Population Ecology

Mitochondrial Diversity Supports Multiple Origins for Invasive Pigs

BLAKE E. MCCANN,1 Resource Management, Wildlife, Theodore Roosevelt National Park, 315 Second Avenue P.O. Box 7, Medora, ND 58645, USA
MATHEW J. MALEK, Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND 58202, USA
ROBERT A. NEWMAN, Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND 58202, USA
BRANDON S. SCHMIT, Wildlife Services, United States Department of Agriculture, 4101 La Porte Avenue, Fort Collins, CO 80521, USA
SETH R. SWAFFORD, United States Fish and Wildlife Service, 12595 MS Highway 149, Yazoo City, MS 39194, USA
RICHARD A. SWEITZER, The Great Basin Institute, 16750 Mt. Rose Highway, Reno, NV 89511, USA
REBECCA B. SIMMONS, Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND 58202, USA

ABSTRACT Our objective was to identify and evaluate mitochondrial diversity of wild pigs in the United States (U.S.). We obtained tissue samples from 81 individual pigs in 30 U.S. states and amplified a 403 base-pair region of mitochondrial DNA. We then downloaded overlapping sequences (n = 904) from public repositories to create a global reference. We used parsimony and Bayesian techniques to evaluate phylogenetic relationships, and we used origins of published sequences from Eurasian wild boar to establish a phylogeographic reference. We then compared gene and nucleotide diversity measures for introduced pigs in North America with those of domestic swine, Eurasian wild boar, and feral pigs within broad-scale geographic groupings. We identified 15 haplotypes for introduced pigs, representing wild and domestic animals from >30 countries spanning the indigenous range of S. scrofa. Mitochondrial diversity measures and phylogenetic relationships indicated a strong association between introduced pigs and European domestic breeds, reflecting the known history of human colonization, trade, and settlement in the United States. Based on the geographic distribution of haplotypes in North America, we found that range expansion is a product of translocation from historical populations and introduction from new genetic sources. Finally, haplotype network analyses provided evidence of past demographic expansions within lineages, contributing to observed mtDNA variation among introduced pigs in North America. © 2014 The Wildlife Society.

KEY WORDS diversity, feral, genetics, mitochondrial DNA, pig, Sus scrofa, United States.

Invasive species present one of the greatest threats to native ecosystems globally. In the United States (U.S.), tens of thousands of nonnative species have been introduced, posing serious risk to natural systems and accounting for >$100 billion in damages annually (Pimentel et al. 2005). Although not all nonnative species are invasive, some are particularly adept at colonizing new environments (Kolar and Lodge 2001). In some cases, close association with humans aids dispersal. This is especially true for pigs (Sus scrofa; Mayer and Brisbin 1991).

Pigs were first domesticated ≥9,000 years ago (Giuffra et al. 2000, Larson et al. 2007, Vigne et al. 2009) and domestication has occurred subsequently in multiple locations throughout Eurasia (Larson et al. 2005, 2010; Luetkemeier et al. 2010). Pigs have been repeatedly transported to new locations and released under free-range livestock conditions, often leading to establishment of new wild populations. With the advent of world travel and trade in the 16th century, this situation was exacerbated. Though native to portions of Europe, Asia, and Africa, wild pigs can now be found on many islands and all continents except Antarctica (Oliver and Brisbin 1993).

Among U.S. states, Hawaii was the first to be affected by introduced pigs. Polynesian settlers are thought to have released pigs on the islands ≥1,000 years before present (Mayer and Brisbin 1991). However, introduction of European domestic stock in the 1700s and subsequent introduction of a variety of domestic breeds continuing to modern times is thought to have caused interbreeding among feral island populations (Mayer and Brisbin 1991). The extent to which these ancient and recent introductions have contributed to feral pig distributions on the islands today is unclear.

Domestic pigs were first brought to North America during explorations of the 1500s (Towne and Wentworth 1950, Mayer and Brisbin 1991). Because of free-range livestock practices, escape, or release, feral populations were commonly established around colonies (Mayer and Brisbin 1991). As the interior of the continent was settled, pigs were introduced to many locations, with some populations persisting and others perishing. By the late 1800s, established
feral populations were present in at least 13 U.S. states in the southern tier of North America (Mayer and Brisbin 1991). At this time, an increased interest in pig hunting prompted the importation and release of Eurasian wild boar. The term Eurasian wild boar here refers to all wild Sus scrofa L (i.e., undomesticated pigs) and the term hybrid represents any level of crossing between domestic pigs and Eurasian wild boar or feral pigs and Eurasian wild boar (Mayer and Brisbin 1991). Eurasian wild boar bred freely with feral pigs wherever populations came into contact, leading to hybrid animals with a range of intermediate phenotypic characteristics (Mayer and Brisbin 1991). Since the introduction of the wild boar, trade and translocation of pigs throughout the U.S. for hunting purposes became commonplace and hybrid animals possessing wild boar phenotypic characters were highly sought after for establishment of new populations or improvement of existing herds (Mayer and Brisbin 1991, Waithman et al. 1999). This is an important consideration, because the type of pigs colonizing areas may affect the course of establishment and the rate of range expansion (Waithman et al. 1999).

During the last 30 years, anthropogenic factors have been thought to be the leading cause of range expansion in the U.S. (Gipson et al. 1998, Waithman et al. 1999). Since 1980, the invasive range of pigs has increased steadily from 17 to 44 U.S. states (Mayer and Brisbin 1991, 2009, Gipson et al. 1998). Although recorded accounts provide some insights, it is unclear if stock from historical introductions persist or if they have been replaced by subsequent invasions. The secretive nature of recent anthropogenic dispersal has added to this uncertainty, and calls into question the accuracy of introduction records. However, molecular techniques may provide an opportunity for understanding the current diversity of wild pigs in the United States.

Mitochondrial DNA (mtDNA) has been used successfully for phylogeographic studies of wild boar and domestic breeds throughout Eurasia (Larson et al. 2005, Scandura et al. 2008, Luetkemeier et al. 2010) and has helped identify putative geographic and breed origins for feral populations in New Zealand and Australia (Gongora et al. 2004). Furthermore, mtDNA phylogenies have elucidated patterns of transcontinental human dispersal of pigs and associated breed development in Asia and Europe (Giuffra et al. 2000, Fang and Andersson 2006, Luetkemeier et al. 2010), and mtDNA has helped identify hybridization events between domestic pigs and Eurasian wild boar (Fang et al. 2006, Scandura et al. 2008). Finally, the vast amount of published sequence makes mtDNA a particularly valuable genetic marker for global analysis of introduced pigs (Giuffra et al. 2000).

Although mtDNA presents many positive attributes for global phylogenetics, the history of U.S. wild pigs presents challenges for molecular investigation. Genetic relationships may be confounded by human redistribution of the species, the short duration of inhabitation in North America, and the introduction of both domestic pigs and Eurasian wild boar to wild-living populations. All would preclude the effective use of divergence-based analyses for examining wild pig dispersal subsequent to introduction, because we cannot expect DNA variation to reflect geographic distribution for this invasive species (Spencer and Hampton 2005). Alternately, animal invasions have been tracked with mtDNA by linking haplotype occurrences between historical and newly invaded areas (Evans et al. 2003, Tooman et al. 2011). However, important limitations intrinsic to mtDNA and published sequence must be considered when assessing both global and national molecular genetic relationships for pigs. For instance, mtDNA is a single haplotype marker that is prone to stochastic variation. Therefore, genetic drift, founder effect, and bottlenecks may limit mtDNA haplotypes shared between sampled locations. Also, published sequence may be incorrectly identified to species or breed and may contain nucleotide errors, affecting phylogenetic analysis and interpretation (Wesche et al. 2004, Nilsson et al. 2006). Additionally, mtDNA pseudogenes (NUMTs) can possibly be amplified, leading to erroneous phylogenetic results (Parr et al. 2006, Goios et al. 2009). Though NUMTs have been identified for domestic cats and humans (Lopez et al. 1994, Bensasson et al. 2003), we could find no reference to rates of occurrence for NUMT’s in pigs. To address the possibility of NUMTs biasing phylogenetic analysis, we used recently compiled genomic data (Archibald et al. 2010) to search for duplication events (see methods).

Despite these challenges, careful assessment of mtDNA relationships can provide insights to the multiple origins of introduced pigs and the genetic diversity of disparate populations. We investigated phylogenetic relationships of wild pigs in the U.S. in the context of published mtDNA sequence for domestic pigs and Eurasian wild boar. Our objective was to identify and evaluate mitochondrial diversity of wild pigs in the United States. We expected to find relatively high genetic diversity for introduced pigs and shared ancestry with both domestic swine and Eurasian wild boar, as indicated by historical accounts of the invasion.

STUDY AREA

et al. 2005, Fang and Andersson 2006, Fang et al. 2006, Scandura et al. 2008; Fig. 2).

METHODS

Sampling Techniques
We cooperated with United States Department of Agriculture Wildlife Services, National Park Service, state agencies, and private organizations involved in sanctioned pig control, eradication, or research programs to obtain samples. When a pig was destroyed, field personnel collected blood or other somatic tissue (e.g., skeletal muscle, skin) and recorded the sample location. Blood samples were stored on FTA cards (Whatman Inc., Florham Park, NJ), allowed to air dry, and sent to the University of North Dakota (UND) where we stored them at room temperature. Other somatic tissues were frozen and shipped overnight to UND and stored at −20°C upon arrival. We obtained 81 samples for mtDNA analyses (Fig. 1). We collected all samples secondarily from management actions authorized by state and federal agencies required to adhere to welfare protocols for handling of mammalian species. Therefore, this research was deemed exempt by the UND institutional animal care and use committee.

We established a global dataset by obtaining published mtDNA control region sequence (n = 904) from National Center for Biotechnology Information (NCBI; http://www.ncbi.nlm.nih.gov/) representing wild, domestic, and feral pigs from around the world. Among these, we included sequence representing 114 haplotypes of the control region identified by Scandura et al. (2008) and incorporated breed and geographic information referenced therein. We also searched NCBI for sequence from entries submitted after the Scandura et al. (2008) publication and for samples from new geographic areas or those representing additional breeds (Table S1 available online at www.onlinelibrary.wiley.com).

Laboratory Methods
For total DNA extraction, we followed standard protocols for dried blood (Whatman Inc.) and tissue with the DNEasy blood and tissue kit (Qiagen, Santa Clarita, CA). We quantified genetic concentrations using an ND-1000 spectrophotometer and software V3.1.0 (Nanodrop Technologies, Inc., Wilmington, DE), and diluted with distilled water as necessary for the polymerase chain reaction (PCR). We amplified an approximately 550 base-pair segment of the mtDNA control region using forward primer PigF (5’-ACTCTGGT CTTGTAAACC-3’) and reverse primer PigR (5’-TAAGGGGAAAGACTGGGC-3’; Okumura et al. 1996, Loggins 2007). We conducted PCR with the Ex Taq kit (Takara Biotechnology, Ltd., Shiga, Japan) using standard procedures in an Eppendorf thermocycler (Eppendorf, Hamburg, Germany; Simmons and Scheffer 2004). We then checked product for presence and size of DNA fragments on a 2% agarose gel containing 0.1 µg/ml of ethidium bromide, and visualized gels with an AutoChemi ultraviolet transilluminator and Labworks 4.6 computer software (UVP Bio-Imaging Systems, Cambridge, United Kingdom). We cleaned PCR products for sequencing using a Qiagheck PCR purification kit (Qiagen).

We performed sequencing reactions with a Big Dye Terminator Version 3.1 sequencing kit (Applied Biosystems, Foster City, CA) and the forward and reverse primers described above. We used an ABI 3100 system (Applied Biosystems) to visualize and record the sequence and BIOEDIT 5.0.6 (Hall 2001) for alignment and assembly.
of consensus sequences. Finally, we trimmed all sequences to minimize potential errors in nucleotide identification and missing data in our matrix, resulting in a 403 base-pair alignment of the control region for analysis. Sequences are available in online holdings at NCBI (JF701989-JF702002, JF702006, JF702009-JF702012, JF702017, JF702023-JF702037, JF702040, JF702046, JF702049, JF702054, JF702056-JF702078, JF702081, JF702087-JF702093, and JF702105-JF702115).

To avoid errors associated with NUMT contamination, we re-processed any samples where we observed ambiguities within the 403 base-pair region in chromatograms. Further, we conducted a Basic Local Alignment Search Tool (BLAST; Altschul et al. 1990) search using our mtDNA sequence to probe the pig genome (Sscrofa 10; http://www.ncbi.nlm.nih.gov/genome/guide/pig/) for NUMTs. We downloaded all BLAST results with >90% coverage and identity for our mtDNA matrix. We then compared the nuclear sequence with our mtDNA matrix to ensure that none matched mtDNA consensus sequences or polymorphic nucleotide positions defining haplotypes.

Phylogenetic Analyses

We used TCS 1.21 (Clement et al. 2000) with gaps set as a fifth character state to determine number of haplotypes and construct a haplotype network. We constructed phylogenetic trees from our total haplotype matrix using MRBAYES 3.1.2 (Ronquist and Huelsenbeck 2003) with 10,000,000 Markov Chain Monte Carlo generations using the GTR + I + G model as determined by jModeltest (Guindon and Gascuel 2003, Posada 2008). To root trees, we included sequences from other Sus species occurring in Southeast Asia, where mtDNA evidence suggests divergence of S. scrofa between 5 and 1 million years ago (Randi et al. 1996, Mona et al. 2007) followed by a radiation of the species across Eurasia during the last 500 thousand years (Giuffra et al. 2000; Larson et al. 2005, 2010; Lucchini et al. 2005). Outgroup sequences included: S. barbatus Muller (bearded pig; n = 3), S. verrucosus Muller (Javan pig; n = 4), S. celebensis Muller and Schlegel (Celebese or Sulawesi warty pig; n = 2), S. cebifrons Heude (Visayan warty pig; n = 2), and S. philippensis Nehring (Philippine warty pig; n = 2) published at NCBI (Table S1). We then used recorded collection locations from published Eurasian wild boar sequences for phylogeographic interpretation of tree topology. Finally, we prepared a haplotype network including sequences from U.S. pigs and all closely associated haplotypes in our Bayesian phylogenetic tree (n = 120 haplotypes, total).

We used ARLEQUIN 3.5 (Excoffier et al. 2005) to compare mtDNA diversity of pigs in North America with that of introduced pigs in Australia and wild and domestic pigs from the Eastern Hemisphere represented in our global dataset. Based on the findings of Groves and Grubb (1993), we categorized published sequences from North Africa, Europe, and parts of Central Asia as Western, and we categorized all sequences published from points east of Central Asia generally as Eastern (Fig. 2). Using this
methodology, we organized the dataset into 6 broad-scale groupings corresponding roughly to geography and animal type: North America, introduced ($n = 79$); Australia, introduced ($n = 18$); Western, wild boar ($n = 253$); Western, domestic ($n = 334$); Eastern, domestic ($n = 161$); and Eastern, wild boar ($n = 101$). We excluded 32 sequences from this analysis because of insufficient information regarding geographic location or type of pig represented. We excluded 7 sequences representing feral pigs from the Mariana Islands ($n = 1$), Papua-New Guinea ($n = 1$), Vanuatu ($n = 1$), and the Hawaiian Islands ($n = 4$) because of their remote location and small number of representatives. However, we used sequences from these island locations for subsequent ad hoc comparisons of haplotypes present among invaded areas. In ARLEQUIN, we generated descriptive statistics and calculated diversity and genetic distance measures within and between groups (Tajima 1983, Nei 1987). We then identified specific haplotypes shared between invaded areas. In ARLEQUIN, we generated descriptive statistics and calculated diversity and genetic distance measures within and between groups (Tajima 1983, Nei 1987). We then identified specific haplotypes shared among invaded areas. In ARLEQUIN, we generated descriptive statistics and calculated diversity and genetic distance measures within and between groups (Tajima 1983, Nei 1987). We then identified specific haplotypes shared between invaded areas in our global sample.

RESULTS
We identified 148 haplotypes for the 403 base-pair mtDNA alignment of global sequences of *S. scrofa*, delineated by 12 insertions or deletions, 38 transitions, and 1 transversion (substitutions per nucleotide = 0.097). Our sample of 81 wild pigs included 14 haplotypes, and 1 published sequence from Hawaii (AY884613; Larson et al. 2005) provided a fifteenth haplotype for consideration in our analyses of introduced pigs in the United States. Based on reported geographic information and pig types, 11 of these haplotypes corresponded cumulatively to >70 domestic breeds in 15 countries, Eurasian wild boar from 20 countries, and animals of all types from >30 countries (Appendix A). Four mtDNA haplotypes identified in our U.S. sample were unique, having no identical match to published sequence (Appendix A).

Phylogenetic Relationships
Bayesian analysis revealed tree topology corresponding roughly with geographic locations for published sequences of outgroups and Eurasian wild boar, which we used as a basis for phylogeographic reference (Fig. 3). Most haplotypes representing wild pigs collected in the United States were associated with 2 large polytomies, one of Asian phylogeographic origin and one of European phylogeographic origin (Fig. 3). One haplotype (h84), from Hawaii, was part of a monophyletic group composed of feral pigs and *S. verrucosus* (Fig. 3, Fig. S1 available online at www.onlinelibrary.wiley.com).

Network analysis generally supported Bayesian tree topology and revealed substructure elucidating the importance of select haplotypes in domestication of pigs (Fig. 4). Starburst features associated with haplotypes representing both Eurasian wild boar and domestic breeds suggest rapid diversification and provide evidence of past demographic expansions within lineages, including processes leading to haplotypes 145–148 that were identified only in North America (Fig. 4). Most haplotypes found in the U.S. were among those shared by domestic pigs and Eurasian wild boar and were widely distributed globally (Fig. 4; Appendix A).

Mitochondrial Diversity
Gene diversity was highest among wild boar groupings, followed by domestic groups, and then introduced pigs in North America and Australia (Table 1). Alternately, nucleotide diversity was highest for Western domestic pigs, followed by wild boar groupings, introduced pigs in North America, Eastern domestic pigs, and then introduced pigs in Australia (Table 1). Our North American sample was most closely related to Western domestic and Western wild boar groupings (Table 2). Mitochondrial haplotypes were shared between all groups, but Western domestic pigs and Western wild boar groupings had the most haplotypes in common with introduced pigs in North America (Table 3). Feral pigs from Hawaii also shared haplotypes with all of the above groups, but this relationship was driven by the occurrence of 2 very common haplotypes in Hawaii (h19 and h13; Appendix A). However, a single haplotype (h84) was exclusive to feral animals reported from Hawaii, the Mariana Islands, Papua-New Guinea, and Vanuatu, as well as *S. verrucosus* from Indonesia (Appendix A). Otherwise, mitochondrial haplotypes associated with Eastern groupings were present at relatively low frequency in all invaded areas (Table 3).

We found 8 mitochondrial haplotypes in more than 1 state and some (e.g., h17, h19, and h37) were distributed throughout the continental United States (Fig. 5, Appendix A). Haplotype variation was highest in Tennessee, North Carolina, Michigan, and North Dakota, though number of haplotypes observed was positively correlated (Spearman $r = 0.876$, $P < 0.001$) with the number of samples collected in states (Fig. 5). Patterns in haplotype distribution potentially useful for tracking dispersal include: 1) the eastern distribution of h7 from South Carolina to Michigan; 2) the identification of h2 only in Michigan and Idaho; 3) the discovery of h20 only in North Dakota and South Carolina; and 4) the occurrence of h39 in Florida, Ohio, and Michigan (Fig. 5). Unique haplotype 148 was found in both Indiana and Kansas, whereas unique haplotypes 145–147 were found only in Great Smoky Mountains National Park, bordering Tennessee and North Carolina (Figs. 1 and 5).

DISCUSSION
The genetic variation identified here using only a haploid marker and a modest sample dataset supports multiple origins for introduced pigs into the United States (Mayer and Brisbin 1991). Though the 15 mtDNA haplotypes found in the U.S. are a fraction of those identified for the global dataset, they are a diverse molecular subset (Table 1) and represent a wide array of pig types from throughout the native range of *S. scrofa* (Fig. 3, Appendix A). This finding suggests that the nationwide population possesses intrinsic adaptive potential through genetic variability.

The importance of genetic variation for species survival is well documented (Johnson and Dunn 2006, Wright et al. 2008). In populations founded by only a few
Figure 3. Rooted phylogram of 148 Sus scrofa haplotypes and 13 sequences from 5 other Sus species: Sus barbatus (sb; n = 3), Sus verrucosus (sv; n = 4), Sus celebensis (sc; n = 2), Sus cebifrons (scb; n = 2), and Sus philippensis (sp; n = 2). Dotted lines in tree indicate haplotypes identified for pigs collected in the United States. We provide Asian and European phylogeographic associations, based on geographic origin of Eurasian wild boar sequences, to the right of the tree. Numbers at nodes indicate mean posterior probabilities (≥75% shown) and scale bar (bottom left) indicates genetic distance.
individuals, genetic variation may be insufficient for reproductive health and ongoing adaptation to environmental fluctuations, diseases, and other ecological stressors (Wright et al. 2008). Therefore, low genetic diversity may have limited the invasiveness of the first pig populations established in the United States and this may explain the decline and limited range of the species in some locations prior to 1900 (Mayer and Brisbin 1991). However, genetic variation does not appear to be limiting wild pig populations in the United States today. Instead, the various genetic backgrounds filtering into wild pig populations are likely contributing to their invasion of novel habitats.

The high genetic diversity detected for introduced pigs is an important challenge from a management perspective. Translocation and release of pigs has undoubtedly augmented genetic diversity of disparate populations in the past and will likely continue to do so in the future (Gipson et al. 1998, Mayer and Brisbin 2009). This frequent movement of animals across great geographic distances has allowed invasive pigs to repeatedly bridge geographic barriers that might otherwise restrict gene flow. Thus, spatially structured emigration and immigration patterns will be relevant for management, so that we may identify the extent of population units and determine sources for new introductions (Robertson and Gemmell 2004, Helgen et al. 2008, Ross and Shoemaker 2008). Therefore, questions of ancestry, diversity, and gene flow (i.e., dispersal patterns) will be increasingly important for population control strategies. Clearly, molecular techniques can be wielded to inform management in this regard (Gongora et al. 2004, Hampton et al. 2004, Spencer and Hampton 2005). However, in the case of mtDNA, we must proceed cautiously and consider the limitations of this molecular marker in light of prior research and trends in our current dataset.

Global Relationships Affecting Genetic Diversity of Introduced Pigs

The phylogenetic patterns identified through our Bayesian analysis generally agree with prior research on swine ancestry that divides mtDNA lineages into European and Asian clades (Alves et al. 2003, Gongora et al. 2004, Larson et al. 2005). From previous studies, we also know that

<table>
<thead>
<tr>
<th>Molecular characteristic</th>
<th>N.A. introduced</th>
<th>Eastern domestic</th>
<th>Eastern wild boar</th>
<th>Western domestic</th>
<th>Western wild boar</th>
<th>Australia introduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. individual sequences</td>
<td>80</td>
<td>161</td>
<td>101</td>
<td>334</td>
<td>253</td>
<td>18</td>
</tr>
<tr>
<td>No. haplotypes</td>
<td>13</td>
<td>29</td>
<td>46</td>
<td>42</td>
<td>38</td>
<td>5</td>
</tr>
<tr>
<td>No. usable bp</td>
<td>398</td>
<td>381</td>
<td>381</td>
<td>380</td>
<td>381</td>
<td>393</td>
</tr>
<tr>
<td>No. polymorphic sites</td>
<td>20</td>
<td>36</td>
<td>48</td>
<td>37</td>
<td>39</td>
<td>16</td>
</tr>
<tr>
<td>Gene diversity</td>
<td>0.825 (±0.023)</td>
<td>0.903 (±0.010)</td>
<td>0.969 (±0.007)</td>
<td>0.897 (±0.011)</td>
<td>0.926 (±0.007)</td>
<td>0.549 (±0.127)</td>
</tr>
<tr>
<td>Nucleotide diversity</td>
<td>0.012 (±0.007)</td>
<td>0.007 (±0.004)</td>
<td>0.016 (±0.009)</td>
<td>0.017 (±0.009)</td>
<td>0.014 (±0.007)</td>
<td>0.006 (±0.004)</td>
</tr>
</tbody>
</table>
domestic pig breeds have arisen independently in both world-geographic regions (Wu et al. 2007, Larson et al. 2010, Luetkemeier et al. 2010) and that European and Asian cross-breeding has occurred since the late 1700s, with a predominance of Asian mtDNA introgression into Europe (Darwin 1868, Kim et al. 2002, Fang and Andersson 2006). This history has direct implications for mtDNA diversity of wild pigs in the United States, because select haplotypes (e.g., h2, h7, h13, h17, h19, h37, h38) of Asian and European phylogeographic origins were apparently propagated in domestic breeds and distributed globally by European exploration, colonization, and trade (Gongora et al. 2004, Larson et al. 2005; Appendix A). This assertion is supported by the abundance of these select haplotypes in our dataset, their relationship with both domestic pigs and Eurasian wild boar, and the large number of closely related haplotypes that have diverged from these sources (Fig. 4).

Given prior evidence of Asian mtDNA introgression into European breeds, the high level of nucleotide diversity observed for our Western domestic pig grouping is logical (Fang and Andersson 2006; Table 1). The relatively high diversity of our North American sample follows, considering its similarity to Western pig groupings and the fact that most domestic lines historically propagated in the United States were of European origin (Table 3; Jones 1998). However, some caution should be exercised when evaluating gene and nucleotide diversity of artificial populations, as both measures are affected by the composition of assigned groups (i.e., group size and abundance of common haplotypes), our efforts to include widely divergent sequences in the dataset, and sparse sampling among geographic locations. Regardless, raw comparisons of haplotypes shared between regions generally support extensive anthropogenic dispersal of pig breeds carrying both European and Asian mtDNA lineages (Table 3). However, Asian mtDNA transfer via European stock cannot be differentiated from direct introductions of Asian domestic breeds to wild-living populations of swine in the United States and elsewhere (Gongora et al. 2004).

National Relationships Relevant to Management

Though multiple breed associations for haplotypes prevent effective identification of specific sources for introductions, useful insights on invasion processes can be gained by evaluating haplotype distributions. The high frequency and wide distribution of haplotypes h17, h19, and h37 suggest that these maternal lineages have been present in wild pig populations in North America for a long period of time and that historical populations are playing an important role in recent range expansion in midwestern and northern States (Fig. 5). Similar patterns for h7, h20, and h39 in both southern and northern states may indicate dispersal of animals from long-established populations in the southern tier of the continent (Fig. 5; Appendix A). Alternately, the presence of h2 only in recently invaded areas (i.e., Michigan

Table 2. Genetic distance measures for 6 arbitrarily assigned groupings of swine based on geographic location (North America [N.A], eastern or western Eurasia, and Australia) and pig type (introduced, domestic, or wild boar). Average pairwise nucleotide difference within and between populations are provided on and above the diagonal, respectively. Population pairwise F_{ST} values are below the diagonal. Asterisks indicate significance (P<0.01) from permutation tests, excluding figures on the diagonal.

<table>
<thead>
<tr>
<th>Group</th>
<th>N.A. introduced</th>
<th>Eastern domestic</th>
<th>Eastern wild boar</th>
<th>Western domestic</th>
<th>Western wild boar</th>
<th>Australia introduced</th>
<th>Hawaii introduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.A. introduced</td>
<td>4.899</td>
<td>11.118</td>
<td>11.293</td>
<td>5.784</td>
<td>5.132</td>
<td>10.561*</td>
<td></td>
</tr>
<tr>
<td>Eastern domestic</td>
<td>0.691*</td>
<td>2.536</td>
<td>4.977*</td>
<td>10.725*</td>
<td>12.410*</td>
<td>2.693</td>
<td></td>
</tr>
<tr>
<td>Eastern wild boar</td>
<td>0.507*</td>
<td>0.140*</td>
<td>6.151</td>
<td>11.157*</td>
<td>12.458*</td>
<td>4.859</td>
<td></td>
</tr>
<tr>
<td>Western domestic</td>
<td>0.020*</td>
<td>0.548*</td>
<td>0.434*</td>
<td>6.408</td>
<td>6.153</td>
<td>10.126*</td>
<td></td>
</tr>
<tr>
<td>Western wild boar</td>
<td>0.045*</td>
<td>0.671*</td>
<td>0.552*</td>
<td>0.053*</td>
<td>5.235</td>
<td>11.517*</td>
<td></td>
</tr>
<tr>
<td>Australia introduced</td>
<td>0.612*</td>
<td>0.119*</td>
<td>0.099*</td>
<td>0.480*</td>
<td>0.606*</td>
<td>2.157</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Shared mtDNA haplotypes between Hawaii and 6 arbitrarily assigned groupings of swine based on geographic location (North America [N.A], eastern or western Eurasia, and Australia) and pig type (introduced, domestic, or wild boar). Number of shared haplotypes are on the top diagonal matrix, and a visual aid with size of darkened circles proportional to number of shared haplotypes is on the bottom diagonal matrix. Published sequences from feral animals in Papua-New Guinea, the Mariana Islands, and Vanuatu shared haplotypes only with Hawaii and are not represented.

<table>
<thead>
<tr>
<th>Group</th>
<th>N.A. introduced</th>
<th>Eastern domestic</th>
<th>Eastern wild boar</th>
<th>Western domestic</th>
<th>Western wild boar</th>
<th>Australia introduced</th>
<th>Hawaii introduced</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.A. introduced</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eastern domestic</td>
<td></td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Eastern wild boar</td>
<td></td>
<td></td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Western domestic</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Western wild boar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Australia introduced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hawaii introduced</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
and Idaho) suggests that this lineage represents a new wave of introductions (Fig. 5). Therefore, we infer that wild pig range expansion in North America is a product of both anthropogenic dispersal of animals from existing populations and introduction of swine from new genetic sources.

Unique haplotypes 145–148 present an interesting challenge for evaluating their possible origins. We propose several plausible explanations for the presence of these haplotypes in the United States and their absence from published sequence databases: 1) unique haplotypes could represent pigs from early introductions whose lineages are no longer propagated in modern domestic breeds, 2) they might represent Eurasian wild boar from geographic areas not included in public sequence databases, and 3) they may be the product of divergence from common haplotypes subsequent to introduction. However, network relationships generally support their divergence from common haplotypes subsequent to introduction. Therefore, genetic mutations may be contributing to the mtDNA diversity of wild pigs in North America.

In Hawaii, feral pigs have a long history of establishment, and successive waves of introduction are apparent from molecular relationships. For instance, haplotypes h13 and h19 probably represent swine introduced after European settlement because of their association with many modern domestic breeds (Appendix A). The third mtDNA haplotype identified on the islands (h84) likely represents the earliest introductions to Hawaii because of its exclusive occurrence among wild-living pigs on other South Pacific islands with human populations arising from Polynesian dispersal (Allen et al. 2001, Larson et al. 2005; Appendix A).

The positive relationship between sample size within areas and haplotypes detected in our study suggests that additional sampling would elucidate even more genetic variation among wild pigs in the United States. An expanded sampling regime might also provide insights as to the broader geographic distribution of unique haplotypes and their relevance in the history of pig invasion. Although mtDNA has provided useful insights toward the objectives of this study, mitochondrial lineages will be of limited utility for tracking gene flow. Ongoing research utilizing multilocus nuclear DNA markers or genes linked to morphological traits will be necessary to provide additional insights on the origins and dispersal pathways of invasive pigs in the United States (Hampton et al. 2004, Spencer and Hampton 2005, Koutsogiannouli et al. 2010, Scandura et al. 2011, McCann 2012).

MANAGEMENT IMPLICATIONS

Our identification of new genetic sources for expanding wild pig populations should be of particular concern to managers, because ongoing exchange of animals between domestic and wild environs has implications for disease transmission. Further, new genetic stock will augment existing populations, potentially resulting in some level of hybrid vigor that benefits survival, exacerbating difficulties in controlling introduced pigs. The ongoing translocation of animals between geographic areas will have similar implications, where distantly related herds are mixed. Finally, global mtDNA relationships provide some unique insights for evaluating the ancestry of animals reported to be Eurasian wild boar, which are highly sought after for hunting purposes. Where pure Eurasian wild boar are sampled, the pure status of pigs may be refuted if they possess mtDNA haplotypes of Eastern phylogeographic origin, as we could
find no record of Eurasian wild boar from central or eastern Eurasia ever being introduced to North America (Mayer and Brisbin 1991).

ACKNOWLEDGMENTS

We thank North Dakota Experimental Program to Stimulate Competitive Research (ND EPSCoR), University of North Dakota Department of Biology, and University of North Dakota Graduate School for funding of this research. Thanks to United States Department of Agriculture, Wildlife Disease Program and field agents for collection of pig tissue samples from throughout the United States. Thanks also to the National Park Service, Institute for Wildlife Studies, North Dakota Game and Fish Department, and many other state and private organizations for collection of samples that made this work possible. We thank K. Drees, T. Jahraus, T. Mitchell, A. Bergstrom, and S. Johnson for laboratory and computational contributions. Finally, we thank I. Ovtchinnikov, R. Zink, V. Tkach, M. Cronin, and anonymous referees, for critical comments to improve this manuscript.

LITERATURE CITED

Darwin, C. 1868 The variation of animals and plants under domestication. John Murry, London, United Kingdom.

Appendix A. Global and national relationships for 15 mitochondrial DNA haplotypes representing introduced pigs in the United States (U.S.). The geographic distribution and frequency of haplotypes found among 81 introduced pigs in United States are compared to published sequence from around the world \((n = 483)\) obtained from National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/). We inferred phylogeographic relationships for haplotypes through Bayesian analysis of sequences from Eurasian wild boar with known collection sites. Geographic origin of sequence and type of pigs represented are denoted for each haplotype; GRSM, Great Smoky Mountains National Park; EWB, Eurasian wild boar. Note: the 81 U.S. pigs analyzed during the current study are represented (No. U.S.) with 1 published sequence (h13 Hawaii).

<table>
<thead>
<tr>
<th>Haplotype</th>
<th>Phylogeographic origin</th>
<th>No. domestic</th>
<th>No. EWB</th>
<th>No. feral</th>
<th>No. other</th>
<th>No. U.S.</th>
<th>Total</th>
<th>National distribution</th>
<th>Global distribution</th>
<th>Domestic breed associations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a</td>
<td>Asian</td>
<td>40</td>
<td>3</td>
<td>12</td>
<td>3</td>
<td>3</td>
<td>61</td>
<td>ID, MI</td>
<td>Australia, China, France, Germany, Japan, Sweden, Taiwan, Thailand, UK</td>
<td>>20 Asian and European domestic breeds</td>
</tr>
<tr>
<td>7bc</td>
<td>Asian</td>
<td>42</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>61</td>
<td>MI, NC, OH, PA, SC, TN</td>
<td>Belgium, China, France, Italy, Japan, Malaysia, Mariana Islands, South Carolina USA, Russia, Spain, Thailand, UK</td>
<td>>20 Asian and European domestic breeds</td>
</tr>
<tr>
<td>13d</td>
<td>Asian</td>
<td>64</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>76</td>
<td>HI</td>
<td>China, UK, Korea, Germany, Spain, Japan, Hawaii USA, Australia, Thailand, Italy</td>
<td>~16 Asian and European domestic breeds</td>
</tr>
<tr>
<td>17b</td>
<td>European</td>
<td>25</td>
<td>12</td>
<td>22</td>
<td>59</td>
<td></td>
<td></td>
<td>AR, CA, MS, NC, ND, NV, TN</td>
<td>Belgium, Germany, Iceland, Italy, Macedonia, Norway, Spain, UK</td>
<td>12 European domestic breeds</td>
</tr>
<tr>
<td>19b</td>
<td>European</td>
<td>91</td>
<td>32</td>
<td>8</td>
<td>22</td>
<td>153</td>
<td></td>
<td>AL, AR, CA, CO, FL, GA, HI, KY, LA, MI, ND, OH, OK, TN, TX, WI, WV</td>
<td>Corsica, Finland, France, Germany, Hungary, Holland, Italy, Portugal, Sweden, UK</td>
<td>>20 European domestic breeds</td>
</tr>
<tr>
<td>20b</td>
<td>European</td>
<td>10</td>
<td>3</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td>ND, SC</td>
<td>UK</td>
<td>Duroc, Large White, Tamworth</td>
</tr>
<tr>
<td>37b</td>
<td>European</td>
<td>22</td>
<td>19</td>
<td>5</td>
<td>12</td>
<td>58</td>
<td></td>
<td>AZ, CA, KS, LA, ND, NJ, NE, NM, OK, PA, TX, VA</td>
<td>Austria, Bulgaria, Germany, Hungary, Indonesia, Italy, Korea, Morocco, Poland, Portugal, Spain, UK</td>
<td>12 European domestic breeds</td>
</tr>
<tr>
<td>38</td>
<td>European</td>
<td>24</td>
<td>34</td>
<td>2</td>
<td>1</td>
<td>61</td>
<td></td>
<td>KY</td>
<td>Austria, Corsica, Denmark, France, Germany, Hungary, Italy, Portugal, Sardinia, UK</td>
<td>Bisaro, Duroc, Gloucester Old Spot, Hampshire, Hungarian Mangalica, Iberian Red, Landrace, Angler sattle-schwein, German Angler, Hampshire Feral animals and f. sericeus</td>
</tr>
<tr>
<td>39b</td>
<td>European</td>
<td>7</td>
<td>3</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td>FL, MI, OH</td>
<td>Germany, Sweden</td>
<td>Bisaro, Duroc, Gloucester Old Spot, Hampshire, Hungarian Mangalica, Iberian Red, Landrace, Angler sattle-schwein, German Angler, Hampshire Feral animals and f. sericeus</td>
</tr>
<tr>
<td>84</td>
<td>Unknown</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td>HI</td>
<td>Papua-New Guinea, Vanuatu</td>
<td>Feral animals and f. sericeus</td>
</tr>
<tr>
<td>103</td>
<td>European</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>MS</td>
<td>Europe</td>
<td>Landrace</td>
</tr>
<tr>
<td>145c</td>
<td>Asian</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>NC</td>
<td>None</td>
<td>Unique haplotype</td>
</tr>
<tr>
<td>146c</td>
<td>European</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>TN</td>
<td>None</td>
<td>Unique haplotype</td>
</tr>
<tr>
<td>147c</td>
<td>European</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>TN</td>
<td>None</td>
<td>Unique haplotype</td>
</tr>
<tr>
<td>148d,e</td>
<td>European</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>IN, KS</td>
<td>None</td>
<td>Unique haplotype</td>
</tr>
</tbody>
</table>

* Found only in recently occupied U.S. states (i.e., those invaded during the last 30 years).
 b Distributed between historical and recently occupied states.
 c Haplotype reported for published sequence of “Ossabaw Hog” breed from South Carolina, USA (AY884715; Larson et al. 2005); reference material with this published sequence did not specify domestic or feral origins.
 d Haplotype reported only for published sequence of a feral pig from Hawaii, USA (AY884613; Larson et al. 2005).
 e Unique haplotype with no exact matches to published sequence.