. The name A. picticauda was resurrected and used to represent populations in western Africa (Wagner et al., 2009; Leaché et al., 2014). Thus, we designate Florida populations as A. picticauda.

It should be noted that we used only 16s for this study because it was the only gene sequenced by Mediannikov et al. (2012). Nevertheless, an expansion of this study could include the nuclear genes used by Leaché et al. (2014), which might yield new information on the native range origins of Agama picticauda in Florida.

![Figure 1](image_url)

Figure 1. Map of Florida showing the distribution of introduced Agama based on vouchered records from UF-Herpetology. Coral-colored triangles with central dot indicate all known vouchered records, red circles indicate haplotype A, blue circles indicate haplotype B, green circles indicate haplotype C, and purple circles indicate haplotype D.
ACKNOWLEDGMENTS

UF Herpetology curators Max A. Nickerson and David C. Blackburn allowed use of their collections for our studies. David L. Reed, Gustave Paulay, Pam Soltis and Doug Soltis provided lab space. AnneMarie Clark and Bret Boyd taught the molecular techniques that were used in this study. Evgeny Mavrodiev designed the primers. Philipp Wagner provided information on Agama taxonomy. Adam Leachè supplied useful data. Kevin M. Enge, Jennifer Eckles, and Tessie Offner (Florida Fish and Wildlife Conservation) donated specimens. Claudia MacKenzie-Krysko provided photographs. Yasel Urgelles-Alfonso, Lary Reeves, Matthew Fedler, Nicole Cobb, Eric Suarez, Jan-Michael J. Archer, and Kirsten Hecht (UF Herpetology) provided insight and advice. This study was funded by the United States Department of Agriculture, United States Geological Survey, and UF-Herpetology.

LITERATURE CITED

Figure 3. Enlarged area of introduced populations of *Agama* in Florida using Maximum Likelihood analysis and data set of Leaché et al. (2014). Note that values above major nodes represent bootstrap support ≥70%; and samples highlighted in red, blue, green, and purple represent different haplotypes for specimens collected from introduced populations in Florida.

