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Risk analysis in relation to the importation
and exportation of animal products
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Summary

The design of a quantitative risk analysis model has to be dictated by the
questions it seaks to answer. Tha model should also be as objective as the
available data will allow. Animal and animal product import risks usually hava
three characteristics which maka the design of a good quantitative risk analysis
model quita difficult, namely:

- the probabilities of the steps leading to the undesired outcoma are fraquently
intar-ralated

- the probability of the undesirad outcome itself is in many cases very small,
making direct simulation impractical

- important variables within tha model often cannot be quantified through
snalysis of dats, thus these veriables must be modelled with probability
distributions to reflact the degree of uncertainty, usually detarmined by expert
apinion.

This paper provides a tutorial on some modalling techniguas which are essential
to the risk assessment of animal and animal product imports and which help
overcome these problems. A numbaer of probability distributions, their uses and
inter-relationships, are examined. The application of these distributions, coupled
with some general modelling techniques, is then damonstrated to produce

rigorous and transparent animal import risk analyses.
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Introduction

Two closely related quantitative risk analysis modelling
techniques lend themselves to estimating the risks associated
with importing animal products, namely: scenario pathway
and simulation. The scenario pathway approach is the most
commonly seen in published work to date. It seeks to
determine a pathway of events which would ultimately lead to
the importation of an infected product. A typical example is
shown in Figure 1. The pathway begins by looking at the
probability that an animal or a group of animals is infected at
source. Then one calculates:

~ the probability that the infected animal(s) will not be
identified as being infected

- the probability that the infection will remain undetected at
each of a number of (valid) inspection points

- the probability that the infecting organism will survive
processing, storage and distribution.

Each probability along the chain is a conditional probability,
i.e. the probability of the occurrence of that event given that
all the previous evenis have occurred. So, for example, the
probability of detection at pre-slaughter testing (P3 in our
example) s the probability that the consignment of wrkeys
will be identified during pre-slaughter testing as being
infected given that it is infected. The analysis should only
include steps in the chain of events which have some
procedural basis. For example, it would be meaningless to put
in steps like ‘Truck driver does not spot infection whilst
loading turkeys' and ‘Truck driver again does not spot
infection whilst unloading turkeys' since there is no call on the
truck driver to do so in his or her job description. Adding
such steps would, of course, reduce the probability of the
adverse final outcome, but without any logical justification.
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Pathway of the animal product import risk analysis modelied In this
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The second quantitative risk analysis technique is that of
simulation. In this case, instead of modelling the probability
of a cow being infected, for example, the number of cows
which would be infected by randomly sampling from
probability distributions is simulated. This way of thinking
can be continued right the way through the model. Thus,
whilst the scenario pathway technique explicitly calculates the
probability of each possible scenario, the simulation approach
leis each possible pathway be generated as a natural
consequence of the random simulation. The two techniques
are very closely related and have their own strengths and
weaknesses. The strengths of the scenario tree approach are
that it requires relatively little computing time and it can easily
calculate extrernely low probabilities. The weaknesses of the
scenario tree approach are that it is not very intuitive and 1t is
therefore easy to make a mistake, and the approach cannot
always casily incorporate certain types ol imporant
correlation between distributions.

The problem shown schematically in Figure 1 will be
modelled here using both techniques for comparison.
However, it will be very useful 10 look first at a number of
important  probability distributions - the tools of the
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quantitative risk analyst — which are used in some form in
both the scenario pathway and the simulation techniques.

Probability distributions: a
tutorial

This section reviews a number of probability distributions
which are of particular value in animal product import risk
assessments. They are equally applicable to plant and plant
product impon problems and to food safety issues. This
section begins by looking at two random processes: binomial
and Poisson, from which the binomial and Poisson
distributions and others are derived. The probability
distributions which describe these processes form the
majority of the technically based distributions which are
needed in animal impon risk analysis. After reviewing these
two processes, the normal and hypergeometric distributions
which are also very useful in particular circumstances will be
discussed. This tutorial is, by necessity, a rather brief
introduction but more detailed descriptions and examples can
be found in a guide published by Vose (2).

Poisson and binomial processes

Two stochastic processes, binomial and Poisson, form a large
pant of the structure of nearly all animal product impon nisk
analyses. The binomial process describes a system where there
are a definable number of trials (n}, a probability of success of
that trial (p) and a consequent number of successful trials (s}.
The assumption of a binomial process is that all trials are
independent, i.e. that each trial has the same probability of
'success’ as the trial before it, regardless of the outcome of
previous trials. Examples of binomial processes are tossing a
coin ten times and seeing how many 'heads’ come up, testing a
group of infected animals and seeing how many show up
positive using the test (assuming a test sensitivity of neither
zero nor one) or randomly selecting a certain number of
chicken wings from the supermarkets of a particular country
and seeing how many are contaminated with Salmonella.

The Poisson process describes a system where there is a
continuum of opportunity of an event occurring (as opposed
10 the n distinct trials [or the binomial process). The Poisson
process has one descriptive parameter, fl, which is the mean
number of occurrences of the event per unit of exposure. The
B from a Poisson process is analogous to the probability p
from the binomial process and the period of exposure 1 of the
Poisson process is analogous to the number of trials n of the
binomial process. Examples ol Poisson processes are how
many Giardia cysts the population of a city consumes from its
water supply 1n a year, how many fish one catches in a day of
fly-fishing, and the number of times a person is mugged in
one year on the sireets of a particular city. However, these
would only remain Poisson processes if the aty did not




improve its water treatment alter any occurrence of Giardia,
the fisherman got no better (or worse) at catching the fish
during the day, and the mugged person kept following his or
her same habits no matter how many times he or she was
mugged.

The distributions of the binomial process

The binomial process is characterised by the probability p of
an event occurring at each trial. Once p has been estimated, it
is a simple process to calculate other variables associated with
the binomial process. The distributions are presented with
their parameters in the standard form used by most
commercial spreadsheet and Monte Carlo simulation software
products.

- The distribution of the number of events that occur in n
trials = Binomial(n, p).

- The number of trials needed for the event 10 occur for the
first time w 1 + Geometric(p).

- The number of trials needed for s events to have occurred =
s + Negative Binomial(s, p).

Estimating probability g from an observed number of
events in a specific number of trials

Suppose that there is a need to determine the probability of
oceurrence of a specific event. An observation has been made
that the event has actually happened r times out of a possible
n. Its true probability of occurrence (p) is modelled using the
Beta distribution as:

p = Beta(a;, &)
where:
a=r+1

a,=n-r+1l.

This use of the Beta distribution is, in fact, an application of
Bayes' Theorem where no prior knowledge of p is assumed,
i.e. the prior distribution of p is Uniform{(0,1) — meaning p is
equally likely to be any value between 0 and 1.

Example

100 (n) birds were randomly selected from a very large flock
of turkeys, 17 (r) were determined to be infected with
Salmonella. An assumption is made that the sensitivity and
specificity of the test are 100%. The true prevalence of
Salmonella within the flock (p) can be estimated as:

p = Beta(17+1,100~-17+1) = Beta(18,84).

Figure 2a illustrates how in practical terms p is tightly
contained between 0.08 and 0.30 with a strong peak a1 0.17,
though in theory the value ranges between 0 and 1. The more
tests that are performed, the narrower the distribution would
become, i.e. the more accurately p will be determined.
Figure 2b shows how the distribution of p would narrow with

o) Beta (18,04)
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increasing number of trials (using the same percentage of
occurrences). Understanding this behaviour can be very
useful, for example, in planning future tests: the predictable
reduction of uncertainty can be balanced against the extra cost
and time required to complete any additional tests.

The meaning of a distribution of probability

This use of the Beta distribution introduces the concept of a
probability distribution of a probabillty — perhaps not
something that is immediately intuitive and which deserves
further explanation. Consider the following example:

A coin will be tossed. What is the probability of ‘heads’
showing? Assuming that the coin is fair, the probability
should be exactly 50%. Before answering the question,
however, the reader should also know that the coin has the
same lace on both sides. Now, since there is no indication as
to whether both sides are ‘heads’ or ‘tails’, assigning equal
probability to each would be reasonable. The probability of a
‘heads’ could still be described as 50%. Alternatively, the
reader may state that the probability has equal chances of
being 0% or 100%, which is the distribution shown in
Figure 3 ~ a probability distribution of a probability. The
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Distribution of the probabllity of throwing ‘heads’ when both sides of
the coin are the same (but unknown)

mean (average) of the distribution is equal to 50% — the first
figure quoted, though the true probability in this case could
never actually be that value. A probability may be described
by a distribution, rather than a single value, only where there
is a lack of knowledge of what that true probability actually is.
The uncentainty described by a distribution of a probability
never comes {rom the variability in the stochastic process
itself. A failure 1o appreciate the differences between
uncerainty from lack of knowledge and that from
randomness has many implications in risk analysis modelling,

There are thus two forms of uncenainty in a risk analysis: the
inherent uncentainty of the stochastic process being modelied,
often described as variability; and the lack of exact knowledge
we have of that problem, often described as uncertainty. So,
for example, in the tossing of a fair coin we have precise
knowledge of the system (the probability of *heads' is exactly
50%): there is no uncertainty, but there still remains the
inherent vaniability of what the outcome of a toss might be.

Estimating probability p when there are no
occurrencaes in a specific number of trials

Imagine, in the above experiment, that of the 100 tested
turkeys, none tested positive, i.e. r = 0. To state categorically
that there was no chance of a turkey being infected with
Salmoneila in the flock is untrue: in fact if p was less than or
equal 10 1/101, zero positives would be more likely 1o be
observed than any other number. However, a distribution of
the probability of an infected turkey p can still be defined in
the same manner as belore using a Beta distribution. This
obviously produces a pessimistic estimate since it assumes
that the possibility of infection does exist and that, before the
experiments, the prior opinion said that the prevalence could
equally likely be anywhere beiween zero and one. The
Beta distribution can be used again with a;=r+1=1
and a,=n-r+1=n+1 Figure 4a shows how the
distribution progressively favours a probabilily near zero with
increasing number of tests n,

Exactly the same principle applies il a positive result has
been obuained for every test, 1e. run: a,=n+1 and
a; = 1. Figure 4b shows how this distribution is a mirror
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image of Figure 4a, progressively favouring a probability near
1 with increasing number of all positive tests n.

Estimating the probability of the occurrence of
several events in a set of trials

The binomial(n, p) distribution calculates the number of
events that will occur in n trials where there is a probability p
of success in each trial.

Example

The quarantine officials of an importing country know that
there is a 2% prevalence p of Johne's disease within a country
from which an entrepreneur secks to impon cattle. The
entrepreneur is intending to impon 1,200 catle n from this
country, How many will be inlected s with Johne's disease?
Answer: binomial(1200,2%). Figure 5a shows the cumulative
distribution function F(x} of this probability distribution: a
very common representation of a probability distribution. 1t
can be seen that there is about 3% chance thal s will be less
than 15 and 97% chance that s will be less than 33. These two
values represent roughly the lower and upper 95% (roughly
97%-3%) confidence limits respectively. Figure 5b shows the
relative probability distribution function f(x) for the same
distribution. This type of plot allows one to see the relauve
likelihood of each allowable value. It is useful for offering a
feel’ of the uncentainty, though it is very limited in providing
quantitative information.
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The binomisl{1200,.2%) distribution

Estimating the probability of at east one event in a set
of trials

The probability of no events in a set of n trials is (1 - p)" i.e.
the probability that trial 1 fails (1 — p) x the probability trial 2
fails (1 —p) x ... x the probability the nth trial fails (1 - p).
The probability P, of at least one event in a set of n trials is
therefore 1 — (1 — p)". Where n is large (>30 orso) and p Is
sufficiently small such that np < 1, the approximation P, & np
can be used. However, the accuracy of this approximation is
entirely dependent on the values of n and p and it is better
practice to use the full 1-(1-p)" formula, especially as
modermn computers make this very easy.

Example

Boneless beef portions imported from a particular country are
estimated to have a 1:10° chance of being infected with foot
and mouth disease (FMD) and getting past all screening tests.
A supermarket chain wishes to import 2,000 of these portions
a year. What is the probability that FMD will enter the country
with those portions, if this impon is permitted?

P, =1-(1-10"%%%=19998 x 107*,
The P, 2 np approximation would give a value of 2 x 107,

Estimating the number of trials until a specific number
of events occur

The Geometric(p) distribution estimates the number of
unsuccessful trials which will have to be completed before the

0 $ 0 1% i} 2% 0 B u
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first success occurs. In other words, it is a distribution of the
number of unsuccessful trials before the first success. Thus the
number of trials required for the first occurrence of an event
equals {1 + Geometric(p)}.

The Negative Binomial(s,p} distribution estimates the number
of unsuccessful trials one will have to complete before s
successes occur. Thus, in the same manner as the Geometric
distribution, the total number of trials required for s
occurrences of an event equals {s + Negative Binomial(s,p)}.

Example

A veterinarian knows that, on average, one in every 11 pigs
she tests will be infected with a particular disease. How many
pigs will she have to test before she tests an infected pig and
how many before she would have tested 25 infected pigs?

The prevalence of this disease p = 1/11 = 0.091. The number
of pigs N, she must test before she will have tested an infected
pig can be estimated as:

N, = 1 + Geometric(0.091).

The number of pigs she will have to test Ny before she tests
25 infected pigs can be estimated as:

N,y = 25 + Negative Binomial(25,0.091).

However, the success or failure of the last trial is often
unknown. For example, imagine that a flock of 1,000 chickens
was tested for a particular disease, and 24 infected birds were
identified. Imagine also that the test sensitivity is 75%. The
probability that the test has falled to identify a number of
infected birds remains: the best estimate might be that eight
were missed. However, the Negative Binomial distribution
can be used to give a better estimate. There is a temptation to
model the number of infected birds N that were not detected
as:

N = Negative Binomial(24,75%).

However, this would be assuming that the last infected bird
was detected (the last trial was a success), whereas clearly the
last few infected chickens tested might easily not have been
detected. It tums out that, in siwsations like this, one can use
the formula;

Number of failures = Negative Binomial(s+1 p).
So, in the example above: N = Negative Binomial(25,75%).

Distributions of the Poisson process

The Poisson process is characterised by the mean interval
between events {MIBE) 8. Once the MIBE has been estimated,
it is a simple process to calculate other probability measures.
The assumption of the Poisson process is that the probability
of an event occutring per unit interval (e.g. per hour, per
metre, per kg) is constant and independent of however many
events have occurred before, or how recently they occurred.
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Once the MIBE is determined, other variables can easily be
found:

- the distribution of the number of events s that occur in
interval t = Poisson(t/ff)

- the time unuil the next event t, = Exponential()

- the time uniil s events have occurred t, = Gamma(s f)

where t and # are measured in the same units (e.g. days, kg,
tonnes).

Determining the mean interval between events 8 from
an observed number of events over a continuous
interval

The MIBE is the average interval bhetween n observed
occurrences of an event, Its true value can be estimated from
the observed occurrences using central limit theorem:

MIBE # = Normal (r T"=})
" -

where [ is the average of the n -1 observed intervals ¢,
between the n observed contiguous events and o is the
standard deviation of the ¢, intervals (¢ should be almost the
same value as [ for a Poisson process). The larger the value of
n, the narrower will be the distribution of B, i.e. the more
confidence can be placed in knowing its true value. Care
should be laken when n is small (<approximately 10)
because the distribution will have a tail with significant
probability of being negative and will therefore have to be
truncated.

Sometimes the values of the intervals , are not known, but
only the number of events n that occurred in a total interval 7.
A conservative (i.e. pessimistic il the event is not desired)
estimate of the MIBE flis: f=TAn+ 1).

Estimating a minimum 8 where there are no observed
gvents over a continuous interval

The Exponential distribution can be used to estimate at least a
lower bound for the MIBE, given that no occurrences of the
event have been observed in time X:

B = 1/Exponential{ 1/X).

Since the lower the MIBE, the more frequently the event
occurs, a lower bound for the MIBE is equivalent to providing
an estimate of the highest possible frequency of the event.
This provides a minimum estimate of f since it assumes that:
1) the event is possible; and 2) it will occur for the flirst time
immediately after the last moment of observation.

Example

In the sixteen years of monitoring turkeys for a particular
disease there has never been an ohservation of that disease.
Whalt is its minimum MIBE?
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Lower bound for the MIBE is calculated as:
Minimum MIBE (8,,,) = 1/Exponential(1/16} years,

Probability of the occurrence of several events in an
interval

The Poisson(¢/f) distribution calculates the distribution of the
number of events that will occur in an interval ¢,

Example

Outbreaks of disease Z appear 1o occur in wild ponies in a
certain area. Records for the last 36 years show five outbreaks.
A conservative (upper bound) estimate is needed of how
many outbreaks could occur in the next 10 years.

This can be estimated using the formula X/(n + 1) where X is
the time interval during which n observations of an event have
occurted. Thus: f=36/{5+ |)=6years. A Poisson(t/f)
distribution esuimates the number of occurrences in an
interval {. Then, the numbet of outbreaks N in the next 1en
years is modelled by:

N = Poisson{t/fl) « Poisson(10/6) = Poisson(1.66666).

Probability of at least one avent in an interval

The probability that no event will occur in an interval of
length x is exp(-x/ff). The probability of at least one eventin a
single unit interval is therefore 1 — exp{(~x/ff}.
%
L

Example e (e

Government veterinarians know that a cattle disease breaks
out on average once every 3.6 years. The govemment faces a
general election in & months and has drastically cut the
disease eradication pant of its agricultural regulatory budget.
What is the probability of getting through the next election
belore another outbreak of the discase?

The country would, on average, expect to experience an
outbreak every 3.6 years. Thus:

f = 3.6 years.

The probability P, of no outbreaks in the next six months is
then:

P, = exp(-0.5/3.6) = 87%.

Other distributions in common use in animal
health risk analysis

Hypergeomaetric distribution

Consider a herd of M cows thal is known Lo include D cows
which are infected with a panticular virus. Il n cows are
selected from this herd, the hypergeometnc (n,DM)
distribution returns the number of cows 0 that group ol n
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that could be infected. The hypergeometnic distribution
models a type of sampling without replacement. As each of
the n cows from the group of M is selected, the probability
(hat the next cow is infected changes. (If each selected cow
were to be put back into the herd before the next cow were
taken out, the probability of an individual cow being infected
would remain the same [i.e. D/M| and a binomial distribution
could have been used to model the number of infected cows
in the sample) In general, if M>20n, the binomial
distribution is a good approximation of the hypergeometric
distribution,

S, for example, imagine a herd of 20 cows of which three are
known to be infected and from which four cows will be
selected at random. The probability that the first cow is
infected i1s 3/20. The probability that the second cow s
infected is either 3/19 if the first cow selected was not infected
or 2/19 if it was — the probability does not remain the same for
each selected cow.

Normal distribution

The normal(y, ) distribution is often used in animal health
risk analysis, either as a consequence of applying central limit
theorem or because the variable is known to be roughly
normally distributed. The latter is commonly the case for
natural measurements such as the weight of an adult of a
particular species.

Comparison of event tree and
simulation modelling using a
worked problem

A hypothetical model will now be explored to see how some
of the distributions described above can be put together to
produce a useful risk analysis model.

The problem

An entrepreneur wishes to import packets of 100 turkey
drumsticks from frec range farms of a particular country.
Slaughterhouse records [rom 300 turkey farms showed that
during the past year disease X was found on 34 farms. A
serological survey of 100 turkeys on seven of these positive
farms revealed the following number of positives: 4, 6, 2, 5, 8,
3, 1. The tests were performed using a procedure with an 83%
sensitivity and almost 100% specificity.

Turkeys are sent {rom each free-range farm to the specialist
slaughterhouse in batches of 50. Two birds from any baich at
the farm are tested for disease X prior to transportation to the
slaughterhouse. The serological test is the same as the one
used for the above survey. A turkey infected with disease X
will have no external signs of disease, though there isa 10% to

-

40%, most probably a 30% chance ol discoloration of the
muscle tissue, which would cenainly be spotted by the meat
inspectors at the slaughterhouse,

The packaged drumsticks will be exported frozen. It is
estimnated that there is a probability of between 20% and 50%,
most likely 40%, that the pathogenic organism, if present, will
survive this [reezing. The authorities for the importing
country have been asked to grant a licence to an entrepreneur
to import packets of these turkey drumsticks. It is understood
that identifying infection at any stage wll result in the
rejection of only the affected package(s) of drumsticks.

The licensing authority wishes to determine the probability
that this licence will introduce disease X into the country.
What is the distribution of the number of infected drumsticks
in any one packet of 100 drumsticks that passes all
inspection? What is the probability that an accepted packet
has at least one infected drumstick at import?

The model

This problem has been modelled in two ways for comparative
purposes. The first method is a simple simulation model,
which is very easy to construct and will provide the mean of
the distributions of the probabilities in question, However,
this model does not easily lend itsell 10 constructing the
distributions of the uncertainties of these probabilities, which
arise from lack of precise knowledge about any input
probabilities. An excellent example in the animal product
import area of this method of modelling has been developed
by Van der Logt ¢t al. at the Ministry of Agriculture, New
Zealand (1). The paper [ollows a very similar presentation to
that shown for Model 1 below.

The second method calculates the probabilities directly. It is
mathematically more complex than the first model and the
method is less flexible. However, one can arrive at
distributions of the probabilities one is being asked to
determine. A very good model has been developed for
Agriculture Canada using this approach by M.H. Cassin, C.D.
Todd, W. Ross and R.S. McColl (personal communication) to
assess the risk of Escherichia colt in beefburgers.

Both models use the Excel® spreadsheet application as the
modelling environment and the @RISK” risk analysis add-in
to give Excel the ability o generate Monte Carlo sampling
from probability distributions. The extra functions in Excel
provided by @RISK® are characterised by starting with the
letters ‘Risk’, e.g. RiskBeta. The reader should use the
following descriptions of the models in conjunction with the
spreadsheet printouts (Figs 6 and 7) and formulae tables
(Tables 1 and 11). Where one formula is shown for a range of
cells in these tables, the formula has been given for the first
cell in the range. Formulae for the other cells in the range
would be obtained by copying this first formula into all the
other cells using the Copy-Paste or Autofill spreadsheet
features.
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Flock prevalence caiculation - } . _
Flocks tested 300 o
Flacks infacted 34 o
Trus tiock prevalence P/ 13.12% ~
Within flock prevalence calculation
Test sansitivity 85%
Turkeys Positives Number Total Pravalence
tested 5, migsad m; infacted esumate g,
100 4 1 5 461% _
100 6 1 7 8.38%
100 2 0 2 0.75%
100 5 1 6 4.82%
100 B 1 9 9.56% o
100 3 0 K £.45%
100 1 0 ) 3.30%
Within flock prevulancf gstimate Pa 1 4.81%
Estimate of No. of infected turkeys in a consignment
Drumstick consignment size 100 Infacted? Prob.
Is flock infected? (O=no, 1ayes) 1 0 B86.88%
No. of infscted turkays[ Ni Z 1 13.12%
Pre-siaughter testing
No. of turkeys tested 2
No. of tested turkeys that are infected At . 0 N
No. of positivas  Np 1 0
inspection st sisughtsrhouse
Probability that flesh is discoloured if infacted Pd 27.05% _ |
No. infected turkeys thim are detectad Nin 0
Pathogen surviving freering
Probability that a drumstick will remain infected .76% 0 £5.24%
No. of infected drumstick pairs being imported AN/ 2 2 34.76%

Fip.6
Spreadshest printout of Model 1

Model 1

Flock prevalence calculation

Three hundred {flocks have been tested and 34 were found 1o
be infected. The distribution of the true llock prevalence Pf
can therelore be estimaled as RiskBeta(34+1,300-34+1) »
RiskBela(35,267). The assumptions here are that there are
many more than 300 locks; that the 300 selected flocks can
be considered a random sample, and that prior 10 this testing
there was no knowledge of the level of flock prevalence (a
prior distibution of Umiform[0,1] as discussed ahove).

Within flock prevelence

One hundred turkeys were tested from each of seven infected
flocks for cach of which we know the number s, of turkeys
which gave positive results 10 serological tests. The test
sensitivity is 85%, so il is quite possible that a few infected
tested birds m, were not identified. The number of birds
which were mussed m can be estirnated using a negative
binomial distribution as:

m, = RiskNegBin(s, + 1.85%).
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[Flock prevaience calgulation
Flocks tested 300
Flocks infacted 34
Flock pravaience 11.72% Event 1. flock is infected
Within flock prevaience calculation
Test sensitivity A5%
‘ Number missad . Pravalence
Turkays testad Positives s, m, Total infactad astimat 2,
100 4 0 4 B.15%
100 8 0 6 B.19%
100 2 0 2 251%
100 S 1 i 477%
100 8 0 ] 7.31%
100 K] 1 4 4.42%
100 1 0 i 1.74%
Within flock pravalance estimate 8.00%
Input verishiss
Consignment 3ize {drumsticks: turkeys) 100 50
Numbar of turkeys tested 2
Prob. flash is discoloured if infected 32.23%
Prob. a drumstick will ramain infectad aftar fraazing 38.94%
| —
Detsrmining distribution of infected drumsticks in & consignment given the flock is infectyd
Event 2 Event 3 Evant 4 Event 5
Probability that P"m'l’:t"‘yh‘t':' Probability that Probability that Probability
Number of infected xis infected in & tzsl'm w?ll not infection is not drumsticks of avents
turkeys x congignment from an dalaclginfmi on detected at remain infected 106
infected flock (sample = 2) slaughterhouse after {reszing togather
1 6.7% 96.6% §7.0% 05% 0.206%
2 14.3% 93.3% 45.9% 0.287%
3 19.9% 90.0% N1% 0.261%
48 0.0% 313% 0.0% 0.000%
49 0.0% 28% 0.0% 0.000%
50 0.0% 2.3% 0.0% 0.000%
sum 88.453% sum 1.079%
Aa) 1.079% AB) 1.62% L (¥] 88.5%
Mi@ that an sccepted consignment contains viable MW 1.18%
Fig.7
Spreadshest printout of Model 2

The assumption behind this formula is that each infected bird ~ RiskDuniform({y}) distribution: a discrete distribution where
has equal probability of being detected (ie. a binomial  all values within its parameter array (y} have equal probability.
process) and that {m, +s,) is a lot less than the total numberof ~ This method of combining distributions is also very useful for

birds tested (100 in this case). combining dissimilar expert opinions (2).

The true prevalence p, of flock i can then be estimated as: Estimate of r;umber of infected turkays in a
consignmen

p, = RiskBeta(m,+s+1,100={m+s 1) g

o . A consignment is considered to be one packet of 100

in a similar fashion to the flock prevalence above. drumsticks. Cell E21 toggles between O (source flock is not

infected) and 1 (source flock is infected), the probability of

There are now seven within-flock prevalences, which canbe  goneraiing a value of 1 being the flock prevalence (Cell E5).
combined to produce a distribution of within-flock

prevalence Pa for all other infected flocks. One method of ~ The number Ni of infected turkeys contributing to a
combining these seven p, distributions is to use the  consignment is modelled in Cell E22 as




26

Table |
Formulae tsble for Model Y and Figure &

Coll address Formuls

ES =RiskBata{E4+1,E3-E441)

E10.E18 sRiskNeghin{D10+1,5058)

F10:F16 «E10+010

G10:6G18 »AiskBetalF10+1,C10-F10+1)

E17 =RigkDunilorm{G10:G186)

H22 »E5

H2 «1-H22

(3] =RiskDiscrete{G21:G22.H21:H22)
E22 =RiskBinomiaHE20/2 E171°E

F28 »IF{E220,0,RiskHypergeolF25,£22,£20/2))
F27 a|H{F268a0,0, RiskBinomial(F26.08))
F30 =RiskPart{10%,30%,40%)

3 =IF{E22=0,0,RiskBinomialE22, F30N
F34 =RiskPert{20%.40%,50%)

H35 =F34

H34 «1-H35

G35 =IF{F31+F27=0,E22.0)

Fa5 «RigkDiscrate{GI4:G35,H34:HI5)

RiskBinomial{50,Pa) x 21. Again, the assumption here is that
the flock size is many more than 50 birds (and that each
turkey has two drumsticks).

Pre-slaughter testing

Two turkeys are 10 be tested out of the 50 that make up a
consignment. The number of these tested turkeys Nti which
are infected can be modelled using a hypergeometric
distribution as:

Ntt = RiskHypergeo(2 ,Ni,50).

Table I
Formulas table for Model 2 and Figurs 7

Coll address Formula

£20 =020/2

ceCm? =BINOMDIST(B28,5£$20,50817.FALSE)

Dz8 =HYPGEOMDIST(0,$E$21,828 $E$201HYPGEOMOIST(1, SES21,
828 $ES201<(1-SCSB)

D29:075 =HYPGEOMDIST(0.$€521,829, SES20)+HYPGEOMDIST(1.$E$21,

B29,3€5201<1-SCE8lHYPGEOMDIST(Z $E$21,B29,
SES20)xi(1-$C51*2)

D76 =HYPGEOMDIST(1,$£$21,676,SE520h<(1-5CS8}
+HYPGEOMOISTI2 $ES21,B76.SES20)((1-3C88)*2)

D77 =HYPGEOMDIST(2.$E$21,B77 $E$20i(1-$C38)*2)

E28:€77 w1-$E$22)4B20

F28 =£23

G28:6G77 =3$085xC28xD28xE28x5F$20

C78,G7e =SUMIC28 C77)

Ccag (78

£B0 =(378x{1-F261/28

Gso =1-C78xD5}

Gez =CB0ACB0+EB0+GBO)
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An Excel® IF function is wrapped around this distribution to
ensure that it retums a zero when Ni is zero, rather than an
erTorT,

The number Np of the Nti birds which test positive with the
85% test sensitivity is modelled in Cell F27 as
RiskBinomial(Nti,85%). Again, an IF statement is wrapped
around this distribution to ensure it retums a zero if Nti is
zero, rather than an error.

Ingpection at slaughtarhouse -

The probability Pd of an infected bird having discoloured
meat and therefore being spotied by the meat inspector is
modelled as RiskPert(10%,30%,40%). The Pert distribution is
similar to the Triang(ular) distribution frequently used in
these types of models, but has the advantages over the Triang
distribution of being more naturally shaped and of being less
sensitive to the estimation of the minimum and maximum
values (2). The number Nin of infected birds in the
consignment which would be detected at the slaughterhouse
is therefore:

Nin = RiskBinomial{Ni,Pd).

An IF statement is wrapped around this distribution to ensure
that the cell returns a zero in the event that Ni is zero, where it
would obviously be inappropriate 1o atiempt to generate a
value from the binomial distribution,

The distribution of the number of pairs of infected drumsticks
Nif in a consignment which gets through these tests is then
calculated in Cell G35 using the equation:

IF(Nin+Np=0 Ni,0).

Pathogen surviving freezing

The probability of the pathogen surviving freezing is assumed
to apply to the whole packet of 100 drumsticks. It is assumed
that if the pathogen survives in one infected drumstick in a
packet it will survive in all the other infected drumsticks in
that packet. However, the pathogen will not spread to the
other uninfected drumsticks. The probability Ps of survival is
modelled in the same way as Pd:

Ps = RiskPert(20%,40%,50%).
The number Nii of infected drumstick pairs being imported in

one packet of 100 drumsticks from this source is then
modelled in Cell F35 as:

Nii = RiskDiscrete({0,Nif},{1-Ps,Ps)).
This mode] was run for 100,000 Latin Hypercube iterations

(2). A histogram of the resuliant distribution for Nil is shown
in Figure 8.

Model 2

This second model, shown in Figure 7, calculates the same
problem as described above, except that the probability
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masses for the output distribution are calculated directly
rather than determined through a lrequency analysis of the
simulation results. So, for example, instead of noting that
Model 1 produced a zero in 98.5% of its wterations (Fig. 8),
the true value of that percentage is actually calculated. Since
calculus is being used to determine this figure, the simulation
capabilities can also be used to show the certainty of that
value.

%%
VY

104
g o
07
08 ‘
05 !
04 '
03
02
0
0.04 . . . l'ﬂlﬁ - . v .
0 1 2 3 [} 5 g 7 ] 9
Number of infected turkeys Nii in a conmgnmant
OModal 1 OModal 2
Fig. 8

Comparisen of output distributions for Modeis 1 and 2

Model 2 is precisely the same as Model 1 up to the end of the
calculations for the flock and within-flock prevalences,
including the modelling of Ps and Pd, since these parts only
produce distributions arising from our lack of precise
knowledge. Thereafter, the approach of calculating the
probability masses of the resultant distributions at each stage
will be taken.

The table of cells from B28 to G77, partaily illustrated in
Figure 7, performs these calculations. The table uses the
BINOMDIST and HYPERGEOMDIST functions of Excel.
Column B, ranging from 1 to 50 (the number of turkeys
comprising one constgnment) denotes the number of infected
turkeys x in a consignment. Column C retums the probability
masses [or the Binomial(50,Pa} against these x values. This is
the distribution of the number of infected turkeys in a
consignment, given that the source flock is infected. So, for
example, the iteration presented in Figure 7 shows that there
is a2 19.9% chance there will be drumsticks from three infected
turkeys included in this consignment, given that the source
flock is infected.

Column D calculates the probability that 0, 1 or 2 infected
turkeys will be selected for the pre-slaughter tests, given that x
infected turkeys are in the consignment, and that the testing
then fails to detect each one of these infected birds. Note that
the formulae for x = 1, 49 and 50 are a litle different from the
rest of the column. This is because, if x = 1, there could not be
two infected turkeys in the sample, and ([ x = 49 or 50, there
must be at least one and two infected birds respectively in the
Lest group.

Column E calculates that, given x infected birds in the
consignment, none will be detected at the slaughierhouse due
to discoloration of the flesh. Column F is simply replicating
the probability that the pathogenic organism would not
survive [reezing. Only one cell is used in this column for
computational efficiency: all cells in column G refer to this
one used cell (F28). Finally, column G puts the whole
calculation together. It returns the probability of the source
flock being inlected, of having x infected turkeys in the
consignment, that those infected turkeys were then not
picked up dunng pre-slaughter inspection or dunng
slaughtering, and that the pathogenic organism residing in the
meat also remained viable (Events 1 to 5). The sum of column
G, shown in Cell G78, is the probability that viable pathogenic
organisms are in a particular consignment and that the
consignment has been accepted. The mean of the
distributions for each of the cells in column G are equivalent
to the probability masses calculated in Figure 8 for Model 1.
However, these means are considerably more accurate.
Figure 8 plots the results from Models 1 and 2 together with
the results of 3000 iterations of Model 2. They arrive at the
same result but Model 2 will more reliably and more quickly
reach the theoretical answer than Model 1.

With Model 2, the analysis can be taken one step further. In
general, it is of far more interest to look at the probability that
an accepted consignment contains viable pathogenic
organisms, i.e. P(viable |accepted) rather than the probability
that a consignment containing viable pathogenic organisms
will be accepted, i.e. P(accepted|viable). Figure 9 shows an
event tree of how the former probability could be calculated.
For the probabilities P(A), P(B), P(C) labelled in this figure:

P(A)
P(A) + P(B) + P(C)

P(viable|accepted)=

Nol accapted
/

Datect Accepted A8}
Yo infection Yeos
Consignmant No Organiem killed
1 infected by {reenng
No ™ ccepted AIC) Ny cented PYA)
Fig.9

Simplified event tree of the problem modelled, used to calculate
Plinfectad | acceptad)

This is the probability that the consignment contains viable
pathogenic organisms given it has been accepted, divided by
the sum of the probabilities of all paths leading to the
consignment being accepted. P(A), P®B) and P(C) are
calculated in Cells €80, E80 and GB80 respectively.
P(viable |accepted) is then calculated in Cell G82.
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Conclusions

It has been shown that, with a good understanding of a few
basic distributions, a risk analysis model can be conStructed
which is transparent and provides both measures of the
probabilities of outcomes and the degree of uncertainty one
may have about these probabilities. Performed correctly,
quantitative risk analysis is a powerful tool which will guide
the decision-maker towards a better understanding of the
risks being faced, the effectiveness of current and planned risk

Rev. sci tech. O int. Epir, 18 (1)

management strategies and of the value of further research to
reduce any uncentainty in the model.
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Analyse des risques liés a I'importation et a I'exportation de

produits d’origine animale
D.J. Vose

Résumé

Un modéle d’analyse quantitative des risques doit 8tre congu en fonction des
questions suxquelles il est censé répondre. Il doit, en outre, 8tre aussi objectif que
les données disponibles le permettent. La difficulté d'élaborer un bon modéle
d'anslyse quantitative des risques tient & ce que les risques liés & I'importation
d’animaux et de produits d’origine animale présentent, en général, les trois
caractéristiques suivantes :

- les probabilités des étapes conduisant & des résultats indésirables sont
fraquemmaent lides entre ellos ;

—~ la probabilité d’sboutir & un résultat indésirable est en soi, dans bien des cas,
tras faible, ce qui rend les simulations directes peu pratiques A réaliser;

~ il arrive souvent que d'importantes variables au sein du modéle ne puissent pas
8tre quantifiées par I'snalyse des données ; aussi doivent-elles étre modélisaes
en distribuant des probabilités qui refidtent le degré d'incertitude, habitueliement
déterminé sur avis d'expert.

Cet article constitue une initistion & certaines techniques de modélisation,
essentialles & I'évaluation des risques lids & I'importation d’animaux et de produits
d'origine animale, ot permettant de résoudre ces problémes. L'suteur examine un
certain nombre de distributions de probabilités, leurs utiiisations et leurs
relations. || montre ensuite comment |'application de ces distributions et de
quelques techniques de modélisation générales permettent d'sboutir & des
analyses des risques liés & I'importation d'animaux, & la fois rigoureuses et

transparantes.

Mots-clés

Analyse des risques — Arbre de probabilitds - Evaluation quantitative des risques -
Modale - Simulation - Simuiation de Monta-Carlo - Techniques.




Rav sct tech Off it forr 1810

29

Analisis de los riesgos asociados a la importacion y exportacion de
productos de origen animal

References

L.

D.J. Vose

Resumen

La elaboracién de un modelo de anAlisis cuantitetivo de riesgos viane
determinada por los interrogantes a los que dicho modelo debe dar respuesta. El
modelo debe ser ademés tan objetivo como vayan a permitirlo los datos
disponibles. Los riesgos asociados a |a importacion de animales y productos de
origen animal suelen posaar tres caracteristicas que dificultan la elaboracidn de
un buen modelo de anélisis cuantitativo de riesgos, a saber:

- las probabilidades de los pasos que conducen a un resultado indeseado
guardan con fracuancia relacionas raciprocas;

- la probabilidad del propio resuitado indeseado es en muchos casos
axtremadamente baja, hecho que casa mal con la préctica de simulaciones
directas;

— a menudo, al andlisis de datos no permite cuantificar una serie da variables
importantes para la aplicacién del modalo. Por asta razén es preciso modelar
dichas variables con distribuciones de probabilidad para reflejar al grado de
incartidumbre, que en genaral sa determina mediante una opinién de experto.

El autor proporciona una guia para la aplicacién de algunas técnicas de
modelizacién, esenciales para evaluar los riesgos asociados a la importacién de
animales y productos animalas y de gran ayuda para salvar estos escollos. En
este sentido se examinan una sarie de distribuciones de prababilidad, asl como
sus usos @ interralacionas. La aplicacidn de estas distribuciones, junto con la de
ciertas técnicas de modelizaci6n, se demuestra un método rigurosoe y
transparente para al anélisis de los riesgos asociados a la importacion de
animales.

Palabras clave
Andlisis de riesgos — Arbol de probabilidades de riesgo ~ Evaluacién cuantitativa de
riesgos — Modelo — Simulacién - Simulacién de Montecarlo - Técnicas.
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