Mini Risk Assessment
Grape berry moth, *Lobesia botrana* (Denis & Schiffermuller)
[Lepidoptera: Tortricidae]

Robert C. Venette, Erica E. Davis, Michelle DaCosta, Holly Heisler, & Margaret Larson
Department of Entomology, University of Minnesota
St. Paul, MN 55108
September 5, 2003

Introduction
Lobesia botrana is a significant pest of berries and berry-like fruits in Europe, the Mediterranean, southern Russia, Japan, the Middle East, Near East, and northern and western Africa (Avidov and Harpaz 1969, CIE 1974). This pest is also known as the European vine moth (Zhang 1994). The likelihood and consequences of establishment by *L. botrana* have been evaluated previously in a pest-specific risk assessment (Fowler and Lakin 2002). The likelihood of *L. botrana* being introduced to the US was considered low, but the consequences of establishment by *L. botrana* were rated high (i.e., severe) (Fowler and Lakin 2002). In a separate evaluation of the pest, the chances of *L. botrana* becoming established in the US were considered high if it should be introduced (USDA 1985).

![Life stages of *Lobesia botrana*](A-C)

Figure 1. Life stages of *Lobesia botrana*, images not to scale: (A) larva; (B) pupa; and (C) adult. [Photos from Entopix]

CAPS PRA: *Lobesia botrana*
1. **Ecological Suitability. Rating: Medium.** *Lobesia botrana* is considered a Palearctic species that has expanded its range into the Ethiopian zoogeographic province (CAB 2003). Climates in the area occupied by this pest can be characterized generally as dry or temperate (CAB 2003). The currently reported global distribution of *L. botrana* suggests that the pest may be most closely associated with biomes classified as montane scrub; Mediterranean scrub; and temperate broadleaf and mixed forests. Based on the type and area of biomes in the US, we estimate that approximately 29% of the continental US may be suitable for *L. botrana* (Fig. 2). This projection includes the major California wine-producing counties of Napa, Sonoma, Amador, Monterey, and San Louis Obispo. See Appendix A for a more complete description of this analysis.

![Figure 2. Predicted distribution of *Lobesia botrana* in the continental US.](image)

2. **Host Specificity/Availability. Rating: Medium/Medium.** This pest feeds primarily on the flowers and fruits of grape (*Vitis vinifera*) (Roehrich and Boller 1991, PPQ 1993, CAB 2003). However, *L. botrana* demonstrates the curious behavior of feeding on many different plant families (approx. 27), but only a few species within each family are suitable (Gabel et al. 1992). Some of its hosts belong to Apiaceae, Asteraceae, Compositae, Convolvulaceae, Oleaceae, Polygonaceae, Ranunculaceae, Rhamnaceae, Roseaceae, Thymeleaceae, Umbelliferae and Vitaceae (Savopoulou-Soultani et al. 1990, Stavridis and Savopoulou-Soultani 1998). In addition to grape, other reported host plants include: barberry (*Berberis* spp.), black and red currant (*Ribes nigrum*), blackberry (*Rubus fruticosus*), blackthorn (*Prunus spinosa*), carnation (*Dianthus* spp.), cherry (*Prunus avium*), dogwood (*Swida* spp.), grape (*Vitis vinifera*), gooseberry (*Ribes uva-crispa*), kiwi/Chinese gooseberry (*Actinidia chinensis*), nectarine (*Prunus persica*), persimmon (*Diospyros kaki, D. virginiana*), plum (*Prunus domestica*), pomegranate (*Punica granatum*), and olive (*Olea europaea*).

Lobesia botrana females are also attracted to tansy (*Tanacetum vulgare*), specifically to pollen, nectar or damaged plant parts (when flowers are absent); however, no eggs are laid on this plant (Bradley et al. 1979b, Gabel 1992, Stavridis and Savopoulou-Soultani 1998). Larval feeding has also been observed on apples (*Malus domestica*) infected with *Botrytis cinerea* (Savopoulou-Soultani and Tzanakakis 1988), though apple is not a well documented primary host.

See Appendix B for maps showing where various hosts are grown in the continental US.

3. **Survey Methodology. Rating: Medium.** Visual inspections of plant materials may be used to detect eggs, larvae, and pupae, of *L. botrana* (USDA 1985). Eggs will frequently be found on flower buds or pedicels (USDA 1985). Larvae will be found in flowers or fruit clusters covered with webbing produced by the insect (USDA 1985). Pupae occur in rolled leaves (USDA 1985). Fruit dissections may be needed to detect larvae (USDA 1985). For field surveys, Badenhausser et al. (1999) recommend a sample unit of a grape vine. Sample units should be selected at random.

A sex pheromone has been identified that is highly attractive to males. Males are most attracted to a five component blend of \((E,Z)-(7,9)\)-dodecadienyl acetate, \((E,Z)-(7,9)\)-dodecadien-1-ol, \((Z)\)-9-dodeceny1 acetate, \((E)\)-9-dodeceny1 acetate, and 11-dodeceny1 acetate in a ratio of 10:0.5:0.1:0.1:1 (El-Sayed et al. 1999, 2000). Males are slightly less attracted to a three component blend of \((E,Z)-(7,9)\)-dodecadienyl acetate, \((E,Z)-(7,9)\)-dodecadien-1-ol, \((Z)\)-9-dodeceny1 acetate (ratio of 10:0.5:0.1) (El-Sayed et al. 1999, 2000). Males were still attracted, but much less so, to the main pheromone component \((E,Z)-(7,9)\)-dodecadienyl acetate (El-Sayed et al. 1999, 2000). The main pheromone component has been used to disrupt mating as a method of pest control (Arn et al. 1988, Bagnoli et al. 1993, Barbieri et al. 1996, Karg and Sauer 1997, Sauer and Karg 1998, Charmillot and
Pasquier 2001) and to monitor the flight period of males (Anshelevich et al. 1994, Al-Zyoud and Elmosa 2001). However, this compound is sensitive to sunlight and degrades, becoming non-attractive to *L. botrana*, after 60 minutes of exposure to UV radiation (Oldenburg et al. 1999).

Pheromone-baited traps (e.g., Pherocon 1C, Zoecon) have been used to monitor male flight activity and to make informed treatment decisions in grape production areas (Anshelevich et al. 1994, Oliva et al. 1996, Al-Zyoud and Elmosa 2001). Traps placed 4 ft high (1.3 m) are generally more effective than traps placed at only 1 ft (0.3 m, Gabel and Renczés 1985). Delta traps catch relatively fewer moths than traps with a more open design, e.g., Traptest traps described as “commercial type (Montedison, Milan, Italy) consisting of two triangular plastic roofs in Havana brown; sticky area 9.89 dm² [152 in²]” (Gabel and Renczés 1982, 1985). When pheromone traps are used, care should be taken to keep foliage away from the entry to the trap (PPQ 1993). Rubber septa used to dispense the pheromone should be replaced every 3 weeks (PPQ 1993, Anshelevich et al. 1994). Traps should be placed approximately 100 ft (30.5 m) apart to avoid inter-trap interference (Anshelevich et al. 1994). Lures for *L. botrana* can be used in the same trap with lures for *Lymantria dispar*, or *Cydia pomonella* (Schwalbe and Mastro 1988).

4. **Taxonomic Recognition. Rating: Low.** *Lobesia botrana* may be confused with “the American grape berry moth, *Endopiza viteana*, which occurs in the eastern USA and presents similar bionomics...” (CAB 2003). Another tortricid pest of grape, black currant and plum in Europe, *Eupoecilia ambiguella*, causes similar damage (CAB 2003). Forewings of adult *L. botrana* moths “have a mosaic-shaped pattern with black brown cream, red and blue ornamentation,” while forewings of adult *E. ambiguella* are cream colored (CAB 2003). Compared to *E. ambiguella*, “*L. botrana* larvae do not carry any protective silk cover” and “*L. botrana* pupation occurs inside a greyish white cocoon that usually does not incorporate vegetal residues and frass” (CAB 2003).

For a more complete taxonomic and morphological description of *L. botrana*, see Appendix C.

5. **Entry Potential. Rating: Low.** Since 1984, 20 interceptions of *L. botrana* or “*Lobesia* sp.” have been reported across the US (USDA 2003). Annually, only 1 (±0.2 standard error of the mean) interception of *L. botrana* or “*Lobesia* sp.” has been reported (USDA 2003). These interceptions are largely associated with international airline passengers (95%). One interception reported from mail (5%) was associated with infested figs. The pest has been intercepted only at 7 ports of entry in the US. Most interceptions were reported from JFK International Airport (67%), Port Huron, MI (5%), Chicago (5%), Des Plaines (5%), Detroit (5%), Boston (5%), and San Francisco (5%). These ports are the first points of entry for airline passengers, mail, or cargo coming into the US and do not necessarily
represent the intended final destination of infested material. Movement of potentially infested material is more fully characterized in the next section.

6. **Destination of Infested Material. Rating: Low.** When an actionable pest is intercepted, officers ask for the intended final destination of the conveyance. Material infested with *L. botrana* or “*Lobesia* sp.” (either carried by mail or international airline passengers) was destined for five states: New York (67%), Michigan (11%), Illinois (11%), California (5%), and Massachusetts (5%). We note that some portion of each of the states in the continental US has a climate and hosts that would be suitable for establishment by *L. botrana*. We also emphasize that arrivals of *L. botrana* appear to be rare events, based on the number of times it has been intercepted.

“Damage is greater in grape cultivars with compact clusters and/or sensitive to rot” (Pavan et al. 1993). The following observations, relating to the economic impact of *L. botrana* damage to grapes, were published by Roehrich and Schmid, cited in Roerich and Boller (1991):

- “Damage depends strongly on the developmental stage of the grapevine”
- “Before and during flowering the larvae at first penetrate single flower buds and later on start to tie together several flower buds, building glomerules in which they stay and continue their feeding activities”
- Economic thresholds can vary widely depending on the flower cluster size. For example, “One larva per cluster” is sufficient to cause economic damage in ‘Pinot Noir’, while “…‘Cabernet Sauvignon’ can tolerate up to two larvae per flower cluster without reduction of yield”
- Following berry damage and subsequent infection by *Botrytis cinerea*, “The economic thresholds... depend on various aspects, such as whether the grapes are produced as table fruit or for vinification, the level of precipitation (higher or lower risk of *Botrytis* infestation) and the quality and price level of the crop”.

CAPS PRA: *Lobesia botrana* 5
8. **Establishment Potential. Rating: Medium.** No infestations of *L. botrana* have been reported in the US. Given the significant area in the US that is likely to provide a suitable climate, establishment is likely if the pest arrives in this area and encounters a suitable host. Previously, surveys were recommended in California, New York, Washington, Michigan, Pennsylvania, Ohio, Arizona, North Carolina and Missouri because of the acreage of grapes grown in these states (PPQ 1993). At the time, the assumption was made that the distribution of hosts would be the only factor to limit establishment. More recent analyses, however, suggest the distribution of the pest may also be limited by climate (Fowler and Lakin 2002). Our analysis concurs with this finding.

For a more detailed description of the biology of *Lobesia botrana*, see Appendix D.

References:

Bagnoli, B., D. Goggioli, and M. Righini. 1993. Experiments with mating disruption to control the grape moth Lobesia botrana (Den. and Schiff.) in the Chianti region. Redia 76: 375-390. PDF

Bovey, P. 1966. Superfamille des Tortricidae--L'Eudemis de la vigne. Entomologie appliquee a l'agriculture 2: 859-887. PDF

Castro, A. R. 1943. Fauna entomologica de la vid en España. Estudio sistematico-biologico de las especies de mayor importanica economica. Instituto español de entomologia, Madrid. PDF

Coscolla, R., J. Sanchez, and V. Beltran. 1986. Preliminary study on the mortality of eggs of Lobesia botrana Den. & Schiff. caused by high temperatures and low relative humidities in the laboratory. Boletin de Sanidad Vegetal, Plagas 12: 3-7. PDF

Fermaud, M. 1998. Cultivar susceptibility of grape berry culsters to larvae of Lobesia botrana (Lepidoptera: Tortricidae). Journal of Economic Entomology 91: 974-980. PDF

Filip, I. 1983. Determination of the thermal constants of the development necessary to the ecological substantiation of the integrated control of Lobesia botrana Den. et Schiff. Probleme de Protecotia Plantelor. 11: 11-18. PDF

Gabel, B., and V. Renczés. 1982. Effects of design and siting of pheromone traps in monitoring the grape vine moth, Lobesia botrana (Lepidoptera, Tortricidae). Acta Entomologica Bohemoslovaca 79: 260-266. PDF

Gabel, B., and D. Thiéry. 1994b. Semiochemicals from Lobesia botrana (Lepidoptera: Tortricidae) eggs deter oviposition by the codling moth Cydia pomonella (Lepidoptera: Tortricidae). European Journal of Entomology 91: 353-359. PDF

Karg, G., and A. Sauer. 1997. Seasonal variation of pheromone concentration in mating disruption trials against European grape vine moth Lobesia botrana (Lepidoptera: Tortricidae) measured by EAG. Journal of Chemical Ecology 23: 487-501. PDF

Mondy, N., and M. Corio-Costet. 2000. The response of the grape berry moth (Lobesia botrana) to a dietary phytopathogenic fungus (Botrytis cinerea): the significance of fungus sterols. Journal of Insect Physiology 46: 1557-1564. PDF

Savopoulou-Soultani, M., and M. Tzanakakis. 1988. Development of *Lobesia botrana* (Lepidoptera: Tortricidae) on grapes and apples infected with the fungus *Botrytis cinerea*. Environmental Entomology 17: 1-6. [PDF]

USDA. 1985. Pests not known to occur in the United States or of limited distribution, No. 60: European grape vine moth, pp. 1-10. APHIS-PPQ, Hyattsville, MD. PDF

Appendix A. Comparison of climate zones. To determine the potential distribution of a quarantine pest in the US, we first collected information about the worldwide geographic distribution of the species (CAB 2003). We then identified which biomes (i.e., habitat types), as defined by the World Wildlife Fund (Olson et al. 2001), occurred within each country or municipality reported for the distribution of the species. Biomes were identified using a geographic information system (e.g., ArcView 3.2). An Excel spreadsheet summarizing the occurrence of biomes in each nation or municipality was prepared. The list was sorted based on the total number of biomes that occurred in each country/municipality. The list was then analyzed to determine the minimum number of biomes that could account for the reported worldwide distribution of the species. Biomes that occurred in countries/municipalities with only one biome were first selected. We then examined each country/municipality with multiple biomes to determine if at least one of its biomes had been selected. If not, an additional biome was selected that occurred in the greatest number of countries or municipalities that had not yet been accounted for. In the event of a tie, the biome that was reported more frequently from the entire species’ distribution was selected. The process of selecting additional biomes continued until at least one biome was selected for each country. The set of selected biomes was compared to the occurrence of those biomes in the US.
Appendix B. Commercial production of hosts of *Lobesia botrana* in the continental US.

Crop Map 1. Blackberry (*Rubus fruticosus*)

Crop Map 2. Carnation (*Dianthus* spp.)

Crop Map 3. Cherry (*Prunus avium*)

Crop Map 4. Cucumber (*Cucumis sativus*)

Crop Map 5. Currant (*Ribes rubrum*)
Crop Map 6. Grape (*Vitis* spp.)

Crop Map 7. Kiwi (*Actinidia chinensis*)

Crop Map 8. Nectarine (*Prunus persica*)

Crop Map 9. Olive (*Olea europaea*)

Crop Map 10. Persimmon (*Diospyros kaki* and *D. virginiana*)

Crop Map 11. Plum & Prune (*Prunus domestica*)
Crop Map 12. Pomegranate (*Punica granatum*
Appendix C. Taxonomy of *Lobesia botrana* (Denis & Schiffermüller) and related Tortricidae (prepared by M. DaCosta)

![Figure C1. Lobesia botrana-male](image reproduced from Bradely et al. (1979c))

Synonyms (provided by John Brown, National Museum of Natural History, personal communication)

At the generic level:

Type species: *Asthenia reliquana* Hübnner, 1825.
At the species level:

- **vitisana** Jacquin, 1789 (Phalaena), Collectanea 2: 97. TL: Austria. HT: Unknown

Diagnosis of Lobesia botrana

[Description from Hannemann (1961). Translated by John Luhman, Minnesota Department of Agriculture & Department of Entomology, University of Minnesota.]

Male clasper lacks spine at base.

Description

Head: [Description from Hannemann (Hannemann 1961). Translated by J. Luhman]

Male antenna with short, sparse hairs. Labial palps extended just after the front. Middle segment widened distally, apical segment more or less curved.

Male Wings: See Figure C1. Figure C2 describes variation that may be encountered in wing patterns and provides explanation of morphological terminology.
Figure C2. Variation in wing patterns of Tortricoid moths
[Reproduced from Bradely et al. (1979c)].

[Description from Bradley et al. (1979a)] Forewing ground color cream-white. Weakly overlaid with a yellowish color and heavily suffused with bluish-gray between sub-basal and median fasciae medio-dorsally and in costal and dorsal areas beyond median fascia, costa obscurely strigulate with black; fasciate markings moderately well defined but diffuse, yellowish color suffused with light olive-brown, with an admixture of black; basal and sub-basal fasciae usually coalescent and forming a basal patch, its outer edge shallowly convex and irregular; median fascia narrow on costa and dorsum, produced
distal at middle, with a strong admixture of black in outer margin from costa to near middle which sometimes forms a patch above the medial projection; pre-tornal marking obsolete or indicated by a small dark brown spot; tornal marking moderately well developed and usually distinct, subtriangular; subterminal fascia arising from middle of termen and forming a large quadrate patch in upper part of distal area; cilia cream-white, apices suffused with yellowish color, with a gray sub-basal line. Hindwing white, weakly scaled and translucent basally, infuscate distally, most strongly in apical area; cilia white, apices suffused with gray, with a dark gray sub-basal line. Wing spread 5-7mm.

Female Wings: Forewing coloration and markings similar to those of male, but hindwing entirely dark grayish fuscous.

Variation: Considerable minor variation occurs, especially in the strength of the black admixture and the clarity of the fasciate markings of the forewing, see Figure C2.

Venation: [Description from Razowski (1989)]. In males long pterostigma [pigmented spot or cell on anterior margin of wing, usually near or just behind the apex of vein R1 (Torrie Bueno Glossary of Entomology)] extending from end of Sc as far as to r4 developed, chorda from mid-distance between r1-r2, to base of r5, r4-r5 strongly approximate basally or extending from one point, M atrophying posteriorly; in hindwing rr-m1 originating in one point, m3-cu1 short stalked (Figure C3).

Figure C3. Wing venation of Tortricidae [Reproduced from CSIRO (1991)] A-anal; C-Costa, Cu-Cubitus (CuA1-1st anterior cubitus; CuA2-2nd anterior cubitus; CuP-posterior cubitus); D-discal cell; M-Media, R-Radius, Sc-Subcosta.

Scent organs: Posterior tibia with short bunch of scales; lateral pockets in abdomen developed.
Ovum: Lenticular [i.e., resembling a lentil in shape], at first yellowish but later becoming opalescent gray. Deposited on fruit and stems of the food plant.

Larva: [Description from Bradley et al. (1979a)] Head yellowish brown, longer than wide; prothoracic plate brown, sometimes darker on margin; abdomen varying from yellowish green to whitish brown or brown, integument finely shagreened; thoracic legs brown, anal plate light brownish yellow; anal comb present, with 6-8 prongs. See Figure C4.

[Description from Castro (1943). Translated by Mario Carillo-Vilchez, Department of Entomology, University of Minnesota.] Body parallel sided, thinner anteriorly and posteriorly; 9-10mm long and 1.7mm wide at maximum development. Body may be transulcent and gut visible in which case body color is color of gut. Cuticle "bumpy", each bump ending in a short delicate spine of darker color. Antennae short and retracted almost completely in a depression.

Figure C4: A. Ventral view of neonate larva, B. Dorsal view last instar larva, C. Lateral view last instar larva. [Reproduced from Castro (1943). Translated by Mario Carillo-Vilchez, Department of Entomology, University of Minnesota].
Pupa: [Description from Castro (1943). Translated by Mario Carillo-Vilchez, Department of Entomology, University of Minnesota.] Large, thin oval with rounded anterior; 5-6mm long x 1.6-1.7mm wide; Uniform green color, darker dorsally; cuticle with some microscopic, pointy bumps; dorsal region of abdominal segments from 2nd to 10th with small spines on the central part; all pupae covered with gray dust. See Figure C5.

Figure C5. A. Lateral view, B. Ventral view of pupa. C. Detail dorsal view, posterior of pupa, D. Detail ventral view, posterior of pupa [Reproduced from Castro (1943). Translated by Mario Carillo-Vilchez, Dept. of Entomology, University of Minnesota].
Male genitalia: [Description from Razowski (1989)]. Terminology follows Klots (1970). Tegumen tapering terminally; pedunculus slender with apodeme m4 strongly elongate, thin apically; uncus almost completely atrophied, socius occasionally preserved, bristled, tuba analis usually membranous, simple. Sacculus with groups of spines variably separated from one another, usually represented by a median agglomeration; cucullus with one, sometimes atrophying very long spine situated dorso-anteriorly to its ventral angle; fold vestigial or absent. Caulis short, often broad. See Figure C6.

![Figure C6. Ventral view of male genitalia [reproduced from Heinrich (1926)]](image)

Female genitalia: [Description from Razowski (1989)]. Sterigma tubular, often expanding anteriorly, ostium bursae somewhat asymmetrical, fused with subgenital sternite by more or less elaborate membranous sac; colliculum very slender, marked by weak inner sclerite, or not differentiated; ductus seminalis posterior; single, plate-shaped, folded longitudinally signum, if present. Seventh sternite with convex median part of posterior edge and produced corners, folding sublaterally to form a pair of inner lobes directed proximally. See Figure C7.

According to Razowski “The supposed autopomorphies of Lobesia are the fusion of the anterior part of the sterigma with the posterior edge of the subgenital sternite and the shape of the latter”.

CAPS PRA: Lobesia botrana
Figure C7. Ventral view of female genitalia [Reproduced from Razowski (1989).]

N.B. I was not able to locate illustrations that would have more clearly shown the morphological features discussed in the description. Consulting Klots, A.B. (1970). (Lepidoptera in Taxonomist's Glossary of Genitalia in Insects. Ed. S. Tuxen. Munksgaard, Copenhagen) may prove useful in understanding the nomenclature and morphology of lepidoptera genitalia. The Torre-Bueno Glossary of Entomology will also be a useful source for understanding nomenclature.
Similar species:

Lobesia occidentalis (male)
Lobesia occidentalis (female)

Lobesia occidentalis (Falkovitsh)-forewing generally dark brown mixed with yellow, the moderately conspicuous yellowish dorsal blotch and the dark hindwing distinguishes *occidentalis* from other *Lobesia* species.

Lobesia relinqua (male)
Lobesia relinqua (female)

Lobesia reliquana (Hübner)-Fore- and hindwings narrow and sharply angular; forewing triangular with general ferruginous coloration with white, apical black dorsal patch; male further distinguished by white, apically infuscate hindwing
Appendix D. Biology of Lobesia botrana

Population phenology

Lobesia botrana has two to four generations annually, but under optimal conditions an incomplete fifth generation can occur (Roehrich and Boller 1991, Roditakis and Karandinos 2001). The number of generations is determined by several factors including photoperiod, temperature, humidity, latitude, food quality, and the effects of predators and diseases (Deseo et al. 1981, Gabel 1981, Gabel and Mocko 1984a). Temperature and photoperiod are the most important factors in the development of *L. botrana*. However, both humidity and temperature simultaneously influence development (Ali et al. 1978a, Abashidze 1991), particularly at the microclimate level (Reichart (1968) in Deseo et al (1981)). Even under optimal temperature and humidity conditions, low reproduction can occur, suggesting that diapause and unknown factors may also strongly influence population dynamics (Deseo et al. 1981).

In response to differences in climate, the number of generations completed by *L. botrana* differs geographically. In general, more generations are completed in southern latitudes than in northern latitudes. For example, two generations occur annually in colder areas of Europe whereas this species typically has three generations in southern Europe. In Egypt, three generations occur, one in spring and two in summer (Ali et al. 1978b). Up to four generations can be completed in warmer regions such as Greece (Moschos et al. 1998). Under warm temperatures (30-32°C) and moderate relative humidity (40-45%), a generation can be completed within 30 to 32 days (eggs: 8-10 days; larvae: 17-18 days; pupae: 7-8 days) (Eghtedar 1996). Growth and development for *L. botrana* is considered “low” in cold areas (12.0-16.2°C); “favored” in temperate zones (16.2-26.7°C), proliferent at 26.7-29.5°C; and suboptimal in warmer zones (29.5-31.6°C) (Filip 1983). Table D1 provides a general phenological model for *L. botrana* based on accumulation of degree-days above a minimum threshold of 10°C and below a maximum threshold of 30°C (Caffarelli and Vita 1988). Accumulation of heat units begins January 1. Degree-days calculations are based on the sine method.

Table D1. Cumulative degree-days for three grapevine moth generations [reproduced from Caffarelli and Vita (1988); SE calculated from authors’ data].

<table>
<thead>
<tr>
<th>Phenological stage</th>
<th>Mean (± SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First generation:</td>
<td></td>
</tr>
<tr>
<td>First catches</td>
<td>150 ± 7.7</td>
</tr>
<tr>
<td>Flight peak</td>
<td>236 ± 8.1</td>
</tr>
<tr>
<td>First eggs</td>
<td>301 ± 27.5</td>
</tr>
<tr>
<td>Second generation:</td>
<td></td>
</tr>
<tr>
<td>First catches</td>
<td>699 ± 19.1</td>
</tr>
<tr>
<td>Flight peak</td>
<td>782 ± 19.1</td>
</tr>
<tr>
<td>First eggs</td>
<td>727 ± 13.6</td>
</tr>
<tr>
<td>100% hatch</td>
<td>869 ± 14.4</td>
</tr>
<tr>
<td>Third generation</td>
<td></td>
</tr>
<tr>
<td>First catches</td>
<td>1,309 ± 20.1</td>
</tr>
<tr>
<td>Flight peak</td>
<td>1,462 ± 36.4</td>
</tr>
</tbody>
</table>

CAPS PRA: Lobesia botrana 24
<table>
<thead>
<tr>
<th>Phenological stage</th>
<th>Mean (± SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>First eggs</td>
<td>1,304 ± 36.6</td>
</tr>
<tr>
<td>100% hatch</td>
<td>1,579 ± 16.1</td>
</tr>
</tbody>
</table>

Lobesia botrana is generally active from early spring to mid-late summer. In the central Jordan Valley where four generations occur per year, the first generation begins in mid-February and the fourth begins in early September and ends by mid-November (Al-Zyoud and Elmosa 2001). In Central Europe, development of *L. botrana* begins approximately on March 5 and ends around November 11, unless the developmental temperature threshold is not reached (Gabel and Mocko 1984a).

The size of the population varies substantially in each generation. The first generation is frequently the largest (though not necessarily the most economically damaging) and the third generation is often the smallest. This variation may be due to generational variation in female fecundity (Ali et al. 1978b). By the third generation, larval numbers decrease steadily, perhaps due to a lower temperature, the influence of diapause cues, or limited available food following the grape harvest (Ali et al. 1978b).

Stage specific biology

High temperature and low humidity provide optimal conditions for moth activity, while rainy conditions along with low temperature seem to reduce the frequency of mating and, subsequently, egg production (Deseo et al. 1981). Optimal conditions for moth activity occur at temperatures over 20°C and at 40-70% relative humidity (Roehrich and Boller 1991). Heavy rain during the winter may delay reproduction until the following season (Avidov and Harpaz 1969, USDA 1985). Windy and wet conditions also tend to reduce flight activity. Moths prefer hot, sunny locations sheltered from wind, so flight paths generally lie between windbreaks (Avidov and Harpaz 1969, USDA 1985). Flight typically occurs at night from dusk to dawn and at temperatures over 12°C, or when moths are disturbed (Avidov and Harpaz 1969). Moths feed on nectar (Avidov and Harpaz 1969). Under laboratory conditions, high relative humidity was shown to increase moth lifespan and egg-laying of *L. botrana* (reviewed in (Deseo et al. 1981).

At different geographical locations, fecundity under field conditions varies widely. Egg-laying is strongly affected by temperature (Deseo et al. 1981). Temperatures experienced by larvae during development affect adult oviposition (Rapagnani et al.
About 35 eggs are laid per day, for a total of over 300 (Avidov and Harpaz 1969, Bradley et al. 1979b, USDA 1985, PPQ 1993). From Italian vineyards, Deseo et al. (1981) reported a mean of 78, 87 and 140 eggs per female during the first through third flights, respectively. Similarly, fecundity varied between generations, with a mean 76.7, 139.6 and 91.1 eggs/female in generations 1-3, respectively (reviewed by Deseo et al. 1981). Under laboratory conditions, adults from larvae fed an artificial diet, laid an average of 75 eggs/day under optimal conditions, and 135 eggs/day on a diet of fall-harvested grapes under the same conditions (Deseo et al. 1981). Egg-laying can occur at temperatures ranging from 13-34.5°C, though it was observed that optimal temperature range for oviposition was 21-25°C, and fecundity decreased below 15°C (reviewed in Deseo et al. (1981)). The lower temperature of the optimum range is somewhat “flexible” (reviewed in Deseo et al. (1981)). Not only do cool temperatures negatively affect adults immediately, but a decline in adult numbers can continue following a cold period (Deseo et al. 1981). The adult and egg stages are considered the most vulnerable to environmental factors (Deseo et al. 1981).

Eggs are deposited in groups of 2 or 3 on or near the buds, pedicels, and flowers of grapevine in early spring or singly on the fruit of the host plant as the growing season progresses. Oviposition occurs within a day or two after females have mated. The incubation period in spring is approximately 7-11 days, compared to 3-5 days during the summer (Avidov and Harpaz 1969, Deseo et al. 1981, USDA 1985). Survival is affected by the host plant and the plant part chosen for oviposition, as both relate to food quality (Deseo et al. 1981, USDA 1985). In laboratory studies, egg incubation lasted 4-6 days [at an unspecified temperature](Veimirovic 1975). Another laboratory showed the incubation period is reduced by an increase in temperature (Ali et al. 1978a) and is increased by high relative humidity (~55%) (Ali et al. 1978a)(Deseo, 1981 #1082). A “low” (unspecified) relative humidity can kill eggs (Coscolla et al. 1986, Roehrich and Boller 1991).

Larvae First generation larvae feed on buds and flowers and later pupate within rolled leaves or clusters of inflorescences (called glomerules) tied with silk (PPQ 1993, Fowler and Lakin 2002). Second generation larvae feed on and develop within single grapes, while subsequent generations can feed on several berries (PPQ 1993). The larval stage is reached after 4-5 weeks in spring and 2-3 weeks in summer (Avidov and Harpaz 1969, USDA 1985). In a laboratory study, larval development was complete between 15-27 days (Veimirovic 1975). Cool and rainy weather may adversely affect larvae, much like adults (Deseo et al. 1981).

Pupae The biology of pupae depends on whether individuals are in diapause or not. Diapausing pupae may be found under leaf litter, in soil crevices or under grapevine bark (Ali et al. 1978b, Bradley et al. 1979b, Roehrich and Boller 1991, PPQ 1993, Eghtedar 1996, Fowler and Lakin 2002). Non-diapausing pupae are typically found in rolled leaves (Fowler and Lakin 2002). Pupation on leaves of the host plant takes approximately 12 to 14 days (Briere and Pracros 1998, Fowler and Lakin 2002), though longer developmental times (9-12 weeks) have been noted for the spring generation (USDA 1985). Under warmer temperatures, non-diapausing pupae can complete development in 6-10 days in the laboratory (Veimirovic 1975, Briere and Pracros
This estimate agrees with pupal development rates observed for *L. botrana* in the summer (USDA 1985). Pupae occurring late in summer or early fall typically overwinter but also may contribute to an additional, partial generation (Avidov and Harpaz 1969, Ali et al. 1978b, Bradley et al. 1979b, PPQ 1993). *Lobesia botrana* overwinter as diapausing pupae.

Diapause in *L. botrana* is facultative and occurs during the pupal stage. Diapause induction begins when eggs or young larvae are exposed to a critical photoperiod (Deseo et al. 1981, Gabel and Mocko 1984a, Roehrich and Boller 1991). The critical diapause-inducing photoperiod is approximately 13 hours at 25-26°C; while a longer photoperiod at constant colder temperature (22°C) did not induce diapause (Deseo et al. 1981). Under field (vineyard) conditions, the photoperiod necessary to induce diapause was approximately 15 hours (Deseo et al. 1981). In laboratory studies, the critical photoperiod is approximately 15 hours + 42.5 minutes of light (Gabel and Mocko 1984a). Temperatures just below 10°C are optimal for diapause development, however temperatures under 8°C during post-diapause development can cause death (Roehrich and Boller 1991). Under laboratory conditions diapause lasts approximately 5.5-6 months, regardless of temperature (Deseo et al. 1981, USDA 1985).

Table D2 provides results from several studies to describe the developmental temperature threshold and degree-days needed for the completion of each life stage.

**Table D2. Developmental threshold and degree day requirements for *Lobesia botrana*.

<table>
<thead>
<tr>
<th>Stage</th>
<th>Developmental threshold (°C)</th>
<th>Degree Days</th>
<th>Notes</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Egg</td>
<td>0.7</td>
<td>101±3.3</td>
<td>from authors’ Table 1</td>
<td>(Ali et al. 1978a)</td>
</tr>
<tr>
<td></td>
<td>8.8</td>
<td>74.0±2.3</td>
<td></td>
<td>(Gabel 1981, Gabel and Mocko 1984a)</td>
</tr>
<tr>
<td></td>
<td>9.4</td>
<td>88.8 ± 3.2</td>
<td>from authors’ Table 1 & 2</td>
<td>(Briere and Pracros 1998)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>75</td>
<td></td>
<td>(Bloesch and Siebenthal 1988, Roehrich and Boller 1991)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>56</td>
<td></td>
<td>(Filip 1983)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>66±17.9</td>
<td></td>
<td>(Abashidze 1991)</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>120</td>
<td>First generation; cage study</td>
<td>(Popov, 1975 cited in (Zeki 1996))</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>520</td>
<td>Second generation; cage study</td>
<td>(Popov, 1975 cited in (Zeki 1996))</td>
</tr>
<tr>
<td>Larva</td>
<td>6.5</td>
<td>127.2 ± 4.9</td>
<td>5th instar on diet</td>
<td>(Briere and Pracros 1998)</td>
</tr>
<tr>
<td></td>
<td>7.3</td>
<td>384.6±30.1</td>
<td>males</td>
<td>(Gabel 1981, Gabel and Mocko 1984a)</td>
</tr>
<tr>
<td></td>
<td>7.3</td>
<td>62.9 ± 1.3</td>
<td>3rd instar on diet</td>
<td>(Briere and Pracros 1998)</td>
</tr>
<tr>
<td></td>
<td>8.2</td>
<td>64.7 ± 2.3</td>
<td>4th instar on diet</td>
<td>(Briere and Pracros 1998)</td>
</tr>
<tr>
<td>Stage</td>
<td>Developmental threshold (°C)</td>
<td>Degree Days</td>
<td>Notes</td>
<td>Reference</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------</td>
<td>-------------</td>
<td>---------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>55.9 ± 2.8</td>
<td>2nd instar on diet</td>
<td>(Briere and Pracros 1998)</td>
</tr>
<tr>
<td></td>
<td>8.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>65.5 ± 6.3</td>
<td>1st instar on diet</td>
<td>(Briere and Pracros 1998)</td>
</tr>
<tr>
<td></td>
<td>9.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>320.6 ± 14.6</td>
<td>1st to 5th instars on diet</td>
<td>(Briere and Pracros 1998)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>362.3±20.9</td>
<td>females</td>
<td>(Gabel 1981, Gabel and Mocko 1984a)</td>
</tr>
<tr>
<td></td>
<td>9.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>170</td>
<td>on flower clusters</td>
<td>(Roehrich and Boller 1991)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>225</td>
<td>on grape berries</td>
<td>(Roehrich and Boller 1991)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>81±8.4</td>
<td></td>
<td>(Abashidze 1991)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>290±27</td>
<td>from authors’ Table 2</td>
<td>(Ali et al. 1978a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>216</td>
<td></td>
<td>(Filip 1983)</td>
</tr>
<tr>
<td>Pupa</td>
<td></td>
<td>7.1</td>
<td>162.1±23.5 male</td>
<td>(Gabel 1981, Gabel and Mocko 1984a)</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>64</td>
<td></td>
<td>(Filip 1983)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.1</td>
<td>151.5±24 females</td>
<td>(Gabel 1981, Gabel and Mocko 1984a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>130</td>
<td>(Roehrich and Boller 1991)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>351±81 diapauses as pupa</td>
<td>(Abashidze 1991)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10.3</td>
<td>130±4.0 from authors’ Table 1</td>
<td>(Ali et al. 1978a)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11</td>
<td>not specified males</td>
<td>(Gabel 1981)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12</td>
<td>48</td>
<td>(Filip 1983)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12.8</td>
<td>not specified females</td>
<td>(Gabel 1981)</td>
</tr>
<tr>
<td>Adult-Pupa</td>
<td></td>
<td>10</td>
<td>402 1st generation on grapevine buds and flowers</td>
<td>(PPQ 1993)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>441 2nd generation on grapes</td>
<td>(PPQ 1993)</td>
</tr>
<tr>
<td>Egg-Adult</td>
<td></td>
<td>12</td>
<td>384</td>
<td>(Filip 1983)</td>
</tr>
</tbody>
</table>

Interactions

Temperature and Relative Humidity. Temperature extremes strongly affect *Lobesia botrana*. *Lobesia botrana* populations are generally denser in hotter, sunny areas or seasons (Gabel and Thiéry 1994a). Under temperature extremes, both larvae and eggs can become dormant (Gabel and Thiéry 1994b). High relative humidity with low temperatures has negative effects on insect development while positive growth occurs with moderate temperatures and humidity (Al-Zyoud and Elmosa 2001). Low
temperatures with high humidity and high temperatures with low humidity have negative effects on insect growth (Al-Zyoud and Elmosa 2001). The most favorable conditions for insect growth in warmer climates, such as Egypt, occurs with temperatures of 25-30°C, accompanied by a relative humidity of 55-65% (Ali et al. 1978a, Al-Zyoud and Elmosa 2001).

Photoperiod. Photoperiod is the second most important factor affecting both the number of generations completed in a year and the number of pupae entering diapause (Gabel and Mocko 1984a, Gabel and Mocko 1984b). See studies by Deseo et al. (1981) and Gabel and Mocko (1984 a,b) for a more detailed description of the influence of photoperiod on *L. botrana* populations.

Water. In drier regions, a lack of water is thought to be a key factor in population dynamics, preventing *L. botrana* from achieving full reproductive potential. Reproductive potential of *L. botrana* with and without available water under laboratory conditions has been evaluated by Torres-Vila et al. (1996).

Biotic Factors. Biotic factors also play a role in population dynamics. Pathogens, parasites and predators can strongly influence *L. botrana* population dynamics, but the effects vary widely from generation to generation and from year to year and may help explain fluctuations under similar environmental conditions (Deseo et al. 1981, Al-Zyoud and Elmosa 2001). Rainy weather can also increase the dissemination of pathogens on the plant host where *L. botrana* becomes infected after feeding (Deseo et al. 1981).