Some processes, equipment, and materials described in this manual may be patented. Inclusion in this manual does not constitute permission for use from the patent owner. The use of any patented invention in the performance of the processes described in this manual is solely the responsibility of the user. APHIS does not indemnify the user against liability for patent infringement and will not be liable to the user or to any third party for patent infringement.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of any individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs). Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, SW., Washington, DC 20250-9410, or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

When using pesticides, read and follow all label instructions.
Contents

Figures

1-1-iii

Tables

1-1-vii

Introduction

Chemical Treatments

Overview 2-1-1
Fumigants 2-2-1
Fumigants • Methyl Bromide 2-3-1
Fumigants • Methyl Bromide • Tarpaulin Fumigation 2-4-1
Fumigants • Methyl Bromide • Chamber Fumigation 2-5-1
Fumigants • Methyl Bromide • Ship Fumigation for Emergency Situations 2-6-1
Fumigants • Methyl Bromide • Structure Fumigation 2-7-1
Fumigants • Methyl Bromide • Special Procedures for Container Fumigations Without a Tarpaulin 2-8-1
Fumigants • Methyl Bromide • Closed-door Container Fumigation 2-9-1
Fumigants • Sulfuryl Fluoride 2-10-1
Fumigants, Phosphine 2-11-1
Aerosols 2-12-1
Dips 2-13-1
Dusts 2-14-1
Sprays 2-15-1

Nonchemical Treatments

Overview 3-1-1
Heat 3-2-1
Heat, Hot Water Immersion Treatment 3-3-1
Heat • Steam Treatments 3-4-1
Heat • Vapor Heat and Forced Hot Air Treatment 3-5-1
Heat • Forced Hot Air • Niger Seed 3-6-1
Cold Treatment (CT) 3-7-1
Irradiation 3-8-1

Residue Monitoring

Overview 4-1-1
Instructions for Collecting, Packaging, and Shipping Residue Monitoring Samples 4-2-1

Treatment Schedules
Contents

Index to Schedules 5-1-1
T100 - Schedules for Fruit, Nuts, and Vegetables 5-2-1
T200 - Schedules for Propagative Plant Material 5-3-1
T300 - Schedules for Miscellaneous Plant Products 5-4-1
T400 - Schedules for Miscellaneous Products 5-5-1
T500 - Schedules for Plant Pests or Pathogens 5-6-1
T600-Controlled Atmosphere Temperature Treatment System 5-7-1
Domestic Treatments 5-8-1
Certifying Facilities Overview 6-1-1
Certifying Facilities Certification of Vacuum Fumigation Chambers 6-2-1
Certifying Atmospheric Fumigation Chambers 6-3-1
Certification of Cold Treatment 6-4-1
Certification of Hot Water Immersion Facilities 6-5-1
Certification of Niger seed Treatment Facilities 6-6-1
Certification of Forced Hot Air and Vapor Heat Treatment Facilities 6-7-1
Certifying Irradiation Treatment Facilities 6-8-1
Certifying Facilities for the Heat Treatment of Firewood 6-9-1
Hazard Communication Standard
Safety Data Sheets 7-1-1
Emergency Aid and Safety Guidelines for Managing Pesticide Spills 7-2-1
Equipment
Glossary
Appendix A Forms A-A-1
Appendix B Coast Guard Regulations B-B-1
Appendix C Conversion Tables C-C-1
Appendix D Approved Treatment Facilities and Conveyances D-1-1
Appendix E Reference Guide to Commercial Suppliers of Treatment and Related Safety Equipment E-1-1
Appendix F EPA Crop Groups F-1-1
Appendix G Respirator Protection Information G-1-1
Index
Figures

Figure 2-4-1 Container Arrangement in Two Rows—Both Doors Open 2-4-13
Figure 2-4-2 Container Arrangement in Two Rows—One Door Open 2-4-14
Figure 2-4-3 Example of the Position of Gas Sampling Tubes (Side View) 2-4-17
Figure 2-4-4 Typical Break Bulk Arrangement with Fans, Leads, Introduction Line, Padding, and Sand Snakes 2-4-19
Figure 2-4-5 Formula for Calculating Dosage for Tarpaulin Fumigations 2-4-23
Figure 2-4-6 Formula for Determining the Amount of Gas to Add to Schedules Not Equivalent to T101-a-1 2-4-31
Figure 2-4-7 Formula for Determining the Amount of Gas to Add to T101-a-1 or Equivalent Schedules 2-4-32
Figure 2-5-1 Formula for Calculating Dosage for Chamber Fumigations 2-5-9
Figure 2-6-1 Formula for Calculating Dosage for Vessel Fumigations 2-6-12
Figure 2-6-2 Formula for Determining the Amount of Gas to Add for Vessel Fumigation 2-6-15
Figure 2-8-1 Formula for Calculating Dosage for Container Fumigations Without a Tarpaulin 2-8-15
Figure 2-8-2 Formula for Determining the Amount of Gas to Add For Schedules Not T101-a-1 Equivalent and Conducted in a Container Without a Tarpaulin 2-8-22
Figure 2-8-3 Formula for Determining the Amount of Gas to Add For T101-a-1 Equivalent Schedules for Container Fumigations Without a Tarpaulin 2-8-23
Figure 2-8-4 Ductwork configuration for aeration of untarped containers: full loads (top) and partial loads (bottom) 2-8-29
Figure 2-9-1 Diagram of placement of temperature sensors, represented by a star 2-9-10
Figure 2-9-2 Formula for Calculating Dosage for Closed-door Container Fumigations 2-9-16
Figure 2-9-3 Formula for Determining the Amount of Gas to Add to Closed-Door Containerized Cargo 2-9-21
Figure 2-9-4 Ductwork configuration for aeration of closed door containers: full loads (top) and partial loads (bottom) 2-9-25
Figure 2-11-1 Diagram of ECO2FUME® Gas Cylinder 2-11-10
Figure 2-11-2 Diagram of One Type of Dispensing Equipment 2-11-12
Figure 2-11-3 Diagram of One Type of Blending Equipment 2-11-16
Figure 2-11-4 Diagram of VAPORPH3OS® and Forced Air Blending Equipment 2-11-18
Figure 2-12-1 Formula for Calculating Aerosol Spray Time in Specific Areas of Aircraft 2-12-2
Figure 2-12-2 Preparing to Dispense a Partial Can of 2% d-phenothrin + 2% permethrin 2-12-7
Figure 2-12-3 Preparing to Dispense a Full Can of 2% d-phenothrin + 2% permethrin 2-12-8
Figure 3-7-1 Proper Placement of Pulp Sensor within Larger Fruit 3-7-7
Figure 3-7-2 Proper Placement of Pulp Sensor within Smaller Fruit 3-7-8
Figure 3-7-3 Fruit stack with middle row temperature probe placement 3-7-10
Figure 3-7-4 40 foot Refrigerated Container with 18 Pallets of Fruit (not drawn to scale) 3-7-11
Figure 3-7-5 Proper placement of cardboard between the last pallet row of fruit and the back doors of the container 3-7-12
Figure 3-7-6 Number of Sensors in a Warehouse 3-7-21
Figure 5-5-1 Example of Inadequate Spacing Under Bamboo Bundles 5-5-21
Figure 5-5-2 Example of Inadequate Spacing Under Bamboo Bundles 5-5-21
Figure 5-5-3 Example of Adequate Space Above the Bamboo Bundles 5-5-22
Figure 5-5-4 Example of International Plant Protection Convention Marking 5-5-24
Figure 5-8-1 Formula for Calculating Granular Insecticide for Treating Potting Media for IFA 5-8-21
Figure 6-4-1 Number of Temperature Sensors per compartment 6-4-6
Figure 6-4-2 Example of a Completed Application for USDA Vessel Approval, page 1 of 2 6-4-9
Figure 6-4-3 Example of a Completed Application for USDA Vessel Approval, page 2 of 2 6-4-10
Figure 6-4-4 Example of a Completed Application for USDA Container Certification, page 1 of 2 6-4-12
Figure 6-4-5 Example of a Completed Application for USDA Container Certification, page 2 of 2 6-4-13
Figure 6-4-6 Number of Sensors in a Warehouse 6-4-15
Figure 6-4-7 Example of a Completed Application for USDA Warehouse Approval, page 1 of 3 6-4-18
Figure 6-4-8 Example of a Completed Application for USDA Warehouse Approval, page 2 of 3 6-4-19
Figure 6-4-9 Example of a Completed Application for USDA Warehouse Approval, page 3 of 3 6-4-20
Figure 6-5-1 Hypothetical Certification Results: Treatment Tank with Multiple Set Points 6-5-3
Figure 6-8-1 Flow Diagram for Plan Approval Application for Irradiation Facilities in Countries Other Than the United States 6-8-3
Figure 7-2-1 Abbreviated Spill Plan, Personal Reference Card (Wallet-size) 7-2-2
Figure 7-2-2 Emergency Contacts for Pesticide Spills 7-2-3
Figure 7-2-3 Poison Control Center 7-2-4
Figure 7-2-4 Medical Emergency Facility 7-2-4
Figure 7-2-5 Federal Aviation Administration (FFA) Office 7-2-5
Figure 7-2-6 Community-Right-To-Know or Emergency Planning Coordinator (Fire Marshall) 7-2-6
Figure 7-2-7 Fish and Game Department 7-2-6
Figure 7-2-8 Regional Veterinary Services (VS) Office 7-2-6
Figure 7-2-9 Regional Safety and Health Coordinator 7-2-7
Figure 7-2-10 Local Police 7-2-7
Figure 7-2-11 Local Hazardous Waste Official 7-2-8
Figure 8-1-1 Fumiscope® Models D, 4.0, and 5.1 8-1-2
Figure 8-1-2 Fumiscope® Model 5.1 8-1-3
Figure 8-1-3 Spectros Methyl Bromide Monitor 8-1-10
Figure 8-1-4 Methyl Bromide Volatilizer Coil 8-1-16
Figure 8-1-5 Tubing Specifications 8-1-17
Figure 8-1-6 Auxiliary Pump 8-1-20
Figure 8-1-7 Example of Pressure Measurement in an Open-arm Manometer 8-1-22
Figure 8-1-8 Example of U Tube Manometer 8-1-24
Figure 8-1-9 Example of a water trap 8-1-29
Figure 8-1-10 Tyvek® Cover 8-1-30
Figure 8-1-11 Tyvek® Cover with Safety Label (outlined in red and magnified in Figure 8-1-12) 8-1-31
Figure 8-1-12 SKU Safety Label with Hologram 8-1-31
Figure 8-1-13 Example of an Approved Fan 8-1-33
Figure A-1 APHIS Form 205-R, Instructions and Worksheet for Calibrating Portable Temperature Sensors A-A-3
Figure A-2 APHIS Form 206-R, Test of the Accuracy of the Permanent RTD Sensors Installed in Hot Water Tanks A-A-4
Figure A-3 APHIS Form 207-R, Sensor Location Diagram Fruit Weights and Pulp Temperatures A-A-5
Figure A-4 Calibration of Temperature Probes (Cold Treatment) A-A-7
Figure A-5 Location of Temperature Sensors in Containerized Cargo (Cold Treatment) A-A-8
Figure A-6 Example of PPQ Form 429, Fumigation Record (Front) A-A-9
Figure A-7 Example of PPQ Form 429, Fumigation Record (Back) A-A-10
Figure A-8 Example of PPQ Form 519, Compliance Agreement A-A-13
Figure A-9 Example of PPQ Form 523, Emergency Action Notification A-A-16
Figure A-10 Example of PPQ Form 449-R, Temperature Recording Calibration Report A-A-27
Figure A-11 PPQ Form 203, Foreign Site Certificate of Inspection and/or Treatment A-A-29
Figure A-12 PPQ Form 556, In Transit Cold Treatment Clearance Report A-A-32
Figure A-13 Worksite Specific Respiratory Protection Plan—Template (page 1 of 8) A-A-33
Figure A-14 Worksite Specific Respiratory Protection Plan—Template (page 2 of 8) A-A-34
Figure A-15 Worksite Specific Respiratory Protection Plan—Template (page 3 of 8) A-A-35
Figure A-16 Worksite Specific Respiratory Protection Plan—Template (page 4 of 8) A-A-36
Figure A-17 Worksite Specific Respiratory Protection Plan—Template (page 5 of 8) A-A-37
Figure A-18 Worksite Specific Respiratory Protection Plan—Template (page 6 of 8) A-A-38
Figure A-19 Worksite Specific Respiratory Protection Plan—Template (page 7 of 8) A-A-39
Figure A-20 Worksite Specific Respiratory Protection Plan—Template (page 8 of 8) A-A-40
Figure E-1 DC Scientific Glass - Approved Thermometers E-I-62
Figure E-2 Fisher Scientific - Approved Thermometers E-I-63
Figure E-3 VWR - Approved Thermometers E-I-63
Figure E-4 Cole Parmer - Approved Thermometers E-I-64
Figure G-1-1 Approved Half Face Respirators G-I-2
Figure G-1-2 Approved Full Face Respirators G-I-3
Figure G-1-3 Approved Organic Vapor/Acid Gas/P100 Cartridges G-I-3
Figure G-1-4 Approved SCBA G-I-3
Figure G-1-5 Approved AirHawk Ultra Elite Spectacle Kit-Sidewire G-I-4
Tables

<table>
<thead>
<tr>
<th>Table 2-3-1</th>
<th>List of Commodities Covered by FIFRA Section 18 Exemption</th>
<th>2-3-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2-4-1</td>
<td>Determine Reporting Requirements</td>
<td>2-4-7</td>
</tr>
<tr>
<td>Table 2-4-2</td>
<td>Number of Temperature Sensors</td>
<td>2-4-9</td>
</tr>
<tr>
<td>Table 2-4-3</td>
<td>Determine Whether to Use Commodity or Air Temperature for Determining Dosage Rate For Nonpulpy Commodities</td>
<td>2-4-20</td>
</tr>
<tr>
<td>Table 2-4-4</td>
<td>Determine the Need to Add Gas and Adjust Exposure</td>
<td>2-4-30</td>
</tr>
<tr>
<td>Table 2-4-5</td>
<td>Determine the Extended Exposure Period</td>
<td>2-4-31</td>
</tr>
<tr>
<td>Table 2-4-6</td>
<td>Determine Gas Concentration Values and Corrections for Fruits and Vegetables at the 30-Minute Reading of T101-a-1 or Equivalent Schedules</td>
<td>2-4-34</td>
</tr>
<tr>
<td>Table 2-4-7</td>
<td>Determine Gas Concentration Values and Corrections for Fruits and Vegetables at the 2-Hour Reading of T101-a-1 or Equivalent Schedules</td>
<td>2-4-35</td>
</tr>
<tr>
<td>Table 2-4-8</td>
<td>Determine Responsibility for Aerating the Commodity</td>
<td>2-4-37</td>
</tr>
<tr>
<td>Table 2-4-9</td>
<td>Determine the Aeration Procedure</td>
<td>2-4-37</td>
</tr>
<tr>
<td>Table 2-4-10</td>
<td>Determine When to Release the Commodity for Nonsorptive Containerized Cargo</td>
<td>2-4-39</td>
</tr>
<tr>
<td>Table 2-4-11</td>
<td>Determine When to Release the Commodity for Outdoor Fumigations</td>
<td>2-4-40</td>
</tr>
<tr>
<td>Table 2-4-12</td>
<td>Determine When to Release the Commodity for Indoor Fumigations</td>
<td>2-4-41</td>
</tr>
<tr>
<td>Table 2-4-13</td>
<td>Determine Number of Fans for Aeration of Fresh Fruits, Vegetables, and Cut Flowers</td>
<td>2-4-41</td>
</tr>
<tr>
<td>Table 2-4-14</td>
<td>Determine When to Release the Commodity After Aeration of Fresh Fruits, Vegetables, and Cut Flowers</td>
<td>2-4-42</td>
</tr>
<tr>
<td>Table 2-4-15</td>
<td>Determine when to Release the Sorptive Noncontainerized Commodity for Outdoor Fumigations</td>
<td>2-4-43</td>
</tr>
<tr>
<td>Table 2-4-16</td>
<td>Determine When to Release the Sorptive Noncontainerized Commodity for Indoor Fumigations</td>
<td>2-4-44</td>
</tr>
<tr>
<td>Table Number</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>2-4-17</td>
<td>Determine when to Release the Sorptive Containerized Commodity for Indoor Fumigations</td>
<td>2-4-45</td>
</tr>
<tr>
<td>2-4-18</td>
<td>Determine when to Release the Sorptive Containerized Commodity for Outdoor Fumigations</td>
<td>2-4-46</td>
</tr>
<tr>
<td>2-5-1</td>
<td>Determine Whether to Use Commodity or Air Temperature for Determining Dosage Rate</td>
<td>2-5-8</td>
</tr>
<tr>
<td>2-5-2</td>
<td>Determine the Responsibility for Aerating the Commodity During Chamber Fumigations</td>
<td>2-5-11</td>
</tr>
<tr>
<td>2-5-3</td>
<td>Determine the Aeration Procedure for Chamber Fumigations</td>
<td>2-5-11</td>
</tr>
<tr>
<td>2-5-4</td>
<td>Determine When to Release the Commodity After NAP Fumigation</td>
<td>2-5-12</td>
</tr>
<tr>
<td>2-5-5</td>
<td>Determine When to Release the Commodity After Vacuum Fumigation</td>
<td>2-5-13</td>
</tr>
<tr>
<td>2-6-1</td>
<td>Determine Time for Extended Exposure</td>
<td>2-6-15</td>
</tr>
<tr>
<td>2-8-1</td>
<td>Responsibilities for Approving Tarpless Container Fumigations</td>
<td>2-8-4</td>
</tr>
<tr>
<td>2-8-2</td>
<td>Determine Whether to Use Commodity or Air Temperature for Determining Dosage Rate For Nonpulpy Commodities</td>
<td>2-8-14</td>
</tr>
<tr>
<td>2-8-3</td>
<td>Determine the Need to Add Gas and Adjust Exposure</td>
<td>2-8-21</td>
</tr>
<tr>
<td>2-8-4</td>
<td>Determine the Extended Exposure Period to Commodities that are Not T101-a-1 Equivalent</td>
<td>2-8-22</td>
</tr>
<tr>
<td>2-8-5</td>
<td>Determine Gas Concentration Values and Corrections for Fruits and Vegetables at the 30-Minute Reading of T101-a-1 or Equivalent Schedules</td>
<td>2-8-25</td>
</tr>
<tr>
<td>2-8-6</td>
<td>Determine Gas Concentration Values and Corrections for Fruits and Vegetables at the 2-Hour Reading of T101-a-1 or Equivalent Schedules</td>
<td>2-8-26</td>
</tr>
<tr>
<td>2-8-7</td>
<td>Determine Responsibility for Aerating the Commodity for Tarpless Container Fumigation</td>
<td>2-8-27</td>
</tr>
<tr>
<td>2-9-1</td>
<td>Determine the Extended Exposure Period for Closed-Door Containerized Cargo</td>
<td>2-9-21</td>
</tr>
<tr>
<td>2-10-1</td>
<td>Effect of Hose Inside Diameter on Rate of Gas Introduction through a 25-Foot Hose (approximates, depending on cylinder pressure)</td>
<td>2-10-3</td>
</tr>
<tr>
<td>2-10-2</td>
<td>Effect of Hose Length on Rate of Gas Introduction through a inch Inside Diameter Hose</td>
<td>2-10-4</td>
</tr>
</tbody>
</table>
Table 2-11-1 NIOSH-Recommended Respiratory Protection When Applying Phosphine 2-11-8
Table 2-11-2 Amount of Phosphine Liberated by Various Products 2-11-9
Table 2-11-3 Phosphine Residue Tolerances 2-11-31
Table 3-4-1 Pressure Temperature Relationships 3-4-2
Table 3-5-1 Example of a Treatment Schedule 3-5-4
Table 5-2-1 Hot Water Dip Time Based on Weight of Fruit 5-2-59
Table 5-2-2 Pest-Specific Minimum absorbed dose (Gy) For Any Approved Imported Fruits, Vegetables and Cut Flowers, and Fruits, Vegetables, and Cut Flowers Moved Interstate from Hawaii, Puerto Rico, and the U.S. Virgin Islands 5-2-69
Table 5-2-3 Origin and Approved Commodity List for 150 Gy 5-2-70
Table 5-2-4 Origin and Approved Commodity List for 400 Gy 5-2-71
Table 5-2-5 Origin and Approved Commodity List for 300 Gy 5-2-72
Table 5-2-6 Origin and Approved Commodity List for 165 Gy 5-2-72
Table 5-4-1 Metric Equivalents for T312-a 5-4-30
Table 5-4-2 Determine Gas Concentration Values and Corrections for Oak Log Fumigations using Schedule T312-a 5-4-33
Table 5-4-3 Determine Gas Concentration Values and Corrections for Oak Log Fumigations using schedule T312-a-Alternative 5-4-36
Table 5-4-4 Amount of Phosphine Liberated by various Products. Calculate amount of product needed by using the amount of phosphine released as shown in the right column. 5-4-41
Table 5-5-1 Metric Equivalents for T404-b-1-1 5-5-15
Table 5-5-2 Pest list for T404-b-1-1, T404-b-1-2, and T404-b-4 5-5-17
Table 5-5-3 Metric Equivalents for T404-d 5-5-20
Table 5-5-4 Partial Site List 5-5-23
Table 5-5-5 Metric Equivalents for T404-e-1 5-5-25
Table 5-5-6 Pesticide Treatment for Pinus radiata and Eucalyptus Wood Chips 5-5-25
Table 5-5-7 Airbus Industries 5-5-36
Table 5-5-8 Antonov 5-5-36
Table 5-5-9 ATR 5-5-37
Table 5-5-10 BAC (British Aircraft Corp) 5-5-37
Table 5-5-11 BAC (Aerospatiale) 5-5-37
Table 5-5-12 Boeing 5-5-38
Table 5-5-13 Canadair 5-5-39
Table 5-5-14 Casa 5-5-39
Table 5-5-15 Cessna 5-5-40
Table 5-5-16 Convair 5-5-40
Table 5-5-17 de Havilland 5-5-40
Table 5-5-18 Dornier 5-5-41
Table 5-5-19 Embraer 5-5-41
Table 5-5-20 Fairchild 5-5-42
Table 5-5-21 Fokker 5-5-42
Table 5-5-22 Lockheed 5-5-42
Table 5-5-23 McDonnel-Douglas 5-5-42
Table 5-5-24 SAAB 5-5-45
Table 5-5-25 Shorts 5-5-45
Table 5-5-26 Sidely 5-5-45
Table 5-5-27 Tupolev 5-5-46
Table 5-5-28 Vickers 5-5-46
Table 5-5-29 Military Aircraft 5-5-46
Table 5-5-30 Amount of Phosphine Liberated by Various Products 5-5-53
Table 5-6-1 Citrus Canker Chemical Treatments 5-6-10
Table 5-8-1 Diazinon Dosages for Nursery Stock 5-8-3
Table 5-8-2 Lambda-Cyhalothrin Dosages for Nursery Stock 5-8-3
Table 5-8-3 Pest-Specific Minimum Absorbed Dose (Gy) for Fruit Fly Irradiation 5-8-4
Table 5-8-4 Food Grade Washing Products for Leaf Washing for ACP 5-8-13
Table 5-8-5 APHIS-approved Insecticides for Control of Psyllids on Citrus 5-8-14
Table 5-8-6 Insecticides for Immersion Treatment of Balled or Containerized Plants 5-8-17
| Table 5-8-7 | Insecticides and Dosages for Drenching Plants in Containers | 5-8-18 |
| Table 5-8-8 | Bifenthrin calculations based on Bulk Density | 5-8-18 |
| Table 5-8-9 | Certification period for Plants in Containers | 5-8-18 |
| Table 5-8-10 | Emulsifiable Chlorpyrifos Dosage for Balled Plants | 5-8-19 |
| Table 5-8-11 | Potting Media Bulk Density | 5-8-20 |
| Table 5-8-12 | Application Rates for Incorporation of Granular Insecticides into Potting Media | 5-8-21 |
| Table 5-8-13 | Pesticide Dosages for Grass Sod | 5-8-23 |
| Table 5-8-14 | Sweet Orange Scab Approved Fungicides | 5-8-28 |
| Table 5-8-15 | Citrus Black Spot Approved Fungicides | 5-8-30 |
| Table 6-2-1 | Vacuum Chamber Classification Table | 6-2-4 |
| Table 6-2-2 | Chamber Checklist | 6-2-6 |
| Table 6-3-1 | Chamber Checklist | 6-3-12 |
| Table A-1 | Instructions for Completing PPQ Form 519, Compliance Agreement | A-A-14 |
| Table A-2 | Instructions for Initiating an EAN | A-A-18 |
| Table A-3 | Determine Paperwork to Be Presented upon Arrival of a Precleared Commodity | A-A-30 |
| Table A-4 | Distribution of PPQ Form 203, Foreign Site Certificate of Inspection and/or Treatment | A-A-31 |
| Table C-1 | Conversion Tables | C-C-1 |
| Table D-1 | Hyperlinks to Lists of Approved Treatment Facilities, Vessels, and Containers | D-1-1 |
| Table E-1 | Cylinder Tare, Net, and Gross Weights | E-1-39 |
| Table F-1 | Crop Group 1: Root and Tuber | F-1-2 |
| Table F-2 | Crop Group 2: Leaves of Root and Tuber Vegetables | F-1-3 |
| Table F-3 | Crop Group 3: Bulb Vegetable (Allium spp.) | F-1-4 |
| Table F-4 | Crop Group 4: Leafy Vegetables (except Brassica vegetables) | F-1-5 |
| Table F-5 | Crop Group 5: Brassica (Cole) Leafy Vegetables | F-1-6 |
| Table F-6 | Crop Group 6: Legume Vegetables (succulent or dried) | F-1-6 |
| Table F-7 | Crop Group 7: Leaves of Legume Vegetables | F-1-7 |
Table F-8 Crop Group 8: Fruiting Vegetables F-1-7
Table F-9 Crop Group 9: Cucurbit Vegetables F-1-8
Table F-10 Crop Group 10: Citrus Fruit F-1-9
Table F-11 Crop Group 11: Pome Fruit F-1-10
Table F-12 Crop Group 12: Stone Fruit F-1-11
Table F-13 Crop Group 13: Berries and Small Fruit F-1-12
Table F-14 Crop Group 14: Tree Nuts F-1-13
Table F-15 Crop Group 15: Cereal Grains F-1-14
Table F-16 Crop Group 18: Nongrass Animal Feeds (Forage, Fodder, Straw, and Hay) F-1-15
Table F-17 Crop Group 19: Herbs and Spices F-1-16
Table F-18 Crop Group 20: Oilseed F-1-18
Table F-19 Crop Group 21: Edible Fungi F-1-19
Table F-20 Crop Group 22: Stalk, Stem, and Leaf Petiole Vegetables F-1-20
Table F-21 Crop Group 23: Tropical and Subtropical Fruit, Edible Peels F-1-21
Table F-22 Crop Group 24: Tropical and Subtropical Fruit, Inedible Peels F-1-24
Contents

Purpose 1-1-1
Restrictions 1-1-1
Scope 1-1-2
 What the Manual Covers 1-1-2
 What the Manual Does Not Cover 1-1-2
Users 1-1-3
Related Documents 1-1-3
Application 1-1-4
How to Use This Manual 1-1-4
Reporting Problems with or Suggestions for the Manual 1-1-4
Conventions 1-1-4
Manual Updates 1-1-5
Ordering Additional Manuals and Revisions 1-1-6

Purpose

The procedures and treatment schedules listed in this manual are administratively authorized for use in Plant Protection and Quarantine (PPQ). The treatment of listed commodities prevents the movement of agricultural pests into or within the United States. An officer may determine that other commodities require treatment to prevent similar pest movement.

Restrictions

Treatment recommendations listed in this manual are based on uses authorized under provisions of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), as amended. Directions appearing on the label, Section 18 Emergency Exemptions, and manual instructions must be followed. Nevertheless, some treatments may damage commodities.

PPQ personnel may not make any warranty or representations, expressed or implied, concerning the use of these pesticides.

The occasional use of registered trade names in this manual does not imply an endorsement of those products or of the manufacturers by the U.S. Department of Agriculture, Animal and Plant Health Inspection Service (USDA, APHIS).
Scope

What the Manual Covers
This manual covers treatments for quarantine significant plant pests for imported and domestic commodities.

Do not treat unlisted commodities until consulting and receiving approval from the USDA-APHIS-PPQ-S&T-CPHST-AQI in Raleigh, North Carolina.

Approval from CPHST-AQI must be obtained each time a treatment schedule is used that is not an approved schedule from this manual.

This manual is broadly divided into ten sections:

- Chemical Treatments
- Nonchemical Treatments
- Residue Monitoring
- Treatment Schedules
- Certifying Facilities
- Emergency Aid and Safety
- Equipment
- Glossary
- Appendixes
- Index

Each section contains a Table of Contents, an Overview, and where appropriate, a Methods and Procedures section. The Overview is a broad, general description of what is covered in the section. Methods and Procedures cover the “how to” of that particular activity as well as procedural and reference material for performing tasks associated with each activity.

The Appendixes contain information directly associated with treatment activities, but are placed in the back so they do not interfere with the flow of procedural instructions.

What the Manual Does Not Cover
This manual does not cover treatments conducted in the United States for export to a foreign country. Export treatments are based on the importing countries’ requirements and may be obtained from the Phytosanitary Export Database (PExD) or official communication from the importing country.
With exports, PPQ does not have the authority to require more restrictive measures than the importing country requires. When certifying that an export treatment has occurred, ensure that the mandatory components of the treatment are met, and that all safety guidelines are followed. Importing countries treatment requirements are provided through published regulations, import permits, and other official communication. Maintain quality assurance at the local level to ensure that all treatment are conducted according to the importing country’s requirements.

Mandatory components to consider relating to an export treatment:

1. Follow the current pesticide label.
2. Ensure the safety of the employee.
3. Base the treatment on the foreign country’s import requirements.

For more information, contact the PPQ Export Certification Specialist in your state or state of export. You can also visit the Export Services Program web site or email the general Export Services mailbox: ppqexportservices@aphis.usda.gov.

Users

This manual is used primarily by PPQ officers, headquarters personnel, and State cooperators involved in conducting treatments. The secondary users of this manual are other government agencies, fumigators, pest control operators, foreign governments, and other interested parties.

Related Documents

The following documents are related to this manual:

- APHIS Safety and Health Manual
- Code of Federal Regulations (CFR)
 - Title 7 (Agriculture)
 - Title 46 (Shipping) Chapter 1, Part 147—Interim Regulations for Shipboard Fumigation
- Federal Insecticide, Fungicide, Rodenticide Act as amended
- Material Safety Data Sheets (MSDS)
- Pesticide labels and labeling
- Plant import manuals (Propagative and Nonpropagative)
Application

This manual serves both as a field manual for employees conducting treatments and as a reference for PPQ officers, program managers, and staff officers. Under APHIS policy, only certified pesticide applicators may conduct or monitor treatments. This manual will also serve as a reference for researching the types of treatments available for imports and to answer questions from importers, industry, and foreign countries.

How to Use This Manual

Review the content of this manual to get a feel for the scope of material covered. Glance through the section that you will be using and familiarize yourself with the organization of information.

Use the Table of Contents at the beginning of each chapter to find the information you need. If the Table of Contents is not specific enough, then refer to the Index to find the topic and corresponding page number.

Reporting Problems with or Suggestions for the Manual

If you want to suggest an improvement or identify a problem with the content of this manual, email josie.cooley@aphis.usda.gov or call (240) 529-0358. If you disagree with the guidelines or policies contained in this manual, contact Quarantine Policy, Analysis and Support (QPAS) through channels.

Conventions

The following are terms that are widely recognized and used throughout this manual:

- **DANGER**: Indicates that people can easily be hurt or killed

- **WARNING**: Indicates that people could possibly be hurt or killed
Introduction
Manual Updates

EXAMPLE: indicates additional information that helps to clarify the content in the manual

Treatment schedules which are FIFRA Section 18 Exemptions (such as the sample below) are followed by an “Important” note to help you determine the current exemption status.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 °F or above</td>
<td>2 lbs</td>
<td>0.5 hrs 26 2 hrs 19 3 hrs 19 3.5 hrs —</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>0.5 hrs 32 2 hrs 24 3 hrs 24 3.5 hrs —</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>0.5 hrs 38 2 hrs 29 3 hrs 24 3.5 hrs —</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>0.5 hrs 38 2 hrs 29 3.5 hrs — 24</td>
</tr>
</tbody>
</table>

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

Manual Updates

The PPQ Manuals Unit issues and maintains manuals electronically on the Manuals Unit Web site. The online manuals contain the most up-to-date information. Immediate update revisions to this manual are distributed via the APHIS Stakeholder Registry to anyone who has subscribed to receive Treatment Manual updates. To subscribe to the Stakeholder Registry, register here.

Each update contains the following information:
Ordering Additional Manuals and Revisions

Although using the online manuals is the preferred method, APHIS employees may order hard copies of manuals from the APHIS Printing, Distribution, and Mail Services Center in Riverdale, MD. Visit the Riverdale Print Shop Website for detailed information and printing costs. The Manuals Unit is not responsible for printing costs.
2
Chemical Treatments

Overview

Contents

Overview 2-1-1
Fumigants 2-2-1
Aerosols 2-12-1
Dips 2-13-1
Dusts 2-14-1
Sprays 2-15-1

Introduction

The Chemical Treatments section of this manual is organized by chemicals tabbed as follows:

◆ Fumigants
◆ Aerosols and Micronized Dust

Use the Contents in this section to quickly find the information you need. The subjects listed in the Contents are also marked on the tabs in this manual. If the Contents is not specific enough, then turn to the Index to find the topic and its page number.
Chemical Treatments

Fumigants

Contents

Fumigants • Methyl Bromide 2-3-1
Fumigants • Sulfuryl Fluoride 2-10-1
Fumigants, Phosphine 2-11-1

Introduction

Fumigation is the act of releasing and dispersing a toxic chemical so it reaches the target organism in a gaseous state. Chemicals applied as aerosols, smokes, mists, and fogs are suspensions of particulate matter in air and are not fumigants.

The ideal fumigant would have the following characteristics:

◆ Highly toxic to the target pest
◆ Nontoxic to plants and vertebrates (including humans)
◆ Easily and cheaply generated
◆ Harmless to foods and commodities
◆ Inexpensive
◆ Nonexplosive
◆ Nonflammable
◆ Insoluble in water
◆ Nonpersistent
◆ Easily diffuses and rapidly penetrates commodity
◆ Stable in the gaseous state (will not condense to a liquid)
◆ Easily detected by human senses

Unfortunately, no one fumigant has all the above properties, but those used by APHIS and PPQ have many of these characteristics.
The toxicity of a fumigant depends on the respiration rate of the target organism. Generally, the lower the temperature, the lower the respiration rate of the organism which tends to make the pest less susceptible. Fumigation at lower temperatures requires a higher dosage rate for a longer exposure period than fumigation at higher temperatures.

Fumigants vary greatly in their mode of action. Some kill rapidly while others kill slowly. In sublethal dosages, some fumigants may have a paralyzing effect on the pest while others will not allow the pest to recover. Some fumigants have no effect on commodities while others are detrimental even at low concentrations. Commodities vary in their sorption of fumigants and in the effort required to aerate the commodities after fumigation.

Due to the reduction in number of labeled fumigants, there is seldom a choice in selecting fumigants. When there is a choice, factors such as the commodity to be treated, pest and stages present, type of structure, and cost should be considered in selecting a fumigant.

The only authorized fumigants are the following:

- Methyl bromide (MB)
- Sulfuryl fluoride (SF) (Vikane)
- Phosphine (PH) (There are two chemicals used for phosphine, AP—aluminum phosphide and MP—magnesium phosphide)

Much of the information on fumigants is based on MB with modification as needed for the other fumigants.

Monitoring of Quarantine Treatments

Monitoring of program fumigations is performed to ensure that effective fumigant concentration levels are maintained throughout the treatment to prevent the introduction of quarantine pests. Quarantine fumigations employing restricted use pesticides require careful monitoring to assure efficacy and personal safety, to maintain pesticide residues within acceptable limits, and to preserve commodity quality. These requirements are included in the fumigant label, and it is a violation of Federal law to use fumigants and pesticides in a manner inconsistent with its labeling.

Nonperishable Commodities in Temporary Enclosures

PPQ officers will provide onsite monitoring from introduction of the fumigant through completion of the 2 hour gas concentration readings. Half hour and two hour readings are required for these treatments. These readings and
general observations permit the officer to determine how a particular treatment is progressing and to make necessary corrections to the enclosure or fumigant concentration level.

Perishable Commodities in Temporary Enclosures
The monitoring officer will remain on the site through the entire fumigation of perishable commodities. Continuous monitoring allows the officer to alert the pest control operator at any time to implement necessary corrective measures. Due to the nature of the commodity and the length of treatment, onsite monitoring of yam and chestnut fumigations may be interrupted after the 2 hour reading when efficacy and safety considerations warrant.

These instructions do not prevent the officer from leaving the immediate fumigation site for brief periods when it is necessary and safe to do so. The pest control operator must be notified of the PPQ officer’s intended absence. These absences would normally be limited to 20 minutes (e.g., restroom breaks or a medical condition) and do not constitute a break in service. These practices are in place in many locations and will require only minor modifications in other areas.

Fumigation Guidelines
The following fumigation guidelines are in common usage throughout this manual:

- Dosage rate is based on 1,000 cubic feet of enclosure space, whether chamber, tarpaulin, van, freight car, ship hold, etc. Dosage should be calculated from the volume of the tarped fumigation enclosure.
- Dosages are listed by weight in the Treatment Schedules. If liquid measures are needed, convert from weight to volume by using the conversion figures.
- Ounces per 1,000 cubic feet (oz/1000 ft³) is equal to milligrams per liter (mg/liter) and is equal to grams per cubic meter (g/m³).
- Volume of commodity being treated should not exceed two-thirds of enclosure volume unless otherwise specified in a schedule.
- Specified vacuum should be held throughout the exposure period.
Chemical Treatments Fumigants

Physical Properties of Fumigants

◆ Blowers or fans should be operated as follows:
 - for propagative material (T200-series schedules), the entire period of exposure, whether NAP or vacuum
 - under tarpaulin (and vacuum fumigation for other than propagative material), fans should operate for 30 minutes after gas introduction, or until an APHIS-approved gas detection device indicates uniform gas distribution
 - for all bulk material, forced recirculation is required, check for uniform gas distribution by taking gas readings at four or five locations including at least three from the commodity

![Important]

Phosphine fumigations do not require fans.

◆ In this section, all NAP treatments that refer to chamber fumigations should be conducted in USDA-approved chambers. (Refer to Certification of Vacuum Fumigation Chambers on page 6-2-1 or Certifying Atmospheric Fumigation Chambers on page 6-3-1).

◆ Methyl bromide treatment schedules are indicated as “MB.” MB generally refers to any methyl bromide label. Specific MB label restrictions are noted in this manual for the “Q” label. Always check the label of the fumigant to be sure the commodity is listed on the label. Commodities that are not listed on the fumigant’s label are not authorized for fumigation with the manufacturer’s gas.

Physical Properties of Fumigants

<table>
<thead>
<tr>
<th>Fumigant</th>
<th>Chemical Formula</th>
<th>Boiling Point</th>
<th>Specific Gravity</th>
<th>Flammability Limits in Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl Bromide</td>
<td>CH₃Br</td>
<td>3.6 °C 40.1 °F</td>
<td>3.27</td>
<td>Normally nonflammable. Flame propagation at 13.5 to 14.5 percent by volume only in the presence of an intense source of ignition.</td>
</tr>
<tr>
<td>Phosphine</td>
<td>PH₃</td>
<td>−87.4 °C −126 °F</td>
<td>1.214</td>
<td>1.79 percent by volume</td>
</tr>
<tr>
<td>Sulfuryl fluoride</td>
<td>SO₂F₂</td>
<td>−55.2 °C −67 °F</td>
<td>2.88</td>
<td>Nonflammable</td>
</tr>
</tbody>
</table>

1 Air = 1, anything greater is heavier than air.
Fumigant Odor Effects on Metals General

<table>
<thead>
<tr>
<th>Fumigant</th>
<th>Odor</th>
<th>Effects on Metals</th>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methyl Bromide</td>
<td>No odor at low concentration. Strong musty or sweet at high concentrations.</td>
<td>Reacts with aluminum, may damage electronic equipment</td>
<td>Discharged from cylinders, 1.5 lb cans</td>
</tr>
<tr>
<td>Phosphine</td>
<td>Garlic-like or carbide due to impurities</td>
<td>Copper, brass, gold and silver severely damaged; electronic equipment damaged. Other metals slightly affected in high humidity.</td>
<td>Evolved from aluminum phosphide or magnesium phosphide preparations</td>
</tr>
<tr>
<td>Sulfuryl fluoride</td>
<td>None</td>
<td>Non-corrosive</td>
<td>Discharged from cylinders</td>
</tr>
</tbody>
</table>
Chemical Treatments

Fumigants • Methyl Bromide

Properties and Use

Methyl bromide (MB) (CH₃Br) is a colorless, odorless, nonflammable fumigant. MB boils at 38.5 °F and has a very low solubility in water. As a gas, MB is three times heavier than air. As a liquid at 32 °F, 1 pound of MB is equivalent to 262 ml. For ease in transportation and handling, MB is compressed and stored in metal cylinders as a liquid.

MB is an effective fumigant for treating a wide variety of plant pests associated with a wide variety of commodities. MB is the most frequently used fumigant in quarantine fumigations. MB may also be used to devitalize plant material. MB is effective in treating the following pests:

◆ Insects (all life stages)
◆ Mites and ticks (all life stages)
◆ Nematodes (including cysts)
◆ Snails and slugs
◆ Fungi (such as oak wilt fungus)

MB is effective over a wide range of temperatures (40 °F and above). In general, living plant material tolerates the dosage rate specified, although the degree of tolerance varies with species, variety, stage of growth, and condition of the plant material. MB accelerates the decomposition of plants in poor condition.
Since MB is three times heavier than air, it diffuses outward and downward readily, but requires fans to ensure upward movement and equal gas distribution. Fan circulation also enhances penetration of MB into the commodity. A volatilizer is used to heat the liquid MB in order to speed up its conversion to a gas. Once the gas is evenly distributed, it maintains that condition for the duration of the treatment unless an outside event such as excessive leakage occurs.

Section 18 Exemption Treatment Schedules

Methyl bromide fumigants, except those with “Q” labels, may be subject to requirements of the FIFRA Section 18 Quarantine Exemption. When commodities intended for food or feed are fumigated with methyl bromide under the FIFRA Section 18 Quarantine Exemption, one additional EPA requirement must be met: PPQ must monitor aeration by sampling the gas concentration to determine when a commodity may be released.

The EPA defines a Federal quarantine exemption (40 CFR 166.2(b)) as “A quarantine exemption may be authorized in an emergency condition to control the introduction or spread of any pest new to or not theretofore known to be widely prevalent or distributed within and throughout the United States and its territories.”

The section 18 Crisis Exemption has been amended to permit treatment of commodities that are at risk for carrying Federal quarantine pests. This means that treatments are permitted not only for imported commodities, but also for domestic commodities growing in areas under quarantine for a regulated pest. This exemption does not authorize treatments of domestically grown commodities for export certification unless the treatment is necessary to move the commodity out of quarantine, i.e. the target pests must be Federally regulated pests.

In this manual, fumigation schedules under the FIFRA Section 18 Quarantine Exemption are followed by an “Important” note to help you determine the current exemption status. For example:

| Example Treatment Schedule Table |
|----------------------------------|---|---|---|
| | | | |

Important

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).
Table 2-3-1 is a list of commodities covered by the FIFRA Section 18 exemption. This list will expire on March 01, 2020.

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Minimum Temperature (F)</th>
<th>Maximum Dosage Range (lb/1000 ft³)</th>
<th>Exposure Period (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avocado</td>
<td>70</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Banana and Plantain (fruit)</td>
<td>40</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Banana leaf</td>
<td>40</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Blueberry and unlabeled commodities from the berry and small fruit crop group 13-07</td>
<td>40</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Cacti, edible (includes Opuntia)</td>
<td>40</td>
<td>4</td>
<td>3.5</td>
</tr>
<tr>
<td>Coffee bean (green, unroasted)</td>
<td>40</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Coconut (unprocessed, whole coconut without husk)</td>
<td>60</td>
<td>2.5</td>
<td>2</td>
</tr>
<tr>
<td>Cottonseed (for animal feed)</td>
<td>40</td>
<td>7</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>48</td>
</tr>
<tr>
<td>Cucurbit seed (unprocessed)</td>
<td>40</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Dasheen (root and tuber)</td>
<td>40</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Figs, fresh</td>
<td>40</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Flowers, squash and lorocco</td>
<td>40</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Genip (Spanish Lime)</td>
<td>40</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Herbs and spices, fresh (crop group 19)</td>
<td>40</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Ivy gourd</td>
<td>40</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Kaffir lime leaves</td>
<td>40</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Kola nut (cola)</td>
<td>40</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Lomang</td>
<td>60</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Lychee fruit</td>
<td>40</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Mango</td>
<td>40</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Mint, dried</td>
<td>40</td>
<td>3</td>
<td>24</td>
</tr>
<tr>
<td>Mint, fresh</td>
<td>40</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Oilseed (crop group 20)</td>
<td>40</td>
<td>9</td>
<td>12</td>
</tr>
<tr>
<td>Persimmon</td>
<td>40</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Pitahaya (pitaya or dragon fruit)¹</td>
<td>40</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Pomegranate, fresh</td>
<td>40</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Pointed gourd</td>
<td>40</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Rambutan</td>
<td>60</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Seeds in the family Malvaceae for food use, including hibiscus and kenaf seed</td>
<td>40</td>
<td>3.5</td>
<td>2</td>
</tr>
<tr>
<td>Unlabeled commodities in the leaves of legume vegetable crop group 7²</td>
<td>40</td>
<td>4</td>
<td>2.5</td>
</tr>
<tr>
<td>Unlabeled commodities in the root and tuber crop group 1²</td>
<td>60</td>
<td>3</td>
<td>3.5</td>
</tr>
<tr>
<td>Unlabeled commodities in the stone fruit crop group (12-12)³ (i.e. pluot, plumcot, aprium, cherrycot, peachcot)</td>
<td>40</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
The EPA only authorizes fumigation of commodities if they are listed on the label of the gas being used for the fumigation. The fumigator is responsible for ensuring that the commodity, its dosage, and the treatment duration is listed either on the product label or within the Section 18 authorization letter, which the PPQ officer should have readily available for any fumigator who requests it. The methyl bromide products that fumigators are authorized to use for Section 18 treatments are identified within the Section 18 authorization letter. To comply with State requirements, the fumigator is responsible for ensuring that the fumigant is registered in the State where it is being used.

Fumigation schedules in this publication are more detailed than what is provided in commercial labels in order to ensure that the phytosanitary treatments of imported commodities are efficacious.

When the treatment schedule is marked “MB”, any methyl bromide fumigant may be used for the fumigation as long as the commodity, its dosage, and treatment duration are on the fumigant label.
Leak Detection and Gas Analysis

Require the fumigator to use an APHIS-approved gas detection device to measure gas concentration levels in tarpaulins. Require the fumigator to use an APHIS-approved leak detection device primarily to check for leaks around tarpaulins, chambers, application equipment, and as a safety device around the fumigation site. For a partial list of manufacturers of detection devices, refer to Reference Guide to Commercial Suppliers of Treatment and Related Safety Equipment. Colorimetric tubes, which are supplied by the fumigator, are used to measure gas concentration levels during aeration.

2016 Methyl Bromide Label Information

In 2015, the Environmental Protection Agency (EPA) directed all methyl bromide (MB) registrants to amend the use directions on the labels of all 100% MB products. EPA required the changes in order to reflect recommendations in an EPA report.¹

These amendments modify the use directions for fumigation and aeration procedures, modify respiratory requirements and equipment and update gas monitoring equipment. EPA requires all labels on newly manufactured MB to reflect these recommendations effective October 01, 2016; however, EPA is allowing existing stocks of MB to be used in accordance with the use directions on the existing stock’s (older) labels.

PPQ officials and fumigators must closely examine gas cylinder labels in order to validate that the dosage, exposure, and commodity are either on the cylinder label or covered by a FIFRA Section 18 exemption. If a label is not affixed to the cylinder, DO NOT allow the fumigator to use that cylinder.

New Buffer Zone Requirements

All 2016 MB labels now require both a treatment and an aeration buffer zone. Both the treatment and aeration buffer zones are specific to the enclosure being fumigated and must be determined by visiting a website link² provided in every MB label. The fumigators are responsible for using this website to determine the buffer zones and reporting both buffer zones to the PPQ official. If the treatment buffer zone is determined to be less than 30 feet, the PPQ official will maintain PPQ’s standard 30 foot treatment buffer zone; otherwise, the new treatment buffer zone must be observed.

² https://www.epa.gov/pesticide-registration/mbcommoditybuffer
If the aeration buffer zone is determined to be less than 200 feet, then PPQ’s standard “200 feet for 10 minutes” aeration buffer zone still applies for the first 10 minutes of aeration. The fumigator must refer to EPA’s website to determine the minimum aeration buffer zone to be maintained until the aeration period is complete and the fumigator has verified that gas concentration levels meet the conditions in the MB label.

Transiting through buffer zones

The label permits vehicles to transit through both treatment and aeration buffer zones under specific conditions found in the label; it is up to the fumigator determine how or whether vehicles may transit in accordance with the label.

When using the newer 2016 MB label, changes to certain procedures and equipment in this chapter are displayed in a NOTICE box with a heading titled “MB 2016 Label”.

MB 2016 Label (example)

Use this information when the fumigator is using the 2016 MB label.

When using existing stocks, follow the equipment and procedural guidance that is displayed in the body of the text (outside of the NOTICE box).

If there is no “MB 2016 Label” NOTICE box, then the instructions apply to all MB labels, 2016 and older.
The PPQ official and the fumigator must use the following leak detection and gas analysis equipment:

- An air purifying NIOSH certified half-mask or full face piece respirator when gas concentrations are between 1 and 5 ppm
- A self contained breathing apparatus (SCBA) NIOSH approved prefix TC-13F when gas concentrations are 5 ppm or above
- An APHIS-approved continuous real time gas monitoring device that is permanently mounted in PPQ owned facilities or a portable photoionization detector to monitor gas concentrations in the breathing space
- An APHIS-approved direct read gas detection device, such as colorimetric tubes, to determine gas concentrations when aerating and releasing the commodity

For a list of manufacturers and approved models refer to Reference Guide to Commercial Suppliers of Treatment and Related Safety Equipment.

PPQ policy is to wear appropriate respiratory protection when air concentrations are above 1 ppm. However, the new MB labels allow workers to be present without respiratory protection for specific time limits over a 24-hour period when air concentrations are:

- >3 to 5 ppm (90 minutes),
- >2 to 3 ppm (160 minutes),
- >1 to 2 ppm (4 hours), and
- >0 to 1 ppm (8 hours).

These permissible work-time allowances will give the PPQ official sufficient time to calmly locate and don the appropriate respiratory protection should their PID (alarm set to go off at 1 ppm) indicate the presence of MB in the air.
Effects of Temperature and Humidity

MB is effective at the same temperatures plants are generally handled (usually 40 °F and above). In general, increases in temperature give a corresponding increase in the effectiveness of MB. All treatment schedule temperatures are listed with the corresponding dosage rate. Follow the dosage rates listed. A Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA) Section 3 registration (the labeled rate of MB provided), or a Section 18 Exemption must be in effect at the time of treatment.

For live plant material which is actively growing or with leaves, maintain a high percentage of humidity (above 75 percent) in the chamber by placing wet sphagnum or excelsior in the chamber or by wetting the chamber walls and floor. Protect actively growing or delicate plants from the direct air flow of fans. Do not add any moisture to the chamber when fumigating seeds. Too much moisture on the material to be fumigated may prevent the fumigant from reaching some of the pests.

Penetration and Aeration of Boxes and Packages

Plastic wrappings such as cellophane, films, and shrink wrap, and papers that are waxed, laminated, or waterproofed are not readily permeable and must be perforated, removed, or opened before fumigation. Approved packaging materials may be layered as long as perforations allow adequate MB penetration.

Inform prospective importers that all packaging used in USDA quarantine fumigations must comply with these Manual specifications or be approved by CPHST AQI

USDA-APHIS-PPQ-S&T-CPHST-AQI
1730 Varsity Drive, Suite 300
Raleigh, NC 27606
919-855-7450

The following is a partial list of approved packaging materials:

- Dry cloth
- Dry, non-waxed or non-painted cardboard
- Dry, non-waxed or non-painted non-glossy paper
Chemical Treatments Fumigants • Methyl Bromide
Penetration and Aeration of Boxes and Packages

- Dry, woven fabrics and plastics
 - Woven polypropylene bags that are not laminated with plastic or paper inside or out (these bags are typically used for holding seeds or grains)
 - Bags containing a large quantity of seeds or grains (>2,000 lbs.) are referred to as "super sacks" or "totes" and must have the top of the bag opened to aid in fumigant dispersal and aeration
- Dupont™ Tyvek® Air Cargo Covers (refer to Chapter 8—Equipment Dupont™ Tyvec® Air Cargo Covers for more information)
- Pac-Armor™ (Safeguard Global LLC)
- Perforated plastics with evenly distributed holes on all sides and 0.93 percent open area of surface, for example:
 - Holes that are 3/16-inch in diameter every 3 square inches
 - Holes that are 1/4-inch in diameter every 4 square inches
 - 49+ pinholes per square inch
- Plastic clamshells
 - Evenly distributed holes on all sides and 0.93 percent open area of surface
 - Holes on top and bottom must not be blocked when clamshells are stacked (i.e. clamshells must have recesses or ridges to prevent blockage)
- Seed packets (from Thompson & Morgan (UK) Ltd.)
- SmartPac liner with 0.3% vented area (Quimas S.A. Chile)
- Wooden boxes (lids removed if tightly sealed)

If a commodity is NOT undergoing fumigation, a consignment cannot be rejected because of packaging.

Inform prospective importers that the wrappings on their shipments may have to be perforated according to PPQ specifications, removed, or opened if PPQ requires fumigation. PPQ is not responsible for opening or perforating the wrapping.

To expedite commodity movement, importers should send a complete bag/wrap sample to CPHST-AQI for inspection and approval.

USDA-APHIS-PPQ-S&T-CPHST-AQI
1730 Varsity Drive, Suite 300
Raleigh, NC 27606
919-855-7450
Sorption

Sorption is the process of chemically or physically binding free MB on or within the fumigated commodity. Sorption makes the fumigant unavailable to kill the plant pest. There are three types of sorption—absorption, adsorption, and chemisorption. Sorption rate is high at first, then gradually reduces to a slow rate. Sorption increases the time required for aeration.

Commodities known or believed to be highly sorptive should not be fumigated in chambers unless concentration readings can be taken to ensure the required minimum concentration is met. Additional readings may be necessary in order to properly monitor gas concentration sorptive commodities in chambers.

For tarpaulin fumigation, additional gas readings are necessary to monitor concentration of gas to determine the rate of sorption. The following is a partial list of commodities known to be highly sorptive:

- Burlap bales
- Carpet backing
- Cinnamon quills
- Cocoa mats
- Cotton
- Flour and finely milled products
- Gall nuts
- Hardboard (Masonite™)
- Incense
- Myrobalan
- Pistachio nuts
- Polyamide waste
- Polystyrene foam (Styrofoam)
- Potato starch
- Rubber (crepe or crude)
- Vermiculite
- Wood products (unfinished)
- Wool (raw, except pulled)

Contact CPHST if you are concerned about the sorptive properties of other commodities.
Residual Effect

MB may adversely affect the shelf life of fresh fruits and vegetables, the viability of dormant and actively growing plants, and the germination of seed. Although MB may adversely affect some commodities, it is a necessary risk in order to control pests. Some dosage rates are near the maximum tolerance of the commodity, so care must be exercised in choosing the proper treatment schedule and applying the treatment.

MB may also adversely affect nonplant products. In general, articles with a high sulfur content may develop “off-odors” on contact with MB. In some commodities the odors are difficult or impossible to remove by aeration. If possible or practical, remove from the area to be fumigated any items that are likely to develop an undesirable odor.

Ordinarily, the following items should not be fumigated:

- Any commodity not listed on the label or lacking a FIFRA Section 18 Exemption
- Any commodity lacking a treatment schedule
- Automobiles
- Baking powder
- Blueprints
- Bone meal
- Butter, lard, or fats, unless in airtight containers
- Charcoal (highly sorptive)
- Cinder blocks or mixed concrete and cinder blocks
- CO₂ scrubbers (calcium hydroxide and calcium carbonate; MAXtend®)³
- EPDM rubber (ethylene propylene diene M-class; a type of synthetic rubber)
- Electronic equipment⁴
- Ethylene absorbers (potassium permanganate sachets used to remove ethylene from an enclosure, usually a container loaded with fruit)
- Feather pillows
- Felt

³ If the scrubbers are removed prior to fumigation, the consignment may be fumigated.
⁴ Electronic equipment may be fumigated as long as it is properly sealed to protect against internal fluid contamination by the MB gas. Ensure that the liquid MB is completely volatilized before it is introduced into the area to be fumigated. Obtain a waiver from the importer agreeing to release the USDA from any damages.
◆ Furs
◆ High-protein flours (soybean, whole wheat, peanut)
◆ Horsehair articles
◆ Leather goods
◆ Machinery with milled surfaces
◆ Magazines and newspapers (made of wood pulp)
◆ Magnesium articles (subject to corrosion)
◆ Paper with high rag or sulfur content
◆ Photographic chemicals and prints (not camera film or X-rays)
◆ Polyurethane foam
◆ Natural rubber goods, particularly sponge rubber, foam rubber, and reclaimed rubber including pillows, mattresses, rubber stamps, and upholstered furniture
◆ Neoprene
◆ Rug pads
◆ Silver polishing papers
◆ Woolens (especially angora), soft yarns, and sweaters; viscose rayon fabrics
◆ Yak rugs
Chemical Treatments

Fumigants • Methyl Bromide • Tarpaulin Fumigation

Contents

Methods and Procedures 2-4-1
2016 Methyl Bromide Label Information 2-4-2
Materials Needed 2-4-3
 PPQ Official Provides 2-4-3
 Fumigator Provides 2-4-4
Preparing to Fumigate 2-4-6
Conducting the Fumigation 2-4-25
Aerating the Enclosure 2-4-36
Responsibility for Aerating the Commodity 2-4-37
Aeration Buffer Zones 2-4-37
Wearing Respiratory Protection 2-4-37
Wearing Respiratory Protection 2-4-37
Aerating Nonsorptive, Containerized Cargo—Indoors and Outdoors 2-4-38
Aerating Nonsorptive, Noncontainerized Cargo—Indoors and Outdoors 2-4-39
Aeration Procedures for Fresh Fruits, Vegetables, and Cut Flowers—Indoors or Outdoors 2-4-41
Aerating Sorptive, Noncontainerized Cargo—Indoors and Outdoors 2-4-42
Aerating Sorptive Commodities in Containers—Indoors and Outdoors 2-4-44

Methods and Procedures

The procedures covered in this section provide PPQ officials and commercial fumigators with the methods, responsibilities, and precautions for tarpaulin fumigation.
2016 Methyl Bromide Label Information

In 2015, the Environmental Protection Agency (EPA) directed all methyl bromide (MB) registrants to amend the use directions on the labels of all 100% MB products. EPA required the changes in order to reflect recommendations in an EPA report.\(^1\)

These amendments modify the use directions for fumigation and aeration procedures, modify respiratory requirements and equipment and update gas monitoring equipment. EPA requires all labels on newly manufactured MB to reflect these recommendations effective **October 01, 2016**; however, EPA is allowing existing stocks of MB to be used in accordance with the use directions on the existing stock’s (older) labels.

PPQ officials and fumigators **must** closely examine gas cylinder labels in order to validate that the dosage, exposure, and commodity are either on the cylinder label or covered by a FIFRA Section 18 exemption. If a label is **not** affixed to the cylinder, **DO NOT** allow the fumigator to use that cylinder.

New Buffer Zone Requirements

All 2016 MB labels now require both a treatment and an aeration buffer zone. Both the treatment and aeration buffer zones are specific to the enclosure being fumigated and must be determined by visiting a [website link] provided in every MB label. The fumigators are responsible for using this website to determine the buffer zones and reporting both buffer zones to the PPQ official. If the treatment buffer zone is determined to be less than 30 feet, the PPQ official will maintain PPQ’s standard 30 foot treatment buffer zone; otherwise, the new treatment buffer zone **must** be observed. If the aeration buffer zone is determined to be less than 200 feet, then PPQ’s standard “200 feet for 10 minutes” aeration buffer zone **still** applies for the first 10 minutes of aeration. The fumigator **must** refer to EPA’s website to determine the minimum aeration buffer zone to be maintained until the aeration period is complete and the fumigator has verified that gas concentration levels meet the conditions in the MB label.

Transiting through buffer zones

The label permits vehicles to transit through both treatment and aeration buffer zones under specific conditions found in the label; it is up to the fumigator determine how or whether vehicles may transit in accordance with the label.

\(^1\) "Report of Food Quality Protection Act (FQPA) Tolerance Reassessment and Risk Management Decision (TRED) for methyl bromide, and Reregistration Eligibility Decision (RED) for Methyl Bromide’s Commodity Uses", dated August 2006.
\(^2\) https://www.epa.gov/pesticide-registration/mbcommoditybuffer
When using the newer 2016 MB label, changes to certain procedures and equipment in this chapter are displayed in a NOTICE box with a heading titled “MB 2016 Label”.

MB 2016 Label (example)

Use this information when the fumigator is using the 2016 MB label.

When using existing stocks, follow the equipment and procedural guidance that is displayed in the body of the text (outside of the NOTICE box).

If there is no “MB 2016 Label” NOTICE box, then the instructions apply to all MB labels, 2016 and older.

Materials Needed

PPQ Official Provides

- APHIS-approved leak detection device
- Calculator (optional)
- Forms (PPQ Form 429 and APHIS Form 2061 if necessary)
- Self-contained breathing apparatus (SCBA) or supplied air respirator
Chemical Treatments Fumigants • Methyl Bromide • Tarpaulin Fumigation

Materials Needed

MB 2016 Label

In addition to the bulleted list on page 2-4-3, the PPQ official must provide:

- Air purifying respirator NIOSH certified half-mask or full face piece with a cartridge for concentrations between 1 and 4 ppm
- APHIS-approved continuous real time gas monitoring device
 - Permanently mounted in PPQ owned facilities only, PureAire Monitoring Systems, Inc. model Air check Advantage¹
 - Portable Photoionization Detector (PID), RAE Systems, Inc. model MiniRAE 3000²
- Self contained breathing apparatus (SCBA) NIOSH approval prefix TC-13F or supplied air respirator NIOSH approval prefix TC-19C

¹ The Air Check Advantage can be calibrated either by the manufacturer or by the PPQ official. Calibrate according to the manufacturer’s User Guide. Refer to Chapter 8: Equipment for more information.

² The MiniRae 3000 must be calibrated by the PPQ official according to the manufacturer’s User’s Guide. Refer to Chapter 8: Equipment for more information.

Fumigator Provides

- APHIS-approved gas detection device³ (e.g. thermal conductivity device, infrared device, etc.)
- Auxiliary pump for purging long gas sample tubes
- Carbon dioxide filter (e.g., Ascarite®)
- Colorimetric tubes (Refer to *Gas Detector Tube (colorimetric) and Apparatus on page E-1-32* for a list of APHIS-approved product ranges)
- Desiccant (e.g., Drierite®)
- Electrical wiring (grounded, permanent type), three prong extension cords
- Exhaust blower and ducts
- Fans (circulation, exhaust, and introduction)
- Framework and supports

³ The methyl bromide monitor must be calibrated annually. Refer to Chapter 8: Equipment for calibration information. If using a thermal conductivity (TC) analyzer, Drierite® and Ascarite® must be used.
Chemical Treatments • Fumigants • Methyl Bromide • Tarpaulin Fumigation
Materials Needed

- Gas introduction line
- Gas sampling tubes
- Heat supply
- Insecticides and spray equipment
- Loose, wet sand
- Methyl bromide
- Padding
- Sand or water snakes or adhesive sealer
- Scales or dispensers\(^4\)
- Self-contained breathing apparatus (SCBA) or supplied air respirator
- Tape
- Tape measure
- Tarpaulin
- Temperature recorder and temperature sensors\(^5\)
- Thermometer\(^6\)
- Volatilizer (filled with water or antifreeze)
- Warning signs/Placarding

\(^4\) All scales must be calibrated by the State, a company that is certified to conduct scale calibrations, or by the fumigator under the supervision of PPQ. The source and date of calibration must be posted in a visible location on or with the scale at all times. The scale must be calibrated following every repair or minimum of every year.

\(^5\) Temperature sensors must be calibrated annually by the manufacturer or National Institute of Standards and Technology (NIST) within the range of 40 °F to 80 °F (4.4 °C to 26.7 °C)

\(^6\) The thermometer must be calibrated or replaced annually.
Preparing to Fumigate

Step 1—Selecting a Treatment Schedule
The PPQ official will select a treatment schedule to effectively eliminate the plant pest.

Turn to the Treatment Schedule Index and look up the available treatment schedule(s) by commodity (example—apples, pears, or citrus) or by pest (e.g., Mediterranean fruit fly). Some commodities may have several treatment schedules. Refer to Residual Effect on page 2-3-11 for a list of those commodities which may be damaged by MB. Each treatment schedule lists the target pest or pest group (e.g., Ceratitis capitata, surface feeders, wood borers...), commodity, or both pest and commodity. If there is no schedule, the commodity may not be fumigated. Refer to Table 2-3-1 on page-2-3-3 to determine if a schedule is available under a FIFRA Section 18 Exemption. If a treatment is required, go to Table 2-4-1.

In addition to the items in the bulleted list on page 2-4-4 and page 2-4-5, the fumigator must also provide:

- Air purifying respirator NIOSH certified half-mask or full face piece with a cartridge for concentrations between 1 and 4 ppm
- APHIS-approved direct read gas detection device
 - Colorimetric tubes (e.g. Draeger, Sensidyne)
- APHIS-approved continuous real time gas monitoring device
 - Permanently mounted in PPQ owned facilities only (PureAire)
 - Portable Photoionization Detector (PID) RAE Systems, Inc. MiniRAE 3000
- Self contained breathing apparatus (SCBA) NIOSH approved prefix TC-13F or supplied air respirator NIOSH approval prefix TC-19C

1 These devices must be calibrated according to the manufacturer’s User Guide. Refer to Chapter 8: Equipment for more information.
Preparing to Fumigate

Step 2—Issuing a PPQ Form 523 (Emergency Action Notification)
When an intercepted pest is identified and confirmed by a PPQ Area Identifier as requiring action, the CBP or PPQ official will issue a Form 523 (Emergency Action Notification - EAN) to the owner, broker, or representative. The EAN will list all treatment options. Refer to Appendix A in the Manual for Agricultural Clearance for instructions on completing and distributing the EAN.

Step 3—Determining Section 18 Exemptions and Sampling Requirements
After selecting the treatment schedule, the PPQ official will be able to determine which treatment schedules are FIFRA Section 18 Exemptions. The FIFRA schedule will be followed by an “IMPORTANT” note to help determine the current exemption status. Some treatment schedules are only FIFRA Section 18 Exemptions at specific temperature ranges. Check the treatment schedule and temperature to determine if the fumigation will be a FIFRA Section 18 Exemption. Refer to Table 2-3-1 on page 2-3-3 for a list of commodities covered under the FIFRA Section 18.

Step 4—Selecting a Fumigation Site
The PPQ official and the fumigator must consider the following factors in selecting a fumigation site:

- Well-ventilated, sheltered area
- Ability to heat area (in colder areas)
- Impervious surface
- Nonwork area that can be effectively marked and safeguarded or isolated
- Electrical power supply
- Water supply
- Well-lighted area
- Aeration
- Multiple fumigation buffer zone overlap

Well-Ventilated, Sheltered Area
The PPQ official and the fumigator must select sites that are well-ventilated and sheltered. A well-ventilated site is required for exhausting gas before and when the tarpaulin is removed from the stack. Most piers and warehouses have

Table 2-4-1 Determine Reporting Requirements

<table>
<thead>
<tr>
<th>If a treatment is required:</th>
<th>Then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>As a result of a pest interception</td>
<td>GO to Step 2</td>
</tr>
<tr>
<td>As a condition of entry</td>
<td>GO to Step 3</td>
</tr>
</tbody>
</table>

high ceilings and a number of windows/doors which can be used for ventilation. Some gas will escape from the tarpaulin even in the best conditions. Avoid areas where strong drafts are likely to occur.

In warehouses, the fumigator must provide an exhaust system to exhaust MB to the outside of the building. The fumigator must ensure that the exhausted gas does not reenter the building nor endanger people working outdoors.

When treatments are conducted in a particular location on a regular basis, the PPQ official must ensure that the fumigator designates a permanent site. At such sites, the fan used to remove the fumigant from the enclosure during aeration may be connected to a permanent stack extending above the roof level.

If fumigations are conducted outside, ensure that the fumigator selects a site that is semi-sheltered such as the leeward side of a warehouse, pier, or building that offers some protection from severe winds. Severe winds are defined as sustained winds or gusts of 30 m.p.h. or higher for any time period. Do not allow the fumigator to proceed if there is a forecast from the National Weather Service of severe winds and/or thunderstorms at the beginning of or for the entire length of the fumigation.

When cooler temperatures (below 40 °F) are expected, the fumigator must ensure that the commodity temperature is maintained above 40 °F. The PPQ official will take the ambient (air) temperature 12 inches above the floor. For treatments lasting 6 hours or longer, temperatures must be maintained at or above the starting treatment temperature for the entire duration of the treatment. Additionally, the PPQ official will monitor the temperature of the enclosure using temperature sensors and a temperature recorder. The temperature recording system for treatments lasting 6 hours or longer must meet the following specifications:

- Accurate to within ± 0.6 °C or ±1.0 °F in the treatment temperature range of 4.4 °C to 26.7 °C (40 °F to 80 °F)
- Calibrated annually by the National Institute of Standards and Technology (NIST) or by the manufacturer
 - The calibration certificate will list a correction factor, if needed, and the correction factor would be applied to the actual temperature reading to obtain the true temperature.
- Capable of printing all temperature readings or downloading data to a secure source once per hour throughout the entire treatment (all temperature data must be accessible at a safe distance during the fumigation)
Tamper-proof

If one or more of the temperature readings go below the minimum temperature specified in the treatment schedule, the fumigation will be considered a failed treatment. The commodity must be re-treated, returned to the country of origin, reexported, or destroyed.

Commodities used for food or feed may not be re-treated. If commodities fall into this category, the only options are the following:

- Return to the country of origin
- Reexported to another country if they will accept the shipment
- Destroy by incineration

The PPQ official ensures that the fumigator places the thermocouples evenly throughout the enclosure or container. The placement of the temperature sensors will vary depending on the item fumigated and the configuration of the fumigation site. Contact the Center for Plant Health Science & Technology (CPHST) (919-855-7450) in Raleigh, North Carolina for instructions regarding exact placement of the temperature sensors. Use Table 2-4-2 to determine the number of temperature sensors needed based on size of the enclosure:

Table 2-4-2 Number of Temperature Sensors

<table>
<thead>
<tr>
<th>Size of Enclosure (ft³)</th>
<th>Number of Temperature Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 10,000</td>
<td>3</td>
</tr>
<tr>
<td>10,001 - 25,000</td>
<td>6</td>
</tr>
<tr>
<td>25,001 - 55,000</td>
<td>9</td>
</tr>
<tr>
<td>Larger than 55,000</td>
<td>12</td>
</tr>
</tbody>
</table>

Do not use flame or exposed electrical element heaters under the tarpaulin during treatment because MB may cause the formation of hydrogen bromide. Hydrogen bromide (hydrobromic acid) is a highly corrosive chemical which can cause damage to the heater and to surrounding materials including the commodity. Hot air or radiator type heaters can be used for heating under tarpaulins. When using space heaters to heat warehouses, there must be adequate ventilation.

Impervious Surface

Select an asphalt, concrete, or tight wooden surface—not soil, gravel, or other porous material. If you must fumigate on a porous surface, require the fumigator to cover the surface with plastic tarpaulins. For large fumigations, covering the surface is not usually practical because the tarpaulin may be damaged when the pallets are rearranged. On docks, wharfs, and piers, require the fumigator to seal cracks, holes, and manhole covers which will allow the MB to escape through the floor.
Nonwork Area—MB 2016 Label

The fumigator will determine the treatment buffer zone in accordance with EPA’s fumigation buffer zone tables (https://www.epa.gov/pesticide-registration/mbcommoditybuffer).

The treatment buffer zone surrounds the area where access is limited during treatment. If the fumigator determines that the buffer zone is less than 30’, then PPQ requires a 30’ buffer zone. If the fumigator determines that the buffer zone is greater than 30’, then PPQ must observe the prescribed buffer zone.

The treatment buffer zone extends from the perimeter of the enclosure to a distance determined by the fumigator in accordance with the label. Entry by any person except the PPQ official and the fumigator is prohibited except as provided in the “Exceptions to Buffer Zone Entry Restrictions” section of the label.

The treatment buffer zone begins when the fumigant is introduced into the enclosure and ends when aeration begins, at which point the aeration buffer zone requirements apply.

The fumigator must define treatment and aeration buffer zone perimeters using physical barriers (such as walls, ropes, etc.) and placards to limit access to the buffer zone. Placards must meet all label requirements regarding specific warnings, information, and language.

The fumigator will permit transiting through buffer zones in accordance with the “Transit Exception” section of the label.

Buffer Zone Overlap for Multiple Enclosures

For multiple enclosures where buffer zones overlap, the fumigator must recalculate both the treatment and aeration buffer zones in accordance with the label and supply them to the PPQ official.

Nonwork Area

The PPQ official and the fumigator must select a secure area where traffic and people are restricted from entering and which is isolated from people working. A nonwork area is preferred to help prevent accidents such as a forklift piercing a tarpaulin. The fumigation area is the area 30 feet surrounding the tarpaulin and is separated from the non-fumigation area by a physical barrier such as ropes, barricades, or walls. If a wall of gas-impervious material is less than 30 feet from the tarpaulin, the wall may serve as the edge of the secured...
area. The fumigator must placard within the perimeter of the secured area. Placards must meet label requirements regarding specific warnings, information, and language. Placards generally include the name of the fumigant, the fumigation date, time, and the name of the company conducting the fumigation. The fumigator must restrict access to the fumigation area to the fumigator’s employees and PPQ employees monitoring the treatment. Use rope or marker tape to limit access within 30 feet of the enclosure. Unless you (PPQ) authorize their use, do not allow motor vehicles (including forklifts) to operate within 30 feet of the enclosure and aeration area during the fumigation and aeration periods. The area outside the 30-foot perimeter is usually regarded as a safe distance from the tarpaulin. Gas concentrations exceeding 5.0 ppm (TLV for MB) are seldom recorded by gas monitoring, except during aeration. The 30-foot perimeter is not specifically mentioned on the MB label, but is required for PPQ supervised fumigations. When space is tight, it is permissible to overlap two adjoining 30-foot perimeters. When multiple fumigations are occurring simultaneously, there must be sufficient space for a person wearing SCBA to walk between the tarpaulins.

Electrical Power Supply

An adequate electrical source must be available to run the circulation fans and the gas detection device. A separate line should be available for the gas detection device. Electrical outlets must be grounded and conveniently located in relation to the fumigation area. PPQ does not allow generators as a power source except under emergency conditions.

Water Supply

A water supply is necessary for safety purposes. Water is necessary for washing off MB if the liquid form is spilled on someone. If no permanent water is present on site, the fumigator must provide a 5-gallon supply of potable, unfrozen water.

Well-Lighted Areas

The fumigator will ensure that the area has adequate lighting for safety purposes and for reading gas detection units, thermometers, and determining whether a tarpaulin has holes or tears.

Aeration Requirements

The fumigator is responsible for all aspects of aeration. When the fumigation is a Section 18 exemption fumigation, the PPQ official is required to verify the final gas concentration reading(s). Refer to Aerating the Enclosure on page 2-4-36 for more information.

Step 5—Arranging the Stack

Ensure that the fumigator arranges the cargo in a square or rectangular shape, if possible, to make it easy to cover and to calculate the volume of the stack. An even shaped stack is easy to tarp. The height of the stack should be uniform so dosage can be calculated accurately. For loose cargo, the tarpaulin should be 2 feet above the load and one foot from the sides and ends. Unless specified in the treatment schedule, cargo should not exceed two-thirds of the volume of
the area to be fumigated. The PPQ official must contact the CPHST-AQI to get approval for any enclosures larger than 25,000 ft³. For large enclosures, it may be necessary to:

- Add more sampling tubes
- Install extra circulation fans
- Introduce the fumigant at several sites, using multiple volatilizers
- Run the circulation fans longer than just the first 30 minutes, if the difference between the highest and lowest gas concentration readings exceeds 4 ounces

Once CPHST-AQI has approved the site and enclosure, it does not require additional approvals for subsequent fumigations. The PPQ official must ensure that the commodity is on pallets to permit air movement along the floor and between the cargo. Allow an inch or more of space between pallets. By arranging the stack evenly and with space between pallets or cartons, the fumigant will be effectively distributed and dosage calculation should be easier and more accurate. Dosages are easier to calculate when the dimensions are uniform.

When the fumigation involves multiple stacks, PPQ will ensure that the fumigator allows 10 feet of space between each uncovered stack. After the stack is tarped, there should be approximately 5 feet between enclosures.

Ensure that the fumigator places no more than eight containers that are 20 to 40 feet in length under a single tarpaulin. APHIS does not allow containers to be stacked. Stacking may create too great a safety risk to the person placing the tarp, fans, and gas monitoring leads. If fumigating multiple containers in a single row, ensure that the fumigator has all the doors opening on a center aisle toward each other (see Figure 2-4-1 on page 2-4-13). The aisle must be at least 3 feet wide. All doors should be completely open, if possible.

However, APHIS will allow fumigation of containerized cargo with one door open on each container using a configuration such as the one shown in Figure 2-4-2 on page 2-4-14, or in a single row of eight containers. Require the fumigator to introduce gas at both ends of this long row configuration, either at the same time or half at one end and half at the other end. In any case, the single open door on each container must be kept from closing during the fumigation, either taped or blocked open.

If perishable commodities are fumigated inside the container, it is possible that the commodity will be damaged because of the difficulty of removing the fumigant. For this reason, APHIS recommends that perishables be fumigated
outside the container, but does allow fumigation inside the container. When a commodity is removed from the container, require the fumigator to spray the empty container according to T402-d as a precaution against hitchhiking pests.

To conserve MB use, CPHST-AQI recommends that containers be removed from their chassis prior to fumigation. If this is not done, then the space beneath the container must be calculated as part of the total volume being fumigated.

Figure 2-4-1 Container Arrangement in Two Rows—Both Doors Open
If fumigating multiple containers in a single row, require the fumigator to open the rear doors the same side of the stack. If containers are parked parallel to one another and close together, it is permissible to open only the door on the right side of each container, overlapping and taped to the closed left door of the container adjacent to it. If containers are not parked closely together, all doors must be completely open.

Ensure that the containers are not loaded beyond 80 percent of their capacity. Ensure that bulk commodities are placed in boxes or containers on pallets. The pallets must be loaded in the container so that there is at least two inches of space under the commodity and between each pallet. There must be a minimum of 18 inches above the commodity. This facilitates uniform gas distribution and allows a crawl space for placing the gas sampling tubes and fans. (Some restacking of cargo may be necessary to meet this requirement.) If the container is tarped, no additional head space is required between the roof of the container and the tarp, unless the pest is found on the outside of the container.

Gas Penetration and Distribution

MB will penetrate most cargo easily. Penetration is enhanced by the availability of free MB.

All packaging used in USDA quarantine fumigations must comply with the standards in *Penetration and Aeration of Boxes and Packages* on page 2-3-8. Some of the more common types of impermeable materials are cellophane,
Chemical Treatments Fumigants • Methyl Bromide • Tarpaulin Fumigation
Preparing to Fumigate

plastic, wax coated materials, laminated, and waterproofed papers. Tight wooden packing cases are also relatively gas tight. Impermeable materials will allow some gas to penetrate, but make it difficult to aerate and evacuate the gas. Require the fumigator to remove, perforate, or open all impermeable materials.

Step 6—Arranging and Operating Fans

Require the fumigator to use fans that have the capacity to move a volume in cubic feet per minute equivalent to the total volume of the enclosure. For a 5,000 ft³ enclosure, use two axial-type (blade) fans of approximately 2,500 cfm. Require the fumigator to place one fan on the floor at the rear of the stack facing the front and the other fan at the top front (where the gas is introduced) facing the rear. For enclosures from 5,000 to 7,500 ft³, require the fumigator to add a third fan near the upper middle facing the rear. For enclosures from 7,501 to 10,000 ft³, add a fourth fan on the floor near the middle facing the front. Enclosures from 10,001 to 25,000 ft³ may require up to seven fans to provide adequate gas circulation. Enclosures larger than 25,000 ft³ require approval from CPHST-AQI.

Require the fumigator to turn on all fans to make sure they work. The fans must be operated during gas introduction and for 30 minutes after the gas is introduced. If after taking gas concentration readings the fumigant is not evenly distributed (as indicated by concentration readings within 4 ounces of each other), require the fumigator to run the fans until the gas is evenly distributed. Require the fumigator to run fans when adding gas, but only long enough to get even gas distribution.

Containerized Cargo

Require the fumigator to use an appropriate number of fans which have the capacity to move the equivalent cubic feet per minute of the total volume of the enclosure. Use two fans in the container to circulate the gas. Place one fan of at least 2,500 cfm at the top of the load (near door) of each container facing the opposite end of the container. Place the second fan on top of the load facing the door.

Require the fumigator to place air introduction ducts for aeration into the far ends of each container opposite the doors and to place exhaust ducts on the ground in front of the doors of the containers. The fumigator must place the end of the ducts near the edge of the tarpaulin so they can be pulled under the tarpaulin when aeration begins.

Step 7—Placing the Gas Introduction Lines

MB is converted from a liquid into a gas by a volatilizer. Ensure that the hose that runs from the MB cylinder into the volatilizer is a 3000 PSI hydraulic high pressure hose with a 3/8 inch interior diameter (ID) or larger. From the
volatilizer, MB gas is introduced into the structure by means of a gas introduction line. The gas introduction line must be a minimum of 350 PSI with a 1/2 inch ID or larger.

Break Bulk Cargo

Ensure that the fumigator places the gas introduction line directly above the upper front fan and attaches the line to the top of the fan to prevent movement. An unsecured introduction line could tear the tarpaulin, move the line, or direct it out of the airflow. Require the fumigator to attach the fan firmly to the cargo or have a base that prevents it from toppling (not a pedestal type). Require the fumigator to place a piece of impermeable sheeting over the commodity and to the front of each gas supply line. The sheet will prevent any liquid MB from coming in contact with the cargo.

Containerized Cargo

The number and placement of gas introduction lines will depend upon the number and arrangement of containers to be fumigated.

For single containers, ensure that the fumigator installs the introduction line directly above the fan near the door of the container.

For multiple containers, ensure that the fumigator places the appropriate number of introduction lines to ensure even gas distribution.

If you are fumigating five or more containers under one tarpaulin, then require the fumigator to use a minimum of two gas introduction lines to ensure even gas distribution.

Step 8—Placing the Gas Sampling Tubes

Break Bulk Cargo

Ensure that the fumigator installs a minimum of three gas sampling tubes for fumigations up to 10,000 ft³ positioned in the following locations (see Figure 2-4-3):

- Front low—front of the load, 3 inches above the floor
- Middle center—center of the load, midway from bottom to top of load
- Rear high—rear of the load, at the extreme top of the load
For fumigations from 10,001 to 25,000 ft³, require the fumigator to use six gas
sampling tubes, positioned in the following locations:

- Front low—front of the load, 3 inches above the floor
- Upper front quarter section
- Middle center—center of the stack, midway from bottom to top
- Upper rear quarter section
- Lower rear quarter section
- Rear high—rear of the stack, at the extreme top

The PPQ official must contact CPHST-AQI for approval of fumigations larger
than 25,000 ft³, for instructions for number of gas sampling tubes, and for other
technical information.

For khapra beetle cargo containing baled, packaged, finely milled, or closely
packed commodities, require the fumigator to place two additional gas
sampling tubes in the center of the bags, packages, or bales. Before placing
gas sampling tubes in commodities, require the fumigator to place burlap over
the end of the tube and secure the burlap to the tube with tape.

For all containers (either 20 or 40 feet in length) under the same tarpaulin,
require the fumigator to use at least three tubes per container, positioned as
follows:

- Front low—near the floor at the door end of the container
- Rear high—rear of the load at the high end opposite the fan
- Middle center—mid way from front to back, at mid depth

If treating commodities for khapra beetle, require the fumigator to install the
following additional gas sampling tubes:

- High (in the commodity)
◆ Low (in the commodity)

Require the fumigator to cover the end of the gas sampling tube with burlap taped to the tube before insertion into the commodity.

Require the fumigator use gas sampling tubes of sufficient length to extend from the sampling position inside the enclosure to at least 30 feet beyond the tarpaulin. Ensure that all the gas sampling tubes meet in one area for ease and safety in taking gas concentration readings. Do not permit gas sampling tubes to be spliced. Before starting the fumigation, check for gas sampling tube blockage or pinching by connecting each tube to a MityVac® hand pump or to the gas detection device for a short time. If the tube is blocked, the flow to the device will drop sharply. Require the fumigator to replace any defective gas sampling tubes.

Require the fumigator to secure all gas sampling tubes in place under the tarpaulin and label each one at the end where the gas concentration readings will be taken. By labeling each gas sampling tube, you will be able to record concentration readings easily.

Step 9—Padding Corners

Ensure that the fumigator looks for corners and sharp angles which could tear the tarpaulin. Do not allow the fumigator to use commodity to support the tarpaulin. If the sharp angles or corners cannot be eliminated, the fumigator must cover them with burlap or other suitable padding (e.g., old tires or cloth) (see Figure 2-4-4).
Step 10—Measuring the Temperature

Commodity and space temperatures must be 40 °F or above.

Temperature recordings should be rounded to the nearest tenth of a degree (°C or °F)

The PPQ official must determine the temperature of the commodity in order to select the proper dosage rate. Depending on whether or not you are fumigating a pulpy fruit or vegetable, either the commodity temperature or an average of the commodity and air temperatures will be used. A pulpy fruit or vegetable can support internal feeding insects, is fleshy and moist, and can be probed with a temperature measuring device. Examples include, but are not limited to peppers, onions, and grapes.
For pulpy fruits and pulpy vegetables, insert the thermometer into the pulp and use only the commodity temperature to determine the dosage rate. For commodities that have been refrigerated, probe the fruit that have the lowest pulp temperature. Again, fumigate only when the fruit pulp is at 40 °F or higher.

Important

Fresh fruits and vegetables that require fumigation treatment as a condition of entry, must meet the minimum temperature requirement of 40 °F (4.4 °C), at the time of discharge. This may require the gradual warming of the shipment over the later course of the voyage to ensure that the commodity achieves the proper minimum temperature of 40 °F (4.4 °C). This process will facilitate whether or not the fumigation treatment of the cargo takes place on the same day of arrival.

If the commodity has no pulp (for example, peas, beans, grains, herbs, spices, etc.), take the temperature of the air space immediately surrounding the commodity as well as the commodity temperature and use Table 2-4-3 to determine the correct temperature for use when selecting the proper dosage rate.

To take the temperature readings, use a calibrated bimetallic, mercury, or digital long-stem thermometer.

NOTICE

The presence of ice indicates temperatures below 40 °F. If ice is present anywhere in the box, pallet, or fumigation enclosure, DO NOT fumigate the commodity.

Table 2-4-3 Determine Whether to Use Commodity or Air Temperature for Determining Dosage Rate For Nonpulpy Commodities

<table>
<thead>
<tr>
<th>If the air temperature is:</th>
<th>And:</th>
<th>Then, for commodities other than pulpy fruits, pulpy vegetables, or logs and lumber:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher than the commodity temperature</td>
<td></td>
<td>Use the single lowest commodity temperature for determining the dosage rate (Do not use the average commodity temperature).</td>
</tr>
<tr>
<td>Lower than the commodity temperature By less than 10 degrees</td>
<td></td>
<td>Use the average of the single lowest air and commodity temperatures for determining the dosage rate (Never initiate a fumigation if any commodity temperature reads lower than 40 °F.)</td>
</tr>
<tr>
<td>Lower than the commodity temperature By 10 degrees or more</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE: You are about to fumigate a shipment of fresh herbs. The commodity temperature is 82 °F and the air temperature is 55 °F. Average the air and commodity temperatures to determine the dosage rate because the air is 27 degrees lower than the
commodity temperature and the commodity is not pulpy. The average of the two
temperatures is 68.5 °F. Use 68.5 °F to determine the dosage rate. (T101-n-2: use 2.5
lbs. for 2 hours)

Logs and Lumber

The PPQ official will select several representative locations within the stack at
the ends of the logs or pieces of lumber. Require the fumigator to drill holes in
them to accommodate a thermometer. After drilling, wait at least 10 minutes to
allow the wood around the holes to cool. Insert the thermometer into the holes
drilled. Record the temperature from each hole, and average the readings. All
readings (not just the average) must be above 40 °F.

Base the dosage calculation on the lowest reading obtained. (Do not average
temperatures.) All readings must be above 40 °F to initiate the fumigation. If
not, the fumigation must be postponed.

The PPQ official must record the temperatures in Block 22 of the PPQ Form
429.

If using the electronic 429 database, record the temperatures in the space and
commodity fields in the Treatment form.

Step 11—Covering the Stack

The fumigator must cover the stack, check the tarpaulin for rips, tears, and
holes, look at the spots that have been taped, and verify they are properly
sealed. If needed, the fumigator must repair all holes, rips, and tears.

The tarpaulin should be made of a material such as vinyl, polyethylene plastic,
or coated nylon.

- 4 mil vinyl or polyethylene plastic tarpaulins are only approved for one
 usage
- 6 mil vinyl or polyethylene plastic tarpaulins may be used up to four
 times with the PPQ official’s approval for each usage
- 10 to 12 mil vinyl or plastic coated nylon tarpaulins may be approved for
 multiple use with the PPQ official’s approval for each usage.
The fumigator should cover all corners and sharp ends with burlap or other padding to prevent the tarpaulin from ripping. Have the fumigator pull the tarpaulin over the stack, being careful not to catch or tear the tarpaulin. Make sure there is sufficient structural support to raise the tarpaulin 2 feet above and 1 foot beyond the sides of the commodity.

The tarpaulin must be large enough to provide a floor overlap of at least 18 inches around all sides of the stack. The fumigator must carefully lay the tarpaulin out to prevent excess folds or wrinkles along the floor, especially around corners.

Step 12—Sealing the Tarpaulin

The fumigator must seal the tarpaulin with loose, wet sand, sand snakes, water snakes, adhesives, or a combination. If there is danger of crushing or crimping the gas sampling or introduction tubes, use the loose, wet sand. If using snakes, use two rows of snakes along the sides and three rows on the corners. The snakes should overlap each other by approximately 1 foot. The goal in sealing the tarpaulin is to get the tarpaulin to lie flat against the floor to prevent gas from leaking out. When wind is not a factor, plastic tape may be used for sealing the tarp. The tape must be at least 2 inches in width, and applied (only to a smooth surface) with the aid of high-tack spray adhesive.

The fumigator must seal corners by laying two sand snakes around the corner and working the tarpaulin until it is flat. Place a third snake on top of the two other snakes to provide additional weight to force the tarpaulin against the floor. Loose, wet sand can be used in the area where the gas introduction line, electrical cords, and gas sampling tubes extend from under the tarpaulin.

Step 13—Measuring the Volume

Using a 100-foot tape measure, the PPQ official and the fumigator must carefully measure the length, width, and height of the enclosure. Never estimate the measurements. An error in measurement of as little as 12 inches can result in miscalculation of the dosage by as much as 15 percent. When measuring, round off to the nearest quarter foot (example—3 inches = .25 feet). In the case of fumigations of edible commodities, an error can result in an unacceptable level of residue on the commodity. If the sides of the enclosure slope outward from top to bottom, measure both the top and bottom and average the two to determine the dimension. Enclosure height should always be uniform and not require adjustment.

Formula for determining volume:
Length × width × height = volume in cubic feet

EXAMPLE: A stack with measurements H=10’6”, L=42’3”, and W=10’9” 10.50 × 42.25 × 10.75 = 4,768.9 ft³ round to 4,769 ft³

The PPQ official must record volume in Block 26 of the PPQ Form 429.

If using the electronic 429 database, record the length, width and height in the corresponding fields under the “AMT of Gas Introduced” heading on the Treatment form. The total volume of the enclosure will be calculated.

Step 14—Calculating the Dosage
The PPQ official must calculate dosage by doing the following:

1. Refer to the treatment schedule for the correct dosage rate (lbs./1,000 ft³) based on temperature (°F) (Step 10).
2. Multiply by the dosage (lbs./1,000 ft³) rate by the volume (ft³) to get the dosage in pounds.

Formula for calculating dosage:

\[
\text{dosage (lbs.)} = \frac{\text{volume (ft³) × dosage rate (lbs./1,000 ft³)}}{1,000 \text{ ft³}}
\]

Figure 2-4-5 Formula for Calculating Dosage for Tarpaulin Fumigations

If using the electronic 429 database, the PPQ official must enter the dosage rate in the “dosage” field and the total amount of gas required for the fumigation will be displayed in the “GAS REQUIRED” field.

EXAMPLE: You need to determine the dosage for a stack with a volume of 3,000 ft³. For 72 °F (air and commodity temperatures), the treatment schedule lists the dosage rate at 2 pounds MB/1,000 ft³. Determine dosage by doing the following:

1. Volume = 3,000 ft³
2. Dosage rate = 2 lbs./1,000 ft³
3. 3,000 x 2/1,000 ft³ = 6 lbs. MB

Step 15—Making a Final Check
Before introducing the gas, the PPQ official and the fumigator **must** ensure that the following activities are performed:
◆ Turn on all fans and APHIS-approved gas detection devices to make sure they work.

◆ Warm up and zero (if required) the APHIS-approved gas detection devices as described in Equipment on page 8-1-1.

◆ Start volatilizer and heat water to 200 °F or above. A minimum temperature of 150 °F is required at all times during the introduction process. Refer to Volatilizer on page 8-1-16 for temperature monitoring procedures.

◆ Place fumigant cylinder with gas introduction line on scale and take initial weight reading.
 ❖ Ensure the gas introduction hose is attached to the cylinder.
 ❖ After obtaining the correct weight, subtract the dosage to be introduced into the enclosure.
 ❖ After introducing the proper amount of gas, the scale will be balanced.

◆ Ensure that tarpaulin is placarded and the area is secured; only people working on the fumigation may be in the area.

◆ Ensure that the tarpaulin it is free from rips, holes, and tears.

◆ Ensure that all gas sampling tubes are labeled and are not crimped or crushed.
 ❖ Visually inspect tubes or use an electric or Mityvac® hand pump to check tubes. A fumiscope or vacuum pump may also be used to test leads for unrestricted flow.

When conducting fumigations with methyl bromide, erroneous readings may occur if the sampling tubes become blocked or crimped. It would be impossible to install a new sampling tubes during a fumigation treatment. Therefore, to avoid an unsuccessful fumigation, you should test sampling tubes before the treatment begins.

Use the following procedure to detect blocked sampling tubes with the use of a MityVac® hand-held pump (for supplier, see Vacuum Pump on page E-1-75):

1. Prior to fumigant introduction, connect the MityVac® hand-held vacuum pump to sampling tubes.
2. Squeeze the handle on the MityVac® unit. If the tube is blocked, a vacuum will be indicated on the vacuum gauge of the MityVac® unit. (The handle should be squeezed two or three times for sampling tubes longer than 25 feet. The MityVac® hand-held pump has the capacity to attain and hold 25 inches of Hg vacuum and a minimum of 7 psig pressure.)
3. Disconnect the MityVac® hand-held pump from the sampling tube, and repeat this procedure for each tube. (Connect sampling tubes to the gas analyzer prior to fumigant introduction.)
Chemical Treatments Fumigants • Methyl Bromide • Tarpaulin Fumigation

Conducting the Fumigation

- Confirm that there is enough gas in the cylinder and if necessary, that other cylinders are available.
- Confirm that the gas introduction line connections are tight and free of leaks.
- Ensure that all safety equipment, especially SCBA, is available and in working order.
- If using a T/C monitor, install Drierite® and Ascarite® filters as stated in the instructions in this manual.

Important

Other gas detection devices may not require the use of Drierite® or Ascarite®.

Conducting the Fumigation

Step 1—Introducing the Gas

CAUTION

The PPQ official must wear SCBA anytime the MB concentration level in the air is unknown or greater than or equal to 5 ppm.
Require the fumigator to use SCBA while introducing and adding gas. The PPQ official is not required to be in the treatment buffer zone during the fumigation. The PPQ official must ensure that the fumigator turns on all fans before introducing the gas. When using large cylinders of MB, the fumigator should slightly open the cylinder valve, then close the valve.

If MB concentration levels are between 1-4 ppm, the PPQ official and fumigator may wear an air purifying respirator NIOSH certified half-mask or full face piece with a cartridge.

With an APHIS-approved continuous real time gas detection device, the fumigator must check all connections on the gas introduction hose (between the MB cylinder and the volatilizer) for leaks. If leaks are found, the fumigator must tighten the connections and repeat the test.

If the PPQ official or fumigator notices a cloud, plume, vapor, or mist coming from the introduction equipment during gas introduction, the fumigator must TURN OFF the valve on the gas cylinder, EVACUATE the area immediately, and ABORT the fumigation.

No person should place any part of their body into the cloud, plume, vapor, or mist. After the cloud plume has dissipated, measure gas concentration levels at the gas cylinder using any APHIS-approved continuous real time gas detection device. When gas concentration levels at the cylinder reach 5 ppm or less, the fumigator must identify the source of the leak and correct it before restarting the fumigation.

Any person within the treatment buffer zone must wear and use SCBA equipment during gas introduction and gas addition.

The fumigation time begins once all the gas has been introduced. The PPQ official must record the time gas introduction was started and completed in Block 32 on the PPQ Form 429.

If using the electronic 429 database, record the fumigation date, gas introduction start and finish time in the corresponding fields under the “GAS INTRODUCTION” heading on the Treatment form.
Require the fumigator to run the fans for 30 minutes to achieve even gas distribution. The PPQ official must take the initial concentration reading 30 minutes after all the gas has been introduced.

Important

Do not begin counting fumigation time until all the gas has been introduced and valve on the MB tank is closed.

Step 2—Testing for Leaks

Require the fumigator to wear the SCBA to test for leaks using an APHIS-approved leak detection device before the 30 minute reading or anytime when the concentration level is unknown or above 5 ppm.

MB 2016 Label

If MB concentration levels are between 1-4 ppm, the PPQ official may wear an air purifying respirator NIOSH certified half-mask or full face piece with a cartridge.

The fumigator must test around the perimeter of the tarpaulin on the floor, corners, and especially where electric cords, gas sampling tubes, or gas introduction lines are present. When the fumigator detects leaks, ensure that they are sealed using more sand or sand snakes for floor leaks and tape for sealing small holes in the tarpaulin. Loose, wet sand may be used to reduce leakage from electric cords, gas sampling tubes, gas introduction lines, or uneven flooring.

If a PPQ employee encounters unsafe conditions (such as holes in the tarpaulin or a breach in safety protocol) and the condition(s) cannot be corrected in a timely manner, the employee may CANCEL the fumigation. Consult with a PPQ Supervisor prior to cancellation.

If the fumigator detects excessive leakage (concentration readings of 50 percent or less of the minimum concentration) do not attempt to correct the problem by adding more gas. For non-food, non-feed commodities, require the fumigator to quickly evacuate the remaining gas from the enclosure, eliminate the problem, and construct a new enclosure. Aerate as usual following procedures on *Aerating the Enclosure on page 2-4-36*. Restart the fumigation in the new enclosure.

Commodities used for food or feed may not be re-treated. If commodities fall into this category, the only options are the following:

- Return to the country of origin
- Reexported to another country if they will accept the shipment
- Destroy by incineration
Step 3—Taking Concentration Readings

Before taking a reading, require the fumigator to purge sampling tubes with a mechanical or hand pump. If using a T/C unit, connect it to the sampling tube, adjust the gas flow rate to 1.0, and wait until the meter registering “ounces per thousand cubic feet” stabilizes before taking a reading. (This may take a minute or more, depending upon the length of the tubing and whether or not an auxiliary pump is used.).

The PPQ official must take concentration readings 30 minutes after gas introduction. Use an APHIS-approved gas detection device to determine the gas concentration and distribution within the enclosure. Allow gas concentration readings to stabilize; do not disconnect the sampling line from the gas detection device when the minimum concentration reading has been met. If the gas distribution is even (all readings within 4 ounces of each other) and meet the minimum concentration required by the treatment schedule, advise the fumigator to turn off the fans. Running the fans longer can contribute to gas leakage. If used, the PPQ official must check desiccant tubes before each reading and change Drierite® if its color is pink.

Living plant and plant products generate carbon dioxide gas, which interferes with the MB reading from the T/C. In order to remove CO₂, install an Ascarite® tube in line with the Drierite® tube if fumigating living plant and plant products, including fruits and vegetables, timber, flowers, and seed.

Take concentration readings at the times designated in the treatment schedule:

- 30 minutes
- 2 hours
- 4 hours
- 6 hours
- 12 hours
- 24 hours
- 36 hours
- 48 hours
- 72 hours
- Any final concentration reading

Avoid using hand-held two-way radios near the T/C unit. Using two-way radios near the T/C unit will interfere with an accurate concentration reading.

7 If fumigating oak logs or lumber, see “Special Procedures for Adding Gas to Oak Logs and Lumber.”
Thirty-Minute Reading
The 30-minute reading shows the initial concentration and distribution of gas. The 30-minute reading can indicate leakage, sorption, incorrect dosage calculation, or error in fumigant introduction—all of which require immediate attention. If the 30-minute readings are below the minimum, require the fumigator to check for leaks around the perimeter of the tarpaulin.

Concentration readings should **not** differ more than 4 ounces among the leads. When concentration readings differ more than 4 ounces, run the fans to equalize the gas and record readings in the Remarks block on the APHIS 429. In some cases, several cycles of fan operation may be necessary to equalize the readings. The PPQ official will record all gas readings on the PPQ Form 429 or in the electronic 429 database.

Two-Hour Reading
In comparison with the 30-minute reading, the 2-hour reading also will indicate if the tarpaulin is leaking or the commodity is sorbing gas. Refer to **Table 2-4-7 on page-2-4-35** for detailed instructions.

EXAMPLE: Your dosage for the fumigation was 4 pounds (64 ounces). The 30 minute reading was 50 ounces. The 2-hour reading is 26 ounces. The 2-hour reading is low and according to Table 2-4-7, the fumigation would need to be extended by 30 minutes.

Final Reading
The final reading is required for all tarpaulin fumigations in order to determine if the fumigation has been successfully completed. You (the PPQ official) may start the final reading before the finishing time of the treatment so that aeriation commences at the finishing time. Starting the final reading before finishing time is especially critical when fumigating perishables.

Additional Readings
Decide the need to take additional readings based on the following:

- Rate of gas concentration decrease
- Any condition which could change the gas concentration such as severe winds, or rain.

When concentration readings differ more than **4 ounces**, run the fans to equalize the gas and record readings in the Remarks block on the APHIS 429. Generally, gas should be evenly distributed, and you should not have to restart the fans unless you added gas. If readings continue to differ by more than 4 ounces, continue running the fans until the gas is evenly distributed.

If unpredicted severe winds occur, additional readings must be taken. Any sharp or unusual decreases of the readings in relation to previous readings is a clue to take corrective action and supplementary readings. Take additional readings every 30 minutes until problems are rectified.

Sorptive commodities may also require additional concentration readings.
Step 4—Determining the Need to Add Gas and Adjust Exposure

Use Table 2-4-4 to determine when to add gas or extend the exposure period:

Table 2-4-4 Determine the Need to Add Gas and Adjust Exposure

<table>
<thead>
<tr>
<th>If the lowest gas reading is:</th>
<th>And the schedule is:</th>
<th>Then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below the required minimum concentration</td>
<td>T101-a-1 or equivalent*</td>
<td>SEE Table 2-4-6 on page 2-4-34 for corrections at 0.5 hour, or Table 2-4-7 on page 2-4-35 for corrections at 2 hours</td>
</tr>
<tr>
<td></td>
<td>Other than T101-a-1 or equivalent*</td>
<td>See Adding Gas and Extending Exposure Period to Commodities that are Fumigated Using Treatment Schedules other than T101-a-1 or Equivalent (may include perishables) on page 2-4-30</td>
</tr>
<tr>
<td>At or above required minimum concentration</td>
<td>T101-a-1* or equivalent*</td>
<td>SEE Table 2-4-6 on page 2-4-34 for corrections at 0.5 hour, or Table 2-4-7 on page 2-4-35 for corrections at 2 hours</td>
</tr>
<tr>
<td></td>
<td>Other than T101-a-1 or equivalent*</td>
<td>No action necessary</td>
</tr>
</tbody>
</table>

* T101-a-1 or equivalent treatment schedules are those schedules that are:
 ◆ NOT greater than 2 hours long (exposure time)
 ◆ NOT greater than 4 lbs. per 1000 ft³ (dosage rate)
 ◆ Minimum concentration readings and temperature ranges match EXACTLY the readings in T101-a-1

Important If the minimum concentration readings do not meet these requirements, the schedule is NOT equivalent. When schedules are NOT equivalent, use Table 2-4-5 to determine the length of time to extend exposure and use the formula in Figure 2-4-6 to determine the amount of gas to add.

Special Procedures for Adding Gas and Extending Exposure Period

Adding Gas and Extending Exposure Period to Commodities that are Fumigated Using Treatment Schedules other than T101-a-1 or Equivalent (may include perishables)

8 The MB label does allow the extension of exposure time due to low gas readings for non-food commodities.
Once you have determined that you need to add gas and extend time, use the formula in Figure 2-4-6 to calculate the amount of gas to add and Table 2-4-5 to determine how long to extend the exposure period.

\[
1.6 \times \text{number of ounces below minimum} \times \frac{\text{volume in cubic feet}}{1000 \text{cubic feet}} \times \frac{1}{16} = \text{pounds of gas to add}
\]

Figure 2-4-6 Formula for Determining the Amount of Gas to Add to Schedules Not Equivalent to T101-a-1

Table 2-4-5 Determine the Extended Exposure Period

<table>
<thead>
<tr>
<th>If the exposure time is:</th>
<th>And any individual reading is below minimum by:</th>
<th>Then extend exposure:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 12 hours</td>
<td>10 oz. or less</td>
<td>10 percent of the time lapse since gas introduction or the last acceptable reading</td>
</tr>
<tr>
<td></td>
<td>11 oz. or more</td>
<td>30 minutes</td>
</tr>
<tr>
<td>12 hours or more</td>
<td>10 oz. or less</td>
<td>10 percent of the time lapse since gas introduction or the last acceptable reading</td>
</tr>
<tr>
<td></td>
<td>11 oz. or more</td>
<td>2 hours or 10 percent of time lapse since last acceptable reading, whichever is greater</td>
</tr>
</tbody>
</table>

1. If any individual reading is 50 percent or more below the minimum concentration reading, then abort the treatment. For example, if the minimum reading is 38 ounces then the reading 50 percent below the minimum is 19 ounces \[38 \text{ ounces} - (38 \text{ ounces} \times 0.50) = 19 \text{ ounces}\]. For oak logs (T312-a, T312-a-alternative), refer to Special Procedures for Adding Gas to Oak Logs Using T312-a or T312-a-Alternative on page 2-4-36 for specific instructions.

When adding gas, require the fumigator to follow these steps:

1. Heat water in volatilizer.
2. Turn on fans.
3. Weigh the cylinder.
4. With SCBA on, open valve on cylinder and introduce the gas.
5. Close valve when the weight of the cylinder indicates that the needed amount of gas has been added.
6. The PPQ official must record quantity of fumigant added in Block 34 and the additional fan time in Block 30 of the PPQ Form 429.
7. When using the electronic 429, record the amount of gas added in the “Additional Gas Recommended” field and the actual amount of additional gas added in the “ACTUAL ADDITIONAL GAS” field. Record the additional fan time in the “TIME FANS OPERATED” field in the Treatment form.

Note the time the fumigator started introducing additional gas and the time the fumigator finished introducing gas and record in Block 40 (Remarks) of the PPQ Form 429 or in the “Remarks” form in the electronic 429 database. Require the fumigator to run the fans for 30 minutes. Turn off fans, then take a concentration reading. If all readings are above minimum concentration levels, then proceed as usual with the remaining scheduled concentration readings.

Adding Gas to Fruits, Vegetables, or Perishable Commodities Using Schedule T101-a-1 or Equivalent

Use Table 2-4-6 on page 2-4-34 and Table 2-4-7 on page 2-4-35 to determine if you need to add gas or extend or decrease the exposure time. Select the proper table based on the time of the gas reading (30 minutes or 2 hours).

Use the formula in Figure 2-4-7 to determine the amount of gas to add.

\[
1.6 \times \text{number of ounces below minimum} \times \frac{\text{volume in cubic feet}}{1000\text{cubic feet}} \times \frac{1}{16} = \text{pounds of gas to add}
\]

Figure 2-4-7 Formula for Determining the Amount of Gas to Add to T101-a-1 or Equivalent Schedules

Important

DO NOT average the concentration readings before using the tables. Base your decision on whether to add gas from the LOWEST gas concentration of any individual gas reading.

CAUTION

Fresh fruits and vegetables are sensitive to MB so you should double check volume calculations and dosage measurements to avoid accidental overdoses.

When adding gas, require the fumigator to follow these steps:

1. Heat water in volatilizer.
2. Turn on fans.
3. Weigh the cylinder.
4. With SCBA on, open valve on cylinder and introduce the gas.
5. Close valve when the weight of the cylinder indicates that the needed amount of gas has been added.

6. The PPQ official must record quantity of fumigant added in Block 34 and additional fan time in Block 30 of the PPQ Form 429.

7. When using the electronic 429, record the amount of gas added in the “Additional Gas Recommended” field and the actual amount of additional gas added in the “ACTUAL ADDITIONAL GAS” field. Record the additional fan time in the “TIME FANS OPERATED” field in the Treatment form.

Note the time the fumigator started introducing additional gas and the time the fumigator finished introducing gas and record in Block 40 (Remarks) of the PPQ Form 429 or in the “Remarks” form in the electronic 429 database. Run the fans until there is even gas distribution throughout the stack. Turn off fans, then take a concentration reading 30 minutes after the gas has been introduced. If all readings are above minimum concentration levels, then proceed as usual with the remaining scheduled concentration readings.
Table 2-4-6 Determine Gas Concentration Values and Corrections for Fruits and Vegetables at the 30-Minute Reading of T101-a-1 or Equivalent Schedules

<table>
<thead>
<tr>
<th>If the schedule is:</th>
<th>And the minimum concentration reading (oz.) in schedule is:</th>
<th>And the lowest concentration reading (oz.) is:</th>
<th>Then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-49 °F 4 lbs for 2 hrs</td>
<td>48</td>
<td>65 or greater</td>
<td>REDUCE exposure by 15 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64-48</td>
<td>TAKE 2 hour reading as scheduled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower than 48</td>
<td>1. ADD gas, and 2. EXTEND exposure 15 minutes</td>
</tr>
<tr>
<td>50-59 °F 3 lbs for 2 hrs</td>
<td>38</td>
<td>52 or greater</td>
<td>REDUCE exposure by 15 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51-38</td>
<td>TAKE 2 hour reading as scheduled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower than 38</td>
<td>1. ADD gas, and 2. EXTEND exposure 15 minutes</td>
</tr>
<tr>
<td>60-69 °F 2.5 lbs for 2 hrs</td>
<td>32</td>
<td>48 or greater</td>
<td>REDUCE exposure by 15 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47-32</td>
<td>TAKE 2 hour reading as scheduled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower than 32</td>
<td>1. ADD gas, and 2. EXTEND exposure 15 minutes</td>
</tr>
<tr>
<td>70-79 °F 2 lbs for 2 hrs</td>
<td>26</td>
<td>37 or greater</td>
<td>REDUCE exposure by 15 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36-26</td>
<td>TAKE 2 hour reading as scheduled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower than 26</td>
<td>1. ADD gas, and 2. EXTEND exposure 15 minutes</td>
</tr>
<tr>
<td>80-89 °F 1.5 lbs for 2 hrs</td>
<td>19</td>
<td>27 or greater</td>
<td>REDUCE exposure by 15 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26-19</td>
<td>TAKE 2 hour reading as scheduled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower than 19</td>
<td>1. ADD gas, and 2. EXTEND exposure 15 minutes</td>
</tr>
</tbody>
</table>
Table 2-4-7 Determine Gas Concentration Values and Corrections for Fruits and Vegetables at the 2-Hour Reading of T101-a-1 or Equivalent Schedules

<table>
<thead>
<tr>
<th>If the schedule is:</th>
<th>And the lowest concentration reading at 2 hours is:</th>
<th>Then do not add gas, but:</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-49 °F 4 lbs for 2 hours</td>
<td>38 and above</td>
<td>AERATE commodity</td>
</tr>
<tr>
<td></td>
<td>37-28</td>
<td>EXTEND exposure by 15 minutes</td>
</tr>
<tr>
<td></td>
<td>27-25</td>
<td>EXTEND exposure by 30 minutes</td>
</tr>
<tr>
<td></td>
<td>Lower than 25</td>
<td>ABORT</td>
</tr>
<tr>
<td>50-59 °F 3 lbs for 2 hrs</td>
<td>29 and above</td>
<td>AERATE commodity</td>
</tr>
<tr>
<td></td>
<td>28-24</td>
<td>EXTEND exposure by 15 minutes</td>
</tr>
<tr>
<td></td>
<td>23-21</td>
<td>EXTEND exposure by 30 minutes</td>
</tr>
<tr>
<td></td>
<td>Lower than 21</td>
<td>ABORT</td>
</tr>
<tr>
<td>60-69 °F 2.5 lbs for 2 hrs</td>
<td>24 and above</td>
<td>AERATE commodity</td>
</tr>
<tr>
<td></td>
<td>23-21</td>
<td>EXTEND exposure by 15 minutes</td>
</tr>
<tr>
<td></td>
<td>20-18</td>
<td>EXTEND exposure by 30 minutes</td>
</tr>
<tr>
<td></td>
<td>Lower than 18</td>
<td>ABORT</td>
</tr>
<tr>
<td>70-79 °F 2 lbs for 2 hrs</td>
<td>19 and above</td>
<td>AERATE commodity</td>
</tr>
<tr>
<td></td>
<td>18-16</td>
<td>EXTEND exposure by 15 minutes</td>
</tr>
<tr>
<td></td>
<td>15-13</td>
<td>EXTEND exposure by 30 minutes</td>
</tr>
<tr>
<td></td>
<td>Lower than 13</td>
<td>ABORT</td>
</tr>
<tr>
<td>80-89 °F 1.5 lbs for 2 hrs</td>
<td>14 and above</td>
<td>AERATE commodity</td>
</tr>
<tr>
<td></td>
<td>13-12</td>
<td>EXTEND exposure by 15 minutes</td>
</tr>
<tr>
<td></td>
<td>11-10</td>
<td>EXTEND exposure by 30 minutes</td>
</tr>
<tr>
<td></td>
<td>Lower than 10</td>
<td>ABORT</td>
</tr>
</tbody>
</table>
Special Procedures for Adding Gas to Oak Logs Using T312-a or T312-a-Alternative

There are two alternative treatments for the MB fumigation of Oak logs. Refer to Determine Gas Concentration Values and Corrections for Oak Log Fumigations using Schedule T312-a on page 5-4-33 and Determine Gas Concentration Values and Corrections for Oak Log Fumigations using Schedule T312-a-Alternative on page 5-4-36 for actions to take during the fumigation of Oak Logs using T312-a or T312-a-Alternative.

Step 5—Exhausting the Gas

Require the fumigator to exhaust the gas at the completion of the exposure period. If the treatment schedule is a FIFRA Section 18 Exemption, then the PPQ official must verify the final gas concentration reading. Record detector tube readings and the time interval from the aeration in the corresponding fields in “DETECTOR READINGS”.

Aerating the Enclosure

The fumigator must:

◆ Arrange for the aeration to proceed once the treatment is completed.
◆ Consider the direction of the wind when pointing the exhaust duct, and face the duct outlet toward an open area away from people.
◆ Ensure that, during the first 10 minutes of aeration, no one is present within 200 feet downwind of the exhaust duct outlet.
◆ Determine aeration buffer zones in accordance with EPA’s fumigation buffer zone tables (https://www.epa.gov/pesticide-registration/mbcommoditybuffer).
◆ Ensure that no one is present within the perimeter of the aeration buffer zone unless they are wearing SCBA.
◆ See “Buffer Zone Overlap for Multiple Enclosures” on page-2-4-10.
◆ Follow all label instructions, state, county, and local regulations, in addition to the instructions in this manual.
◆ Inform people located in occupied structures and personnel in the immediate area within the buffer zone that release of MB is about to take place and give them the option of leaving the area or remaining inside the building.
◆ Restrict access to the area where the exhaust duct extends beyond the enclosure.
Responsibility for Aerating the Commodity

The label requires that at least two people trained in the use of the fumigant must be present at all times during gas introduction, treatment, and aeration. The PPQ official, however, is not required to be present at the fumigation site throughout the aeration process unless specified by the label or by State or local regulations.

Table 2-4-8 Determine Responsibility for Aerating the Commodity

<table>
<thead>
<tr>
<th>If the Treatment Schedule is:</th>
<th>Then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A FIFRA Section 18 Exemption</td>
<td>1. PPQ official must be present at the initiation of aeration and to VERIFY the final aeration readings. 2. USE Table 2-4-9 to determine which aeration procedure to follow</td>
</tr>
<tr>
<td>A labeled Treatment Schedule</td>
<td>1. RELEASE the fumigation to the fumigator to aerate according to Table 2-4-9. 2. RELEASE the commodity.</td>
</tr>
</tbody>
</table>

Refer to Table 2-4-9 to determine which aeration procedure to use.

Table 2-4-9 Determine the Aeration Procedure

<table>
<thead>
<tr>
<th>If:</th>
<th>And:</th>
<th>And:</th>
<th>Then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonsorptive</td>
<td>Containerized</td>
<td></td>
<td>GO to page 2-4-38</td>
</tr>
<tr>
<td></td>
<td>Noncontainerized</td>
<td>Fresh fruits and vegetables, and cut flowers</td>
<td>GO to page 2-4-41</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Other than fresh fruits and vegetables, and cut flowers</td>
<td>GO to page 2-4-39</td>
</tr>
<tr>
<td>Sorptive, including yams and chestnuts (See See “Sorption” on page-2-3-10 for list of sorptive commodities)</td>
<td>Containerized</td>
<td></td>
<td>GO to page 2-4-44</td>
</tr>
<tr>
<td></td>
<td>Noncontainerized</td>
<td></td>
<td>GO to page 2-4-42</td>
</tr>
</tbody>
</table>

Aeration Buffer Zones

The aeration buffer zones are determined by the fumigator in accordance with EPA’s fumigation buffer zone tables (https://www.epa.gov/pesticide-registration/mbcommoditybuffer).

Wearing Respiratory Protection

The fumigator must wear approved respiratory protection (SCBA, supplied air respirator, or combination unit) when:
◆ A risk of exposure to concentrations above 5 ppm exists; this includes any time the concentration is unknown
◆ Opening the tarpaulin for aeration
◆ Removing the tarpaulin if measured levels of fumigant are above 5 ppm
◆ Setting up the air introduction and exhaust systems (if they were not set up prior to gas introduction)

MB 2016 Label

If MB concentration levels are between 1-4 ppm, the PPQ official and the fumigator may wear an air purifying respirator NIOSH certified half-mask or full face piece with a cartridge.

Aerating Nonsorptive, Containerized Cargo—Indoors and Outdoors

Step 1—Installing Exhaust System

Advise the fumigator to:

1. Install an exhaust fan (minimum of 5,200 cfm capacity) to a 16 inch, or greater, diameter duct located at the floor near rear doors of the container.

2. Install an air introduction duct system consisting of a 3,750 cfm, or greater, fan attached to a 12 inch, or larger, duct which reaches two-thirds of the length of the container at the top of the load. Have the ducts installed prior to the start of the fumigation. For indoor fumigation, extend the exhaust duct at least 30 feet beyond the building or through a vertical stack extending through the roof. For outdoor fumigations, extend the exhaust duct at least 30 feet beyond the container.

Important

The exhaust fan(s) must be capable of a minimum air exchange rate (AER) of ten times per hour. Volume of enclosure (in cubic feet) divided by the sum of cubic feet per minute (cfm) of the exhaust fan(s) or exhaust blower equals the number of minutes required per complete gas volume exchange.

Step 2—Aerating the Commodity

Advise the fumigator to:

1. Connect the exhaust duct to the exhaust fan.

2. Start the exhaust fan(s) and lift the end of the tarpaulin opposite the end at which the exhaust fan and duct are located.

3. Aerate for **3 hours**.

4. Stop the aeration fans.
5. Use a colorimetric tube to take a concentration reading in the airspace around and, when feasible, within the carton or box. Exceptions may include compressed cotton and other very difficult to probe commodities. Obtain prior approval from CPHST for exceptions to this rule.

For FIFRA Section 18 exemptions, record the concentration reading (in ppm), date, and time in Block 39 of PPQ Form 429. If using the electronic 429 database, record the date, time and detector reading (in ppm) in the “Detector Readings” form.

Then use Table 2-4-10 to determine when to release the commodity.

Table 2-4-10 Determine When to Release the Commodity for Nonsorptive Containerized Cargo

<table>
<thead>
<tr>
<th>If the gas concentration level is:</th>
<th>Then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ppm or less</td>
<td>RELEASE the commodity</td>
</tr>
<tr>
<td>6 ppm or more</td>
<td>1. CONTINUE aeration until the concentration is 5 ppm or less, then 2. RELEASE the commodity</td>
</tr>
</tbody>
</table>

Aerating Nonsorptive, Noncontainerized Cargo—Indoors and Outdoors

Step 1—Installing the Exhaust System

Advise the fumigator to:

1. Install an exhaust duct (minimally one 3,500 cfm capacity fan connected to an exhaust duct). An exhaust duct is optional for outdoor fumigations.
2. Extend the exhaust duct outlet to an outside area where there is adequate ventilation and at least 30 feet away from the building or through a vertical exhaust stack extending through the roof.

The exhaust fan(s) must be capable of a minimum of four air exchanges per hour. Volume of enclosure (in cubic feet) divided by the sum of cubic feet per minute (cfm) of the exhaust fan(s) or exhaust blower equals the number of minutes required per complete gas volume exchange.

Step 2—Aerating the Commodity

Advise the fumigator to:

1. Start the exhaust fan.
2. Lift the end of the tarpaulin opposite the end with the exhaust fan and duct (if used).

3. Aerate the enclosure for 2 hours.

Outdoor Fumigations

Advise the fumigator to:

1. Stop the fans.
2. Remove the tarpaulin.
3. Take concentration readings with colorimetric tubes in the airspace around and, when feasible, inside the box or cartons.

For FIFRA Section 18 exemptions, record the concentration reading (in ppm), date, and time in Block 39 of PPQ Form 429. If using the electronic 429 database, record the date, time and detector reading (in ppm) in the “Detector Readings” form. If using the electronic 429, record the time and detector reading (in ppm) in the “Detector Readings” form.

Then use Table 2-4-11 to determine when to release the commodity.

Table 2-4-11 Determine When to Release the Commodity for Outdoor Fumigations

<table>
<thead>
<tr>
<th>If the gas concentration level is:</th>
<th>Then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ppm or less</td>
<td>RELEASE the commodity</td>
</tr>
<tr>
<td>6 ppm or more</td>
<td>1. CONTINUE aeration and take concentration readings until the level is 5 ppm or less, then 2. RELEASE the commodity</td>
</tr>
</tbody>
</table>

Indoor Fumigations

Advise the fumigator to:

1. Stop the fans.
2. Take concentration readings with colorimetric tubes in the airspace around and, when feasible, in the carton or box.

For FIFRA Section 18 exemptions, record the concentration reading (in ppm), date, and time in Block 39 of PPQ Form 429. If using the electronic 429, record the time and detector reading (in ppm) in the “Detector Readings” form.
Then use Table 2-4-12 to determine when to release the commodity.

Table 2-4-12 Determine When to Release the Commodity for Indoor Fumigations

<table>
<thead>
<tr>
<th>If the gas concentration level is:</th>
<th>Then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ppm or less</td>
<td>1. ADVISE fumigator to REMOVE the tarpaulin, and 2. RELEASE the commodity</td>
</tr>
<tr>
<td>6 ppm to 99 ppm</td>
<td>1. ADVISE fumigator to REMOVE the tarpaulin, and 2. CONTINUE aeration until the concentration is 5 ppm or less, then 3. RELEASE the commodity</td>
</tr>
<tr>
<td>100 ppm or above</td>
<td>1. CONTINUE aeration and take concentration readings until the concentration level is below 100 ppm, then remove the tarpaulin, and 2. CONTINUE aeration until concentration is 5 ppm or less, then 3. RELEASE the commodity</td>
</tr>
</tbody>
</table>

Aeration Procedures for Fresh Fruits, Vegetables, and Cut Flowers—Indoors or Outdoors

Do not use these procedures for fresh chestnuts or yams. (see procedures for sorptive commodities on page 2-4-45)

Important

Step 1—Installing Exhaust System

Use Table 2-4-13 to determine fan size.

Table 2-4-13 Determine Number of Fans for Aeration of Fresh Fruits, Vegetables, and Cut Flowers

<table>
<thead>
<tr>
<th>If the enclosure is:</th>
<th>Then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 1000 cu ft</td>
<td>USE one fan, 67-350 cfm</td>
</tr>
<tr>
<td>1001-15,000 cu ft</td>
<td>USE one or 2 fans. The volume of the enclosure divided by the sum of the cfm of the fans should equal a figure of 15 or less. Connect fan(s) to 3-ft diameter exhaust duct(s) 3 ft in diameter.</td>
</tr>
<tr>
<td>15,001-25,000 cu ft</td>
<td>USE two fans, each 1,000 to 5,000 cfm. The volume of the enclosure divided by the sum of the cfm of the fans should equal a figure of 15 or less. Connect fan(s) to exhaust duct(s) 3 ft in diameter.</td>
</tr>
<tr>
<td>More than 25,000 cu ft</td>
<td>CONTACT the CPHST-AQI for advice prior to conducting the first fumigation.</td>
</tr>
</tbody>
</table>

An alternate procedure to using exhaust fans and ducts is to aerate through a vertical stack.
Step 2—Aerating the Commodity
Advise the fumigator to:

1. Connect the exhaust duct to the exhaust fan.
2. Start the exhaust fan(s) and lift the end of the tarpaulin opposite the end at which the exhaust fan and duct are located.
3. Aerate for 2 hours.
4. Remove the tarpaulin and allow 2 hours for passive aeration.
5. Stop the fans and take concentration readings with colorimetric tubes in the airspace around and, when feasible, inside the cartons or boxes.

For FIFRA Section 18 exemptions, record the concentration reading (in ppm), date, and time in Block 39 of PPQ Form 429. If using the electronic 429, record the time and detector reading (in ppm) in the “Detector Readings” form.

Then use Table 2-4-14 to determine when to release the commodity.

Table 2-4-14 Determine When to Release the Commodity After Aeration of Fresh Fruits, Vegetables, and Cut Flowers

<table>
<thead>
<tr>
<th>If the gas concentration level is:</th>
<th>Then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ppm or less</td>
<td>RELEASE the commodity</td>
</tr>
<tr>
<td>6 ppm or more</td>
<td>1. CONTINUE aeration and take concentration readings until the level is 5 ppm or less, then 2. RELEASE the commodity</td>
</tr>
</tbody>
</table>

Aerating Sorptive, Noncontainerized Cargo—Indoors and Outdoors

Step 1—Installing the Exhaust System
Advise the fumigator to:

1. Install an exhaust duct (minimally one 3,500 cfm capacity fan connected to an exhaust duct).
2. Extend the exhaust duct outlet to an outside area where there is adequate ventilation and at least 30 feet away from the building or through a vertical exhaust stack extending through the roof.
Step 2—Aerating the Commodity

Advise the fumigator to:

1. Lift both ends of the tarpaulin.
2. Start the circulation fans and exhaust fans (if available).
3. Aerate Oak logs and lumber a minimum of 48 hours. If, after 48 hours, the concentration is 5 ppm or greater, continue aeration for 24 more hours. Continue this procedure until concentration readings are less than 5 ppm.
4. Run the fans for 4 hours for commodities other than Oak logs and lumber.
5. Remove the tarpaulin.
6. Stop the fans and take concentration readings with colorimetric tubes in the airspace around and, when feasible, inside the cartons or boxes.

For FIFRA Section 18 exemptions, record the concentration reading (in ppm), date, and time in Block 39 of PPQ Form 429. If using the electronic 429 database, record the date, time and detector reading (in ppm) in the “Detector Readings” form.

Then use Table 2-4-15 to determine when to release the commodity.

Table 2-4-15 Determine when to Release the Sorptive Noncontainerized Commodity for Outdoor Fumigations

<table>
<thead>
<tr>
<th>If the gas concentration level is:</th>
<th>Then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ppm or less</td>
<td>RELEASE the commodity</td>
</tr>
<tr>
<td>6 ppm or more</td>
<td>1. CONTINUE aeration and take concentration readings until the level is 5 ppm or less, then 2. RELEASE the commodity</td>
</tr>
</tbody>
</table>

Indoor Fumigations

Advise the fumigator to:

1. Complete the installation of the exhaust duct.
2. Start the circulation fans and exhaust fans.
3. Lift the end of the tarpaulin opposite the exhaust fan.
4. Aerate Oak logs and lumber a minimum of 48 hours. If, after 48 hours, the concentration is 5 ppm or greater, continue aeration for 24 more hours. Continue this procedure until concentration readings are less than 5 ppm.
5. Run the fans for 4 hours for commodities other than Oak logs and lumber.
6. Stop the fans and take concentration readings with colorimetric tubes in the airspace around and, when feasible, inside the carton or box.

7. Remove the tarpaulin.

For FIFRA Section 18 exemptions, record the concentration reading (in ppm), date, and time in Block 39 of PPQ Form 429. If using the electronic 429 database, record the date, time and detector reading (in ppm) in the “Detector Readings” form.

Then use Table 2-4-16 to determine when to release the commodity. Take successive readings at intervals of not less than 2 hours.

Table 2-4-16 Determine When to Release the Sorptive Noncontainerized Commodity for Indoor Fumigations

<table>
<thead>
<tr>
<th>If the gas concentration level is:</th>
<th>Then:</th>
</tr>
</thead>
</table>
| 5 ppm or less | 1. REMOVE the tarpaulin, and
| | 2. RELEASE the commodity |
| 6 ppm to 99 ppm | 1. REMOVE the tarpaulin, and
| | 2. CONTINUE aeration until the concentration is 5 ppm or less, then
| | 3. RELEASE the commodity |
| 100 ppm or above | 1. CONTINUE aeration and take concentration readings until the concentration level is below 100 ppm, then remove the tarpaulin, and
| | 2. CONTINUE aeration until concentration is 5 ppm or less, then
| | 3. RELEASE the commodity |

Aerating Sorptive Commodities in Containers—Indoors and Outdoors

Step 1—Installing the Exhaust System

Advising the fumigator to:

1. Install an exhaust fan (minimum of 5,200 cfm capacity) to a 16 inch or greater diameter duct located at the floor near rear doors or the container.

2. Install an air introduction duct system consisting of a 3,750 cfm or greater fan attached to a 12 inch or greater duct which reaches two-thirds of the length of the container at the top of the load. Have the ducts installed prior to the start of the fumigation. For indoor fumigations, extend the exhaust duct at least 30 feet beyond the building or through a vertical stack extending through the roof. For outdoor fumigations, extend the exhaust duct 30 feet beyond the container.
Step 2—Aerating the Commodity

Indoors

Advise the fumigator to:

1. Complete installation of exhaust duct and begin exhaust fan operation.
2. Lift both ends of the tarpaulin and begin exhaust fan operation. Do not remove the tarpaulin until the gas concentration level is below 100 ppm (see Table 2-4-17).
3. Start the circulation and air introduction fans. Require a minimum of 4 hours aeration for all sorptive commodities. Sorptive commodities generally require 12 hours or longer to aerate, however, since sorptive commodities vary in their rates of desorption, aeration may be completed in less than 12 hours.
4. Aerate Oak logs and lumber a minimum of 48 hours. If, after 48 hours, the concentration is 5 ppm or greater, continue aeration for 24 more hours. Continue this procedure until concentration readings are less than 5 ppm.
5. Stop the fans and take concentration readings with colorimetric tubes in the airspace around and, when feasible, inside the carton or box.

For FIFRA Section 18 exemptions, record the concentration reading (in ppm), date, and time in Block 39 of PPQ Form 429. If using the electronic 429 database, record the date, time and detector reading (in ppm) in the “Detector Readings” form.

Then use Table 2-4-17 to determine when to release the commodity.

Table 2-4-17 Determine when to Release the Sorptive Containerized Commodity for Indoor Fumigations

<table>
<thead>
<tr>
<th>If the gas concentration level is:</th>
<th>Then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ppm or less</td>
<td>1. ADVISE fumigator to REMOVE the tarpaulin, and</td>
</tr>
<tr>
<td></td>
<td>2. RELEASE the commodity</td>
</tr>
<tr>
<td>6 ppm to 99 ppm</td>
<td>1. HAVE fumigator REMOVE the tarpaulin, and</td>
</tr>
<tr>
<td></td>
<td>2. CONTINUE aeration until the concentration is 5 ppm or less, then</td>
</tr>
<tr>
<td></td>
<td>3. RELEASE the commodity</td>
</tr>
<tr>
<td>100 ppm or above</td>
<td>1. CONTINUE aeration and take concentration readings until the</td>
</tr>
<tr>
<td></td>
<td>concentration level is below 100 ppm, then remove the tarpaulin, and</td>
</tr>
<tr>
<td></td>
<td>2. CONTINUE aeration until concentration is 5 ppm or less, then</td>
</tr>
<tr>
<td></td>
<td>3. RELEASE the commodity</td>
</tr>
</tbody>
</table>

Outdoors

Advise the fumigator to:

1. Complete installation of exhaust duct and begin exhaust fan.
2. Lift both ends of the tarpaulin that are furthest from exhaust fan.

3. Start the circulation and air introduction fans. Require a minimum of 4 hours aeration for all sorptive commodities. Sorptive commodities generally require 12 hours or longer to aerate, however, since sorptive commodities vary in their rates of desorption, aeration may be completed in less than 12 hours.

4. Aerate Oak logs and lumber a minimum of 48 hours. If, after 48 hours, the concentration is 5 ppm or greater, continue aeration for 24 more hours. Continue this procedure until concentration readings are less than 5 ppm.

5. Remove the tarpaulin after 4 hours aeration.

6. Stop the circulation fans and take concentration readings with colorimetric tubes in the airspace around and, when feasible, inside the cartons or boxes.

For FIFRA Section 18 exemptions, record the concentration reading (in ppm), date, and time in Block 39 of PPQ Form 429. If using the electronic 429 database, record the date, time and detector reading (in ppm) in the “Detector Readings” form.

Then use Table 2-4-18 to determine when to release the commodity.

<table>
<thead>
<tr>
<th>If the gas concentration level is:</th>
<th>Then:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5 ppm or less</td>
<td>RELEASE the commodity</td>
<td></td>
</tr>
<tr>
<td>6 ppm or more</td>
<td>1. CONTINUE aeration and take concentration readings until the level is 5 ppm or less, then 2. RELEASE the commodity</td>
<td></td>
</tr>
</tbody>
</table>
Chemical Treatments

Fumigants • Methyl Bromide • Chamber Fumigation

Contents

Methods and Procedures 2-5-1
2016 Methyl Bromide Label Information 2-5-1
Materials Needed 2-5-3
Conducting the Fumigation 2-5-6
Aerating the Chamber 2-5-9
Normal Atmospheric Pressure Chamber—Aerating Noncontainerized Cargo 2-5-12
Normal Atmospheric Pressure Chamber—Aerating Noncontainerized Cargo 2-5-12
Vacuum Fumigation Chambers—Aerating Containerized and Noncontainerized Cargo 2-5-12

Methods and Procedures

The procedures covered in this section provide commercial fumigators and chamber owners with the methods, responsibilities, and precautions for normal atmospheric pressure (NAP) and vacuum chamber fumigations.

The chamber owner is responsible for hiring a state certified fumigator and for ensuring that the chamber is certified for conducting PPQ quarantine treatments.

2016 Methyl Bromide Label Information

In 2015, the Environmental Protection Agency (EPA) directed all methyl bromide (MB) registrants to amend the use directions on the labels of all 100% MB products. EPA required the changes in order to reflect recommendations in an EPA report.1

These amendments modify the use directions for fumigation and aeration procedures, modify respiratory requirements and equipment and update gas monitoring equipment. EPA requires all labels on newly manufactured MB to reflect these recommendations effective October 01, 2016; however, EPA is allowing existing stocks of MB to be used in accordance with the use directions on the existing stock’s (older) labels.

PPQ officials and fumigators must closely examine gas cylinder labels in order to validate that the dosage, exposure, and commodity are either on the cylinder label or covered by a FIFRA Section 18 exemption. If a label is not affixed to the cylinder, DO NOT allow the fumigator to use that cylinder.

New Buffer Zone Requirements

All 2016 MB labels now require both a treatment and an aeration buffer zone. Both the treatment and aeration buffer zones are specific to the enclosure being fumigated and must be determined by visiting a website link provided in every MB label. The fumigators are responsible for using this website to determine the buffer zones and reporting both buffer zones to the PPQ official. If the treatment buffer zone is determined to be less than 30 feet, the PPQ official will maintain PPQ’s standard 30 foot treatment buffer zone; otherwise, the new treatment buffer zone must be observed. If the aeration buffer zone is determined to be less than 200 feet, then PPQ’s standard “200 feet for 10 minutes” aeration buffer zone still applies for the first 10 minutes of aeration. The fumigator must refer to EPA’s website to determine the minimum aeration buffer zone to be maintained until the aeration period is complete and the fumigator has verified that gas concentration levels meet the conditions in the MB label.

Transiting through buffer zones

The label permits vehicles to transit through both treatment and aeration buffer zones under specific conditions found in the label; it is up to the fumigator determine how or whether vehicles may transit in accordance with the label.

2 https://www.epa.gov/pesticide-registration/mbcommoditybuffer
When using the newer 2016 MB label, changes to certain procedures and equipment in this chapter are displayed in a NOTICE box with a heading titled “MB 2016 Label”.

MB 2016 Label (example)

Use this information when the fumigator is using the 2016 MB label.

When using existing stocks, follow the equipment and procedural guidance that is displayed in the body of the text (outside of the NOTICE box).

If there is no “MB 2016 Label” NOTICE box, then the instructions apply to all MB labels, 2016 and older.

Materials Needed

PPQ Official Provides

- APHIS-approved leak detection device
- Calculator (optional)
- Forms (PPQ Form 429 and APHIS Form 2061 if necessary)
- Self-contained breathing apparatus (SCBA) or supplied air respirator
MB 2016 Label

In addition to the bulleted list on page 2-5-3, the PPQ official will provide:

- Air purifying respirator NIOSH certified half-mask or full face piece with a cartridge for concentrations between 1 and 4 ppm
- APHIS-approved continuous real time gas monitoring device
 - Permanently mounted in PPQ owned facilities only, PureAire Monitoring Systems, Inc. model Air check Advantage¹
 - Portable Photoionization Detector (PID), RAE Systems, Inc. model MiniRAE 3000²
- Self contained breathing apparatus (SCBA) NIOSH approval prefix TC-13F or supplied air respirator NIOSH approval prefix TC-19C

¹ The Air Check Advantage can be calibrated either by the manufacturer or by the PPQ official. Calibrate according to the manufacturer’s User Guide. Refer to Chapter 8: Equipment for more information.

² The MiniRae 3000 must be calibrated by the PPQ official according to the manufacturer’s User’s Guide. Refer to Chapter 8: Equipment for more information.

Fumigator Provides

- APHIS-approved gas detection device³ (e.g. thermal conductivity device, infrared device, etc.)
- APHIS-approved leak detection device
- Auxiliary pump for purging long gas sample tubes
- Carbon dioxide filter (e.g., Ascarite®)
- Colorimetric tubes (Refer to Gas Detector Tube (colorimetric) and Apparatus on page E-1-32 for a list of APHIS-approved product ranges)
- Desiccant (e.g., Drierite®)
- Electrical wiring (grounded, permanent type), three prong extension cords
- Gas introduction line
- Heat supply

³ The methyl bromide monitor must be calibrated annually. Refer to Chapter 8: Equipment for calibration information. If using a thermal conductivity (TC) analyzer, Drierite® and Ascarite® must be used.
Chemical Treatments Fumigants • Methyl Bromide • Chamber Fumigation

Materials Needed

- Methyl bromide
- Scale or graduated cylinder for volume (liquid measurements)\(^4\)
- SCBA or supplied air respirator
- Temperature recorder and temperature sensors\(^5\)
- Thermometer\(^6\)
- Volatilizer
- Warning signs/Placarding

MB 2016 Label

In addition to the bulleted list on page 2-5-4 and page 2-5-5, the fumigator will provide:

- Air purifying respirator NIOSH certified half-mask or full face piece with a cartridge for concentrations between 1 and 4 ppm
- APHIS-approved continuous real time gas monitoring device\(^1\)
 - Permanently mounted in PPQ owned facilities only, PureAire Monitoring Systems, Inc. model Air check Advantage
 - Portable Photoionization Detector (PID), RAE Systems, Inc. model MiniRAE 3000
- APHIS-approved direct read gas detection device
 - Colorimetric tubes (e.g. Draeger, Sensidyne)
- Self contained breathing apparatus (SCBA) NIOSH approval prefix TC-13F or supplied air respirator NIOSH approval prefix TC-19C

\(^1\) These devices must be calibrated according to the manufacturer's User Guide. Refer to Chapter 8: Equipment for more information.

\(^4\) All scales must be calibrated by the State, a company that is certified to conduct scale calibrations, or by the fumigator under the supervision of PPQ. The source and date of calibration must be posted in a visible location on or with the scale at all times. The scale must be calibrated a following every repair or minimum of every year.

\(^5\) Temperature sensors must be calibrated annually by the manufacturer or National Institute of Standards and Technology (NIST) within the range of 40 °F to 80 °F (4.4 °C to 26.7 °C)

\(^6\) The thermometer must be calibrated or replaced annually.
Conducting the Fumigation

Step 1—Selecting a Treatment Schedule
The PPQ official will select an appropriate treatment schedule to effectively eliminate the plant pest without damaging the commodity to be fumigated.

Turn to the treatment schedule Index and look up by commodity or by pest the treatment schedule(s) available. Treatment schedules which are approved for chambers will be listed as either “NAP” (normal atmospheric pressure) or as “vacuum.”

Step 2—Issuing a PPQ Form 523 (Emergency Action Notification)
When an intercepted pest is identified and confirmed by a PPQ Area Identifier as requiring action, the CBP or PPQ official will issue a Form 523 (Emergency Action Notification - EAN) to the owner, broker, or representative. The EAN will list all treatment options. Refer to Appendix A in the Manual for Agricultural Clearance for instructions on completing and distributing the EAN.

Step 3—Determining Section 18 Exemptions and Sampling Requirements
After selecting the treatment schedule, the PPQ official will determine which treatment schedules are FIFRA Section 18 Exemptions. The schedule will be followed by an “IMPORTANT” note to help you determine the current exemption status. Some treatment schedules are only FIFRA Section 18 Exemptions at specific temperature ranges. Check the treatment schedule and temperature to determine if the fumigation will be a FIFRA Section 18 Exemption.

Residue monitoring by taking samples of the commodity prior to the start of the fumigation and after aeration is no longer required.

Refer to Certification of Vacuum Fumigation Chambers on page 6-2-1 and Certifying Atmospheric Fumigation Chambers on page 6-3-1 for guidelines on chamber certification.
Step 4—Setting up the Fumigation Site

MB 2016 Label

The PPQ official and the fumigator must select a secure area where traffic and people are restricted from entering and which is isolated from people working. A nonwork area is preferred to help prevent accidents.

The treatment and aeration buffer zones are determined by the fumigator in accordance with EPA’s fumigation buffer zone tables (https://www.epa.gov/pesticide-registration/mbcommoditybuffer).

The buffer zones surround the area where access is limited during treatment. If the fumigator determines that the buffer zone is less than 30’, then PPQ requires a 30’ buffer zone. If the fumigator determines that the buffer zone is greater than 30’, then PPQ must observe the prescribed buffer zone.

The treatment and aeration buffer zones extend from the perimeter of the enclosure to a distance determined by the fumigator in accordance with the label. Entry by any person except the PPQ official and the fumigator is prohibited except as provided in the “Exceptions to Buffer Zone Entry Restrictions” section of the label.

The treatment buffer zone begins when the fumigant is introduced into the enclosure and ends when aeration begins, at which point the aeration buffer zone requirements apply.

The fumigator must define the treatment and aeration buffer zone perimeters using physical barriers (such as walls, ropes, etc.) and placards to limit access to the buffer zone. Placards must meet all label requirements regarding specific warnings, information, and language.

The fumigator will permit transiting through buffer zones in accordance with the “Transit Exception” section of the label.

Buffer Zone Overlap for Multiple Enclosures

For multiple enclosures where buffer zones overlap, the fumigator must recalculate both the treatment and aeration buffer zones in accordance with the label and supply them to the PPQ official.

Step 5—Measuring the Temperature
The PPQ official must determine the temperature of the commodity in order to select the proper dosage rate. Depending on whether or not you are fumigating a pulpy fruit or vegetable, you may use either the commodity temperature or an average of the commodity and air temperatures. A pulpy fruit or vegetable can support internal feeding insects, is fleshy and moist, and can be probed with a temperature measuring device. Examples include, but are not limited to peppers, onions, and grapes.

Determine the temperature to use in selecting the proper dosage rate:

- For fruits, pulpy vegetables, or logs use only the commodity temperature.
- For all other commodities use both the commodity and air temperature.

To take the temperature readings, use a bimetallic, mercury, or digital long-stem thermometer that has been calibrated. Use Table 2-5-1 to determine which temperature to use when selecting the proper dosage rate for commodities other than fresh fruits, vegetables, or logs. Record the temperatures in Block 22 of the PPQ Form 429.

If using the electronic 429 database, record the temperatures in the space and commodity fields in the Treatment form.

Table 2-5-1 Determine Whether to Use Commodity or Air Temperature for Determining Dosage Rate

<table>
<thead>
<tr>
<th>If the air temperature is:</th>
<th>And:</th>
<th>Then, for commodities other than fresh fruits or vegetables or logs and lumber¹:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher than the commodity temperature</td>
<td>By less than 10 degrees</td>
<td>Use the single lowest commodity temperature for determining the dosage rate (Do Not use the average commodity temperature).</td>
</tr>
<tr>
<td>Lower than the commodity temperature</td>
<td>By 10 degrees or more</td>
<td>Use the average of the single lowest air and commodity temperature for determining the dosage rate</td>
</tr>
</tbody>
</table>

¹ Use commodity temperature for fresh fruits or vegetables or logs and lumber.
Step 6—Calculating the Dosage
In order to calculate dosage, the PPQ official must have the following information:

- Treatment schedule
- Volume of the fumigation chamber (ft³)
- Temperatures of commodity and air (°F)

The PPQ official must refer to the specific treatment schedule to determine the dosage rate (pounds/ft³).

Use the formula in Figure 2-5-1 to calculate the dosage:

\[
\text{dosage (lbs.)} = \frac{\text{volume (ft}^3\text{)} \times \text{dosage rate (lbs./1,000 ft}^3\text{)}}{1,000 \text{ ft}^3}\]

Figure 2-5-1 Formula for Calculating Dosage for Chamber Fumigations

EXAMPLE: Using a fumigation chamber which has a volume of 500 ft³, you determine the temperature of the commodity and space is 72 °F. The treatment schedule requires 2 lbs. MB/1,000 ft³ at 70 °F or above. To calculate dosage multiply the volume (500 ft³) by the dosage rate (2 lbs. MB/1,000 ft³). This equals 1.0 lbs. of MB needed for the dosage.

Step 7—Conducting the Fumigation
Since fumigation chambers vary by manufacturer and model, refer to the manufacturer’s operating manual to determine how to use the chamber. In NAP chambers, circulation fans must run for 15 minutes following introduction of the gas.

Taking concentration readings is not required when conducting chamber fumigations.

Step 8—Leak Detection
Turn on any leak detection devices prior to gas introduction and ensure that they run throughout the entire fumigation and aeration.

Aerating the Chamber
The fumiglator must:

- Arrange for the aeration to proceed once the treatment is completed.
Consider the direction of the wind when pointing the exhaust duct, and face the duct outlet toward an open area away from people.

Ensure that, during the first 10 minutes of aeration, no one is present within 200 feet downwind of the exhaust duct outlet.

Determine aeration buffer zones in accordance with EPA’s fumigation buffer zone tables (https://www.epa.gov/pesticide-registration/mbcommoditybuffer).

Ensure that no one is present within the perimeter of the aeration buffer zone unless they are wearing SCBA.

See “Buffer Zone Overlap for Multiple Enclosures” on page-2-5-7.

Follow all label instructions, state, county, and local regulations, in addition to the instructions in this manual.

Inform people located in occupied structures and personnel in the immediate area within the buffer zone that release of MB is about to take place and give them the option of leaving the area or remaining inside the building.

Restrict access to the area where the exhaust duct extends beyond the enclosure.

Secure the fumigation area and allow only the chamber operator and the PPQ official monitoring the fumigation into the secure area.

Do not allow motorized vehicles to operate within the secure area.

Responsibility for Aerating the Commodity

Responsibility for aerating the chamber and releasing the commodity depends on whether the treatment schedule used was a labeled use or FIFRA Section 18 Exemption. Use Table 2-5-2 to determine responsibility for aerating the commodity.
Table 2-5-2 Determine the Responsibility for Aerating the Commodity During Chamber Fumigations

<table>
<thead>
<tr>
<th>If the fumigation chamber is:</th>
<th>And the treatment schedule is:</th>
<th>Then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Privately or State owned</td>
<td>A labeled treatment</td>
<td>RELEASE the fumigation to the fumigator to aerate and release the commodity.</td>
</tr>
<tr>
<td></td>
<td>A FIFRA Section 18 Exemption (noted in the treatment schedules)</td>
<td>1. PPQ official must be present at the initiation of aeration and to verify the final aeration readings</td>
</tr>
<tr>
<td>PPQ owned</td>
<td></td>
<td>2. USE Table 2-5-3 to determine which aeration procedures to follow.</td>
</tr>
</tbody>
</table>

Table 2-5-3 Determine the Aeration Procedure for Chamber Fumigations

<table>
<thead>
<tr>
<th>If the chamber is:</th>
<th>Then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAP</td>
<td>Use the procedures on page 2-5-12</td>
</tr>
<tr>
<td>Vacuum</td>
<td>Use the procedures on page 2-5-12</td>
</tr>
</tbody>
</table>

Each chamber must be equipped with at least one permanent, metal gas sampling tube to allow the fumigator to take colorimetric tube readings during the aeration. Any extensions of the gas sampling tube or flexible connectors must be made of Teflon™ tubing or metal. The extensions of the sampling tube must run from an area in between the treated boxes and end outside the chamber to allow for colorimetric tube readings.

Wearing Respiratory Protection

The fumigator must wear approved respiratory protection (SCBA, supplied air respirator, or combination unit) when there is a risk of exposure to concentrations above 5 ppm; this includes any time the concentration is unknown.

MB 2016 Label

If MB concentration levels are between 1-4 ppm, the PPQ official and the fumigator may wear an air purifying respirator NIOSH certified half-mask or full face piece with a cartridge.
Normal Atmospheric Pressure Chamber—Aerating Noncontainerized Cargo

Advise the fumigator to:

1. While wearing SCBA, turn on the chamber fans.
2. Aerate a minimum of 3 hours for all commodities.
3. Stop the fans and take concentration readings with colorimetric tubes in the airspace around the box and, when feasible, within the carton or box.

Use Table 2-5-4 to determine when to release the commodity.

Table 2-5-4 Determine When to Release the Commodity After NAP Fumigation

<table>
<thead>
<tr>
<th>If the gas concentration level is:</th>
<th>Then:</th>
</tr>
</thead>
</table>
| 5 ppm or less | 1. CONTINUE aeration for 30 minutes.
| | 2. REQUIRE the fumigator to confirm that gas concentrations remain at 5 ppm or less.
| | 3. RELEASE the commodity |
| 6 ppm or more | 1. REQUIRE the fumigator to conduct two additional air washes.
| | 2. TAKE gas concentration readings.
| | 3. If concentration readings are 5 ppm or less, CONTINUE aeration for 30 minutes.
| | 4. REQUIRE the fumigator to confirm that gas concentrations remain at 5 ppm or less.
| | 5. RELEASE the commodity. |

For FIFRA Section 18 exemptions, record the concentration reading (in ppm), date, and time in Block 39 of PPQ Form 429. If using the electronic 429 database, record the date, time and detector reading (in ppm) in the “Detector Readings” form.

Vacuum Fumigation Chambers—Aerating Containerized and Noncontainerized Cargo

Advise the fumigator to:

1. Adjust any vacuum remaining at the end of the fumigation to zero by temporarily opening the air intake valve, then closing it.
2. Draw a 15 inch vacuum and adjust it to zero.
3. Repeat this process of drawing a 15 inch vacuum and releasing it a minimum of four times.
4. Take concentration readings using a colorimetric tube in the airspace around the box, and when feasible, **within the carton or box**.

For FIFRA Section 18 exemptions, record the concentration reading (in ppm), date, and time in Block 39 of PPQ Form 429. If using the electronic 429 database, record the date, time and detector reading (in ppm) in the “Detector Readings” form.

Use **Table 2-5-5** to determine when to release the commodity.

Table 2-5-5 Determine When to Release the Commodity After Vacuum Fumigation

<table>
<thead>
<tr>
<th>If the gas concentration is:</th>
<th>Then:</th>
</tr>
</thead>
</table>
| 5 ppm or less | 1. CONTINUE aeration for 30 minutes.
2. REQUIRE the fumigator to confirm that gas concentrations remain at 5 ppm or less.
3. RELEASE the commodity |
| 6 ppm or above | 1. REQUIRE the fumigator to conduct two additional air washes.
2. TAKE gas concentration readings.
3. If concentration readings are 5 ppm or less, CONTINUE aeration for 30 minutes.
4. REQUIRE the fumigator to confirm that gas concentrations remain at 5 ppm or less.
5. RELEASE the commodity.
6. |
Chemical Treatments

Fumigants • Methyl Bromide • Ship Fumigation for Emergency Situations

Contents

Methods and Procedures 2-6-1
2016 Methyl Bromide Label Information 2-6-1
Materials Needed 2-6-3
PPQ Official Provides 2-6-3
Fumigator Provides 2-6-4
Taking Safety Measures When Fumigating Ships 2-6-6
Preparing to Fumigate 2-6-7
Conducting the Fumigation 2-6-13
Aerating the Dry Store, Galley, or Crew Quarters 2-6-16

Methods and Procedures

The procedures covered in this section provide the methods, responsibilities, and precautions for the fumigation of dry stores, galleys, and crew quarters infested with Khapra beetle and other pests that require treatment.

Emergency fumigation for other pests and commodities may be approved on a case-by-case basis. Contact the USDA APHIS PPQ Field Operations National Operations Manager (919-855-7336) for more information.

Even though ship fumigations are allowed by the manufacturers of methyl bromide, APHIS policy PROHIBITS fumigation of bulk commodities in the ship hold because of the difficulty in meeting APHIS standards.

2016 Methyl Bromide Label Information

In 2015, the Environmental Protection Agency (EPA) directed all 100% methyl bromide (MB) registrants to amend the use directions on the labels of all MB products. EPA required the changes in order to reflect recommendations in an EPA report.¹

These amendments modify the use directions for fumigation and aeration procedures, modify respiratory requirements and equipment and update gas monitoring equipment. EPA requires all labels on newly manufactured MB to reflect these recommendations effective October 01, 2016; however, EPA is allowing existing stocks of MB to be used in accordance with the use directions on the existing stock’s (older) labels.

PPQ officials and fumigators must closely examine gas cylinder labels in order to validate that the dosage, exposure, and commodity are either on the cylinder label or covered by a FIFRA Section 18 exemption. If a label is not affixed to the cylinder, DO NOT allow the fumigator to use that cylinder.

New Buffer Zone Requirements

All 2016 MB labels now require both a treatment and an aeration buffer zone. Both the treatment and aeration buffer zones are specific to the enclosure being fumigated and must be determined by visiting a website link² provided in every MB label. The fumigators are responsible for using this website to determine the buffer zones and reporting both buffer zones to the PPQ official. If the treatment buffer zone is determined to be less than 30 feet, the PPQ official will maintain PPQ’s standard 30 foot treatment buffer zone; otherwise, the new treatment buffer zone must be observed. If the aeration buffer zone is determined to be less than 200 feet, then PPQ’s standard “200 feet for 10 minutes” aeration buffer zone still applies for the first 10 minutes of aeration. The fumigator must refer to EPA’s website to determine the minimum aeration buffer zone to be maintained until the aeration period is complete and the fumigator has verified that gas concentration levels meet the conditions in the MB label.

Transiting through buffer zones

The label permits vehicles to transit through both treatment and aeration buffer zones under specific conditions found in the label; it is up to the fumigator determine how or whether vehicles may transit in accordance with the label.

² https://www.epa.gov/pesticide-registration/mbcommoditybuffer
When using the newer 2016 MB label, changes to certain procedures and equipment in this chapter are displayed in a NOTICE box with a heading titled “MB 2016 Label”.

MB 2016 Label (example)

Use this information when the fumigator is using the 2016 MB label.

When using existing stocks, follow the equipment and procedural guidance that is displayed in the body of the text (outside of the NOTICE box).

If there is no “MB 2016 Label” NOTICE box, then the instructions apply to all MB labels, 2016 and older.

Materials Needed

PPQ Official Provides

- APHIS-approved leak detection device
- Calculator (optional)
- PPQ Form 429 (if not using the electronic 429 Commodity Treatment Information System)
- SCBA or supplied air respirator
Chemical Treatments
Fumigants • Methyl Bromide • Ship Fumigation for Emergency Situations

Materials Needed

MB 2016 Label

In addition to the bulleted list on page 2-6-3, the PPQ official must provide:

- Air purifying respirator NIOSH certified half-mask or full face piece with a cartridge for concentrations between 1 and 4 ppm
- APHIS-approved continuous real time gas monitoring device
 - Permanently mounted in PPQ owned facilities only, PureAire Monitoring Systems, Inc. model Air check Advantage\(^1\)
 - Portable Photoionization Detector (PID), RAE Systems, Inc. model MiniRAE 3000\(^2\)
- Self contained breathing apparatus (SCBA) NIOSH approval prefix TC-13F or supplied air respirator NIOSH approval prefix TC-19C

1 The Air Check Advantage can be calibrated either by the manufacturer or by the PPQ official. Calibrate according to the manufacturer’s User Guide. Refer to Chapter 8: Equipment for more information.

2 The MiniRae 3000 must be calibrated by the PPQ official according to the manufacturer’s User’s Guide. Refer to Chapter 8: Equipment for more information.

Fumigator Provides

- Adhesive sealer, tape, and putty or other pliable material for sealing off holes around pipes
- APHIS-approved gas detection device\(^3\) (e.g. thermal conductivity device, infrared device, etc.)
- Auxiliary pump for purging long gas sample tubes
- Carbon dioxide filter (Ascarite®)
- Colorimetric tubes (Draeger/Kitagawa)
- Desiccant (Drierite®)
- Electrical wiring (ground, permanent type), three prong extension cords
- Exhaust blower and ducts
- Fans (circulation, exhaust, and introduction)

3 The methyl bromide monitor must be calibrated annually. Refer to Chapter 8: Equipment for calibration information. If using a thermal conductivity (TC) analyzer, Drierite® and Ascarite® must be used.
Materials Needed

- Framework and supports
- Gas sampling tubes (leads)
- Gas supply line
- Heat supply
- Insecticides and spray equipment
- Methyl bromide
- Padding
- Sand or water snakes
- Scales or dispensers\(^4\)
- SCBA or supplied air respirator
- Tape
- Tarpaulin and supports
- Temperature recorder and temperature sensors\(^5\)
- Thermometer\(^6\)
- Volatilizer
- Warning signs/Placarding

\(^4\) All scales must be calibrated by the State, a company that is certified to conduct scale calibrations, or by the fumigator under the supervision of PPQ. The source and date of calibration must be posted in a visible location on or with the scale at all times. The scale must be calibrated a following every repair or minimum of every year.

\(^5\) Temperature sensors must be calibrated annually by the manufacturer or National Institute of Standards and Technology (NIST) within the range of 40 °F to 80 °F (4.4 °C to 26.7 °C)

\(^6\) The thermometer must be calibrated or replaced annually.
MB 2016 Label

In addition to the items in the bulleted list on page 2-6-4 and page 2-6-5, the fumigator must also provide:

- Air purifying respirator NIOSH certified half-mask or full face piece with a cartridge for concentrations between 1 and 4 ppm
- APHIS-approved direct read gas detection device
 - Colorimetric tubes (e.g. Draeger, Sensidyne)
- APHIS-approved continuous real time gas monitoring device
 - Permanently mounted in PPQ owned facilities only (PureAire)
 - Portable Photoionization Detector (PID) RAE Systems, Inc. MiniRAE 3000
- Self contained breathing apparatus (SCBA) NIOSH approved prefix TC-13F or supplied air respirator NIOSH approval prefix TC-19C

1 These devices must be calibrated according to the manufacturer’s User Guide. Refer to Chapter 8: Equipment for more information.

PPQ official and fumigator should be prepared to use auxiliary power if shore power is not available as most ships’ power is 220 volts.

Taking Safety Measures When Fumigating Ships

The most important consideration when fumigating ships is the protection of human life. The commercial fumigator has the following safety responsibilities when fumigating ships:

- Observe all safety precautions while fumigating
- Prevent access of unauthorized personnel, including the ship’s crew, to the fumigated area
- Conduct fumigation properly to result in an effective treatment
- Evacuate gas from ship and aerate when fumigation is completed
- Test, with a gas detector, all areas aboard ship to ensure freedom from MB before allowing crew members access to the ship

The commercial fumigator must abide by the following guidelines when fumigating ships:
Preparing to Fumigate

Step 1—Meeting With Ship’s Captain and Agent
When planning a ship fumigation, the PPQ official must meet with the ship’s captain, agent, and the fumigation company representative to discuss the conditions of the fumigation. If cargo is present in an area about to be fumigated, determine if any materials might be adversely affected by the fumigant. (see Residual Effect on page 2-3-11 for a list of commodities adversely affected by MB) Notify the ship’s agent of possible effects and if conditions permit, allow removal of the material for an alternate treatment.

Discuss plans for removing all crew from the ship. Prior to fumigating a vessel, the master of the vessel and the fumigator must determine whether it is suitably designed to allow for safe occupancy by the ship’s crew. If it is determined that it does not allow for safe occupancy, then all crew members must be removed.

It is the responsibility of the commercial fumigator to comply with all label requirements, and with State, local, and U.S. Coast Guard regulations (see Coast Guard Regulations on page B-B-1) concerning shipboard fumigation.

Step 2—Selecting a Treatment Schedule
Refer to T402—Miscellaneous Areas Where Fumigation is Not Possible on page 5-5-3 for the correct treatment. Select a treatment schedule based on the plant pest and commodity to be fumigated. Consider all the commodities present in the area to be fumigated when determining the best treatment available. In the case of Khapra beetle fumigation, determine if finely milled products (example—flour) will be fumigated. To ensure all life stages have been mitigated, have all fumigated commodities destroyed either by incineration or by sterilization after the fumigation has been completed.
Treating Deck Areas

Areas which may be pest contaminated or suspected of being contaminated, such as the deck, hatch covers, drain channels, crevices around hatches, hallways, and similar areas that cannot be fumigated, should be treated according to T402-b-3-1.
Step 3—Determine Buffer Zones

MB 2016 Label

The fumigator will determine the treatment buffer zone in accordance with EPA’s fumigation buffer zone tables (https://www.epa.gov/pesticide-registration/mbcommoditybuffer).

The treatment buffer zone surrounds the area where access is limited during treatment. If the fumigator determines that the buffer zone is less than 30’, then PPQ requires a 30’ buffer zone. If the fumigator determines that the buffer zone is greater than 30’, then PPQ must observe the prescribed buffer zone.

The treatment buffer zone extends from the perimeter of the enclosure to a distance determined by the fumigator in accordance with the label. Entry by any person except the PPQ official and the fumigator is prohibited except as provided in the “Exceptions to Buffer Zone Entry Restrictions” section of the label.

The treatment buffer zone begins when the fumigant is introduced into the enclosure and ends when aeration begins, at which point the aeration buffer zone requirements apply.

The fumigator must define treatment and aeration buffer zone perimeters using physical barriers (such as walls, ropes, etc.) and placards to limit access to the buffer zone. Placards must meet all label requirements regarding specific warnings, information, and language.

The fumigator will permit transiting through buffer zones in accordance with the “Transit Exception” section of the label.

Buffer Zone Overlap for Multiple Enclosures

For multiple enclosures where buffer zones overlap, the fumigator must recalculate both the treatment and aeration buffer zones in accordance with the label and supply them to the PPQ official.

Step 4—Preparing Areas to Be Fumigated

Open all bins, drawers, and cupboards. Stack all bagged commodities on pallets to facilitate gas distribution and penetration.
Step 5—Arranging and Operating Fans
Storerooms normally require a minimum of two, 1,800 cfm fans. Ensure that the fumigator places one fan at a low level and the other at a high level. Fans with capacity above 1,800 cfm create strong air currents which could result in gas leakage around the seals. If you are fumigating an area which includes the galley and adjoining storerooms, ensure that the fumigator places the fans to evenly distribute gas. Make certain that fans can be turned on and off from an area outside the fumigation site.

Require the fumigator to test all fans to ensure that they are in good operating condition. Operate fans during the gas introduction and for 30 minutes after introduction is completed.

Step 6—Placing Gas Sampling Tubes
The fumigator must place gas sampling tubes in areas and commodities which will give representative samples within the fumigated area. Require the fumigator to bring sampling tubes to one central point outside the treatment buffer zone of the area being fumigated. Label all gas sampling tubes so they can be easily identified when you take concentration readings. Label each tube by identifying the level of the hold and whether the gas sampling tube is in a commodity or space.

The fumigator must place a minimum of two gas sampling tubes in open space and at least one gas sampling tube within the commodity considered to be the most difficult for the fumigant to penetrate.

Step 7—Placing the Gas Introduction Lines
Numerous gas introduction lines may be necessary in order to obtain even gas distribution throughout the fumigation area. Require the fumigator to place the gas introduction line directly through an opening from the outside (example—a door or window) directly above a fan. The introduction line must be securely attached to the top of the fan to prevent movement of the hose. An unsecured introduction line could move the line out of the airflow. Require the fumigator to place a piece of nonpermeable sheeting (example—plastic or vinyl canvas) over the commodity in front of and below each gas supply line. The nonpermeable sheet will prevent any liquid MB from coming in contact with commodities and will prevent damage.

Step 8—Measuring the Temperature
The PPQ official must determine the temperature of the commodity and the air (space) in order to select the proper dosage rate using a calibrated thermometer. Record the temperatures in Block 22 on the PPQ Form 429.

If using the electronic 429 database, record the temperatures in the space and commodity fields in the Treatment form.
If the temperature is below the minimum listed for the treatment schedule, then require the fumigator to heat the hold or other space to be fumigated.

Step 9—Sealing Stores

One of the most important steps in preparing for a ship fumigation is sealing all openings and areas which have the potential to leak gas. Consider the entire area to be fumigated as a natural atmospheric chamber and make the area as gastight as possible. The most important task is to locate all openings (e.g., drain pipes, bilge drain holes, or air ducts) and seal them.

Ensure that the fumigator does **not** seal or make gastight recessed areas, ducts, or similar apertures which may harbor an infestation. In some cases it is better to seal sources of leaks on the outside of the area to be fumigated. Require the fumigator to use caulking compound or tape for sealing small spaces, doors, and other openings. For sealing larger areas, such as hatch cover openings, use polyethylene or similar material secured with tape or adhesive spray. When practical, seal air ventilation ducts on the outside of the space being fumigated so sealing tape can be removed when the fumigator evacuates the gas and begin aeration.

Require the fumigator to look for and seal off the following ship areas when preparing a ship for fumigation:

- Air vents
- All passageways, engine room, and other crew areas for electric pipeline or other duct work common with cargo holds
- Bilge and drainwell vents and drains to all cargo holds sometimes common with more than one hold or engine room bilges
- CO₂ piping to all cargo holds; degassing systems (older ships) which usually run from hold to hold
- Drains
- Dumb-waiter openings
- Emergency escape hatches from shaft alley and escape hatches from all holds
- Engine room—recirculation air systems controlled from and common with the engine room areas—especially on newer ships; check for drilled holes or other openings in fore and aft bulkheads of engine room spaces, all engine room vent systems, and housing or casing leading into spaces to be fumigated
- Galley intake and exhaust systems (may be common with the dry stores)
- Heating, air conditioning, electrical, communication, and ventilation systems
Chemical Treatments Fumigants • Methyl Bromide • Ship Fumigation for Emergency Situations
Preparing to Fumigate

- Inner bottom and deep tank covers to ensure that they are closed prior to fumigating
- Pipes and other utility conduits through decks and bulkheads
- Fire and smoke detector systems from fumigated areas
- Steam-smothering systems for connection between holds
- Vents in shaft alley and gear lockers to holds; breaks in bulkhead
- Wall plates

Step 10—Measuring Volume
Obtain the volume of the dry stores, galleys, and crew quarters from the chief mate, the captain, the ship’s plan, or by measuring the actual dimensions.

Step 11—Calculating Dosage
The formula for calculating dosage is:

\[
\text{dosage (lbs.)} = \frac{\text{volume (ft}^3\text{) } \times \text{dosage rate (lbs./1,000 ft}^3\text{)}}{1,000\ \text{ft}^3}
\]

Figure 2-6-1 Formula for Calculating Dosage for Vessel Fumigations

EXAMPLE: The dry storage area is infested with Khapra beetle. The volume is 8,000 ft\(^3\), and the temperature is 65 °F. The treatment schedule lists the dosage rate as 6 lbs. MB/1,000 ft\(^3\). To calculate the dosage multiply the volume (8,000 ft\(^3\)) by the dosage rate (6 lbs./1,000 ft\(^3\)). This equals 48 lbs. of MB needed for the dosage.

Step 12—Making a Final Check
Just before introducing the gas, the PPQ official and the fumigator must ensure that the following activities are performed:

- Take gas concentration readings to determine if any contaminant gases are present
- Turn on all fans and gas detection devices to make sure they work
- Start volatilizer and heat water to 200 °F or above
- Place fumigant cylinder with gas introduction line on scale and take initial weight reading. Make sure the gas introduction line is attached to the cylinder. After obtaining the correct weight, subtract the dosage to be introduced into the enclosure. When the entire dosage has been introduced, the scale will be balanced.
Check to make sure the ship’s gangway and areas to be fumigated are properly placarded and the area is secured. A guard should be present at the entrance to the gangway to restrict access to the ship. If the crew has been removed, walk through the quarters and other areas to make sure no one is aboard.

Check all sealed areas to make sure they are securely taped and free from holes

Check the gas introduction line connections to make sure they are tight

Check to make sure all safety equipment is available and in working order

Conducting the Fumigation

Step 1—Introducing the Gas

The PPQ official must wear SCBA anytime the MB concentration level in the air is unknown or greater than or equal to 5 ppm.

MB 2016 Label

If MB concentration levels are between 1-4 ppm, the PPQ official and fumigator may wear an air purifying respirator NIOSH certified half-mask or full face piece with a cartridge.

Require the fumigator to use SCBA while introducing and adding gas. Require the fumigator to turn on all fans while introducing the gas. When using large cylinders of MB, have the fumigator slightly open the valve then close the valve. Using an APHIS-approved continuous real time gas detection device, check all connections on the gas introduction line for leaks. If leaks are found, the fumigator must tighten the connections and repeat the test. When no leaks are found, require the fumigator open the valve to the point where 3 to 4 pounds of MB are being introduced per minute. The water temperature in the volatilizer should never go below 150 °F at any time during gas introduction. The water in the volatilizer can include an antifreeze and should be handled with appropriate safeguards.

Do not touch the introduction line with your bare hands—you may get burned! Have the fumigator close the cylinder valve once the proper dosage has been introduced.
The fumigation time begins when all the gas has been introduced. The PPQ official must record the time gas introduction was started and completed in Block 32 on the PPQ Form 429.

If using the electronic 429 database, record the fumigation date, gas introduction start and finish time in the corresponding fields under the “GAS INTRODUCTION” heading on the Treatment form.

Require the fumigator to run the fans for 30 minutes after all the gas has been introduced. The PPQ official must take the initial concentration reading 30 minutes after all the gas has been introduced.

When using cylinders, getting the final amounts of gas out of the cylinder may take a long time. Consider taking gas concentration readings 30 minutes after the gas is first introduced. If the gas distribution is even (all readings within 4 ounces of each other) and at an adequately high concentration, then require the fumigator to turn off the fans. Running the fans longer may contribute to gas leakage. Allow the remainder of the gas to discharge at its slow rate with intermittent running of the fans for dispersal.

Step 2—Taking Concentration Readings

The PPQ official must take concentration readings with an APHIS-approved gas detection device to determine the gas concentration and distribution within the area being fumigated. If using a T/C, check Drierite® tubes before each reading and change Drierite® if its color is pink. Take concentration readings at the times prescribed in the treatment schedule.

Consult the treatment schedule being used for the actual concentration readings. You may start the final concentration reading 30 minutes prior to the end of the exposure period.

Take additional readings when there is indication that the gas is not properly distributed or the minimum gas concentration is not being maintained. Record readings on PPQ Form 429.

Step 3—Testing for Leaks

Require the fumigator to wear the SCBA and use an APHIS-approved continuous real time gas detection device to test for leaks after all the gas has been introduced. Test around the perimeter of the area being fumigated, especially where doors, windows, pipes, electric cords, gas sampling tubes, and gas introduction lines are present. If the fumigator detects leaks, ensure that they are sealed with additional tape, adhesive, or by placing more polyethylene and adhesive over the leaking areas.
Step 4—Adding Gas and Extending Exposure

If you determine that you need to add gas and extend time, use the formula in Figure 2-6-2 to calculate the amount of gas to add and Table 2-6-1 to determine how long to extend the exposure period.

Figure 2-6-2 Formula for Determining the Amount of Gas to Add for Vessel Fumigation

\[
1.6 \times \text{number of ounces below minimum} \times \frac{\text{volume in cubic feet}}{1000\text{cubic feet}} \times \frac{1}{16} = \text{pounds of gas to add}
\]

EXAMPLE: You are fumigating a ship’s storeroom for Khapra beetle and the minimum concentration for the 2-hour reading is listed at 50 oz., but your readings average 45 oz. The volume of the storeroom is 1,500 ft³. Using the formula in Figure 2-6-2, you would figure the following:

\[
1.6 \times 5 \text{ (oz. below min.)} \times 1500/1000 \times \frac{1}{16} = 12 \text{ oz. gas to be added}
\]

Use Table 2-6-1 to determine how long to extend the exposure period:

Table 2-6-1 Determine Time for Extended Exposure

<table>
<thead>
<tr>
<th>If the exposure time is:</th>
<th>And the reading is below minimum by:</th>
<th>Then extend exposure:</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 hours or more</td>
<td>10 oz. or less</td>
<td>10 percent of the time lapse since gas introduction or the last reading</td>
</tr>
<tr>
<td></td>
<td>11 oz. or more</td>
<td>2 hours or 10 percent of time lapse since last reading, whichever is greater</td>
</tr>
</tbody>
</table>

Step 5—Exhausting the Gas

Require the fumigator to exhaust the gas at the completion of the exposure period. Record detector tube readings and the time interval from the aeration in the corresponding fields in “DETECTOR READINGS” the PPQ Form 429.

Removal of the fumigant is facilitated by using an outside blower to force fresh air through portable canvas, plastic, or similar ducts. Another method is to use compressed air hoses to force fresh air into the area. Require the fumigator to use suction type fans with portable ducts to evacuate gas from storerooms to outside, downwind areas away from crew areas, preferably on the offshore side of the ship. Ensure that the fumigator does not point the ducts upward, since
dissipation onto the deck may occur. Use the ship’s aeration/ventilation equipment if possible. Make sure that use of ship’s equipment will **not** distribute the exhausted gas to other areas within the ship.

Aerating the Dry Store, Galley, or Crew Quarters

The fumigator must:

- Arrange for the aeration to proceed once the treatment is completed.
- Consider the direction of the wind when pointing the exhaust duct, and face the duct outlet toward an open area away from people.
- Ensure that, during the first 10 minutes of aeration, no one is present within 200 feet (downwind of the exhaust duct outlet).
- Determine aeration buffer zones in accordance with EPA’s fumigation buffer zone tables (https://www.epa.gov/pesticide-registration/mbcommoditybuffer).
- Ensure that no one is present within the perimeter of the aeration buffer zone unless they are wearing SCBA.
- Follow all label instructions, state, county, and local regulations, in addition to the instructions in this manual.
- Inform people located in occupied structures and personnel in the immediate area within the buffer zone that release of MB is about to take place and give them the option of leaving the area or remaining inside the building.
- Restrict access to the area where the exhaust duct extends beyond the enclosure.

Wearing Respiratory Protection

The fumigator must wear approved respiratory protection (SCBA, supplied air respirator, or combination unit) when there is a risk of exposure to concentrations above 5 ppm; this includes any time the concentration is unknown.
MB 2016 Label

If MB concentration levels are between 1-4 ppm, the PPQ official and the fumigator may wear an air purifying respirator NIOSH certified half-mask or full face piece with a cartridge.

Aerating the Area

Advise the fumigator to:

1. Wearing the SCBA, open doors, hatches, tarpaulins, and areas to facilitate aeration.
2. Connect the exhaust system.
3. Start the exhaust system (minimum 3,500 cfm exhaust fan connected to an exhaust duct).
4. Aerate until gas concentrations are 5 ppm or less.
5. Stop the aeration fans.
6. While wearing SCBA, take a concentration reading with a colorimetric tube in the airspace within the fumigated area.

The PPQ official must record the date, concentration reading, and time on PPQ Form 429. If using the electronic 429 database, record the time and detector reading (in ppm) in the corresponding fields on the “Detector Readings” form.
Chemical Treatments Fumigants • Methyl Bromide • Ship Fumigation for Emergency Situations
Wearing Respiratory Protection
Chemical Treatments

Fumigants • Methyl Bromide • Structure Fumigation

Under Construction.

The information in this chapter has been temporarily removed. For more information, contact USDA PPQ Field Operations at 919-855-7336.
Introduction

APHIS allows the fumigation of a refrigerated container WITHOUT a tarpaulin provided the containers are located outdoors and can be shown to be structurally sound. For cut flower, fresh fruit and vegetable treatments of 4 hours duration or less, APHIS may approve on a case-by-case basis the use of containers without the use of a tarpaulin. The commercial fumigator should contact the local PPQ office to initiate the process for container approval. Refer to Table 2-8-1 for detailed responsibilities.

The integrity of these containers (ability to hold methyl bromide adequately) is predetermined by passing a pressure test. (See “Container Prepping and Pre-Testing” on page 2-8-15.)
2016 Methyl Bromide Label Information

In 2015, the Environmental Protection Agency (EPA) directed all 100% methyl bromide (MB) registrants to amend the use directions on the labels of all MB products. EPA required the changes in order to reflect recommendations in an EPA report.¹

These amendments modify the use directions for fumigation and aeration procedures, modify respiratory requirements and equipment and update gas monitoring equipment. EPA requires all labels on newly manufactured MB to reflect these recommendations effective **October 01, 2016**; however, EPA is allowing existing stocks of MB to be used in accordance with the use directions on the existing stock’s (older) labels.

PPQ officials and fumigators **must** closely examine gas cylinder labels in order to validate that the dosage, exposure, and commodity are either on the cylinder label or covered by a FIFRA Section 18 exemption. If a label is **not** affixed to the cylinder, **DO NOT** allow the fumigator to use that cylinder.

New Buffer Zone Requirements

All 2016 MB labels now require both a treatment and an aeration buffer zone. Both the treatment and aeration buffer zones are specific to the enclosure being fumigated and must be determined by visiting a **website link**² provided in every MB label. The fumigators are responsible for using this website to determine the buffer zones and reporting both buffer zones to the PPQ official. If the treatment buffer zone is determined to be less than 30 feet, the PPQ official will maintain PPQ’s standard 30 foot treatment buffer zone; otherwise, the new treatment buffer zone **must** be observed. If the aeration buffer zone is determined to be less than 200 feet, then PPQ’s standard “200 feet for 10 minutes” aeration buffer zone **still** applies for the first 10 minutes of aeration. The fumigator **must** refer to EPA’s website to determine the minimum aeration buffer zone to be maintained until the aeration period is complete and the fumigator has verified that gas concentration levels meet the conditions in the MB label.

Transiting through buffer zones

The label permits vehicles to transit through both treatment and aeration buffer zones under specific conditions found in the label; it is up to the fumigator determine how or whether vehicles may transit in accordance with the label.

¹ “Report of Food Quality Protection Act (FQPA) Tolerance Reassessment and Risk Management Decision (TRED) for methyl bromide, and Reregistration Eligibility Decision (RED) for Methyl Bromide’s Commodity Uses”, dated August 2006.
When using the newer 2016 MB label, changes to certain procedures and equipment in this chapter are displayed in a NOTICE box with a heading titled “MB 2016 Label”.

MB 2016 Label (example)

Use this information when the fumigator is using the 2016 MB label.

When using existing stocks, follow the equipment and procedural guidance that is displayed in the body of the text (outside of the NOTICE box).

If there is no “MB 2016 Label” NOTICE box, then the instructions apply to all MB labels, 2016 and older.

Responsibilities

Refer to Table 2-8-1 for the processes and responsible parties when approving a container for tarpless fumigation.
Table 2-8-1 Responsibilities for Approving Tarpless Container Fumigations

<table>
<thead>
<tr>
<th>Action</th>
<th>Responsible Party:</th>
<th>Local PPQ Field Office</th>
<th>Field Operations Hub (FO-H)</th>
<th>QPAS</th>
<th>CPHST-AQI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Receives request from fumigator about tarpless fumigation. Request includes fumigator contact information and details of fumigation location</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Local field office sends details of the inquiry to:</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. FO-H sends details of the inquiry to:</td>
<td></td>
<td>X</td>
<td>X X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Acknowledges receipt of request via email to the fumigator; sends requirements for pressure testing (see Container Prepping and Pre-Testing) and ensures that the requirements are understood</td>
<td>X</td>
<td>X (if non-routine)</td>
<td>X (if non-routine)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Fumigator submits proposed protocol to:</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Once protocol is agreed upon, fumigator is notified whether the protocol is approved or denied by:</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7. When fumigator is ready for on site approval, dates for testing are scheduled by:</td>
<td>X</td>
<td></td>
<td>X (if non-routine)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. On sight approval audit conducted, trip report, including recommendation, sent to CPHST AQI and QPAS by:</td>
<td>X</td>
<td></td>
<td>X (if non-routine)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Concurrence reached over whether approval is granted</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Notification of approval in writing sent by:</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>11. Training of local PPQ officials (pressure testing) by:</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>12. Follow up audits conducted if needed.</td>
<td></td>
<td></td>
<td>X</td>
<td>X (if non-routine)</td>
<td></td>
</tr>
</tbody>
</table>
Methods and Procedures

The procedures covered in this section provide PPQ officials and commercial fumigators with the methods, responsibilities, and precautions for container fumigation without a tarpaulin.

A refrigerated container may be used for fumigations without a tarpaulin provided the following requirements are met:

- Air exchange vents must be closed and taped if any openings are visible
- Air introduction and exhaust ducts installed
- Container must be a refrigerated sea container or refrigerated over-the-road freight trailer with metal flooring
- Container must have three gas monitoring leads in the front-high, middle-middle, and rear-low of the container (the “rear” is considered to be at the doors)
- Container must be packed (in some cases repacked) so that two circulation fans can be placed on top of the commodity; one in the front and one in the back
- Packing will ensure a minimum of 18 inches of air space above the commodity
- Rear fan (at the doors) has the gas introduction hose attached to it and is referred to as the gas introduction fan
- Use fans that have the capacity to move a volume of air in cubic feet per minute equivalent to the total volume of the container
- Container must have all drainage holes (corner drip holes) sealed
- Container must not have side doors or rear doors with damaged/missing gaskets
- Container must successfully complete the Official Pressure Test described in this chapter
- Container must have all refrigeration units turned off during pressure testing and when under fumigation

Materials Needed

PPQ Official Provides

- Calculator (optional)
- PPQ Form 429
Chemical Treatments

Fumigants • Methyl Bromide • Special Procedures for Container Fumigations Without a Tarpaulin

Materials Needed

- Self-contained breathing apparatus (SCBA) or supplied air respirator
- Stopwatch

MB 2016 Label

In addition to the bulleted list above, the PPQ official must provide:

- Air purifying respirator NIOSH certified half-mask or full face piece with a cartridge for concentrations between 1 and 4 ppm
- APHIS-approved continuous real time gas monitoring device
 - Permanently mounted in PPQ owned facilities only, PureAire Monitoring Systems, Inc. model Air check Advantage¹
 - Portable Photoionization Detector (PID), RAE Systems, Inc. model MiniRAE 3000²
- Self contained breathing apparatus (SCBA) NIOSH approval prefix TC-13F or supplied air respirator NIOSH approval prefix TC-19C

¹ The Air Check Advantage can be calibrated either by the manufacturer or by the PPQ official. Calibrate according to the manufacturer’s User Guide. Refer to Chapter 8: Equipment for more information.

² The MiniRae 3000 must be calibrated by the PPQ official according to the manufacturer’s User’s Guide. Refer to Chapter 8: Equipment for more information.

Fumigator Provides

- Aeration fans with ducts
- APHIS-approved methyl bromide monitor³ (e.g. thermal conductivity device, infrared device, etc.)
- Auxiliary pump or Mighty Vac for purging long gas sampling tubes
- Colorimetric tubes (**See “Gas Detector Tube (colorimetric) and Apparatus” on page-E-1-32** for a list of APHIS-approved product ranges)
- Electrical wiring (grounded, permanent type), three-prong extension cords
- Ducts (introduction and exhaust)

³ Methyl bromide monitor must be calibrated annually. **See “Equipment” on page-8-1-1** for calibration information. If using a thermal conductivity (T/C) analyzer, Drierite® and Ascarite® must be used.
Chemical Treatments Fumigants • Methyl Bromide • Special Procedures for Container Fumigations Without a Tarpaulin

Materials Needed

- Fans (circulation and introduction)
- Gas introduction hose
- Gas sampling tubes
- Methyl bromide
- Pressure testing equipment
 - Any device or equipment with the ability to pressurize a container (for example, blowers, compressors, tanks, manifolds)
 - Manometer
 - Sealing putty
- Scales or dispensers
- Self-contained breathing apparatus (SCBA) or supplied air respirator
- Tape
- Temperature recorder and temperature sensors
- Thermometer
- Volatilizer
- Warning signs/Placarding

4 All scales must be calibrated by the State, a company that is certified to conduct scale calibrations, or by a state-certified fumigator under the supervision of PPQ. The source and date of calibration must be posted in a visible location on or with the scale at all times. The scale must be calibrated a minimum of every year.

5 Temperature sensors must be calibrated annually by the manufacturer or National Institute of Standards and Technology (NIST) within the range of 40 °F to 80 °F (4.4 °C to 26.7 °C)

6 The thermometer must be calibrated or replaced annually.
Preparing to Fumigate

Step 1: Selecting the Container
The fumigator must obtain a letter of authorization from the owner of the container prior to attempting to gain access through the container doors or making any structural changes to the containers. The fumigator will maintain the letters of authorization and provide copies to the local PPQ office upon request. PPQ is not responsible for any damage incurred by the fumigator due to modification or manipulation of a container's original condition.

Step 2: Selecting a Fumigation Site
The PPQ official and the fumigator must consider the following factors when selecting a fumigation site:

- Aeration requirements
- Electrical power supply
- Nonwork area that can be effectively marked and safeguarded or isolated
- Water supply
Chemical Treatments Fumigants • Methyl Bromide • Special Procedures for Container Fumigations Without a Tarpaulin
Preparing to Fumigate

◆ Well-lighted area
◆ Well-protected area
◆ Buffer Zone Overlap for Multiple Enclosures

Aeration Requirements
The fumigator must restrict access to the area where the exhaust duct extends beyond the container. Before a fumigation begins, the fumigator must ensure the exhaust duct is located in a safe place. During the first 10 minutes of aeration, the fumigator must not allow anyone within 200 feet downwind of the exhaust duct outlet. The fumigator is responsible for planning the fumigation so that aeration can be safely conducted immediately following the fumigation.

MB 2016 Label
The fumigator is responsible for all aspects of aeration. When the fumigation is a Section 18 exemption fumigation, the PPQ official is required to verify the final gas concentration reading(s). Refer to *Aerating Tarpless Containers on page 2-8-26* for more information.

Electrical Power Supply
Require the fumigator to supply an adequate electrical source to run the circulation fans and the gas detection unit. A separate line should be available for the gas detection unit. Electrical outlets must be grounded and conveniently located in relation to the fumigation area. PPQ does not allow the use of generators as a power source, except under emergency conditions.
Nonwork Area—
MB 2016 Label

The fumigator will determine the treatment buffer zone in accordance with EPA’s fumigation buffer zone tables (https://www.epa.gov/pesticide-registration/mbcommoditybuffer).

The treatment buffer zone surrounds the area where access is limited during treatment. If the fumigator determines that the buffer zone is less than 30’, then PPQ requires a 30’ buffer zone. If the fumigator determines that the buffer zone is greater than 30’, then PPQ must observe the prescribed buffer zone.

The treatment buffer zone extends from the perimeter of the enclosure to a distance determined by the fumigator in accordance with the label. Entry by any person except the PPQ official and the fumigator is prohibited except as provided in the “Exceptions to Buffer Zone Entry Restrictions” section of the label.

The treatment buffer zone begins when the fumigant is introduced into the enclosure and ends when aeration begins, at which point the aeration buffer zone requirements apply.

The fumigator must define the treatment and aeration buffer zone perimeters using physical barriers (such as walls, ropes, etc.) and placards to limit access to the buffer zone. Placards must meet all label requirements regarding specific warnings, information, and language.

The fumigator will permit transiting through buffer zones in accordance with the “Transit Exception” section of the label.

Buffer Zone Overlap for Multiple Enclosures

For multiple enclosures where buffer zones overlap, the fumigator must recalculate both the treatment and aeration buffer zones in accordance with the label and supply them to the PPQ official.

Nonwork Area

The PPQ official and the fumigator must select a secure area where traffic and people are restricted from entering and that is isolated from people working. A nonwork area is preferred to help prevent accidents such as a forklift piercing a container. The fumigation area is the area 30 feet surrounding the container(s) and is separated from the non-fumigation area by a physical barrier such as ropes, barricades, or walls.
Restrict access to the fumigation and aeration areas to the fumigator’s employees and PPQ employees monitoring the treatment. The area outside the 30-foot perimeter is usually regarded as a safe distance from the fumigation. The fumigator must placard within the perimeter of the secure area (including the entrance) with the appropriate DANGER/PELIGRO signs. Make sure the placards meet the appropriate fumigant label or labeling requirements. The skull and crossbones should be present as well as “AREA UNDER FUMIGATION, DO NOT ENTER/NO ENTRE”; date of the fumigation; name of the fumigant used; and the name, address, and telephone number of the fumigator. Unless you (PPQ) authorize their use, do not allow motorized vehicles to operate within 30 feet of the fumigation and aeration areas. The 30-foot perimeter is not specifically mentioned on the MB label, but is required for PPQ officials.

When multiple containers are being fumigated, there must be sufficient space for a person wearing SCBA to walk between the containers.

Water Supply

A water supply is necessary for safety purposes. Water is necessary for washing off MB if the liquid form is spilled on someone. If no permanent water is present on site, the fumigator must provide a five-gallon supply of potable, unfrozen water.

Well-Lighted Area

The fumigator will ensure that the area has adequate lighting for safety purposes and for ease in reading gas detection units, thermometers, and for determining whether a container has holes or places where the MB may leak.

Well-Ventilated, Sheltered Area

The PPQ official and the fumigator must select sites that are well-ventilated and sheltered. A well-ventilated site is required for exhausting gas. Avoid areas where strong drafts are likely to occur.

Ensure that the fumigator selects a site that is semi-sheltered such as the leeward side of a warehouse or pier to offer some protection from severe winds. Severe winds are defined as sustained winds or gusts of 30 m.p.h. or higher for any time period. Do not allow the fumigation to proceed if there is a forecast from the National Weather Service of severe winds and/or thunderstorms at the beginning of or for the entire length of the fumigation.
Some gas will escape from the container even in the best conditions. The fumigator must ensure that the exhausted gas does not endanger people working outdoors. When treatments are conducted in a particular location on a regular basis, a permanent site should be designated.

Step 3: Arranging the Containers
Ensure that the containers are not loaded beyond 80 percent of their capacity. There must be a space of a minimum of 18 inches above the commodity. This allows a crawl space for placing the gas sampling tubes and fans, and facilitates uniform gas distribution. (Some restacking of cargo may be necessary to meet this requirement.) Require the commodity to be on pallets to allow adequate space (at least 2 inches) below the commodity.

APHIS does not allow stacking of containers. Stacking creates a safety risk to the person(s) installing fans, sampling lines, and aeration ducts.

Step 4: Arranging and Operating Fans
Require the fumigator to use a minimum of two 2,500 cfm fans for efficient gas circulation. Ensure that the fans are placed on top of the palletized commodity; one fan at the doors (rear) and one fan in the front. The rear fan is the gas introduction fan and should be pointed into the container. The front fan is pointing in the opposite direction.

> **Important**
> Do **not** run the container’s fan or refrigeration unit during the fumigation.

Step 5: Placing the Gas Introduction Line
MB is converted from a liquid into a gas by a volatilizer. The hose that runs from the MB cylinder into the volatilizer must be 3000 PSI hydraulic high pressure hose with a 3/8 inch inner diameter (ID) or larger. From the volatilizer, MB gas is introduced into the container by means of a gas introduction line. The gas introduction line must be a minimum of 350 PSI with a 1/2 inch ID or larger. Ensure that the fumigator places the introduction line directly above the fan at the rear door of the container. Each container must have a gas introduction line.

Step 6: Placing the Gas Sampling Tubes
Ensure that the fumigator installs at least three gas sampling tubes per container. Insert the gas introduction line and sampling tubes between the closed rear door gaskets, or in some other location that does not interfere with successful pressure testing. Position the gas sampling tubes as follows:

- Front low — near the floor at the door end of the container
Require the fumigator to use gas sampling tubes of sufficient length to extend from the sampling position inside the container to at least 30 feet beyond the container. Ensure that all the gas sampling tubes meet in one area for ease and safety in taking gas concentration readings. Do not permit gas sampling tubes to be spliced. Before starting the fumigation, check for gas sampling line blockage or pinching by connecting each tube to the gas detection device for a short time. If the line is blocked, the flow to the device will drop sharply. Tubes can also be checked with a MityVac® hand pump or other air pump device. Require the fumigator to replace any defective gas sampling tubes.

Step 7: Measuring the Temperature

The PPQ official must determine the temperature of the commodity in order to select the proper dosage rate. To take the temperature readings, use a calibrated bimetallic, mercury, or digital long-stem thermometer.

Depending on whether or not you are fumigating a pulpy fruit or vegetable, you may use either the commodity temperature or an average of the commodity and air temperatures. A pulpy fruit or vegetable can support internal feeding insects, is fleshy and moist, and can be probed with a temperature measuring device. Examples include, but are not limited to peppers, onions, and grapes.

For pulpy fruits and pulpy vegetables, insert the thermometer into the pulp and use the only the commodity temperature to determine the dosage rate. For commodities that have been refrigerated, probe the fruits that have the lowest pulp temperature. Again, fumigate only when the fruit pulp is at 40°F or higher.

If the commodity has no pulp (e.g., peas, beans, grains, herbs, spices, etc.), take the temperature of the air space immediately surrounding the commodity as well as the commodity temperature and use Table 2-8-2 to determine the correct temperature to use when selecting the proper dosage rate.

Notice

The presence of ice indicates temperatures below 40 °F. If ice is present anywhere in the box, pallet, or fumigation enclosure, DO NOT fumigate the commodity.

Important

Do not fumigate at temperatures below 40°F.

The presence of ice indicates temperatures below 40°F. If ice is present anywhere in the box, pallet, or container, do not fumigate the commodity.
Step 8: Measuring the Volume

Using a 100-foot tape measure, the PPQ official and the fumigator must carefully measure the length, width, and height of the container. *Never* estimate the measurements. An error in measurement of as little as 12 inches can result in miscalculating the dosage by as much as 15 percent. When measuring, round off to the nearest quarter foot (e.g., 2 1/4 inches = 0.25 feet). In the case of fumigations of edible commodities, an error can result in an unacceptable level of residue on the commodity.

Formula for determining volume:

\[
\text{length} \times \text{width} \times \text{height} = \text{volume in cubic feet}
\]

A stack with measurements H=10'6", L=42'3", and W=10'9"

\[
10.50 \times 42.25 \times 10.75 = 4,768.9 \text{ ft}^3 \text{ round to } 4,769 \text{ ft}^3
\]

The PPQ official must record volume in Block 26 of PPQ Form 429. If using the electronic 429 database, record the length, width, and height in the corresponding fields under the “AMT of Gas Introduced” heading on the treatment form.

Step 9: Calculating the Dosage

The PPQ official must calculate dosage by doing the following:

1. Refer to the treatment schedule for the correct dosage rate (lbs/1,000 ft³) based on temperature (°F).
2. Multiply by the dosage (lbs/1,000 ft³) rate by the volume (ft³) to get the dosage in pounds.
3. Round to the nearest quarter pound.
Formula for calculating dosage:

\[
\text{dosage (lbs.)} = \frac{\text{volume (ft}^3\text{)} \times \text{dosage rate (lbs./1,000 ft}^3\text{)}}{1,000 \text{ ft}^3}
\]

Figure 2-8-1 Formula for Calculating Dosage for Container Fumigations Without a Tarpaulin

If using the electronic 429 database, the PPQ official must enter the dosage rate in the “dosage” field and the total amount of gas required for the fumigation will be displayed in the “Gas Required” field.

Step 10: Container Pressure Testing

In order to ensure that the container can maintain the required gas concentrations, it must be pressure tested. Sea containers or over-the-road freight trailers may be considered for pressure testing and tarpless fumigation if they possess solid metal walls and ceilings, a channeled solid metal floor, and were originally manufactured with two rear doors. Side doors are not permitted.

Any process for pressure testing or tarpless container fumigation which requires modification or a structural change to the container will require a letter of authorization from the owner. The fumigator shall maintain the letters of authorization and provide copies to the local PPQ office upon request. The container owners must agree to repair any container with modified drain holes before they are used for tarpless fumigation.

Required Equipment

The fumigator must supply the following equipment for the pressure test:

- Any device or equipment with the ability to pressurize a container (for example, blowers, compressors, tanks, manifolds) ([reference Appendix 6 in the Australian Fumigation Accreditation Scheme (AFAS) [http://www.agriculture.gov.au/SiteCollectionDocuments/biosecurity/import/general-info/qtfp/afas-fumi-standard.pdf]])

- A manometer for recording the internal container pressure during the test. The units may be either Pascals (Pa) or inches of water, and must be able to reach a minimum of 250 Pa or 1.0 inch of water.

- Sealing putty for plugging around drain holes, gaps between door gaskets, and sealing around pressure insertion hose.

Container Prepping and Pre-Testing

In preparation for the pressure test, the fumigator must:

1. Close vents and turn off refrigeration unit
2. Seal corner drain holes
3. Repair any visible damage to the container or any parts potentially impacting air tightness
4. Attach a pressurization and monitoring apparatus to the container
5. Pressurize the container to a minimum pressure of 250 Pa (1.0 inch of water)
6. Monitor the pressure to ensure that the decrease from 200 Pa to 100 Pa (0.8 inches to 0.4 inches) takes at least 15 seconds
7. Identify and repair leaks

After the fumigator has conducted a successful pressure test, PPQ will observe and record the official time for the final pressure test.

Official Pressure Test
The PPQ official will:

1. Observe the fumigator pressurizing the container to 250 Pa (1.0 inches).
2. Allow the pressure to decrease to 200 Pa and then record the time it takes to decrease from 200 Pa to 100 Pa (0.8 inches to 0.4 inches) with a stopwatch.

A successful (passing) test is defined by a minimum of 15 seconds transpiring while pressure decreases from 200 Pa to 100 Pa (0.8 inches to 0.4 inches). The PPQ official should confirm a passing test before permitting the fumigator to proceed with a tarpless fumigation. Record the passing test time on PPQ Form 429, and enter it into the Fumigation Form 429 Database. This data field is in the “Treatment” tab of the fumigation report in the “Setup” section. If “Approved Tarpless Container” is selected as the “Enclosure” type, then two additional fields appear in the report, “Was the pressure test conducted?” and “Pressure Test Time (seconds).” Record the time it takes the pressure to drop from 200 to 100 Pa and enter the time (in seconds) into the fumigation report. Officials are not to stop timing after the time exceeds 15 seconds; continue timing until the pressure reaches 100 Pa or 90 seconds have elapsed. If the latter occurs, record “90” seconds as pressure loss interval.

If the container fails the pressure test (as defined by not holding pressure for a minimum of 15 seconds), record the time lapse in the “REMARKS” block in the electronic PPQ Form 429 database. Tarp the container and fumigate according to this manual, Chapter 2-4-Chemical Treatments, Fumigants, Methyl Bromide, Tarpaulin Fumigation.

Ensure that the fumigator places three gas sampling tubes within the container as described in Step 6-Placing the Gas Sampling Tubes. Ensure the placement of the lines where they exit the container so the integrity of the sealed container is maintained. For example, an acceptable location for
sampling lines is along the sill of the container below the left door, pressed onto a small snake of plumbers putty to make a good seal with the sill and door gasket.

Step 11: Making a Final Check

Before introducing the gas, the PPQ official and the fumigator must ensure that the following activities are performed:

- Turn on all circulation fans and APHIS-approved methyl bromide gas detection monitors to make sure they work.
- Warm up and zero (if required) the APHIS-approved methyl bromide gas detection monitor as described in the **Equipment** chapter of this manual.
- Start volatilizer and heat water to 200°F or above (Refer to *Volatilizer on page 8-1-16* for temperature monitoring procedures.) A minimum temperature of 150°F is required at all times during the introduction process.
- Place fumigant cylinder with gas introduction hose on scale and take initial weight reading.
- Ensure the gas introduction hose is attached to the cylinder.
- After obtaining the correct weight, subtract the dosage to be introduced into the container.
- After introducing the proper amount of gas, the scale will be balanced.
- Ensure the container is placarded and the area is secured; only people working on the fumigation can be in the area.
- Ensure that any vents or holes in the container are sealed.
- Ensure that all gas sampling tubes are labeled and are **not** crimped or crushed.
 - Visually inspect tubes or use an electric or Mityvac® hand pump to check tubes. A fumiscope or vacuum pump may also be used to test leads for unrestricted flow.
Important

When conducting fumigations with methyl bromide, erroneous readings may occur if the sampling tubes become blocked or crimped. It would be impossible to install a new sampling tubes during a fumigation treatment. Therefore, to avoid an unsuccessful fumigation, you should test sampling tubes before the treatment begins.

Use the following procedure to detect blocked sampling tubes with the use of a MityVac® hand-held pump (for supplier, see Vacuum Pump on page E-1-75):

1. Prior to fumigant introduction, connect the MityVac® hand-held vacuum pump to sampling tubes.
2. Squeeze the handle on the MityVac® unit. If the tube is blocked, a vacuum will be indicated on the vacuum gauge of the MityVac® unit. (The handle should be squeezed two or three times for sampling tubes longer than 25 feet. The MityVac® hand-held pump has the capacity to attain and hold 25 inches of Hg vacuum and a minimum of 7 psig pressure.)
3. Disconnect the MityVac® hand-held pump from the sampling tube, and repeat this procedure for each tube. (Connect sampling tubes to the gas analyzer prior to fumigant introduction.)

- Confirm that there is enough gas in the cylinder and if necessary, that other cylinders are available.
- Ensure that all safety equipment, especially SCBA, is available and in working order.
- Confirm that the gas introduction line connections are tight and free of leaks.
- If using a T/C monitor, install Drierite® and Ascarite® filters as stated in the instructions in this manual.
Conducting the Fumigation

Step 1: Introducing the Gas

The PPQ official must wear SCBA anytime the air concentration is unknown or greater than or equal to 5 ppm.

MB 2016 Label

If MB concentration levels are between 1-4 ppm, the PPQ official and fumigator may wear an air purifying respirator NIOSH certified half-mask or full face piece with a cartridge.

Require the fumigator to use SCBA while introducing and adding gas. The PPQ official is not required to be in the treatment buffer zone during the fumigation. The PPQ official must ensure that the fumigator turns on all circulation fans before introducing the gas. When using large cylinders of MB, the fumigator should slightly open the cylinder valve, then close the valve.

![Important]

If the official or fumigator notices a cloud, plume, vapor, or mist coming from the introduction equipment during gas introduction, the fumigator must TURN OFF the valve on the gas cylinder, EVACUATE the area immediately, and ABORT the fumigation.

No person should place any part of their body into the cloud, plume, vapor, or mist. After the cloud plume has dissipated, measure gas concentration levels at the gas cylinder using any APHIS-approved continuous real time gas detection device. When gas concentration levels at the cylinder reach 5 ppm or less, the fumigator must identify the source of the leak and correct it before restarting the fumigation.

Any person within the treatment buffer zone must wear and use SCBA equipment during gas introduction and gas addition.

With an APHIS-approved continuous real time gas detection device, the fumigator must check all connections on the gas introduction hose (between the MB cylinder and the volatilizer) for leaks. If leaks are found, advise the fumigator to tighten the connections and repeat the test. If no leaks are found, require the fumigator to open the valve to the point where three to four pounds of MB are introduced per minute.

The water temperature in the volatilizer should never go below 150°F at any time during gas introduction. The water in the volatilizer can include an antifreeze and should be handled with the appropriate safeguards. Refer to **Volutilizer** in the **Equipment** chapter for temperature monitoring procedures.

![CAUTION]

Do not touch the introduction line with your bare hands — you could get burned! Close the cylinder valve once the proper dosage has been introduced.
The fumigation time begins once all the gas has been introduced. The PPQ official must record the time gas introduction was started and completed in Block 32 on PPQ Form 429. If using the electronic 429 database, record the fumigation date, gas introduction start and finish time in the corresponding fields under the “GAS INTRODUCTION” heading in the Treatment form.

Require the fumigator to run the fans for 30 minutes to achieve even gas distribution. The PPQ official must take the initial concentration reading 30 minutes after all the gas has been introduced.

When evacuating large cylinders, getting the final amount of gas out may take a long time. Consider taking a gas concentration reading 30 minutes after the gas was first introduced. If the gas distribution is even (all readings within 4 ounces of each other) and at a significantly high concentration, advise the fumigator to turn off the fans. Running the fans longer can contribute to gas leakage. Allow the remainder of the gas to discharge while intermittently running the fans. Normally, all the gas should be introduced within 30 minutes.

Important
Do not begin counting fumigation time until all the gas has been introduced and the valve on the MB tank is closed.

If the fumigator detects excessive leakage (concentration readings of 50 percent or less of the minimum concentration) is detected, do not attempt to correct the problem by adding more gas. Aerate the container and return, re-export, or destroy the commodity. Commodities used for food or feed cannot be retreated.

Step 2: Taking Concentration Readings
The PPQ official must take concentration readings 30 minutes after gas introduction. Use an APHIS-approved gas detection device to determine the gas concentration and distribution within the container. Allow gas concentration readings to stabilize; do not disconnect the sampling line from the gas detection device when the minimum concentration reading has been met.

Important
Before taking a reading, always purge sampling lines with a mechanical or hand pump. If using a T/C unit, connect it to the sampling line, adjust the gas flow rate to 1.0, and wait until the meter registering “ounces per thousand cubic feet” stabilizes before taking a reading. (This may take a minute or more, depending upon the length of the tubing and whether or not an auxiliary pump is used.)

Take concentration readings at the times designated in the treatment schedule. Concentration readings should not differ more than 4 ounces among the lines. When concentration readings differ more than 4 ounces, run the fans to
equalize the gas and record readings in the Remarks block on the APHIS 429. In some case, several cycles of fan operation may be necessary to equalize the readings. The PPQ official must record all gas readings on the PPQ form 429 or in the electronic 429 database.

Avoid using hand-held, two-way radios near a T/C unit. Using two-way radios near a T/C unit will interfere with accurate concentration readings.

Important

Step 3: Determining the Need to Add Gas and Adjust Exposure

Use Table 2-8-3 to determine when to add gas or extend the exposure period.

Table 2-8-3 Determine the Need to Add Gas and Adjust Exposure

<table>
<thead>
<tr>
<th>If the lowest gas reading is:</th>
<th>And the schedule is:</th>
<th>Then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Below the required minimum concentration</td>
<td>T101-a-1 or equivalent*</td>
<td>SEE Table 2-8-5 for corrections at 0.5 hour, or Table 2-8-6 for corrections at 2 hours</td>
</tr>
<tr>
<td></td>
<td>Other than T101-a-1 or equivalent*</td>
<td>See “Adding Gas and Extending Exposure to Commodities that are Fumigated Using Treatment Schedules Other Than T101-a-1 or Equivalent (may include perishables)” on page-2-8-22.</td>
</tr>
<tr>
<td>At or above required minimum concentration</td>
<td>T101-a-1 or equivalent*</td>
<td>SEE Table 2-8-5 for corrections at 0.5 hour, or Table 2-8-6 for corrections at 2 hours</td>
</tr>
<tr>
<td></td>
<td>Other than T101-a-1 or equivalent*</td>
<td>NO ACTION necessary</td>
</tr>
</tbody>
</table>

*T101-a-1 or equivalent treatment schedules are those schedules that are:

- NOT greater than 2 hours long (exposure time)
- NOT greater than 4 lbs. per 1000 ft3 (dosage rate)
- Minimum concentration readings and temperature ranges match EXACTLY the readings in T101-a-1

If the minimum concentration readings do not meet these requirements, the schedule is NOT equivalent. When schedules are NOT equivalent, use Table 2-8-2 to determine the length of time to extend exposure and use the formula in Figure 2-8-2 to determine the amount of gas to add.
Adding Gas and Extending Exposure to Commodities that are Fumigated Using Treatment Schedules Other Than T101-a-1 or Equivalent (may include perishables)

Once you have determined that you need to add gas and extend time, use the formula in Figure 2-8-2 to calculate the amount of gas to add and Table 2-8-4 to determine how long to extend the exposure period.

Figure 2-8-2 Formula for Determining the Amount of Gas to Add For Schedules Not T101-a-1 Equivalent and Conducted in a Container Without a Tarpaulin

\[
1.6 \times \text{number of ounces below minimum} \times \frac{\text{volume in cubic feet}}{1000 \text{cubic feet}} \times \frac{1}{16} = \text{pounds of gas to add}
\]

Table 2-8-4 Determine the Extended Exposure Period to Commodities that are Not T101-a-1 Equivalent

<table>
<thead>
<tr>
<th>If any individual reading is below minimum by:</th>
<th>Then extend exposure:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 oz. or less</td>
<td>10 percent of the time lapse since gas introduction or the last acceptable reading</td>
</tr>
<tr>
<td>11 oz. or more</td>
<td>30 minutes</td>
</tr>
</tbody>
</table>

Adding Gas

When adding gas, require the fumigator to follow these steps:

1. Heat water in volatilizer.
2. Turn on fans.
3. Weigh the cylinder.
4. With SCBA on, open valve on cylinder and introduce the gas.
5. Close valve when the weight of the cylinder indicates that the needed amount of gas has been added.

The PPQ official must record quantity of fumigant added in Block 34 and additional fan time in Block 30 of PPQ Form 429.

If using the electronic 429, record the amount of additional gas listed in the Treatment Manual in the added in the “Additional Gas Recommended” field and the actual amount of additional gas added in the “Actual Additional Gas” field. Record the additional fan time in the “TIME FANS OPERATED” field in the Treatment form.
Note the time the fumigator started and finished introducing additional gas and record in Block 40 (Remarks) of PPQ Form 429 or in the “Remarks” form in the electronic 429 database. Require the fumigator to run the fans until there is even gas distribution throughout the stack. Turn off fans, then take a concentration reading 30 minutes after the gas has been introduced. If all readings are above minimum concentration levels, proceed as usual with the remaining scheduled concentration readings.

Adding Gas to Fruits, Vegetables, or Perishable Commodities Using Schedules T101-a-1 or Equivalent

Use [Table 2-8-5 on page-2-8-25](#) and [Table 2-8-6 on page-2-8-26](#) to determine if you need to add gas or extend or decrease the exposure time. Select the proper table based on the time of the gas reading (30 minutes or 2 hours). Use the formula in **Figure 2-8-3** to determine the amount of gas to add.

$$1.6 \times \frac{\text{number of ounces below minimum}}{1000 \text{ cubic feet}} \times \frac{\text{volume in cubic feet}}{16} = \text{pounds of gas to add}$$

Figure 2-8-3 Formula for Determining the Amount of Gas to Add For T101-a-1 Equivalent Schedules for Container Fumigations Without a Tarpaulin

Important

DO NOT average the concentration readings before using the tables. Base your decision on whether to add gas from the LOWEST gas concentration of any individual gas reading.

Important

Fresh fruits and vegetables are sensitive to MB so you should double check volume calculations and dosage measurements to avoid accidental overdoses.

Adding Gas

When adding gas, require the fumigator to follow these steps:

1. Heat water in volatilizer.
2. Turn on fans.
3. Weigh the cylinder.
4. With SCBA on, open valve on cylinder and introduce the gas.
5. Close valve when the weight of the cylinder indicates that the needed amount of gas has been added.

The PPQ official must record quantity of fumigant added in Block 34 and additional fan time in Block 30 of PPQ Form 429.

If using the electronic 429, record the amount of additional gas listed in the Treatment Manual in the added in the “Additional Gas Recommended” field and the actual amount of additional gas added in the “Actual Additional Gas” field. Record the additional fan time in the “TIME FANS OPERATED” field in the Treatment form.

Note the time the fumigator started and finished introducing additional gas and record in Block 40 (Remarks) of PPQ Form 429 or in the “Remarks” form in the electronic 429 database. Require the fumigator to run the fans until there is even gas distribution throughout the stack. Turn off fans, then take a concentration reading 30 minutes after the gas has been introduced. If all readings are above minimum concentration levels, proceed as usual with the remaining scheduled concentration readings.
Table 2-8-5 Determine Gas Concentration Values and Corrections for Fruits and Vegetables at the 30-Minute Reading of T101-a-1 or Equivalent Schedules

<table>
<thead>
<tr>
<th>If the schedule is:</th>
<th>And the minimum concentration reading (oz.) in schedule is:</th>
<th>And the lowest concentration reading (oz.) is:</th>
<th>Then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>40-49 °F 4 lbs for 2 hrs</td>
<td>48</td>
<td>65 or greater</td>
<td>REDUCE exposure by 15 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>64-48</td>
<td>TAKE 2 hour reading as scheduled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower than 48</td>
<td>1. ADD gas, and 2. EXTEND exposure 15 minutes</td>
</tr>
<tr>
<td>50-59 °F 3 lbs for 2 hrs</td>
<td>38</td>
<td>52 or greater</td>
<td>REDUCE exposure by 15 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>51-38</td>
<td>TAKE 2 hour reading as scheduled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower than 38</td>
<td>1. ADD gas, and 2. EXTEND exposure 15 minutes</td>
</tr>
<tr>
<td>60-69 °F 2.5 lbs for 2 hrs</td>
<td>32</td>
<td>48 or greater</td>
<td>REDUCE exposure by 15 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>47-32</td>
<td>TAKE 2 hour reading as scheduled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower than 32</td>
<td>1. ADD gas, and 2. EXTEND exposure 15 minutes</td>
</tr>
<tr>
<td>70-79 °F 2 lbs for 2 hrs</td>
<td>26</td>
<td>37 or greater</td>
<td>REDUCE exposure by 15 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>36-26</td>
<td>TAKE 2 hour reading as scheduled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower than 26</td>
<td>1. ADD gas, and 2. EXTEND exposure 15 minutes</td>
</tr>
<tr>
<td>80-89 °F 1.5 lbs for 2 hrs</td>
<td>19</td>
<td>27 or greater</td>
<td>REDUCE exposure by 15 minutes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26-19</td>
<td>TAKE 2 hour reading as scheduled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lower than 19</td>
<td>1. ADD gas, and 2. EXTEND exposure 15 minutes</td>
</tr>
</tbody>
</table>
Step 4: Exhausting the Gas

Require the fumigator to exhaust the gas at the completion of the exposure period. If the treatment schedule is a FIFRA Section 18 Exemption, then the PPQ official must verify the final gas concentration reading of the commodity. Detector tube readings and the time interval from the aeration must be recorded in the corresponding fields in the “DETECTOR READINGS” form.

Aerating Tarpless Containers

The fumigator must:

- ✷ Arrange for the aeration to proceed once the treatment is completed.
- ✷ Consider the direction of the wind when pointing the exhaust duct, and face the duct outlet toward an open area away from people.
Ensure that, during the first 10 minutes of aeration, no one is present within 200 feet downwind of the exhaust duct outlet.

Determine aeration buffer zones in accordance with EPA’s fumigation buffer zone tables (https://www.epa.gov/pesticide-registration/mbcommoditybuffer).

Ensure that no one is present within the perimeter of the aeration buffer zone unless they are wearing SCBA.

See “Buffer Zone Overlap for Multiple Enclosures” on page-2-8-10.

Follow all label instructions, state, county, and local regulations, in addition to the instructions in this manual.

Inform people located in occupied structures and personnel in the immediate area within the buffer zone that release of MB is about to take place and give them the option of leaving the area or remaining inside the building.

Restrict access to the area where the exhaust duct extends beyond the enclosure.

Responsibility for Aerating the Commodity
The label requires that at least two people trained in the use of the fumigant must be present at all times during gas introduction, treatment, and aeration. The PPQ official, however, is not required to be continuously present at the fumigation site throughout the aeration process unless specified by the label or by State or local regulations.

Refer to Table 2-8-7 to determine who is responsible for aerating the commodity.

<table>
<thead>
<tr>
<th>If the Treatment Schedule is:</th>
<th>Then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A FIFRA Section 18 Exemption</td>
<td>1. PPQ official must be present at the initiation of aeration and to VERIFY the final aeration readings.</td>
</tr>
</tbody>
</table>
| A labeled Treatment Schedule | 1. RELEASE the fumigation to the fumigator to aerate.
2. RELEASE the commodity. |

Wearing Respiratory Protection
The fumigator must wear approved respiratory protection (SCBA, supplied air respirator, or a combination unit) when:

- A risk of exposure to concentrations above 5 ppm exists; this includes anytime the concentration is unknown
Chemical Treatments Fumigants • Methyl Bromide • Special Procedures for Container Fumigations Without a Tarpaulin
Aerating Tarpless Containers

- Opening the container for aeration
- Setting up the air introduction and exhaust systems

MB 2016 Label

If MB concentration levels are between 1-4 ppm, the PPQ official and the fumigator may wear an air purifying respirator NIOSH certified half-mask or full face piece with a cartridge.

Step 1: Installing the Exhaust System

Advise the fumigator to:

1. Install an exhaust fan (minimum of 5,200 cfm capacity) with one end of a round ventilation duct at least 16 inches in diameter, oriented so that the fan pulls air through the duct. The fan dimensions should complement the diameter of ductwork chosen, fitting flush and tight so that no leaks exist between the fan and duct. The exhaust duct will be at least 30 feet in length with the fan end placed external and alongside the container extending toward the nose, so the exhaust air is directed away from the end of the container which is opened during aeration.

2. Install a fresh air introduction fan (minimum 3,750 cfm) with a round ventilation duct at least 12 inches in diameter, oriented so that the fan pushes the air through the duct. The fan dimensions should complement the diameter of ductwork chosen, fitting flush and tight so that no leaks exist between the fan and duct. Extend the introduction duct (non-fan end) along top of the load two-thirds of the length of the container.

Important

Install air introduction and exhaust ducts prior to fumigation in order to limit human exposure to the fumigant at the start of aeration.

Palletized Partial Loads

For palletized partial loads (where at least 2 feet of open space is present at the door end of the container), ensure that the fumigator extends the exhaust duct intake (non-fan end) on the container floor with the duct face flush against the bottom of the load along a side of the container. Store the remaining section of the exhaust duct and fan at the rear of the load so it is easily accessible at the start of aeration.

Full Loads

For full loads (where less than 2 feet of open space is available at the door end of the container and there is no central aisle between pallets), if there is room to store the duct inside the container during fumigation, ensure that the fumigator secures the duct (non-fan end) face flush against the load at the floor/pallet/commodity interface along a side of the container so it will not shift or twist.
during aeration. Use straps, ties, or other fasteners to secure this interface tightly. If there is not sufficient room to pre-install the duct prior to fumigation, the fumigator can carry out these steps at the start of aeration.

For partial or full loads where a central aisle exists between the pallets, ensure that the fumigator places the duct along the floor center and extend 1-2 feet into this space if possible.

Refer to Figure 2-8-4 for detailed diagrams of air and exhaust ducts. In this diagram, air introduction ducts are blue and exhaust ducts are red.

Figure 2-8-4 Ductwork configuration for aeration of untarped containers: full loads (top) and partial loads (bottom)

Step 2: Aerating the Commodity
Advise the fumigator to:

1. While wearing SCBA, open the doors of each container.
2. Turn on all fumigant circulation fans inside the container and leave them on throughout the aeration.
3. Start the container introduction and exhaust ducts fans.
4. Require a minimum of 4 hours aeration for all sorptive commodities.
5. Stop the fans and take concentration readings with colorimetric tubes in the airspace around and, when feasible, within the commodity.
6. RELEASE the commodity when the concentration reading is 5 ppm or less.
Methods and Procedures

The procedures covered in this section provide PPQ officials and commercial fumigators with the methods, responsibilities, and precautions for closed-door container fumigations.

2016 Methyl Bromide Label Information

In 2015, the Environmental Protection Agency (EPA) directed all 100% methyl bromide (MB) registrants to amend the use directions on the labels of all MB products. EPA required the changes in order to reflect recommendations in an EPA report.1

These amendments modify the use directions for fumigation and aeration procedures, modify respiratory requirements and equipment and update gas monitoring equipment. EPA requires all labels on newly manufactured MB to reflect these recommendations effective October 01, 2016; however, EPA is allowing existing stocks of MB to be used in accordance with the use directions on the existing stock’s (older) labels.

PPQ officials and fumigators **must** closely examine gas cylinder labels in order to validate that the dosage, exposure, and commodity are either on the cylinder label or covered by a FIFRA Section 18 exemption. If a label is **not** affixed to the cylinder, DO NOT allow the fumigator to use that cylinder.

New Buffer Zone Requirements

All 2016 MB labels now require both a treatment and an aeration buffer zone. Both the treatment and aeration buffer zones are specific to the enclosure being fumigated and must be determined by visiting a website link\(^2\) provided in every MB label. The fumigators are responsible for using this website to determine the buffer zones and reporting both buffer zones to the PPQ official. If the treatment buffer zone is determined to be less than 30 feet, the PPQ official will maintain PPQ’s standard 30 foot treatment buffer zone; otherwise, the new treatment buffer zone **must** be observed. If the aeration buffer zone is determined to be less than 200 feet, then PPQ’s standard “200 feet for 10 minutes” aeration buffer zone **still** applies for the first 10 minutes of aeration. The fumigator **must** refer to EPA’s website to determine the minimum aeration buffer zone to be maintained until the aeration period is complete and the fumigator has verified that gas concentration levels meet the conditions in the MB label.

Transiting through buffer zones

The label permits vehicles to transit through both treatment and aeration buffer zones under specific conditions found in the label; it is up to the fumigator determine how or whether vehicles may transit in accordance with the label.

\(^2\) https://www.epa.gov/pesticide-registration/mbcommoditybuffer
When using the newer 2016 MB label, changes to certain procedures and equipment in this chapter are displayed in a NOTICE box with a heading titled “MB 2016 Label”.

MB 2016 Label (example)

Use this information when the fumigator is using the 2016 MB label.

When using existing stocks, follow the equipment and procedural guidance that is displayed in the body of the text (outside of the NOTICE box).

If there is no “MB 2016 Label” NOTICE box, then the instructions apply to all MB labels, 2016 and older.

Materials Needed

PPQ Official Provides

- APHIS-approved leak detection device
- Calculator (optional)
- Forms (PPQ Form 429 and APHIS Form 2061 if necessary)
- Self-contained breathing apparatus (SCBA) or supplied air respirator
MB 2016 Label

In addition to the bulleted list on page 2-9-3, the PPQ official must provide:

- Air purifying respirator NIOSH certified half-mask or full face piece with a cartridge for concentrations between 1 and 4 ppm
- APHIS-approved continuous real time gas monitoring device
 - Permanently mounted in PPQ owned facilities only, PureAire Monitoring Systems, Inc. model Air check Advantage¹
 - Portable Photoionization Detector (PID), RAE Systems, Inc. model MiniRAE 3000²
- Self contained breathing apparatus (SCBA) NIOSH approval prefix TC-13F or supplied air respirator NIOSH approval prefix TC-19C

¹ The Air Check Advantage can be calibrated either by the manufacturer or by the PPQ official. Calibrate according to the manufacturer’s User Guide. Refer to Chapter 8: Equipment for more information.

² The MiniRae 3000 must be calibrated by the PPQ official according to the manufacturer’s User’s Guide. Refer to Chapter 8: Equipment for more information.

Fumigator Provides

- APHIS-approved gas detection device³ (e.g. thermal conductivity device, infrared device, etc.)
- Auxiliary pump for purging long gas sample tubes
- Carbon dioxide filter (Ascarite®)
- Colorimetric tubes (Refer to Gas Detector Tube (colorimetric) and Apparatus on page E-1-32 for a list of APHIS-approved product ranges)
- Desiccant (Drierite®)
- Electrical wiring (grounded, permanent type), three prong extension cords
- Exhaust blower and ducts
- Fans (circulation, exhaust, and introduction)
- Framework and supports

³ The methyl bromide monitor must be calibrated annually. Refer to Chapter 8: Equipment for calibration information. If using a thermal conductivity (TC) analyzer, Drierite® and Ascarite® must be used.
Chemical Treatments Fumigants • Methyl Bromide • Closed-door Container Fumigation

Materials Needed

- Gas introduction line
- Gas sampling tubes (leads)
- Heat supply
- Insecticides and spray equipment
- Loose sand
- Measuring Tape
- Methyl bromide
- Padding
- Sand or water snakes or adhesive sealer
- Scales or dispensers\(^4\)
- Self-contained breathing apparatus (SCBA) or supplied air respirator
- Tape
- Tape measure
- Tarpaulin and supports
- Temperature recorder and temperature sensors\(^5\)
- Thermometer\(^6\)
- Volatilizer
- Warning signs/Placarding

\(^4\) All scales must be calibrated by the State, a company that is certified to conduct scale calibrations, or by the fumigator under the supervision of PPQ. The source and date of calibration must be posted in a visible location on or with the scale at all times. The scale must be calibrated a minimum of every six months.

\(^5\) Temperature sensors must be calibrated annually by the manufacturer or National Institute of Standards and Technology (NIST) within the range of 40 °F to 80 °F (4.4 °C to 26.7 °C)

\(^6\) The thermometer must be calibrated or replaced annually.
Preparing to Fumigate

APHIS has historically required dry box ocean containers (non-refrigerated containers with a tongue-and-groove flooring) be fumigated under tarp with the doors open. The total methyl bromide gas introduced is based on the entire volume under the tarpaulin. This is referred to as “open-door container fumigation.” As an alternative to the “open-door” procedure, APHIS also allows for the fumigation of wood products (includes logs, lumber, and bamboo) in dry box containers with the doors closed. This procedure eliminates the need to include the empty space under the container as part of the total volume fumigated. This procedure is referred to as “closed-door container fumigation” and can be used ONLY with the following treatment schedules:

- T312-a
- T312-a-Alternative
- T312-b
- T404-b-1-1

1 These devices must be calibrated according to the manufacturer’s User Guide. Refer to Chapter 8: Equipment for more information.

MB 2016 Label

In addition to the items in the bulleted list on pages 2-9-3 and 2-9-4, the fumigator must also provide:

- Air purifying respirator NIOSH certified half-mask or full face piece with a cartridge for concentrations between 1 and 4 ppm
- APHIS-approved direct read gas detection device
 - Colorimetric tubes (e.g. Draeger, Sensidyne)
- APHIS-approved continuous real time gas monitoring device
 - Permanently mounted in PPQ owned facilities only (PureAire)
 - Portable Photoionization Detector (PID) RAE Systems, Inc. MiniRAE 3000
- Self contained breathing apparatus (SCBA) NIOSH approved prefix TC-13F for concentrations >5 ppm
- Supplied air respirator NIOSH approval prefix TC-19C
Step 1—Selecting the Container
The fumigator must obtain a letter of authorization from the owner of the container prior to attempting to gain access through the container doors or making any structural changes to the containers. The fumigator will maintain the letters of authorization and provide copies to the local PPQ office. PPQ will not be held responsible for any damage incurred by the fumigator due to modification or manipulation of a container’s original condition.

No dry box container will be permitted to be fumigated using this procedure if it has side doors, if the rear gasket is missing, or if the gasket is damaged such that gas lines cannot be placed effectively with the doors closed. PPQ officials must ensure that all vents are sealed on each container to be fumigated. If this cannot be accomplished, the fumigator will be required to fumigate with the doors open.

Step 2—Selecting a Fumigation Site
The PPQ official and the fumigator must consider the following factors when selecting a fumigation site:

- Well-ventilated, Sheltered Area
- Impervious Surface
- Ability to Heat
- Nonwork Area
- Electrical Power Supply
- Water Supply
- Well-Lighted Areas
- Aeration Requirements
- Buffer Zone Overlap for Multiple Enclosures

Well-ventilated, Sheltered Area
The PPQ official and the fumigator must select sites that are well-ventilated and sheltered. A well-ventilated site is required for exhausting gas before and when the tarpaulin is removed from the container(s). Most warehouses have high ceilings and a number of windows/doors which can be used for ventilation. Some gas will escape from the tarpaulin even in the best conditions. Avoid areas where strong drafts are likely to occur.

In warehouses, the fumigator must provide an exhaust system to exhaust MB to the outside of the building. The fumigator must ensure that the exhausted gas does not reenter the building nor endanger people working outdoors.
When treatments are conducted in a particular location on a regular basis, the PPQ official must ensure that the fumigator designates a permanent site. At such sites, the fan used to remove the fumigant from the enclosure during aeration must be connected to a permanent stack extending above the roof level.

If fumigations are conducted outside, ensure that the fumigator selects a site that is semi-sheltered such as the leeward side of a warehouse, pier, or building that offers some protection from severe winds. Severe winds are defined as sustained winds or gusts of 30 m.p.h. or higher for any time period. Do not allow the fumigator to proceed if there is a forecast from the National Weather Service of severe winds and/or thunderstorms at the beginning of or for the entire length of the fumigation.

Impervious Surface
Select an asphalt, concrete, or tight wooden surface—**not** soil, gravel, or other porous material. If you must fumigate on a porous surface, require the fumigator to cover the surface with plastic tarpaulins. For large fumigations, covering the surface is **not** usually practical because pallets must be rearranged and heavy equipment used to move the commodity. On docks, wharfs, and piers, require the fumigator to seal cracks, holes, and manhole covers which will allow the MB to escape through the floor.

Ability to Heat
When cooler temperatures (below 40 °F) are expected, the fumigator must ensure that the commodity temperatures are maintained above 40 °F. The PPQ official will take the ambient (air) temperature 12 inches above the ground. Temperatures must be maintained at or above the starting treatment temperature for the entire duration of the treatment. Additionally, PPQ official will monitor the temperature of the container using a temperature sensor and a temperature recorder. Specifications for the temperature recording system are as follows:

- Accurate to within ± 0.6 °C or ±1.0 °F in the treatment temperature range of 4.4 °C to 26.7 °C (40 °F to 80 °F)
- Calibrated annually by the National Institute of Standards and Technology (NIST) or by the manufacturer
 - The calibration certificate will list a correction factor, if needed, and the correction factor would be applied to the actual temperature reading to obtain the true temperature.
- Capable of printing all temperature readings or downloading data to a secure source **once per hour** throughout the entire treatment (all temperature data must be accessible at a safe distance during the fumigation)
Tamper-proof

If one or more of the temperature readings dip below the minimum temperature required for the selected dosage rate in the treatment schedule, the fumigation will be considered a failed treatment. The container must be heated to the minimum temperature in the treatment schedule and the fumigation restarted. The gas remaining in the container does not need to be evacuated, but additional gas may need to be added to meet the required concentration readings for a new fumigation. There are two options for re-treatment, depending on the treatment schedule used.

1. Reheat the container and restart the fumigation at the original dosage rate. The gas remaining in the container does not need to be evacuated, but additional gas may need to be added to meet the required concentration readings for a new fumigation.

2. Re-fumigate the container at the lower temperature using the dosage required by this manual for that temperature. (This option may not be available for all schedules.) The gas remaining in the container does not need to be evacuated, but additional gas may need to be added to meet the required concentration readings for a new fumigation.

Require the fumigator to place one temperature sensor in each container in the coldest location in the container, which will be near the floor towards the middle of the container at the end of a log-stack. If there is only one log-stack
in a container, require the fumigator to place the temperature sensor near the floor at the end of the stack closest to the container doors. Refer to Figure 2-9-1 for further information on temperature sensor placement.

Figure 2-9-1 Diagram of placement of temperature sensors, represented by a star
Nonwork Area—MB 2016 Label

The fumigator will determine the treatment buffer zone in accordance with EPA’s fumigation buffer zone tables (https://www.epa.gov/pesticide-registration/mbcommoditybuffer).

The treatment buffer zone surrounds the area where access is limited during treatment. If the fumigator determines that the buffer zone is less than 30’, then PPQ requires a 30’ buffer zone. If the fumigator determines that the buffer zone is greater than 30’, then PPQ must observe the prescribed buffer zone.

The treatment buffer zone extends from the perimeter of the enclosure to a distance determined by the fumigator in accordance with the label. Entry by any person except the PPQ official and the fumigator is prohibited except as provided in the “Exceptions to Buffer Zone Entry Restrictions” section of the label.

The treatment buffer zone begins when the fumigant is introduced into the enclosure and ends when aeration begins, at which point the aeration buffer zone requirements apply.

The fumigator must define the treatment and aeration buffer zone perimeters using physical barriers (such as walls, ropes, etc.) and placards to limit access to the buffer zone. Placards must meet all label requirements regarding specific warnings, information, and language.

The fumigator will permit transiting through buffer zones in accordance with the “Transit Exception” section of the label.

Buffer Zone Overlap for Multiple Enclosures
For multiple enclosures where buffer zones overlap, the fumigator must recalculate both the treatment and aeration buffer zones in accordance with the label and supply them to the PPQ official.

Nonwork Area
The PPQ official and the fumigator must select a secure area where traffic and people are restricted from entering and which is isolated from people working. The fumigator must placard clearly in sight of all who come near. Placards must meet label requirements regarding specific warnings, information, and language. Placards generally include the name of the fumigant, the fumigation date, time, and the name of the company conducting the fumigation. The
fumigator must restrict access to the warehouse to the fumigator’s employees and PPQ employees monitoring the treatment. PPQ officials who work within the 30-foot perimeter must wear (and use) respiratory protection (SCBA), until the gas levels are safe to breathe and validated as safe by gas monitoring. The 30-foot perimeter is not specifically mentioned on the MB label, but is required for PPQ officials. When space is tight, it is permissible to overlap two adjoining 30-foot perimeters. However, there must be sufficient space for a person wearing SCBA to walk between the tarpaulins.

Electrical Power Supply

An adequate electrical source must be available to run the circulation fans and the gas detection device. A separate line should be available for the gas detection device. Electrical outlets must be grounded and conveniently located in relation to the fumigation area. PPQ does not allow generators to be used as a power source except under emergency conditions.

Water Supply

A water supply is necessary for safety purposes. Water is necessary for washing off MB if the liquid form is spilled on someone. Water is also used to fill the volatilizer. If no permanent water is present on a temporary site, the fumigator must provide a portable shower that meets OSHA specifications or a 5-gallon supply of clean water. All permanent fumigation sites must have a safety shower/eyewash station installed and maintained in good working order throughout the year or when fumigations are performed at the site.

Well-Lighted Areas

The fumigator will ensure that the area has adequate lighting for safety purposes and for ease in reading gas concentration, thermometers, and for determining whether a tarpaulin has holes or tears.

Aeration Requirements

The fumigator is responsible for all aspects of aeration. Refer to *Aerating Closed-door Containers—Indoors and Outdoors on page 2-9-22* for more information.

Step 3—Arranging the Containers

Ensure that the fumigator places no more than 8 containers that are 20 to 40 feet in length under a single tarpaulin. APHIS does not allow stacking of containers. Stacking may create too great a safety risk to the person placing the tarp, fans, and gas monitoring leads.
Containers should not be loaded beyond 80 percent of their capacity. No additional head space is required between the roof of the container and the tarp, unless the pest is found on the outside of the container. If the pest is found on the exterior of the container, then DO NOT use this procedure. Go to

Fumigants • Methyl Bromide • Tarpaulin Fumigation on page 2-4-1.

Step 4—Arranging and Operating Fans
For proper gas circulation, require the fumigator to place two axial-type (blade) fans in each container. The fans must have the capacity to move a volume in cubic feet per minute (CFM) equivalent to the total volume of the container. Require the fumigator to place one fan at the rear of the container (doors) pointed inward, and the second fan placed in the front (nose) of the container pointed in the opposite direction. In addition, require the fumigator to place the exhaust fans and ducts as instructed in Aerating Closed-door Containers—Indoors and Outdoors on page 2-9-22.

Step 5—Placing the Gas Introduction Lines
MB is converted from a liquid into a gas by a volatilizer. The hose that runs from the MB cylinder into the volatilizer must be 3000 PSI hydraulic high pressure hose with a 3/8 inch inner diameter (ID) or larger. From the volatilizer, MB gas is introduced into the structure by means of a gas introduction line. The gas introduction line must be a minimum of 350 PSI with a 1/2 inch ID or larger. Require the fumigator to place the introduction line directly above the fan at the rear door of the container. Each container must have a gas introduction line.

Step 6—Placing the Gas Sampling Tubes
Require the fumigator to install at least three gas sampling tubes per container, positioned as follows:

◆ Front low—near the floor at the door end of the container
◆ Rear high—rear of the load at the high end opposite the fan
◆ Middle center—mid way from front to back, at mid depth

If treating for khapra beetle, the fumigator must install the following additional gas sampling tubes:

◆ High (in the commodity)
◆ Low (in the commodity)

Require the fumigator to install gas sampling tubes of sufficient length to extend from the sampling position inside the container to at least 30 feet beyond the tarpaulin. Ensure that all the gas sampling tubes meet in one area for ease and safety in taking gas concentration readings. Do not splice gas sampling tubes. Before starting the fumigation, check for gas sampling tube
blockage or pinching by connecting each tube to the gas detection device for a short time. If the line is blocked, the flow to the device will drop sharply. Tubes can also be checked with a MityVac® hand pump or other air pump device. Replace any defective gas sampling tubes.

Require the fumigator to secure all gas sampling tubes under the tarpaulin and label each one at the end where the gas concentration readings will be taken. By labeling each gas sampling tube, the PPQ official will be able to record concentration readings easily.

Step 7—Padding Corners

Ensure that the fumigator looks for corners and sharp angles which could tear the tarpaulin. Do not allow the fumigator to use the commodity to support the tarpaulin. If the sharp angles or corners cannot be eliminated, the fumigator must cover them with burlap or other suitable padding (e.g., old tires or cloth).

Step 8—Measuring the Temperature

The PPQ official must determine the temperature of the commodity in order to select the proper dosage rate using a calibrated bimetallic, mercury, or digital long-stem thermometer.

Select several representative locations within the stack at the ends of the logs or pieces of lumber and drill holes in them to accommodate a thermometer. After drilling, wait at least 10 minutes to allow the wood around the holes to cool. Insert the thermometer into the holes drilled. All readings (not just the average) must be above 40 °F.

If fumigating multiple containers under one tarp, take temperature readings in each container under the tarp. Base the dosage calculation on the lowest reading obtained. (Do **not** average temperatures.) All readings must be above 40 °F to initiate the fumigation. If not, you must postpone it.

Record the temperatures in Block 22 of the PPQ Form 429.
If using the electronic 429 database, record the temperatures in the space and commodity fields in the Treatment form.

![Important]

When the commodity and air temperature drastically differ, moisture may condense inside the gas sampling tubes or inside the gas detection device and cause inaccurate gas concentration readings. Check the gas sampling tubes frequently for possible puddling of condensed water, and drain it off, as needed, before taking a reading. Also, check the Drierite frequently, and change it as soon as it becomes saturated with water [turns pink], to obtain true gas concentration readings. Never fumigate commodities that are frozen.

Step 9—Covering the Stack
The fumigator must cover the stack, check the tarpaulin for rips, tears, and holes, look at the spots that have been taped, and verify they are properly sealed. If needed, the fumigator must repair all holes.

The tarpaulin should be made of a material such as vinyl, polyethylene plastic, or coated nylon.

- 4 mil vinyl or polyethylene plastic tarpaulins are only approved for one usage
- 6 mil vinyl or polyethylene plastic tarpaulins may be used up to four times with the PPQ official’s approval for each usage
- 10 to 12 mil vinyl or plastic coated nylon tarpaulins may be approved for multiple use with the PPQ official’s approval for each usage

The fumigator should cover all corners and sharp ends with burlap or other padding to prevent the tarpaulin from ripping. Have the fumigator pull the tarpaulin over the containers, being careful not to catch or tear the tarpaulin. The tarpaulin must be large enough to provide a floor overlap of at least 18 inches around all sides of the stack. Carefully lay the tarpaulin out to prevent excess folds or wrinkles along the floor, especially around corners.

Step 10—Sealing the Tarpaulin
The fumigator must seal the tarpaulin with loose, wet sand, sand snakes, water snakes, adhesives, or a combination. If there is danger of crushing or crimping the gas sampling or introduction tubes, use the loose, wet sand. If using snakes, use two rows of snakes along the sides and three rows on the corners. The snakes should overlap each other by approximately 1 foot. The goal in sealing the tarpaulin is to get the tarpaulin to lie flat against the floor to prevent gas from leaking out. When wind is not a factor, plastic tape may be used for sealing the tarp. The tape must be at least 2 inches in width, and applied (only to a smooth surface) with the aid of high-tack spray adhesive.
The fumigator must seal corners by laying two sand snakes around the corner and working the tarpaulin until it is flat. Place a third snake on top of the two other snakes to provide additional weight to force the tarpaulin against the floor. Loose, wet sand can be used in the area where the gas introduction line, electrical cords, and gas sampling tubes extend from under the tarpaulin.

Step 11—Measuring the Volume

Using a 100-foot tape measure, the PPQ official and the fumigator must carefully measure the length, width, and height of the container. The area underneath the container is not included in the calculations. *Never* estimate the measurements. When measuring, round off to the nearest quarter foot (example—3 inches = .25 feet).

Formula for determining volume:

\[
\text{Length} \times \text{width} \times \text{height} = \text{volume in cubic feet}
\]

EXAMPLE: A stack with measurements \(H=10'6''\), \(L=42'3''\), and \(W=10'9''\) \(10.50 \times 42.25 \times 10.75 = 4,768.9 \text{ ft}^3\) round to 4,769 ft\(^3\)

The PPQ official must record volume in Block 26 of the PPQ Form 429.

If using the electronic 429 database, record the length, width and height in the corresponding fields under the “AMT of Gas Introduced” heading on the Treatment form. The total volume of the enclosure will be calculated.

Step 12—Calculating the Dosage

The PPQ official must calculate dosage by doing the following:

1. Refer to the treatment schedule for the correct dosage rate (lbs./1,000 ft\(^3\)) based on temperature (°F).
2. Multiply by the dosage (lbs./1,000 ft\(^3\)) rate by the volume (ft\(^3\)) to get the dosage in pounds.

Round to nearest 1/4 pound.

Formula for calculating dosage:

\[
\text{dosage (lbs.)} = \frac{\text{volume (ft}^3\text{)} \times \text{dosage rate (lbs./1,000 ft}^3\text{)}}{1,000 \text{ ft}^3}\]

Figure 2-9-2 Formula for Calculating Dosage for Closed-door Container Fumigations
If using the electronic 429 database, the PPQ official must enter the dosage rate in the “dosage” field and the total amount of gas required for the fumigation will be displayed in the “GAS REQUIRED” field.

Step 13—Making a Final Check
Before introducing the gas, the PPQ official and the fumigator must ensure that the following activities are performed:

- Turn on all fans and APHIS-approved gas detection devices to make sure they work.
- Warm up and zero (if required) APHIS-approved gas detection devices as described in *Equipment on page 8-1-1*.
- Start volatilizer and heat water to 200 °F or above. A minimum temperature of 150 °F is required at all times during the introduction process. Refer to *Volatilizer on page 8-1-16* for temperature monitoring procedures.
- Place fumigant cylinder with gas introduction line on scale and take initial weight reading.
 - Ensure the gas introduction hose is attached to the cylinder.
 - After obtaining the correct weight, subtract the dosage to be introduced into the enclosure.
 - After the fumigator has introduced the proper amount of gas, the scale will be balanced.
- Ensure that tarpaulin is placarded and the area is secured. Only people working on the fumigation may be in the area.
- Ensure that the tarpaulin is free from rips, holes, and tears.
- Ensure that all gas sampling tubes are labeled and are **not** cramped or crushed.
 - Visually inspect tubes or use an electric or Mityvac® hand pump to check tubes. A fumiscope or vacuum pump may also be used to test leads for unrestricted flow.
When conducting fumigations with methyl bromide, erroneous readings may occur if the sampling tubes become blocked or crimped. It would be impossible to install a new sampling tubes during a fumigation treatment. Therefore, to avoid an unsuccessful fumigation, you should test sampling tubes before the treatment begins.

Use the following procedure to detect blocked sampling tubes with the use of a MityVac® hand-held pump (for supplier, see Vacuum Pump on page E-1-75):

1. Prior to fumigant introduction, connect the MityVac® hand-held vacuum pump to sampling tubes.
2. Squeeze the handle on the MityVac® unit. If the tube is blocked, a vacuum will be indicated on the vacuum gauge of the MityVac® unit. (The handle should be squeezed two or three times for sampling tubes longer than 25 feet. The MityVac® hand-held pump has the capacity to attain and hold 25 inches of Hg vacuum and a minimum of 7 psig pressure.)
3. Disconnect the MityVac® hand-held pump from the sampling tube, and repeat this procedure for each tube. (Connect sampling tubes to the gas analyzer prior to fumigant introduction.)

- Confirm that there is enough gas in the cylinder and if necessary, that other cylinders are available.
- Confirm that the gas introduction line connections are tight and free of leaks.
- Ensure that all safety equipment, especially SCBA, is available and in working order.
- If using a T/C, install Drierite® and Ascarite® as stated in the instructions in this manual.

Other gas detection devices may not require the use of Drierite® or Ascarite®.

Conducting the Fumigation

Step 1—Introducing the Gas

The PPQ official must wear SCBA anytime the MB concentration level in the air is unknown or greater than or equal to 5 ppm.
MB 2016 Label

If MB concentration levels are between 1-4 ppm, the PPQ official and fumigator may wear an air purifying respirator NIOSH certified half-mask or full face piece with a cartridge.

Require the fumigator to use SCBA while introducing and adding gas. Ensure that the fumigator turns on all fans before introducing the gas. When using large cylinders of MB, the fumigator should slightly open the cylinder valve, then close the valve. With an APHIS-approved continuous real time gas detection device, the fumigator must check all connections on the gas introduction hose for leaks. If leaks are found, the fumigator must tighten the connections and repeat the test. When no leaks are found, require the fumigator to open the valve to the point where 3 to 4 pounds of MB are being introduced per minute. The water temperature in the volatilizer should never go below 150 F at any time during gas introduction. The water in the volatilizer may include antifreeze and should be handled with the appropriate safeguards.

The fumigation time begins once all the gas has been introduced. The PPQ official must record the time gas introduction was started and completed in Block 32 on the PPQ Form 429.

If using the electronic 429 database, record the fumigation date, gas introduction start and finish time in the corresponding fields under the “GAS INTRODUCTION” heading on the Treatment form.

Require the fumigator to run the fans for **60 minutes** to achieve even gas distribution. After gas is evenly distributed, require the fumigator to turn the fans off. The PPQ official must take the initial concentration reading **60 minutes** after all the gas has been introduced.

Important

Do not begin counting fumigation time until all the gas has been introduced and valve on the MB tank is closed.

Step 2—Testing for Leaks

Require the fumigator to wear the SCBA while checking for leaks. The fumigator must use an APHIS-approved leak detection device to test for leaks before the 60 minute reading or anytime when the concentration level is unknown or above 5 ppm. The fumigator must test around the perimeter of the tarpaulin on the floor, corners, and especially where electric cords, gas sampling tubes, or gas introduction lines are present. When the fumigator detects leaks, ensure that they are sealed using more sand or sand snakes for
floor leaks and tape for sealing small holes in the tarpaulin. Use loose, wet sand to reduce leakage from electric cords, gas sampling tubes, gas introduction lines, or uneven flooring.

If an employee encounters unsafe conditions (such as holes in the tarpaulin or a breach in safety protocol) and the condition(s) cannot be corrected in a timely manner, the employee may CANCEL the fumigation. Consult with a PPQ Supervisor prior to cancellation.

If the fumigator detects excessive leakage (concentration readings of 50 percent or less of the minimum concentration) in a tarpaulin which cannot be corrected in a practical way, do not attempt to correct the problem by adding more gas. Require the fumigator to quickly evacuate the remaining gas from the enclosure, eliminate the problem, and construct a new enclosure. Aerate as usual following procedures on page 2-9-22. Record the aborted fumigation in Block 40 (Remarks) of the PPQ Form 429 or in the “Remarks” form in the electronic 429 database. Restart the fumigation in the new enclosure.

Any “closed-door” treatment that is aborted cannot be retreated until the remaining containers have completed treatment and all have aerated for a minimum of 48 hours. Refumigate aborted containers with both container doors open. Report aborted fumigations in the 429 as required by the Environmental Protection Agency.

Step 3—Taking Concentration Readings

Before taking a reading, always purge sampling lines with a mechanical or hand pump. If using a T/C unit, connect it to the sampling lead, adjust the gas flow rate to 1.0, and wait until the meter registering “ounces per thousand cubic feet” stabilizes before taking a reading. (This may take a minute or more, depending upon the length of the tubing and whether or not an auxiliary pump is used.)

The PPQ official must take concentration readings with an APHIS-approved gas detection device to determine the gas concentration and distribution within the enclosure. If used, check desiccant tubes before each reading and change Drierite® if its color is pink. Allow gas concentration readings to stabilize; do not disconnect the sampling line from the gas detection device when the minimum concentration reading has been met.

Take concentration readings at the times designated in the treatment schedule. Concentration readings should not differ more than 10 ounces among the leads. If they do, run the fans for an additional 30 minutes and take another reading to verify that gas concentration levels have equalized. In some cases, several cycles of fan operation may be necessary to equalize the readings.
Record all gas readings on the PPQ form 429 or in the electronic 429 database. Regardless of the number of containers under each tarp, every container must have a separate 429 record.

Avoid using hand-held two-way radios near the T/C unit. Using two-way radios near the T/C unit will interfere with an accurate concentration reading.

Step 4—Determining the Need to Add Gas and Adjust Exposure

If the lowest gas reading is BELOW the required minimum indicated by the treatment schedule, you must add gas and extend the exposure period.

Use the formula in Figure 2-9-3 to determine the amount of gas to add:

\[1.6 \times \text{number of ounces below minimum} \times \frac{\text{volume in cubic feet}}{1000 \text{ cubic feet}} \times \frac{1}{16} = \text{pounds of gas to add} \]

Figure 2-9-3 Formula for Determining the Amount of Gas to Add to Closed-Door Containerized Cargo

Use the Table 2-9-1 to determine how long to extend the exposure period.

Table 2-9-1 Determine the Extended Exposure Period for Closed-Door Containerized Cargo

<table>
<thead>
<tr>
<th>If any individual reading is below minimum by:</th>
<th>Then extend exposure:</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 oz. or less</td>
<td>10 percent of the time lapse since gas introduction or the last acceptable reading</td>
</tr>
<tr>
<td>11 oz. or more</td>
<td>2 hours or 10 percent of time lapse since last acceptable reading, whichever is greater</td>
</tr>
</tbody>
</table>

1 If any individual reading is 50 percent or more below the minimum concentration reading, then abort the treatment. For oak logs (T312-a, T312-a-alternative), refer to Table 5-4-2 on page-5-4-33 or Table 5-4-3 on page-5-4-36 in the section *Special Procedures for Adding Gas to Oak Logs Using T312 or T312-a-Alternative on page 5-4-32.*

Require the fumigator to follow these procedures when adding gas:

1. Heat water in volatilizer.
2. Turn on fans.
3. Weigh the cylinder.
4. With SCBA on, open cylinder valve and introduce the gas.
5. Close valve when the weight of the cylinder indicates that the needed amount of gas has been added.

The PPQ official must record quantity of fumigant added in Block 34 and the additional fan time in Block 30 of the PPQ Form 429.

If using the electronic 429, record the amount of additional gas listed in the Treatment Manual in the “Additional Gas Recommended” field and the actual amount of additional gas added in the “ACTUAL ADDITIONAL GAS” field. Record the additional fan time in the “TIME FANS OPERATED” field in the Treatment form.

Note the time the fumigator started introducing additional gas and the time the fumigator finished introducing gas and record in Block 40 (Remarks) of the PPQ Form 429 or in the “Remarks” form in the electronic 429 database. Run the fans for 30 minutes. Turn off fans, then take a concentration reading. If all readings are above minimum concentration levels and within 10 ounces of each other, then proceed as usual with the remaining scheduled concentration readings. If the readings are not above the minimum or within 10 ounces of each other, run the fans for another 30 minutes. It may take several cycles to stabilize the gas concentration.

Step 5—Exhausting the Gas

Require the fumigator to exhaust the gas at the completion of the exposure period.

Aerating Closed-door Containers—Indoors and Outdoors

The fumigator must:

- Arrange for the aeration to proceed once the treatment is completed.
- Consider the direction of the wind when pointing the exhaust duct, and face the duct outlet toward an open area away from people.
- Ensure that, during the first 10 minutes of aeration, no one is present within 200 feet downwind of the exhaust duct outlet.
- Determine aeration buffer zones in accordance with EPA’s fumigation buffer zone tables (https://www.epa.gov/pesticide-registration/mbcommoditybuffer).
- Ensure that no one is present within the perimeter of the aeration buffer zone unless they are wearing SCBA.
- See “Buffer Zone Overlap for Multiple Enclosures” on page-2-9-11.
◆ Follow all label instructions, state, county, and local regulations, in addition to the instructions in this manual.

◆ Inform people located in occupied structures and personnel in the immediate area within the buffer zone that release of MB is about to take place and give them the option of leaving the area or remaining inside the building.

◆ Restrict access to the area where the exhaust duct extends beyond the enclosure.

Wearing Respiratory Protection

The fumigator must wear approved respiratory protection (SCBA, supplied air respirator, or a combination unit) when:

◆ A risk of exposure to concentrations above 5 ppm exists; this includes any time the concentration is unknown

◆ Setting up the air introduction and the exhaust systems

◆ Opening the container door(s)

◆ Opening the tarpaulin for aeration

MB 2016 Label

If MB concentration levels are between 1-4 ppm, the PPQ official and the fumigator may wear an air purifying respirator NIOSH certified half-mask or full face piece with a cartridge.

Advise the fumigator to:

◆ Install an exhaust fan (minimum of 5,200 cfm capacity) with one end of a round ventilation duct at least 16 inches in diameter, oriented so that the fan pulls air through the duct. The fan dimensions should complement the diameter of ductwork chosen, fitting flush and tight so that no leaks exist between the fan and duct. For indoor fumigations, extend the exhaust duct (fan end) at least 30 feet beyond the building or into a vertical stack extending through the roof. For outdoor fumigations, the exhaust duct will be at least 30 feet in length with the fan end placed external and alongside the container extending toward the nose, so the exhaust air is directed away from the end of the container which is opened during aeration.

Palletized Partial Loads

For palletized partial loads (where at least 2 feet of open space is present at the door end of the container), extend the exhaust duct intake (non-fan end) on the container floor with the duct face flush against the bottom of the load along a side of the container. Store the remaining section of the exhaust duct and fan at the rear of the load so it is easily accessible at the start of aeration.
Full Loads

For full loads (where less than 2 feet of open space is available at the door end of the container and there is no central aisle between pallets), if there is room to store the exhaust duct inside the container during fumigation, secure the exhaust duct intake (non-fan end) face flush against the load at the floor/pallet/commodity interface along a side of the container so it will not shift or twist during aeration. Use straps, ties, or other fasteners to secure this interface tightly. If there is not sufficient room to pre-install the exhaust duct prior to fumigation, carry out these steps at the start of aeration.

For partial or full loads where a central aisle exists between the pallets run the exhaust intake duct along the floor center and extend 1-2 feet into this space if possible. Store the remaining section of the exhaust duct and fan at the rear of the load so it is easily accessible at the start of aeration.

Non-palletized Logs

For non-palletized logs, secure the duct face flush against the load at the floor/interface on a side of the container so it will not shift or twist during aeration.

If commodities other than logs are not palletized, consult CPHST-AQI before treatment.

Important

◆ Integrate an air introduction fan (minimum 3,750 cfm) with a round ventilation duct at least 12 inches in diameter, oriented so that the fan pushes the air through the duct. The fan dimensions should complement the diameter of ductwork chosen, fitting flush and tight so that no leaks exist between the fan and duct. Extend the introduction duct (non-fan end) along top of the load two-thirds of the length of the container. For partial loads, the intake duct may run along the container floor, with the end placed on top of the load. Store the remaining introduction duct and fan at the rear of the load so it is easily accessible at the start of aeration.

◆ Integrate an additional exhaust fan (minimum of 5,200 cfm capacity) with one end of a round ventilation duct at least 16 inches in diameter, oriented so that the fan pulls air through the duct. The fan dimensions should complement the diameter of ductwork chosen, fitting flush and tight so that no leaks exist between the fan and duct. This duct will be used to aerate the space between the container and tarp prior to tarp removal. The duct length should be approximately 10 feet and should remain outside the tarp during fumigation.

Important

Install introduction and exhaust ducts prior to fumigation in order to limit human exposure to the fumigant at the start of aeration.
Refer to Figure 2-9-4 for detailed diagrams of air and exhaust ducts. In this diagram, air introduction ducts are blue and exhaust ducts are red.

![Figure 2-9-4](image)

Figure 2-9-4 Ductwork configuration for aeration of closed door containers: full loads (top) and partial loads (bottom)

Step 6—Aerating the Commodity

Advise the fumigator to:

1. While wearing SCBA, insert a spacer (at least 16 square inches in area) to vent the tarpaulin at the nose end of the container. At the opposite end of the tarp, insert the additional exhaust duct 5 feet under the tarp and turn the fan on.

2. Exhaust the gas from underneath the containers before opening the doors of the containers for at least 15 minutes or until the gas concentration level underneath the containers is below 5 ppm.

3. While wearing SCBA, remove the tarp when the gas concentration level underneath the containers is below 5 ppm.

4. With the tarp removed and while wearing SCBA, turn off the fan used to aerate the space and open the doors of each container.

5. Turn on all fumigant circulation fans inside the container and leave them on throughout the aeration.

6. Start the container introduction and exhaust ducts fans. Require a minimum of **4 hours** aeration for all sorptive commodities. Sorptive commodities generally require 12 hours or longer to aerate, however, since sorptive commodities vary in their rates of desorption, aeration may be completed in less than 12 hours.
7. Aerate Oak logs and lumber a minimum of **48 hours**. If, after 48 hours, the concentration is 5 ppm or greater, continue aeration for 24 more hours. Continue this procedure until concentration readings are less than 5 ppm.

8. Stop the fans and take concentration readings with colorimetric tubes in the airspace around and, when feasible, within the log stack.

9. RELEASE the commodity when the concentration reading is 5 ppm or less.
Chemical Treatments

Fumigants • Sulfuryl Fluoride

Contents

Properties and Use 2-10-1
Leak Detection 2-10-2
Tarpaulin Fumigation 2-10-2
 Sealing 2-10-2
 Circulation 2-10-3
Prevention of Condensation 2-10-3
Gas Sampling Lines 2-10-3
Gas Introduction 2-10-3
Dosage Rate 2-10-4
Measure Gas Concentrations 2-10-5
Replacing Lost Gas 2-10-5
Aeration 2-10-5
Structural Fumigation 2-10-5
Chamber Fumigation 2-10-6
Shipboard Fumigation 2-10-6
Safety and First Aid 2-10-6
 Protective Clothing 2-10-6
 If SF Is Inhaled 2-10-7
 If Liquid SF Is Spilled on the Skin 2-10-7
 If Liquid SF Is in the Eyes 2-10-7

Consult the Vikane1 Gas Fumigant label and Structural Fumigation Manual for more detailed instructions and additional supportive information.

Properties and Use

Sulfuryl fluoride (SF) is a compressed-gas fumigant which is used primarily against insects that attack wood. The following characteristics make this fumigant especially desirable:

- 2.88 times heavier than air
- High vapor pressure — 13,442 mm Hg @ 770 °F
- Low solubility in water and low sorption by soil or commodity
- Odorless, colorless, and nonflammable

1 Trademark of Dow Agro Sciences
Chemical Treatments Fumigants • Sulfuryl Fluoride

Leak Detection

- Penetrates wood better than any other commercial fumigants, including methyl bromide
- Relatively nonreactive
- Very low loss through plastic tarpaulins

SF boils at minus 67 °F. SF is not registered for use on foodstuffs or on living plant material.

SF is effective at very low dosages on Drywood termites where control of the adult stage is the only concern (typically 0.5 to 1.0 lbs/1,000²). Higher dosages are required for control of the egg stage of other insects (typically 3 to 5 lbs/1,000²). Consult treatment schedules in this manual for specific dosages.

Leak Detection

Interscan (Model GF 1900) or Miran gas analyzers (these units are portable) may be used to detect SF in the range of 0 to 150 ppm respectively. Consult the Vikane Structural Fumigation Manual for further instructions. Colorimetric (“detector”) tubes are not available for detecting SF gas leaks around tarpaulins, chambers, and application equipment.

Tarpaulin Fumigation

Refer to the Vikane label and Vikane Structural Fumigation Manual for a detailed discussion of proper procedures.

Important

Also, refer to the Fumigants • Methyl Bromide • Tarpaulin Fumigation for additional information on the following:
- selecting fumigation sites
- placing gas sampling lines
- sealing tarpaulins
- taking concentration readings
- securing fumigation areas

Sealing

The commodity to be fumigated should be placed onto a relatively even and non-porous surface, such as concrete, asphalt, or macadam. Special attention should be given to the seal along the ground or floor. The inspector should have tape, sand, or water snakes properly positioned.
Circulation
Fans are necessary to distribute SF and to help prevent condensation. The number of fans depends upon the cubic volume of the enclosure being treated, and the arrangement of cargo. Axial fans of approximately 5,000 cfm have proven effective. Usually 2 fans are used, one on either end facing the lower center and upper center of the load. If the enclosure is over 35 feet long, additional fans should be used. It is usually **not** necessary to run fans longer than 15 minutes after the gas has been introduced.

Prevention of Condensation
In cool weather, moisture may condense under tarpaulins if the sun is shining directly on the load. Continuous air circulation can prevent this from occurring. Do **not** tarp or seal any item while it is wet.

Gas Sampling Lines
A thermal conductivity unit calibrated for Vikane must be available for readings. Sampling lines should be arranged so that gas samples are drawn from representative parts of the fumigation area and lead to a common point.

A minimum of 3 sampling lines should be placed in enclosures of up to 10,000 ft³ at the following locations:

- Front of the load, 3 inches from the floor
- Center of the load, midway from the bottom to the top of the load
- Rear of the load, at the top.

When 10,000 to 15,000 ft³ are being treated, 2 additional lines should be appropriately deployed.

Gas Introduction
Unlike methyl bromide, SF does **not** require the use of a volatilizer to speed up its conversion from a liquid to a gas. The gas introduction tube should be placed directly in the air flow of a fan away from the cargo. Also, place a drip cloth under the tube. The introduction rate is controlled by the introduction line length and diameter. A 1/8-inch-inside-diameter by 100-foot-long hose will allow a flow rate of approximately 2 pounds per minute while a 25-foot-long hose will allow approximately 4 pounds per minute.

Table 2-10-1 Effect of Hose Inside Diameter on Rate of Gas Introduction through a 25-Foot Hose (approximates, depending on cylinder pressure)

<table>
<thead>
<tr>
<th>Inside Diameter (inches)</th>
<th>Vikane Per Minute (pounds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/8</td>
<td>4</td>
</tr>
<tr>
<td>1/4</td>
<td>20</td>
</tr>
<tr>
<td>1/2</td>
<td>45</td>
</tr>
</tbody>
</table>
It is important not to overshoot the ability of the fan to rapidly disperse the cool air near the fumigant introduction site. Fan capacity should be at least 1,000 cfm for each lb of Vikane introduced per minute. In addition, a volatilizer (heat exchanger) may be used in fumigating containers or small chambers to prevent a “fog-out” (condensation) which could cause corrosion or damage to the contents. The last few pounds of fumigant will turn to gas within the cylinder before moving out, and the flow rate will be reduced. The cylinder and tubing will often become frosted. Be certain that no open flame or glowing hot surfaces above 400 °C are present since corrosive substances (mainly hydrofluoric acid) are formed when SF is exposed to such conditions. To avoid possible damage, do not apply the fumigant directly to any surface.

Dosage Rate

To control a particular pest, locate the proper fumigation schedule to be followed in the Treatment Manual. The three variables in these schedules are temperature, dosage, and exposure duration. Treatment is not recommended below 50 °F. Dosages are in pounds per 1,000 feet³ of space. To determine the total amount of fumigant required by weight in pounds, divide the total volume of space by 1,000. Then multiply the resulting figure by the dosage rate schedule expressed in pounds (per 1,000 feet³). The cylinder should be placed on a scale, and the flow of gas is controlled by the valve and introduction line until the desired cylinder end-weight is obtained. The valve should be turned fully open to fill the fumigant introduction hose with liquid SF. Initially, the valve should be opened slightly until flow has begun and then opened about one full turn which should give full flow through the 1/8” fumigant introduction hose.

Table 2-10-2 Effect of Hose Length on Rate of Gas Introduction through a 1/8 inch Inside Diameter Hose

<table>
<thead>
<tr>
<th>Hose Length (in feet)</th>
<th>Pounds Vikane Per Minute</th>
</tr>
</thead>
<tbody>
<tr>
<td>25 ft</td>
<td>4.0</td>
</tr>
<tr>
<td>50 ft</td>
<td>2.8</td>
</tr>
<tr>
<td>100 ft</td>
<td>2.0¹</td>
</tr>
</tbody>
</table>

¹ Where fumigant introduction rates lower than 2 lbs/min are needed, a longer hose can be used, e.g., 200 ft.
Measure Gas Concentrations

During the course of fumigation, minimum concentrations must be maintained according to the schedules used. Readings on the T/C unit (Fumiscope or Gow-Mac) if not calibrated for Vikane must be multiplied by a factor to obtain the actual ounces per 1,000 feet³ present. Contact USDA-APHIS-PPQ-S&T-CPHST-AQI in Raleigh, North Carolina, for calibration information. Be certain that the reading without the multiplied factor is also registered on PPQ Form 429, however. Do not use filters containing sodium hydroxide (Ascarite) with SF. Fresh desiccant (Drierite) should be used with the T/C unit. Desiccant should be changed at appropriate intervals to insure accurate readings.

Replacing Lost Gas

When it appears that additional SF will be needed, the officer should use their best judgment to determine the amount of gas to add, according to the prevailing conditions of tarpaulin tightness or wind conditions. Usually, 1.6 oz of gas should be added for every ounce of deficiency in the minimum concentration required.

Aeration

For detailed guidelines, consult the Vikane Gas Fumigant label, Vikane Structural Fumigation Manual, and the “Aerating the Enclosure on page 2-4-36” in chapter Fumigants • Methyl Bromide • Tarpaulin Fumigation on page 2-4-1. The threshold limit value for SF is 5 ppm (20 mg/cubic meter), the same as for MB. Since no colorimetric (“detector”) tubes are available for SF, a suitable instrument must be used, such as the Interscan GF 1900 or Miran (calibrated for SF).

Structural Fumigation

Refer to the section on MB structural fumigation (or aeration) in this manual, the Vikane label, and Vikane Structural Fumigation Manual for a detailed discussion of proper procedures.

When preparing a structure for fumigation with SF, the surrounding soil should be watered thoroughly at the base of trees, shrubs, and other ornamental plants around the perimeter of the structure to prevent loss of fumigant into the soil. Watering around the plants will protect the roots; however, plants and grass closer than 1 foot may die even if this precaution is taken.

Before placing the tarpaulin over the structure, be sure to remove items for which the use of SF is not registered. These include food, feed, drugs, and medicines. Extinguish all flames (including pilot lights), unplug all heating elements, and turn off all lights. Open all internal doors.
Chamber Fumigation

Refer to the section on MB chamber fumigation (and aeration) in this manual, the Vikane label, and Vikane Structural Fumigation Manual for a detailed discussion of proper procedures.

The gas will generally be introduced through a volatilizer or heat exchanger in order to prevent a “fog-out” which could damage the contents. Introducing a very small amount of gas into a small chamber, however, is difficult to do with precise accuracy because the amount introduced must be calculated by weight loss from the cylinder. The scale used beneath the cylinder must be readable in ounces or grams, not just in pounds or kilograms.

Shipboard Fumigation

Refer to the section on MB ship fumigation (and aeration) in this manual, the Vikane label, and Vikane Structural Fumigation Manual for a detailed discussion of proper procedures. Surface ships (only those in port) must be fumigated at dock side, and not when the vessels are underway. Shipboard fumigation is also regulated by the U.S. Coast Guard (Department of Transportation). That regulation appears as 46CFR 147A.

Safety and First Aid

Read and understand all directions and safety precautions on Vikane label before applying. Additional information is presented in Vikane Structural Fumigation Manual. There is no known antidote for SF. Vikane is odorless. However, the chance of lethal exposure is not probable unless an individual actually enters the fumigation space. An SCBA must be worn by anyone in the fumigated areas when the level exceeds 5 ppm.

Protective Clothing

Wear goggles or full face shield for eye protection during introduction of the fumigant. Do not wear gloves or rubber boots. Do not reuse clothing or shoes that have become contaminated with liquid SF until thoroughly aerated and cleaned.
If SF Is Inhaled
An individual who has inhaled high concentrations of SF may exhibit the following symptoms:

- Difficulty breathing
- Dulled awareness
- Nausea
- Numbness in the extremities
- Slowed body movements
- Slowed or garbled speech

If any of the above symptoms appear, immediately do the following:

- Remove the victim to fresh air
- Put victim at complete rest
- Keep the victim warm and see that breathing is normal and unhampered; if breathing has stopped, give artificial respiration
- Do not give anything by mouth to an unconscious person
- Obtain medical assistance

If Liquid SF Is Spilled on the Skin
Immediately apply water to the contaminated area of clothing before removing. Wash contaminated skin thoroughly or shower.

If Liquid SF Is in the Eyes
Flush with plenty of water for at least 20 minutes, and get medical attention. Damage to the eye may result from cold or freezing temperatures.
Properties and Use

There are a number of phosphine formulations registered with the United States Environmental Protection Agency (EPA) to control a variety of insects currently infesting raw agricultural commodities, processed foods, animal feed, feed ingredients, and nonfood commodities, including tobacco. Aluminum phosphine (AP), magnesium phosphide (MP), ECO2FUME® and VAPORPH3OS® are phosphine formulations that are currently approved for use by the Plant Protection and Quarantine (PPQ). Always refer to this manual to determine if there is an available treatment. There are commodities and pests listed on the labels that are not authorized for treatment by USDA PPQ.

AP and MP are solid products and are available under various trade names (*Figure 2-11-2* on *page 2-11-9*) as tablets, pellets, prepacs, bags, or plates. In the presence of moisture, phosphine (hydrogen phosphide, PH₃), a colorless gas, is emitted from the solid product.
The flash point of PH is 212 °F. Direct contact with a liquid could cause spontaneous combustion. In case of fire, a CO₂ dry chemical fire extinguisher should be used. Never use water to extinguish a PH-ignited fire. PH has an odor somewhat like garlic, which enables the gas to serve as its own warning agent. However, under some conditions, the odor can be lost, even at high toxic concentrations.

ECO₂FUME® fumigant gas is a nonflammable, premixed mixture of phosphine and carbon dioxide. The phosphine is liquefied and mixed with carbon dioxide in high-pressure cylinders for shipment. Phosphine, the active ingredient, makes up 2 percent by weight (2.6 percent by volume) of the product. The carbon dioxide is used as a propellant and a flame inhibitor, making the product nonflammable in air. Do not store the fumigant near heat or open flame. Do not drop, puncture, or incinerate the cylinder.

Under pressure, ECO₂FUME® is a poisonous liquefied gas. The product is withdrawn from the cylinder as a liquid, but dispensed as a gas. When expanding from a liquid to a gas, ECO₂FUME’s volume is multiplied by hundreds. Proper dispensing equipment (See Dispensing ECO₂FUME® Fumigant Gas on page 2-11-11) is necessary to ensure a safe and effective fumigation; therefore, always contact the manufacturer concerning proper dispensing equipment for the fumigant. Fumigators should provide PPQ with all Cytec® equipment authorization documentation. The documentation should be on file and available for periodic audits by the USDA.

The rate at which phosphine is dispensed is not dependent on temperature or humidity, but on the dispensing equipment used. Unlike metal phosphide fumigants, the phosphine is not generated through a chemical reaction and its release is instantaneous. The choice of dispensing methods will depend on the type and duration of the fumigation planned.

VAPORPH₃OS® consists of 100 percent phosphine gas packaged in high-pressure gas cylinders. Unlike solid phosphide fumigants, the phosphine is not generated through a chemical reaction and its release is instantaneous. Phosphine is pyrophoric and will spontaneously ignite in air. Phosphine is dispensed as a gas from the cylinder and can be safely blended with carbon dioxide to less than 3 percent volume (30,000 ppm) or diluted with the surrounding air to 1 percent volume (10,000 ppm) to eliminate the flammability hazard. Contact the manufacturer for approved blending equipment necessary to ensure a safe and effective fumigation. Never store the cylinders where the temperature will exceed 125°F. Fumigators should provide PPQ with all Cytec® equipment authorization documentation. The documentation should be on file and available for periodic audits by the USDA.
Phosphine
Phosphine (PH) is highly toxic to humans and other animals. Avoid exposure to nontarget organisms. The current U.S. OSHA Permissible Exposure Limit (PEL) for phosphine is 0.3 ppm as an 8-hour time weighted average. The Short Term Exposure Limit (STEL) for phosphine is 1 ppm as a 15-minute time weighted average.

Phosphine is colorless and, at concentrations below the OSHA PEL, has the odor of decaying fish or garlic. Intermittent low concentration exposure may cause headaches, malaise, ringing of ears, fatigue, nausea, and chest pressure. Moderate exposure causes weakness, vomiting, and pain in the stomach and chest with difficult breathing. Phosphine gas reacts with moisture to form phosphoric acid, which causes pulmonary edema.

Phosphine may spontaneously ignite in air at levels above its lower flammability limit of 1.8 percent v/v (18,000 ppm). Do not exceed this concentration because, under these conditions, explosions can occur that could cause severe personal injury. Never allow the buildup of phosphine to exceed explosive concentrations.

Under high vacuum conditions, phosphine gas can cause an explosive hazard. **Do not apply either fumigant in vacuum chambers.**

Phosphine can react with certain metals and cause corrosion (especially at higher temperatures and lower relative humidity). **Gold, silver, copper, brass, and other copper alloys are susceptible to corrosion.**

Remove or protect the following items prior to fumigation:

- Batteries and battery chargers
- Brass sprinkler heads
- Communication devices
- Computers
- Electric motors
- Electronic or electrical equipment
- Fork lifts
- Smoke detectors
- Switching gears
- Temperature monitoring systems

Fans and blowers used with phosphine products should be manufactured from materials resistant to the fumigant. Aluminum or plastic wheels and housings are preferred. For phosphine fumigations, always contact the manufacturer for recommended fan and blower types.
Chemical Treatments Fumigants, Phosphine

Leak Detection: Gas Analysis

Carbon Dioxide
In a liquefied state and when contact is made with exposed areas of the body, carbon dioxide can cause frostbite and freeze burns. Overexposure to carbon dioxide at low levels can cause headache, nausea, weakness, confusion, and labored breathing. Overexposure to higher concentrations can cause excitation, dizziness, euphoria, loss of consciousness, coma, and death.

The current U.S. OSHA PEL for carbon dioxide is 5,000 ppm as an 8-hour time weighted average.

Leak Detection: Gas Analysis
Phosphine levels can be detected using either colorimetric detector tubes or any approved electronic instrument such as the “Porta-Sens” detector. (See *Equipment* on page 8-1-1 for instructions on how to use the Porta-Sens.) This equipment is used to determine both the high (fumigation concentration) and low (personnel safety) levels of PH. Do not use thermal conductivity (T/C) units (e.g., Gow-Mac or fumiscope) for PH.

Safety

Applicator Requirements
Before using ECO₂FUME® and VAPORPH₃OS®, all users (fumigators) are required to attend the fumigant gas product stewardship course offered by Cytec® Industries. PPQ Officers are not required to attend the stewardship courses, but attendance is recommended.

It is a violation of federal law to use AP, MP, ECO₂FUME® and VAPORPH₃OS® fumigants in a manner inconsistent with their labeling. These fumigants are **Restricted Use Pesticides** that can only be used by certified applicators. Prior to using the fumigants, submit to PPQ all documentation concerning applicator certification and stewardship program completion by personnel working for the fumigation company. The documentation should be on file and available for periodic audits by the USDA.

A certified applicator must be physically present, responsible for, and maintain visual and/or voice contact with all fumigation workers during the application of the fumigants and during the initial opening of the fumigation structure for aeration.
Storage and Handling
Although PH is flammable and can ignite when exposed to excessive moisture, the commercial precautions of AP and MP are considered fire safe and explosion safe when used in accordance with the manufacturer’s instruction. Place no more than 10 pellets of Phostoxin in a single envelope, which is supplied by the manufacturer. A Fumi-Cel plate should not contact another Fumi-Cel plate or the commodity.

Store containers of AP and MP in a cool, dry, locked, ventilated, protected area not subject to extremes of temperature. Never allow water to come in contact with AP or MP. The shelf life of unopened containers is virtually unlimited. When a tube or container is first opened, the odor of PH (garlic) and ammonia will be noticeable and a blue flame sometimes occurs. However, the quantity of free PH present within that container should not be considered dangerous.

When planning a storage area for ECO2FUME® and VAPORPH3OS® cylinders, consider the needs of the local authorities. Provide all emergency response personnel with Material Safety Data Sheets (MSDS) and detailed information regarding the quantities of product stored and the nature and location of the storage area.

Develop an Emergency Response Plan that defines procedures and outlines responsibilities in the event of an accident. Train all site personnel in the plan. Store all cylinders with the valve discharge cap securely in place.

In addition to instructions and precautions found on the label, be certain to:

◆ Study and follow the recommended application procedure
◆ Comply with all regulations
◆ Allow only properly trained personnel to conduct fumigations under the supervision of certified pesticide applicator(s)
◆ Ensure that first aid equipment, MSDS sheets, and fumigant labels are readily available at the fumigation site
◆ Placard the area to be fumigated and an area extending 30 feet from the fumigation enclosure—refer to the fumigation label for appropriate wording on all placards
◆ Always work in pairs, never alone—a minimum of two people must be present during the introduction, sampling, and aeration of the fumigant
◆ Never eat, drink, or smoke when handling PH products
- Remove placards when aeration is complete and concentrations are below the TLV
 - Only certified pesticide applicators or individuals under the direct supervision of the certified applicator should remove placards
- Do not apply either PH fumigant in vacuum chambers
- Wear leather or leather-faced cotton gloves when connecting or disconnecting ECO₂FUME and VAPORPH₃OS® cylinders from the dispensing or blending equipment
- Wear dry cloth gloves when handling AP or MP products
- Wear steel-toed shoes
- Always wear safety glasses when handling pressurized equipment
- Read and understand sections XI. STORAGE OF CYLINDERS and XII. TRANSPORT in the ECO₂FUME® and VAPORPH₃OS® Application Manual
First Aid Treatment

Mild inhalation exposure causes:

- Malaise
- Ringing of the ears
- Fatigue
- Nausea
- Pressure in chest

Moderate inhalation exposure causes:

- Weakness
- Vomiting
- Epigastric pain
- Chest pain
- Diarrhea
- Dyspnea (difficulty breathing)

Severe inhalation poisoning can occur within a few hours or up to several days—symptoms may be:

- Pulmonary edema (fluid in lungs)
- Dizziness
- Cyanosis (blue or purple skin color)
- Unconsciousness
- Death

Get the victim to fresh air, treat for shock, and call a physician.

Respiratory Protection

When applying AP, MP, ECO₂FUME® and VAPORPH₃OS®, respiratory protection must be available at the site. An adequate number of NIOSH-approved self-contained breathing apparatus (SCBA) with full face piece and operated in pressure-demand mode must be available.
The slow evolution of PH from the AP or MP enables the operator to dispense the tablets, pellets, packets, plates, or pre-pack ropes safely, usually without the need for wearing an SCBA.

However, wear SCBA during exposure to concentrations in excess of permitted limits (Table 2-11-1) or when concentrations are unknown. If the concentration of phosphine is unknown or known to exceed the STELs for phosphine and/or carbon dioxide, wear SCBA during troubleshooting for leaks. Use respiratory protection according to local regulations, including regular worker training in using respiratory protection equipment properly, medical clearance for respirator use, fit testing, inspection, maintenance, and cleaning and storage of respiratory protection equipment.

Table 2-11-1 NIOSH-Recommended Respiratory Protection When Applying Phosphine

<table>
<thead>
<tr>
<th>Phosphine Gas (ppm)</th>
<th>Minimum Respiratory Protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.3 - 3.0</td>
<td>Supplied-air respirator</td>
</tr>
<tr>
<td>3.1 - 7.5</td>
<td>Supplied-air respirator operated in a continuous-flow mode</td>
</tr>
</tbody>
</table>
| 7.6 - 15 | 1. SCBA with full face piece OR
 | 2. Supplied-air respirator with full face piece OR
 | 3. Air-purifying full face piece respirator (gas mask) with chin style front or back-mounted canister |
| 16 - 50 | 1. Supplied-air respirator with a full face piece and operated in pressure-demand mode OR
 | 2. SCBA with a full face piece and operated in pressure-demand mode |
Packaging
AP and MP are packaged in a variety of ways, depending on the manufacturer. Use Table 2-11-2 to determine the amount of phosphine liberated by each product.

Table 2-11-2 Amount of Phosphine Liberated by Various Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Type</th>
<th>Unit and weight in grams</th>
<th>Grams of phosphine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degesch Fumi-Cel</td>
<td>MP</td>
<td>1 plate; 117.0</td>
<td>33.0</td>
</tr>
<tr>
<td>Degesch Fumi-Strip</td>
<td>MP</td>
<td>20 plates; 2340.0</td>
<td>660.0</td>
</tr>
<tr>
<td>Degesch Phostoxin</td>
<td>AP</td>
<td>1 tablet; 3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Degesch Phostoxin Tablet Prepac Rope</td>
<td>AP</td>
<td>1 prepac; 99.0 (strip or rope of 33 tablets)</td>
<td>33.0</td>
</tr>
<tr>
<td>Detia</td>
<td>AP</td>
<td>1 tablet; 3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Detia Rotox AP</td>
<td>AP</td>
<td>1 pellet; 0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Detia Gas EX-B</td>
<td>AP</td>
<td>1 bag or sachet; 34.0</td>
<td>11.4</td>
</tr>
<tr>
<td>Fumiphos tablets</td>
<td>AP</td>
<td>1 tablet; 3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Fumiphos pellets</td>
<td>AP</td>
<td>1 pellet; 0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Fumiphos bags</td>
<td>AP</td>
<td>1 bag; 34.0</td>
<td>11.0</td>
</tr>
<tr>
<td>Fumitoxin</td>
<td>AP</td>
<td>1 tablet; 3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Fumitoxin</td>
<td>AP</td>
<td>1 pellet; 0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Fumitoxin</td>
<td>AP</td>
<td>1 bag; 34.0</td>
<td>11.0</td>
</tr>
<tr>
<td>Gastoxin</td>
<td>AP</td>
<td>1 tablet; 3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Gastoxin</td>
<td>AP</td>
<td>1 pellet; 0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>"L" Fume</td>
<td>AP</td>
<td>1 pellet; 0.5</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>AP</td>
<td>1 pellet; 0.6</td>
<td>0.22</td>
</tr>
<tr>
<td>Phos-Kill</td>
<td>AP</td>
<td>1 tablet; 3.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Phos-Kill</td>
<td>AP</td>
<td>1 pellet; 0.6</td>
<td>0.22</td>
</tr>
<tr>
<td>Phos-Kill</td>
<td>AP</td>
<td>1 bag; 34.0</td>
<td>12.0</td>
</tr>
</tbody>
</table>
ECO\textsubscript{2}FUME® fumigant gas is packaged in a steel compressed gas cylinder designed, manufactured, maintained, and filled in compliance with regulations established by the United States Department of Transportation (DOT). (Figure 2-11-1) The product flows to the dispensing equipment through the cylinder outlet valve, which is equipped with a “dip tube.” This tube extends to the bottom of the cylinder to facilitate the withdrawal of the liquefied gas mixture. As liquid is withdrawn from the cylinder, some of the product vaporizes to fill the remaining space in the cylinder. Through this vaporization, the cylinder pressure is maintained.

![Diagram of ECO2FUME® Gas Cylinder](image)

The capacity of one ECO\textsubscript{2}FUME® cylinder at 200 and 500 ppm is 78,000 and 31,100 ft3 respectively. With the volume of ECO\textsubscript{2}FUME® at 500 ft3, the internal volume of the cylinder is 49 liters. The maximum cylinder pressure is 2,400 psig.

The Compressed Gas Association (CGA) established the valve outlet fitting as a CGA350. The valve outlet is protected by a threaded gas tight outlet cap, which must be secured whenever the cylinder is not in use. To dispense ECO\textsubscript{2}FUME® fumigant gas at the time of fumigation, attach only Cytec®-provided (or approved) dispensing equipment to the cylinder valve outlet. Using any other dispensing equipment is prohibited.
Most compressed gas cylinder valves are equipped with a safety device that releases the cylinder contents due to fire exposure or over-pressurization. Because ECO₂FUME® and VAPORPH₃OS® fumigant gases are poisonous, Hazard Class A, the DOT regulations prohibit using such a device.

Each cylinder is supplied with a cylinder cap designed to protect the outlet valve. Secure this cap whenever a cylinder is not in use. It is unlawful to transport an ECO₂FUME® or VAPORPH₃OS® fumigant gas cylinder without the valve outlet cap and the cylinder cap securely in place.

ECO₂FUME® and VAPORPH₃OS® fumigant gas cylinders can only be refilled by authorized distributors. They can be filled countless times within a five-year period. Every five years, however, the cylinder is required, by law, to be tested by a qualified facility.

VAPORPH₃OS® is packaged in much the same way as ECO₂FUME® with two critical exceptions. First, VAPORPH₃OS® does not contain a dip tube, which means the fumigant is withdrawn from the cylinder directly through the outlet valve. Second, the capacity of one VAPORPH₃OS® cylinder at 200 and 500 ppm is 2.25M and 900,000 ft³ respectively. With the volume of VAPORPH₃OS® at 500 ft³, the internal volume of the cylinder is 49 liters. The maximum cylinder pressure is 2,400 psig. One VAPORPH₃OS® cylinder contains 18,000 grams of phosphine and is capable of fumigating 2.25M ft³.

Dispensing ECO₂FUME® Fumigant Gas

The following instructions are intended to provide general guidelines for typical ECO₂FUME® fumigation. There are a number of critical factors involved in the design of dispensing equipment. (See Figure 2-11-2 on page 2-11-12) As such, dispensing equipment must meet both high-pressure standards and chemical compatibility requirements. Improper or inappropriate use of dispensing equipment can result in severe injury or death. Application
inconsistent with the labeling and Application Manual is a violation of federal law. Buyer assumes all risk should the product be used contrary to label or Application Manual instructions.

Figure 2-11-2 Diagram of One Type of Dispensing Equipment

The equipment used to dispense ECO₂FUME® provides a means of containing the gas during the fumigation and controlling the release of the product into the desired space. While some dispensing equipment has been developed and used to date, it cannot be expected to cover all possible fumigation scenarios. The development of suitable dispensing equipment is an ongoing process based on the needs of the users and available technology.

The design of dispensing equipment must account for a number of technical issues including pressure rating, material compatibility, temperature limitations and operator safety. For this reason, use only appropriate equipment when dispensing ECO₂FUME®. Only persons trained in the proper use of ECO₂FUME® and the dispensing equipment shall be permitted to use ECO₂FUME® for fumigation. Consult the instruction materials provided with the dispensing equipment for their proper use and maintenance.

It has been common practice, with other cylinderized fumigants, to place the cylinder in the space to be fumigated and the cylinder outlet valve opened to allow the fumigant to release. This is not an approved dispensing method and should not be used with ECO₂FUME®.
Approved Dispensing Methods

The approved dispensing methods for ECO₂FUME® include using pressure-reducing regulators for slow release and selected piping components for quick release. The slow release of ECO₂FUME® is generally used for fumigating bulk storage facilities such as silos or bins, or for small fumigation chambers or spaces and for fumigating stacked materials under tarpaulins. The quick release method is used for space fumigation, or where the commodity to be treated is warehoused. The selection of the dispensing method will depend on the size of the fumigation, the time required, and facility limitations.

Two gas regulators, ambient and heated, have been developed for use with ECO₂FUME®. Each of the regulators is designed to reduce the high cylinder pressure (less than 30 psig) and provide the heat necessary to vaporize the fumigant. Once reduced to this lower pressure, the fumigant can be distributed to the desired dispensing points using inexpensive and easy-to-use materials, such as plastic tubing. Flow indicators are used with regulated dispensers to measure and set the dispensing rate.

Ambient Heater Regulated Dispenser
The slower of the two dispensers relies on ambient heat to vaporize the fumigant and is limited to a dispensing rate of about one-half pound of ECO₂FUME® per hour.

Heated Regulated Dispenser
The heated regulator uses an external heating vaporizer to provide the energy required to vaporize the liquid fumigant at a much higher rate than the ambient heat regulator. This regulator is limited to a dispensing rate of about 24 pounds of ECO₂FUME® per hour. The equipment is designed for a service pressure up to 3,000 psig. From the cylinder, the liquid mixture flows down a flexible hose or pigtail through a filter and into a heater. The heater is thermostatically controlled and the temperature setting can be adjusted. Exiting the heater, ECO₂FUME® gas flows through an actuated valve that can be used for emergency shutdown purposes. ECO₂FUME® gas then flows through a gas regulator that drops the pressure to 30 psig. A diaphragm valve is used to control the gas flow at any desired value up to 100 liters/minute as indicated by the flow rotameter. The heater provides 1,000 watts of power that can vaporize a maximum of 100 ppm. Lower rotameter ranges are possible. ECO₂FUME® regulator assemblies, equipped with basic features, are available through authorized ECO₂FUME® distributors. Multiple regulators may be used together to achieve higher fumigant flows than available through a single regulator and custom equipment can be developed for specific types of applications.
Quick-Release Dispensing Equipment

When the fumigation space is very large, such as a mill, warehouse, or large fumigation chamber, using a number of cylinders is anticipated, a quick means of dispensing ECO2FUME® is available. Specially selected components can be used to direct the cylinder discharge into the fumigation space, without the need to enter the space during the fumigation. Using this method, a single cylinder can be completely discharged in as little as 15 minutes. Unlike the regulated dispensing methods, the dispensing rate is not adjustable and generally, entire cylinders are emptied using this process. If partial cylinder contents are needed, the ECO2FUME® cylinder can be placed on a weight scale and the amount of released fumigant can be measured. The quick release method must not be used for fumigation of small-sized stacked materials under tarpaulins, however, the quick dispensing method will be used for most applications. Three techniques of quick dispensing are presented in this section, with the major difference being the tubing size.

1. One technique uses high pressure tubing (stainless steel or hydraulic hose with a nylon core) connected directly to the cylinder valve. The tubing is then routed into the fumigation space. When the cylinder valve is opened the majority of the liquid will be dispensed in four to five minutes. The last few pounds below the cylinder internal dip pipe will require several additional minutes to vaporize and be dispensed. When the cylinder is empty of liquid, approximately 18 pounds of gas will remain in the cylinder. For larger fumigations, manifolds may be used with the cylinders to make the dispensing faster. Always leak test the dispensing piping and cylinder connection before opening the cylinder valve.

2. When a slower dispensing rate is desired, use smaller tubing (stainless steel or hydraulic hose with a nylon core). The fumigator must not throttle the cylinder valve to slow the dispensing rate; to do so will cause a high pressure drop through the valve. The pressure drop will result in cooling and dry ice formation. This solid dry ice formation will plug the dispensing pipe and possibly the cylinder valve. Attaching a short section of 1/8 inch tubing to the end of the 1/4 inch tubing will slow the dispensing rate to approximately 5 pounds/min. Use a calibrated scale to ensure the proper amount of product dispensed.

3. If a dispensing rate of less than 5 pounds/min is required, a small section of 1/16 inch tubing, 0.04 inch internal diameter (stainless steel or hydraulic hose with a nylon core) can be attached to the end of the 1/4 inch tubing to slow the dispensing rate to approximately 1.6 pounds/min. Use a scale to ensure the proper amount of product is dispensed. The tubing is also available in smaller internal diameters (I.D.) for reduced dispensing rates. When 1/8 inch tubing or 1/16 inch tubing is used a filter is recommended to prevent plugging of the smaller tubing.
Blending VAPORPH$_3$OS® Fumigant Gas

The following instructions are intended to provide general guidelines for typical fumigations. There are a number of critical factors involved in the design of blending equipment. As such, blending equipment must meet both high-pressure standards and chemical compatibility requirements. Improper or inappropriate use of blending equipment may result in severe injury or death. Application inconsistent with the labeling and Application Manual is a violation of federal law. Buyer assumes all risk should the product be used contrary to label or Application Manual instructions.

The equipment used to blend VAPORPH$_3$OS® on site with carbon dioxide or surrounding air into a nonflammable gas mixture provides a means of containing the gas during the application and controlling the release of the product into the desired space. While some blending equipment has been developed and used to date, they cannot be expected to cover all possible fumigations scenarios. The development of suitable blending equipment is an ongoing process based on the needs of the users and available technology.

Blending equipment design must account for a number of technical issues, including pressure rating, material compatibility, temperature limitations and operator safety, and controlling the phosphine concentration between 2.0 and 2.9 percent volume for carbon dioxide blending and less than 10,000 ppm (1 percent volume) for dilution with air. For this reason, use only Cytec®-approved equipment in VAPORPH$_3$OS® blending. Only persons trained in the proper use of VAPORPH$_3$OS® and the dispensing equipment shall be permitted to use VAPORPH$_3$OS® for fumigation. These persons must also be licensed pesticide applicators.

Consult the instruction materials provided with the blending equipment or dilution equipment for their proper use and maintenance. FOSFOQUIM, the authorized manufacturer of the phosphine air blending equipment, will provide training and written instructions for the use and maintenance of its HDS equipment.

It has been common practice, with other cylinderized fumigants, to place the cylinder in the space to be fumigated and the cylinder outlet valve opened to allow the fumigant to release. This is not an approved dispensing method and should not be used with VAPORPH$_3$OS®. VAPORPH$_3$OS® phosphine fumigant is pyrophoric and will spontaneously ignite in air. VAPORPH$_3$OS® must be properly blended with carbon dioxide or diluted with air to eliminate the flammability hazard.
Blending Equipment for VAPORPH3OS® and Carbon Dioxide

Phosphine gas (VAPORPH3OS®) from high-pressure cylinders flows into the blender unit where it combines with carbon dioxide gas sourced from bulk storage, mobile bulk truck, semibulk, or cylinders. Various models of on-site blending equipment have been designed, built, and tested. All of the designs have incorporated engineering safeguards to ensure that the blended product is a nonflammable mixture.

One design uses a pressure regulator and flow control orifice on both the VAPORPH3OS® and carbon dioxide gases to control the flow rate and to properly blend VAPORPH3OS® with carbon dioxide. The size of each orifice is engineered for a specific fixed flow rate and, therefore, the blending rate cannot be adjusted. By controlling the pressure drop across the orifice plates, the phosphine concentration can be controlled around 2.5 percent v/v.

![Diagram of One Type of Blending Equipment](image)

Figure 2-11-3 Diagram of One Type of Blending Equipment

A more sophisticated design uses mass meters, control valves, and the electronics to allow an adjustable blending rate while maintaining the proper blend of phosphine concentration from going outside the range of 2.0 to 2.9 percent volume (1.6 to 2.2 percent weight.) The product from this equipment is equivalent to ECO2FUME® fumigant gas. Blending equipment is intended for large facilities that have on-site carbon dioxide bulk storage and vaporizing equipment or facilities where it is feasible to bring in bulk carbon dioxide and vaporizing equipment for the fumigation. The blending equipment is designed for use only with carbon dioxide gas; therefore, a bulk supply of liquid carbon dioxide must be equipped with suitable vaporizing equipment. Contact Cytec® Industries Incorporated for blending equipment design specifications and recommendations. For smaller fumigation jobs, it is recommended that preblended ECO2FUME® cylinders be used. VAPORPH3OS® fumigant gas can...
only be blended with registered carbon dioxide products. Never allow the buildup of phosphine to exceed explosive concentrations. When phosphine is blended with carbon dioxide, the LFL is raised to 3 percent v/v. The fumigator should always check with Cytec® for approved blending equipment.

Fumigators should provide PPQ with all Cytec® equipment authorization documentation. The documentation should be on file and available for periodic audits by the USDA.

Phosphine gas (VAPORPH₃OS®) can spontaneously ignite in air if the concentration is greater than 1.8 percent (18,000 ppm). With specialized equipment, pure phosphine can be safely blended with a forced air stream to ensure the final concentration does not exceed 10,000 ppm (55 percent of the Lower Flammability Limit of 18,000 ppm). The equipment has incorporated engineering safeguards to ensure the flammable concentration is never exceeded.

Various models of phosphine/forced air blending equipment have been designed, built, and tested. The Horn Diluphos System (HDS) from FOSFOQUIM is approved by Cytec® and the USDA-APHIS-PPQ-S&T-CPHST-AQI to blend VAPORPH₃OS® with forced air (see section on HDS80 and HDS200 Blending Equipment). One design uses inert gas (nitrogen or carbon dioxide) to prepurge the phosphine lines and equipment. Once purged, phosphine flows through a pressure regulator and flow controller to the mixing point. Here, phosphine is safely blended into the forced air stream. The forced air can be supplied by various fans, blowers, or compressors. The air flow is measured and the phosphine flow will stop if the air flow is insufficient.
If the phosphine flow is stopped for any reason, post-purging of the phosphine lines and equipment is automatic.

Dosage

The dosage rate for AP, MP, ECO$_2$FUME®, and VAPORPH$_3$OS® is measured in grams per 1,000 cubic feet or grams per cubic meter and varies with the commodity, treatment temperature, and type of enclosure. The initial fumigant dose is determined by the volume of the space to be fumigated and the required phosphine dose rate needed to kill the target pest. ECO$_2$FUME®, and VAPORPH$_3$OS® fumigant gas and carbon dioxide/forced air can be added if the desired target concentration changes due to a loss of the fumigant through leaks in the fumigation enclosure.

AP and MP

To calculate the number of tablets or pellets of AP or MP required for the fumigation:

Dosage Rate = the dosage rate from the treatment schedule (grams)
Volume of enclosure = Length * Width * Height (ft3)
Grams of phosphine liberated = *Figure 2-11-2* on page 2-11-9

Step 1: Grams of PH$_3$ = (Dosage Rate* Volume of enclosure)/1,000 ft3

Step 2: Number of Tablets or Pellets needed =
Grams of PH$_3$ / Grams of phosphine liberated
EXAMPLE: **T308-b-2.** Tobacco for Export in a warehouse requires 20 grams of phosphine per 1000 ft³. The size of the warehouse is 100’ * 75’ * 50’. To determine the number of Fumiphos tablets and pellets to introduce, use the following procedure:

100 * 75 * 50 = 375,000 ft³

Step 1:

\[
\frac{20 \text{ g} \times 375\text{,}000 \text{ ft}^3}{1000 \text{ ft}^3} = 7500 \text{ g}
\]

Step 2:

- **Tablets:** \(\frac{7500}{1.0} = 7500 \) tablets
- **Pellets:** \(\frac{7500}{0.2} = 37,500 \) pellets

ECO₂FUME®

Method 1:

- **1 gram of phosphine (PH₃) = 25 ppm PH₃/1000 ft³**

To calculate the total amount of ECO₂FUME® required for each treatment:

- **Target concentration in ppm**

 \[
 \text{(Dosage rate in grams from Treatment schedule} \times 25 \text{ ppm})
 \]

- **Grams of PH₃**

 \[
 \text{(Target concentration} \times \text{Volume of enclosure})/25,000
 \]

- **Pounds of ECO₂FUME®**

 \[
 \text{(Target concentration} \times \text{Volume})/226,800
 \]

EXAMPLE: T301-d-1-2 on page 5-4-5. Cotton and cotton products infested with boll weevil requires 36 g of phosphine per 1000 ft³. The volume of this enclosure is 10’*10’*10’. To determine the pounds of ECO₂FUME® gas to introduce, follow these steps.

Step 1: Convert grams of phosphine to ppm:

\[
36 \text{ g} \times 25 = 900 \text{ ppm/1000 ft}^3
\]

Step 2: Determine total volume of the enclosure

\[
10\times10\times100 = 1000 \text{ ft}^3
\]

Step 3: Apply the formula to determine the amount of ECO₂FUME® to introduce \((900 \text{ ppm}\times1000 \text{ ft}^3)/226,800 = 3.97 \text{ pounds}\)

Therefore, 3.97 pounds of ECO₂FUME® will be introduced into the structure.

Method 2:

- **1 pound of ECO₂FUME® = 9.07 grams PH₃**

- Divide the dosage rate from the treatment schedule (in grams) by 9.07.
EXAMPLE:
Assuming the same treatment schedule as the previous example (T301-d-1-2 on page 5-4-5):

\[
36 / 9.07 = 3.97 \text{ pounds}
\]

NOTE: When the amount of gas introduced is less than 68 pounds, use a calibrated scale to determine when the proper amount of gas has been introduced into the space.

To calculate the amount of VAPORPH₃OS® required for the fumigation:

- 1 pound of VAPORPH₃OS® = 454 grams PH₃

Target concentration = the desired phosphine concentration (ppm) from the treatment schedule

Step 1:

\[
\text{Grams of PH₃} = \frac{\text{Target concentration} \times \text{Volume of enclosure}}{25,000}
\]

Blending with CO₂

Once the amount of phosphine has been determined, the appropriate amount of carbon dioxide must be calculated. It is recommended that twice the amount of carbon dioxide be available to ensure an adequate supply for the initial dose, the addition of gas, and equipment purging.

To calculate the amount of carbon dioxide required for the fumigation:

Step 2:

\[
\text{Pounds of CO}_2 = \left(\frac{\text{Grams of PH₃}}{454}\right) \times 105.3
\]

EXAMPLE: *T301-d-1-2* on page 5-4-5. Cotton and cotton products infested with Boll weevil requires 36 g of phosphine per 1000 ft³. The volume of the enclosure is 75,000 ft³. To determine the amount of VAPORPH₃OS® gas to introduce, follow these steps:

Step 1:

\[
\frac{(36 \text{ g} \times 25 \times 75,000 \text{ ft}^3)}{25,000} = 2,700 \text{ grams PH₃}
\]

Step 2:

\[
\frac{(2700/454) \times 105.3}{2} = 626 \text{ pounds CO}_2
\]

Blending with Forced Air

When blending with forced air, only the amount of phosphine needs to be calculated. A closed circulation system is created if the air supply is sourced from inside the fumigation enclosure. This will prevent a positive pressure
from developing within the fumigation space. If recirculation is **not** used the perimeter of the fumigation site will need to be monitored because the air will be displaced from the fumigation space. The HDS 80 blending equipment used with forced air dispenses at 50g/min. If the minimum air flow is **not** maintained, the blending equipment will automatically shut down and phosphine will no longer be dispensed.

Depending on the sealability of the type of space to be fumigated, it may be necessary to add additional gas to the structure in order to maintain the target concentration required by the treatment schedule.

To calculate the amount of ECO\textsubscript{2}FUME®/VAPORPH\textsubscript{3}OS® to be added:

\[
\text{Grams of PH}_3 = (\text{Target Concentration} - \text{Actual Concentration}) \times \text{Volume} / 25,000
\]

The target and actual concentrations are measured in ppm and must be monitored with a device approved by CPHST-AQI.

Preparing to Fumigate Break Bulk Cargo

Break bulk cargo has been unloaded from a ship hold, a container, or rail car. This cargo can be fumigated by covering the pallets, boxes, or raw cargo with an impervious tarpaulin.

Always check this manual to determine if there is an approved treatment schedule using either AP, MP, ECO\textsubscript{2}FUME® or VAPORPH\textsubscript{3}OS® fumigant for the infested commodity. Treatment schedules typically list the commodity to fumigate with its associated pest(s). If the commodity in question does **not** have a treatment schedule, contact the **USDA-APHIS-PPQ-S&T-CPHST-AQI** to determine if there is an alternative treatment available.

Step 1: Site Selection

Consider the following factors when selecting a fumigation site:

- Well ventilated, sheltered area
- Ability to heat (in colder areas)
- Impervious surface
- Nonwork area that can be effectively marked and safeguarded or isolated
- Electrical power supply
- Water supply
- Well-lighted area
- Aeration requirements
Well-Ventilated, Sheltered

Select sites that are well-ventilated and in a sheltered area. A well-ventilated site is required for exhausting gas before and when the tarpaulin is removed from the stack.

If fumigations are conducted outside, select a site that is semisheltered such as the leeward side of a warehouse, pier, or building that offers some protection from strong winds.

Ability to Heat Area

When cool temperatures (below 40°F) are expected, heat the site to maintain commodity temperatures above 40°F; take the ambient temperature 12 inches above the floor.

The temperature of the enclosure must be monitored using a temperature recording system, consisting of temperature sensors and a data recorder. The temperature recording system must meet the following specifications:

- Accurate to within ± 0.6 °C or ±1.0 °F in the treatment temperature range of 4.4 °C to 26.7 °C (40 °F to 80 °F)
- Calibrated annually by the National Institute of Standards and Technology (NIST) or by the manufacturer
 - The calibration certificate will list a correction factor, if needed, and the correction factor would be applied to the actual temperature reading to obtain the true temperature.
- Capable of printing all temperature readings or downloading data to a secure source once per hour throughout the entire treatment (all temperature data must be accessible at a safe distance during the fumigation)
- Tamper-proof

If one or more of the temperature readings go below 40 °F the fumigation will be considered a failed treatment. The commodity must be re-treated, returned to the country of origin, reexported, or destroyed.

Place temperature sensors evenly throughout the enclosure. The placement of the sensors will vary depending on the item fumigated and the configuration of the fumigation site. Contact USDA-APHIS-PPQ-S&T-CPHST-AQI for instructions regarding the exact placement of the temperature sensors.

- Because phosphoric acid will be produced if phosphine is burned, never use flame or exposed electrical element heaters during treatment
 - Contact the USDA-APHIS-PPQ-S&T-CPHST-AQI for appropriate heating sources

An Impervious Surface

Select an asphalt, concrete, or tight wooden surface, not soil, gravel, or other porous surfaces. If you must fumigate on a porous surface, cover the surface with plastic tarpaulins.
For large fumigations, covering the surface is not usually practical because pallets must be rearranged and heavy equipment used to move the commodity.

On docks, wharfs, and piers, check for cracks, holes, and manhole covers that will allow the phosphine gas to escape through the floor.

Seal all cracks, holes, and manhole covers with plastic tarpaulins.

A Nonwork Area

Select a secure nonwork area where traffic and people are restricted from entering.

- The fumigation area is considered either the entire structure area or an area that extends 30 feet from the tarpaulin and is separated by a physical barrier such as ropes, barricades, or walls
- If a wall of gas-impervious material is less than 30 feet from the tarpaulin, the wall may serve as the edge of the secured area
- Additional guidelines may be required by some states Department of Agriculture. Some states, California, for example, require a 100-foot buffer zone
- Place placards clearly in sight of all who come near
 - Placards must meet label requirements regarding specific warnings, information, and language
 - Placards generally include the name of the fumigant, the fumigation date, time, and the name of the company conducting the fumigation
 - Restrict access to the fumigation area to the fumigator's employees and PPQ employees monitoring the treatment
 - Use rope or marker tape to limit access within 30 feet of the enclosure
 - Do not allow motor vehicles (including forklifts) to operate within 30 feet of the enclosure during fumigation and aeration periods
 - The area outside the 30-foot perimeter is usually regarded as a safe distance from the tarpaulin
 - The 30-foot perimeter is not specifically mentioned on the AP, MP, ECO2FUME® and VAPORPH3OS® labels, but is required for safety to PPQ Officers

Important

Gas concentrations should never exceed 0.3 ppm phosphine and 5,000 ppm carbon dioxide in the safety zone (30 feet from the enclosure where officers are taking gas concentration readings).

Use colorimetric tubes or other approved devices to measure gas concentrations.
Electrical Power Supply

An adequate electrical source must be available to run the dispensing equipment (ECO₂FUME® and VAPORPH₃OS® only).

- A separate line should be available for the dispensing and blending units
- Electrical outlets must be grounded and conveniently located in relation to the fumigation area
- Except under emergency conditions, do **not** use generators as a power source

Water Supply

A water supply is necessary for safety purposes; if no permanent water source is present on site, the fumigator must provide a portable, five-gallon supply of clean water.

Well-Lighted Areas

The area should have adequate lighting for safety purposes and for ease in reading the gas monitoring devices, thermometers, and for determining whether a tarpaulin has holes or tears.

Step 2: Arranging the Stack

- Arrange the cargo in a square or rectangular shape, if possible, to make it easy to cover and to calculate the volume of the stack
 - An even-shaped stack is easier to tarp
 - The height of the stack should be uniform so dosage can be calculated accurately
 - By arranging the stack evenly and with space between pallets or cartons, the fumigant will be effectively distributed
- The maximum size for an enclosure is 25,000 ft³
 - Contact the [USDA-APHIS-PPQ-S&T-CPHST-AQI](https://www.aphis.usda.gov/ppq) to get approval for any enclosures larger than 25,000 ft³
 - For very large enclosures it may be necessary to add more sampling leads or introduce the fumigant at several sites
- When the fumigation involves multiple stacks, allow 10 feet of space between each uncovered stack; after the stack is tarped, there should be approximately five feet between enclosures

Step 3: Padding the Corners

Examine all areas that typically tear tarpaulins, e.g., corners and sharp angles. If the sharp angles or corners cannot be eliminated, they must be covered with burlap or other suitable padding (e.g., old tires or cloth).
Step 4: Covering the Stack
After covering the stack, check the tarpaulin for rips, tears, and holes. Look at the taped areas and verify they are properly sealed. Have the fumigator repair all holes.

The tarpaulin must be made of a tough material such as vinyl, polyethylene plastic, or coated nylon. The tarpaulins should be a minimum of 2-mil thickness, however, it is recommended to use 6 mil tarpaulins whenever possible.

The tarpaulin must be large enough to provide a floor overlap of at least 18 inches around all sides of the stack. Carefully lay the tarpaulin out to prevent excess folds or wrinkles along the floor, especially around corners.

Step 5: Sealing the Tarp
The goal in sealing the tarpaulin is to get it to lay flat against the floor to prevent gas from leaking out. Seal the tarpaulin with loose, wet sand, sand snakes, water snakes, adhesives, or a combination. If there is danger of crushing or crimping the gas sampling or introduction tubes, use the loose, wet sand. If using snakes, use two rows of snakes along the sides and three rows on the corners. The snakes should overlap each other by approximately one foot. Seal corners by laying two sand snakes around the corner and working the tarpaulin until it is flat. To force the tarpaulin against the floor, place a third snake on top of the two other snakes to provide additional weight. Loose, wet sand can be used in the area where the gas introduction line, electrical cords, and gas sampling tubes extend from under the tarpaulin.

Step 6: Introducing the Gas
Depending upon the type of AP or MP formulation used, the gas may be dispensed in a variety of methods. Follow the Application Procedures from the manufacturer’s label for detailed instructions on gas introduction.

For ECO2FUME® and VAPORPH3OS®, install the gas introduction line(s) at ground level on the floor or secured onto a pallet. These lines should not be located in or attached to commodity package and should be secured to eliminate the movement of the line(s). Direct the discharge toward the center of the space being treated and away from equipment if possible. For tarpaulin enclosures, control the dispensing rate of the gas. The tarpaulin can become damaged and sealing undone if the fumigant is dispensed at high speeds. For small enclosures, a cylinder pressure less than 100 psig is recommended. A regulated dispenser with a pressure regulator and flow restricting nozzles are options to control the rate of the fumigant.
Place the fumigant cylinder with gas introduction line on a calibrated scale and take an initial weight reading. Ensure the gas introduction line is attached to the cylinder. After obtaining the correct weight, subtract the dosage to be introduced into the enclosure. After introducing the proper amount of gas, the scale will be balanced.

When no further fumigant is required to maintain target concentration levels, close all cylinder valves, depressurize the dispensing equipment, and disconnect all ECO2FUME® or VAPORPH3OS® cylinders. Replace the cylinder cap after the valve discharge cap is securely installed.

Step 7: Placing Gas Sampling Tubes

Place a minimum of 3 gas sampling tubes for fumigations up to 10,000 ft³. Position the gas sampling tubes in the following locations:

- Front—low and front of the load, 3 inches above the floor
- Middle—center of the load (inside the box with the commodity), midway from bottom to top of load
- Rear—high and rear of the load, at the extreme top of the load

For fumigations from 10,001 to 25,000 ft³, use 6 gas sampling tubes. Position the gas sampling tubes in the following locations:

- Front—low and front of the load, 3 inches above the floor
- Upper front quarter section (inside the box with the commodity)
- Middle—center of the stack (inside the box with the commodity), midway from bottom to top
- Upper rear quarter section
- Lower rear quarter section (inside the box with the commodity)
- Rear—high and rear of the stack, at the extreme top of the load

For approval of fumigations larger than 25,000 ft³, contact the USDA-APHIS-PPQ-S&T-CPHST-AQI for instructions regarding the number of gas sampling tubes, and for other technical information.

Before inserting into the commodity, cover the end of the gas sampling tube with burlap or wire gauze taped to the tube.

Use gas sampling tubes of sufficient length to extend from the sampling position inside the enclosure to at least 30 feet beyond the tarpaulin. Connect all the gas sampling tubes in one area for ease and safety in recording gas concentration readings. Do **not** splice gas sampling tubes. Fix all gas sampling
tubes securely in place under the tarpaulin and label each one where the gas concentration readings will be recorded. By labeling each gas sampling tube, concentration readings can be easily recorded.

Step 8: Testing For Leaks
To ensure they are within acceptable levels outside the fumigation area, monitor phosphine and carbon dioxide levels at the fumigation site and 30 feet from the fumigation enclosure. Phosphine and carbon dioxide levels can be detected using chemical-specific colorimetric tubes or electronic monitors, e.g., Draeger and PortaSens detection kits. Do not use a Gow-Mac or Fumiscope to record gas readings.

The fumigator should leak test all connections and fittings before opening the cylinder valve. Instructions concerning cylinder leak detection can be found under the section “Poison Gas Hazards-Leak Detection and Repair” of the ECO₂FUME® and VAPORPH₃OS® fumigant Application Manuals.

Step 9: Monitoring Gas Concentrations
Take concentration readings within the enclosure using sampling lines connected to an APHIS-approved phosphine monitoring device. The fumigation does not begin until all of the gas has been introduced. Monitoring must take place 30 feet or more from the enclosure.

Phosphine and carbon dioxide levels can be detected using chemical-specific colorimetric tubes or approved electronic monitors, e.g., Draeger and PortaSens detection kits. To determine if additional gas is needed, check gas concentration levels 30 minutes after the fumigant is added and periodically throughout the fumigation. Record gas concentration readings on PPQ Form 429 at the time intervals prescribed by the treatment schedule in this manual.

The 30-minute reading shows the initial concentration and distribution of gas and can indicate leakage, incorrect dosage calculation, or error in fumigant introduction.

If the desired phosphine concentration is met before all of the gas is introduced, stop the addition of ECO₂FUME® or VAPORPH₃OS® and check all calculations. When fumigating with ECO₂FUME®, 200 ppm of phosphine will release 7,700 ppm of carbon dioxide.
Preparing to Fumigate Containerized Cargo

Containers require small amounts of phosphine, therefore, AP, MP, or ECO2FUME® fumigant gas (not VAPORPH3OS®) is recommended for all container fumigations for which an approved treatment exists.

PPQ does allow the fumigation of nontarped containers provided the container can be completely sealed in order to prevent gas loss.

To fumigate containerized cargo, follow Steps 1 through 9 in the previous section Preparing to Fumigate Break Bulk Cargo on page 2-11-21.

If fumigating a nontarped container:

◆ Close and secure one of the doors
 ◆ Seal all openings and joints
 ◆ If possible, caulk all joints and drape entire doorway with polyethylene sheeting, securing the edges to the inner walls, floor, and ceiling with duct tape
◆ Inspect the roof, floor, and walls for holes and cracks
 ◆ Seal all openings with either duct tape or caulkling compound
 ◆ Containers require close inspection and a great deal of sealing to prevent fumigant leakage

Additional Considerations for Fumigating Containerized Cargo

Eroneous readings can occur if the monitoring leads become blocked or crimped. It would be impossible to install a new monitoring lead during a fumigation treatment; therefore, always test monitoring leads before the treatment begins.

In order to detect blocked monitoring leads, follow the procedure below using a MityVac® hand-held pump (for supplier see Vacuum Pump, Appendix E).

• Prior to fumigant introduction, connect the MityVac® hand-held vacuum pump to a monitoring lead
• Squeeze the handle on the MityVac® unit. If the lead is blocked, a vacuum will be indicated on the vacuum gauge of the MityVac® unit. For monitoring leads longer than 25 feet, squeeze the handle two or three times. The MityVac® hand-held pump has the capacity to attain and hold 25 inches of Hg vacuum and a minimum of 7 psig pressure
• Disconnect the MityVac® hand-held pump from the monitoring lead, and repeat this procedure for each monitoring lead. Connect monitoring leads to the gas analyzer prior to fumigant introduction
◆ If possible, drape *remaining* doorway with polyethylene sheeting before the door is closed
 - Secure edges to door jams and floor
 - Close door and secure
 - If doorway is draped with polyethylene, it may **not** be necessary to seal the door from the outside
 - If doorway is **not** draped, seal all cracks, openings, and joints with masking tape and caulking compound from the outside
◆ Placard all doors of the container with the appropriate warnings before fumigation begins

If fumigating a *tarped* container:
◆ If unable to completely seal the container, use a tarpaulin to cover the entire container
◆ Use a 4, 6, 10, or 12 mil vinyl, polyethylene plastic, or coated nylon tarpaulin
◆ After covering the container with a tarpaulin check for rips, tears, and holes
 - Examine all taped areas and verify they are properly sealed
 - Have the fumigator repair all holes
◆ The tarpaulin must be large enough to provide a floor overlap of at least 18 inches around all sides of the container—carefully lay the tarpaulin out to prevent excess folds or wrinkles along the floor, especially around corners

Preparing to Fumigate Bulk Commodities
AP, MP, ECO₂FUME® and VAPORPH₃OS® can be used to fumigate any type of bulk commodity storage for which there is an approved treatment in this manual. These include, but are **not** limited to bins, tanks, flat storage, and bunkers. The most important aspects of a successful fumigation, as with any fumigant, are the degree to which the space is sealed and the assurance that the minimum fumigant concentrations are maintained for the required time.

To fumigate break bulk cargo, use the procedures outlined in the section, *Preparing to Fumigate Break Bulk Cargo* on page 2-11-21.
Probing
When large quantities of grain or other commodity in bulk are to be treated, it will be necessary to “probe” tablets or pellets into the mass of the commodity for adequate distribution. Specially constructed probes made of steel tubing one and one-quarter inch in diameter are generally available as described below:

- **Head Piece**—Dosing device and numerical counter to indicate number of tablets used
- **Tubing**—Usually in three-foot sections that can be added to one another to provide the desired length
- **End Piece**—Cut obliquely and provided with a hinged flap, closing the entrance to the tube
 - When the tube is inserted into the commodity, the flap is closed and prevents the commodity from entering
 - When the probe is withdrawn, the flap opens due to the slightly larger diameter on the flap
 - The tablets or pellets are then released one at a time as the probe is withdrawn

Grain or other bulk or loose commodities up to 30 feet deep can be probed. Best results are obtained by probing twice every square foot and as regularly as possible. Penetration of phosphine is up to 10 feet below the area in which the tablets are placed. When large bulk grain stores are treated, many probes can be placed prior to treatment. One head piece can be moved from probe to probe, or pellets or tablets can be placed in the tubes by hand (use surgical or disposable thin rubber or polyethylene gloves).

Gas generation starts within four hours of placing the pellets or tablets (depending on relative humidity). Therefore, the whole procedure of pellet or tablet placement or tarpaulin covering must be accomplished within this time frame. It is possible to work in a probed area if the area is covered with a gas-proof tarpaulin. Monitor gas concentrations to determine if toxic levels are approached and take corrective action to prevent exposure.

- For large storage facilities (>25,000 ft³), consider multiple dispensing points to assist in fumigant distribution
- Contact the USDA-APHIS-PPQ-S&T-CPHST-AQI for a determination on the number of sampling lines for large fumigations
- Based on the size of the structure being fumigated, refer to the \textit{ECO}_2\textit{FUME}® and \textit{VAPORPH}_3\textit{OS}® Application Manuals for acceptable dispensing equipment
If it is known ahead of time that grain or cottonseed will require treatment prior to placement in a means of conveyance or storage, properly seal the space before loading. Use tarpaulins of at least 6 mm thickness if walls are permeable since lighter tarpaulins may tear.

If a bulk shipment is in a large storage facility with a high roof, it may be better to tarp on top of the grain rather than seal the roof.

When side walls of the facility are not gas impervious, place tarpaulins (minimum 6 mm thickness) around the outside of the facility to the height of the commodity.

Aeration Requirements

Following completion of treatment, phosphine-treated commodities must be aerated using either electric exhaust fans or by passive aeration in the open air. Personnel are not allowed to enter or reenter fumigated areas until gas concentrations are determined to be below the Threshold Limit Values (TLV) for phosphine and carbon dioxide. Check ambient air and the air inside the box, carton, bin etc. of the commodity during aeration. Measure gas concentration levels with a sensitive gas detection device. Aerate all commodities to acceptable tolerance levels (Table 2-11-3). Because they can continue to release gas after the initial gas levels have dropped to acceptable levels, continue to monitor densely packed commodities. A certified applicator must be physically present, responsible for, and maintain visual and/or voice contact with all fumigation workers during the initial opening of the fumigation structure for aeration. Always follow the aeration instructions provided with the fumigant label.

Table 2-11-3 Phosphine Residue Tolerances

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Tolerance of Phosphine Residues (ppm)</th>
<th>Minimum Aeration Period (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Feeds, Grains, Nuts, and Dates</td>
<td>0.1</td>
<td>48</td>
</tr>
<tr>
<td>Processed Foods</td>
<td>0.01</td>
<td>48</td>
</tr>
<tr>
<td>Fresh fruits and Vegetables</td>
<td>0.01</td>
<td>48</td>
</tr>
<tr>
<td>Nonfood Commodities</td>
<td><0.3</td>
<td>None</td>
</tr>
<tr>
<td>Tobacco</td>
<td><0.3</td>
<td>48</td>
</tr>
</tbody>
</table>

Disposal of AP and MP Residue

Following treatment with AP, a powdery residue, essentially aluminum hydroxide, will remain. Collect this material and mix it in a container of water to which liquid detergent has been added (two tablespoons of detergent per gallon of water). The liquid should then be buried or deposited in an approved pesticide disposal landfill.

Following treatment with MP, dispose of the plates by burial in an approved landfill or by burning where approved by local ordinances.
Follow the manufacturer’s label instructions for detailed disposal guidelines.

Contacts

Cytec®
Cytec Industries
5 Garret Mountain Plaza
West Patterson, NJ 07242
Phone: 973-357-3100
email: CUSTINFO@CYTEC.COM

USDA-APHIS-PPQ-S&T-CPHST-AQI
1730 Varsity Drive
Suite 300
Raleigh, NC 27606
Phone: 919-855-7450
FAX: 919-855-7493
Introduction

The information in this section provides CBP and PPQ officials and commercial applicators the procedures and precautions for applying aerosol insecticides in aircraft.

PPQ uses aerosol insecticides to treat for Japanese beetle, Khapra beetle, and other hitchhiking pests. Respirators are recommended but not required by the chemical labels.

Do not subject these chemicals to extreme temperatures.

There are currently two aerosols approved for use in aircraft passenger areas, aircraft cargo holds, and aircraft pods, Callington 1-Shot™ (2% d-phenothrin + 2% permethrin) and 10% d-phenothrin.
10% d-phenothrin

The application rate (T409-b-1) is 8 g/1,000 ft³. Without an extender tube, the aerosol can is calibrated to dispense 5 grams per second; therefore 8 grams per 1,000 cubic feet will take 1.6 seconds to dispense.

Apply 10% d-phenothrin in the cargo or passenger areas of the aircraft no more than one hour before loading.

The time needed to spray the aerosol is a function the following three things:

- Volume (in 1000 cubic feet) of a specific area in the aircraft
- Spray rate of the nozzle (in grams per second)
- Required application rate for the pesticide (in grams per 1000 cubic feet)

This relationship is shown in the formula in Figure 2-12-1:

\[
\text{Time Needed to Spray Aerosol} = \frac{\text{Volume of Aircraft} \times (\text{Required Application Rate})}{\text{Spray Rate of Nozzle}}
\]

Figure 2-12-1 Formula for Calculating Aerosol Spray Time in Specific Areas of Aircraft

EXAMPLE: You are supervising the application of 10% d-phenothrin. The volume of the aircraft cabin is 10,800 ft³. The required application rate is 8g/1,000 ft³. The spray rate of the nozzle is 5.0 g/sec.

\[
\begin{align*}
10,800/1,000 &= 10.8 \text{ units of 1,000 ft}^3 \\
8/5 &= 1.6 \text{ seconds} \\
1.6 \text{ seconds} \times 10.8 &= 17.3 \text{ or 17 seconds of dispensing time}
\end{align*}
\]

Passenger Compartment Application

Treatment of passenger compartments is under the authority of a compliance agreement between PPQ and the airline or other contractor.

Never treat passenger compartments when passengers are inside.

Ensure that the compliance holder follows these application procedures:
1. Vacuum the compartment before treatment.

2. Close flight deck windows.

3. Thoroughly inspect flight deck area and remove any insects. Keep windows closed until departure.

4. Close flight deck door to prevent aerosol from entering the flight deck.

5. Install barrier curtains (i.e. doors, plastic sheets, or prefabricated structures) in galley areas to prevent aerosol particles from entering the galley area.

6. Outside the galley areas, cover the following items with an impervious material, such as polyethylene.
 - Beverage and food preparation surfaces
 - Exposed oxygen masks

7. Open doors to bathrooms and carefully inspect. Remove any insects, then close bathroom doors.

8. Check aisles and remove all obstacles.

9. Put on safety glasses (and respirator, if desired).

10. Stop all aircraft ventilation systems.

11. Close aircraft entrance doors.

12. Treat at the rates in T409-b-1.

13. Start (perhaps with another applicator) 10 feet from the end of the aircraft. While backing slowly through the aircraft, dispense aerosol in a sweeping motion with cans pointing upward at a 45° angle. Keep the dispensing valve fully depressed. To avoid wetting surfaces, hold the nozzle at least 18 inches away from all surfaces.

14. When treating passenger aircraft with two aisles, it is recommended to have two individuals dispensing the material at the same time. When dispensing the aerosol, use a stopwatch, a wristwatch with a second hand, or count aloud using the technique 1001, 1002, etc. Accurate timing not only ensures the proper amount is dispensed, but also increases the likelihood of obtaining an equal distribution.

15. Exit the aircraft and close all doors.

NOTICE

Curtains must be full-length to prevent the entrance of aerosol particles into the galley. If the curtains are not full-length, use other means to seal the entrance. Airlines should provide materials, such as polyethylene, to seal galley areas.
17. After the 15-minute post-treatment period, start the aircraft ventilation system.

18. Ventilate the aircraft for 15 minutes before boarding passengers, crew, or ground personnel.

19. If aerosol particles are still noted in the air after the ventilation period, continue aeration until the particles disappear.

20. After treatment and ventilation, safeguard the aircraft until departure.

Ensure that the compliance holder follows these post-treatment clean up procedures:

- Do not open flight deck doors.
- Do not remove barriers from galleys until catering is completed; insects can enter during the catering process.
- Reinspect and collect all insects.
- Remove covers used to protect specific items outside the galley (e.g., drinking fountains).
- Thoroughly wash hands, faces, and arms before smoking, eating, or drinking.

After treating a passenger compartment, ensure that the aircraft is kept pest-free with the following procedures:

- Keep the barrier (closure, curtain, or door) from the galley to the inside of the aircraft closed until after catering. After catering, thoroughly inspect for insects in the galley area.
- Monitor the entrance to the aircraft to determine if insects are entering.
- Remove and destroy any insects that enter the aircraft.
- Use enclosed walkways to board passengers either from the terminal or from the vehicles carrying passengers to the aircraft.

Treating Baggage/Cargo Holds

Whenever possible, treat baggage/cargo holds before loading. Treatment before loading allows penetration of the insecticide to cargo areas that become inaccessible after loading.
Loaded aircraft that stand open during the day must be treated, regardless of loading time. Insects often fly into and remain in open aircraft.

Treating Loaded Baggage/Cargo Holds

To treat a loaded baggage/cargo hold, ensure that the compliance holder follows these application procedures:

1. Ensure that there are no live animals on board before treatment. (If there are, remove them (in cages or holding containers) to a protected area, away from the treatment environment.)
2. If possible, visually inspect baggage/cargo hold before loading; collect and destroy all insects found.
3. If possible, visually inspect all baggage or cargo as it is being loaded.
4. Put on safety glasses (and respirator, if desired).
5. Treat the baggage/cargo hold at the rates in T409-b-1.
6. In small holds, open the hatch just enough to allow a hand and the aerosol container inside; as an alternative, apply through an open porthole, if available, in the hatch. Many holds are small; therefore, applicators may treat these small areas by standing at the hatch and directing the spray either aft or forward.
7. If live animals are being shipped following treatment, keep baggage/cargo hold closed for 15 minutes.
8. Open the hold door(s); use a mechanical barrier to protect the treated hold.
9. Ventilate the baggage/cargo hold for 15 - 30 minutes.
10. If live animals are being shipped, check the animals and cages for live beetles before loading and then reload the animals.
11. Close hold door(s).

Treating Unloaded Baggage/Cargo Pods

To treat unloaded baggage/cargo pods, ensure that the compliance holder follows these application procedures:

1. Select relatively airtight pods in good condition and without hand holes.
2. Put on safety glasses (and respirator, if desired).
3. Slightly open the pod door.

Military (and other) cargo is often stored outside on pallets for lengthy periods. Insects (Japanese beetles in particular) often rest overnight on the cargo pallets. Loading the aircraft with infested pallets will infest the aircraft. Therefore, treat the aircraft holds containing cargo pallets that have been stored outside and are likely to be infested. After treatment, remove all insects.
4. Spray for 1 second.
5. Keep pod closed for 15 minutes.
6. Open and ventilate the pod for 15 - 30 minutes.
7. Load baggage or cargo.
8. Close pod.

Precautions for Aircraft Transiting Airports at High-Risk for Japanese Beetles

The following precautions must be used for aircraft transiting high-risk airports.

- Keep cargo holds closed except during loading and unloading.
- Keep flight deck windows closed.
- Seal off the galley(s) if the aircraft is to be catered at the hazardous airport. Inspect galleys after catering, but before removing barriers separating the galleys from the cabins.
- Use enclosed walkways to board passengers. Always keep the enclosed walkway tight against the aircraft.
2% d-phenothrin + 2% permethrin

Currently, there is one manufacturer of this aerosol, 1-Shot™, Callington Inc. 1-Shot™ is labeled for use only in aircraft.

The application rate (refer to T409-b-3) is 40 g/1,000 ft³. One, 150-gram can treats 3,750 cubic feet and takes 75 seconds to dispense completely.

Do not apply in the passenger cabin area of the aircraft or when passengers or crew are present.

Apply using the following procedures:

1. Calculate the number of cans needed (refer to Table 5-5-7 through Table 5-5-29 or use the formula in Figure 2-12-1 on page-2-12-2).
2. Prearrange cans in the treatment areas.
3. Dispense partial cans into the farthest parts of the cargo hold before dispensing full cans. Carefully remove the locking tab that keeps the nozzle depressed using caution not to damage the dispensing mechanism. (Figure 2-12-2)
4. Fully depress the nozzle when dispensing.
5. To dispense a full can, depress the spray nozzle on the top of the can until the locking tab engages. Once the locking tab is engaged, the can sprays continuously until empty. (Figure 2-12-3)
6. Ventilate the aircraft for 30 minutes before boarding passengers, crew, or ground personnel.
Ordering Information

10% d-phenothrin
Currently, 10 percent d-phenothrin is available from USDA APHIS PPQ. For ordering and shipping information, contact your Field Operations Program Manager or the USDA APHIS PPQ Quarantine and Policy Analysis staff in Riverdale, Maryland.

- **CAUTION**: 10% d-phenothrin is not approved for use in California, except in Federal installations such as military airports.
- **NOTICE**: Supplies are limited. 10% d-phenothrin will be available only until existing supplies are depleted.

2% d-phenothrin + 2% permethrin
Purchase 1-Shot™ directly from the manufacturer (Callington Inc.) using a micropurchase card. Email the following information to orders@callington.com:

- Delivery address
- Method of payment
Precautions

Refer to the manufacturer’s labels and material safety data sheets for more detailed safety instructions, but in general:

- Do not apply when animals or people are present.
- Do not smoke or eat during application and not until after washing. Wash as soon as possible after application of pesticides.
- Remove or cover food, food preparation surfaces, and equipment prior to treatment.
- The applicator may wear a suitable respirator, approved by the National Institute of Safety and Health (NIOSH).
- The applicator may wear goggles or safety glasses if the applicator experiences any eye irritation.
- Wipe any pesticide residue noted on smooth surfaces after treatment using a clean damp cloth.
Overview

As with other treatments, chemical dips require careful planning and preparation. Make sure you have all the necessary safety and treatment equipment and materials ready before you start the dip treatment procedure. When you handle pesticides, always comply with the pesticide Label instructions, and State and local regulations.

Safety and Dip Treatment Equipment and Materials

The following lists include safety equipment (Personal Protective Equipment, PPE) and basic material that you will need for dip treatments. However, other materials may be required by additional Label requirements that are specific to chemical being used.

Personal Protective Equipment (PPE)
Always check the Label and Material Safety and Data Sheet (MSDS) for additional requirements of personal protective equipment. The following is a basic list of PPE that you will need for dip treatments:

- chemical-resistant footwear (rubber or neoprene boots)
- chemical-resistant gloves (neoprene)
- chemical-resistant headgear for overhead exposure
- chemical-resistant rain suit with hood
- protective eye wear (goggles)
- respirator (per Label and MSDS requirements)
Dip Treatment Equipment and Materials

Always check the Label for additional requirements for equipment and materials. The following is a basic list of equipment and materials you will need for dip treatments:

- Newspaper or any other absorbent paper

 Place plastic backed paper on pallets prior to covering with paper and/or absorbent paper to preclude the pesticide being absorbed onto the wood.

- Pesticides

 Pesticides should be fresh **not** over 1 year old. Labels and MSDS must be attached to the pesticide container and all instructions must be followed.

- Mixing containers and dipping containers must be provided with lids to prevent spills during transportation and storage.

- New boxes (when reconditioning or excess contamination of original boxes is **not** possible)

- Fans\(^1\)

 A mechanical exhaust is the preferred method of aeration when it is specifically installed to remove chemical fumes from the treatment area. Fans may be used if they do **not** cause airborne pesticides to contaminate the treatment facility or the breathable air. The flow of air should be across the dip vat/container and away from people in the treatment area.

- Pallets\(^1\)

 Place plastic backed paper on pallets prior to covering with paper and/or absorbent paper to preclude the pesticide being absorbed onto the wood.

- Plastic bags (4 to 6 mil plastic)\(^1\)
- Shear scissors
- Sponges
- Liquid soap\(^1\)
- Packing material\(^1\)

\(^1\) This equipment will be provided by USDA when available.
Dip Treatment Procedures

Step 1—Plan for the Dip Treatment
Before you start the dip treatment, inform the customer (Broker/Importer) of the specific material and personal protective equipment (PPE) that will be needed to perform the dip treatment procedure. All required materials and equipment must be available at the time of treatment.

Step 2—Designate Restricted Use Areas
Designate the following restricted use areas:

- **Measuring and mixing area**- The measuring and mixing area for the specific pesticide(s) must be in a well ventilated area away from food preparation, eating areas, and offices. Areas that contain mechanical exhaust systems are preferred.

- **Plant material dipping area**- The plant material dipping area must be an area where access is limited by a barricade or warning signs. Areas that contain mechanical exhaust systems are preferred.

- **Plant material drying area**- The plant material drying area must have proper air circulation and exhaust ventilation. These areas should be closed to the dipping area. The route from the plant dipping area to the drying area should be lined with plastic backed absorbent paper or plastic and paper to catch excess pesticide solution.

Step 3—Prepare Plant Material
Prepare the plant material for the dip treatment according to the PPQ Treatment Manual and pesticide Label requirements.

Step 4—Prepare the Pesticide Solution

1. Measure the amount of water required for the treatment.
2. Measure the amount of pesticide required for the treatment.

 CAUTION
 Wear personal protective equipment (PPE) and keep the exhaust system running when you are preparing pesticide solutions. To minimize your exposure to the pesticide dust or airborne particles, keep the pesticide between you and the exhaust.

 Important
 It is important to use fresh chemicals for every solution. If questions arise during this procedure, stop and seek assistance from USDA-APHIS-PPQ-S&T-CPHST-AQI in Raleigh, North Carolina (Tel: 919-855-7450).

3. Prepare a pesticide paste as follows:

 a. Add the previously measured amount of water into a clean and empty container, for example, an empty can or plastic container.

B. Form a paste (with dry pesticides) by adding the measured pesticide to the small amount of water and mix gently

C. Dilute the paste by slowly adding more water from the previously measured water

D. Slowly add the concentrated solution(s) to the rest of the measured water

4. Add some drops of liquid soap to the solution (soap is used as a sticking agent).

5. Mix the final solution by stirring it gently.

Step 5—Dip the Plants in the Pesticide Solution
Dip the plants in the solution for the time required by this manual.

Step 6—Remove the Plants from the Pesticide Solution
Remove the plants from the solution and allow excess solution to drip into the dipping container.

Step 7—Dry the Plants
Place the plants on newspaper covered pallets and allow them to dry (make sure to space the plants out for maximum drying).

Step 8—Disinfect Original Shipping Containers
Disinfect the original shipping containers with a sponge containing the pesticide solution. The plant material may be packed with new packing material in a previously used container that has been disinfected.

Step 9—Clean Up the Treatment Area and Equipment
Discard all empty containers, excess pesticides, packing materials, plastic bags/backing materials, and newspaper/absorbent paper in compliance with instructions on the Label and State/Local regulations. Decontaminate all treatment areas and equipment while you are wearing your PPE.

Step 10—Release the Cargo
After the plant material is dry, release it to the customer or broker if agreed to by the airline and if it has been released by Customs.

Safety Responsibilities
The PPQ Officer is responsible for the following safety issues:
Chemical Treatments

Dips

Safety Responsibilities

Make the broker/importer aware of his or her responsibilities as it pertains to:

- Materials
- Personal Protective Equipment (PPE)
- Health hazard and safety concerns when performing the dip treatment process

All personnel involved in the dip treatment process are required to wear the appropriate and Label required PPE while performing the treatment. PPQ Officers may need to wear PPE if the dip treatment process area prevents them from observing the process from outside the restricted area.

Designated dip treatment process areas must be located away from food preparation, eating areas, and offices. Make every effort to place dip treatment processes in an area containing a mechanical exhaust.

The broker/importer personnel involved with treatments must be aware and briefed on the location of the emergency eyewash and all other required safety equipment. They also need to be aware of the areas that they will be limited to working within and any other specific restrictions determined by the PPQ Officer in charge of the process. The PPQ Officer monitoring the process should be aware of procedures to be followed in the event of an accidental release of the pesticide or an injury to one of the broker/importer’s personnel.

The broker/importer’s personnel should shower as soon as possible after performing a dip treatment. The PPQ Officer should ensure that personnel are aware of the location and route to the shower. Guidance should also include instruction on how to disrobe and dispose of clothing used during dip treatment processes. All contaminated clothing and PPE must be removed before entering the shower room. Contaminated clothing should be placed in plastic bags and PPE in separate plastic bags.

Inform the broker/importer personnel that clothes wore during treatment must be washed in hot water with detergent and that they should be washed separately from other clothes.

Release the plant material to the Broker/importer only if they are using or provide a vehicle that has a compartment physically separated from the cab, for example, a pick-up truck of tractor trailer.
Chemical Treatments

Dusts

Contents

This section for future development.
Contents

This section for future development.
The Nonchemical Treatment section of this manual is organized by the following nonchemical categories:

- Heat
- Cold
- Irradiation

Use the Table of Contents that follows each tab to quickly find the information you need. If the Table of Contents is not specific enough, then turn to the Index to find the topic and its page number.
Nonchemical Treatments

Heat

Contents

Introduction 3-2-1
Heat, Hot Water Immersion Treatment 3-3-1
Heat • Steam Treatments 3-4-1
Heat • Vapor Heat and Forced Hot Air Treatment 3-5-1
Heat • Forced Hot Air • Niger Seed 3-6-1

Introduction

Heat treatments are generally based on maintaining the plant material at a specific temperature for a specified time. Heat treatments, as other quarantine treatments, are designed to kill plant pests without destroying or appreciably devaluing the infested commodity. The following heat treatments are described in this section:

◆ Hot Water Immersion Treatment
◆ Steam Treatments
◆ Vapor Heat and Forced Hot Air Treatment
◆ Forced Hot Air - Niger Seed
Introduction
Nonchemical Treatments

Heat, Hot Water Immersion Treatment

Contents

Hot Water Immersion Treatment—Fruit Fly Host Commodities Such as Mangoes 3-3-2
 Principle 3-3-2
 Schedules 3-3-2
 Procedures 3-3-2

Checklist of USDA-APHIS Minimum Requirements for Hot Water Immersion Treatment Facilities: General Requirements 3-3-3
 Proposal Submission 3-3-3
 On-Site Inspection Option 3-3-4
 Facility Design 3-3-4

Electrical and Electronic Components 3-3-5
 Wiring 3-3-5
 Computers and Microprocessors 3-3-5
 Commercial Line Conditioner (Surge Protector) 3-3-5
 Electrical Generator 3-3-6
 Fruit Sizing Equipment 3-3-6

Boilers and Thermostatic Controls 3-3-6
 Adequate Water Heating Capacity 3-3-6
 Thermostatic Controls (Set Point) 3-3-6
 Multiple Set Point Option 3-3-6

Water Circulation 3-3-7

Temperature Sensors 3-3-7
 Type of Sensor 3-3-7
 Number of Sensors Required and Their Placement 3-3-7
 Tank Access for Temporary Placement of Portable Sensors 3-3-8
 Certified Glass-Mercury, Non-mercury, and Digital Thermometer 3-3-8

Temperature Recorder 3-3-8
 Automatic Operation 3-3-8
 Long-Term Recording 3-3-8
 Recording Frequency 3-3-8
 Accuracy 3-3-9
 Repeatability 3-3-9
 Calibration 3-3-9
 Range 3-3-9
 APHIS-Approved Recorder Models 3-3-9
 Approved Strip Chart (Pen) Recorder Models 3-3-10
 Approved Data Logger Recorder Models 3-3-10
 Chart Paper Specifications 3-3-11
Nonchemical Treatments Heat, Hot Water Immersion Treatment

Hot Water Immersion Treatment—Fruit Fly Host Commodities Such as Mangoes

Principle
Hot water immersion treatment (also called hydrothermal treatment) uses heated water to raise the temperature of the commodity to the required temperature for a specified period of time. This is used primarily for certain fruits that are hosts of fruit flies, but may also be used for nursery stock for a variety of pests.

Schedules
Refer to the appropriate section in the Treatment Manual for Treatment Schedules. The time/temperature relationship varies with the commodity and pest. Typically, the pulp temperature is raised using water heated to between 115 °F and 118 °F for a prescribed period of time.

Procedures
◆ Before the start of each treatment, examine the facility for proper operation of the heating, circulation, and recording equipment. Examine continuous flow equipment (submerged conveyor belt) at the start of each day or run
◆ Commodities subject to size restrictions require a preliminary culling procedure to eliminate oversized items prior to treatment
◆ Conduct all treatments in an approved tank
Nonchemical Treatments Heat, Hot Water Immersion Treatment

Checklist of USDA-APHIS Minimum Requirements for Hot Water Immersion Treatment Facilities: General Requirements

- Entire treatment will be under the general monitoring of APHIS, and may be further governed by a signed Work Plan (for foreign facilities) or Compliance Agreement (for domestic facilities)
- Load immersion tanks in a manner approved by the U.S. Department of Agriculture (USDA), usually using baskets with perforations that allow adequate water circulation and heat exchange
- Number each treatment container or lot before placing in the immersion tank
- Record the temperature and duration of each hot water dip with an automatic temperature recording system
 - A responsible employee of the packing company must indicate on the printed temperature record the starting time, lot number, duration of each treatment, and initial each entry
 - An alternative recording system can be used only with prior APHIS approval
 - During certification, the average pulp temperature becomes the minimum commercial treatment pulp temperature
 - During commercial treatments, the “Adjusted Tank Sensor Temperature” in is used as the lowest treatment temperature. Refer to Figure 6-5-1 on page 6-5-3 for more information.
- Stamp all boxes of hot water-treated fruit, Treated with Hot Water, APHIS-USDA, together with the numerical designation APHIS has assigned to the particular treatment facility
- When treatment is complete, promptly move commodities treated at origin to an insect-free enclosure
 - Maintain the insect-free commodities throughout the shipping process, this can be accomplished by using insect-proof containers, screened or enclosed rooms, doors with air-curtains, or some combination of the above

Checklist of USDA-APHIS Minimum Requirements for Hot Water Immersion Treatment Facilities: General Requirements

Proposal Submission

Follow guidance from the APHIS PPQ Preclearance and Offshore Programs when submitting proposals for new hot water facilities.
On-Site Inspection Option

When the construction is 75 percent complete, the firm can request APHIS to make an on-site inspection. This interim inspection is optional. However, a final inspection is required as well as performance tests of the equipment. All costs involved must be prepaid by the requesting firm.

Facility Design

APHIS does not provide construction details, but only this list of minimum requirements. Design and construction of the hot water facility is the responsibility of the owner, in consultation with an engineering firm. (Engineering firms and sources of supply are provided in Reference Guide to Commercial Suppliers of Treatment and Related Safety Equipment on page E-1-1.) To take into account variations in facility size, availability of materials, economic feasibility, and individual preference, APHIS allows a wide range of design flexibility.

Although each facility is somewhat unique, there are two basic designs for hot water facilities. The two types are referred to as the batch system and the continuous flow system.

Batch System (Sometimes Called “Jacuzzi System”)

Most hot water immersion treatment facilities are the batch system type. In this system, baskets of fruit are loaded onto a platform, which is then lowered into the hot water immersion tank where the fruit remain at the prescribed temperature for a certain length of time, then are taken out, usually by means of an overhead hoist. In this system, the treatment chart must indicate (by an identifiable marking) when a fruit basket is prematurely removed from the tank. Other alternatives include a solenoid switch, sensor, or similar device that disengages whenever a basket is removed from the treatment tank, or a locking device to make it physically impossible to remove the fruit until the treatment is fully complete.

Continuous Flow System

In the continuous flow type of system, the fruit are submerged (either loosely or in wire or plastic mesh baskets) on a conveyor belt, which moves slowly from one end of the hot water tank to the other. Belt speed is set to ensure the fruits are submerged for the required length of time. This system requires an instrument to monitor the speed of the conveyor belt. This can be accomplished by attaching a speed indicator (encoder) to the gear mechanism. The belt speed is recorded on the same chart as the time and temperature, and also indicates whether the belt is moving or stopped during the treatment cycle. Smaller fruits require less treatment time than larger fruits. Therefore, conveyor belt speed should be adjustable to accommodate treatments of different lengths of time. As an alternative, the belt speed may remain constant, but the length of the submerged portion of the belt is adjusted according to the length of treatment time required for the particular size of fruit. The conveyor must prohibit either forward or backward movement of the fruit during treatment (due to flotation).
Some operators believe that treating fruit while it passes through the system on a conveyor belt is an advantage. Few new systems of this type were built after 1990, presumably because mechanical fruit damage (scratching of the peel) often occurs if the fruit are not in baskets. The system also occupies much more floor space in the plant than a batch system.

Water Quality

The water used for washing, dipping, hydrocooling or showering the fruit should be chlorinated at a level **not** to exceed 200 parts per million (ppm). This level is easier to maintain if the water is first filtered and run through a flocculation process to remove organic material that would otherwise bind with the chlorine.

The facility should check the water for microbial contamination on a regular basis. To maintain sanitary conditions, change water as necessary. Implement standard operating procedures to include water change schedules for all processes that use water. To ensure the safety of the fruit, the facility must clean and sanitize surfaces that come into contact with water, such as wash tanks, hot water tanks, and hydrocooling tanks as often as necessary. To ensure efficient operation, routinely inspect and maintain equipment designed to assist in maintaining water quality, such as chlorine injectors, filtration systems, and backflow devices.

Periodic monitoring by the facility is critical, because chlorine levels above 300 ppm can result in metal corrosion.

Electrical and Electronic Components

Wiring

Electrical wiring throughout the facility must meet both international as well as local safety code requirements. To eliminate shock hazard, earth grounding is required for all electrical wiring located in the vicinity of water. To prevent damage, shield wires inside metal or PVC conduit.

Computers and Microprocessors

To maintain accuracy and reliability, place computers and microprocessors in a climate-controlled (air-conditioned) room. This room should be above tank level, provide a clear view of the treatment tank(s), and be lockable. This room can also serve as an office for the inspector.

Commercial Line Conditioner (Surge Protector)

A commercial line conditioner is recommended for use with computers and microprocessors to provide protection from voltage irregularity (power surges), noise reduction, and harmonic distortion.
Electrical Generator
In the event of a power outage and to provide a secondary source of electricity to enable continued plant operation, an electrical generator is recommended as a backup power supply.

Fruit Sizing Equipment
In the Treatment Schedule, the duration of hot water immersion depends on the particular weight class and variety of the fruit being processed. The inspector must visually inspect and weigh the largest fruit until the inspector is satisfied that all of the fruit is within the weight class. The weight inspection must occur for each lot change (orchard or variety) to ensure the accuracy of the sizing equipment. No mangoes will be accepted that are over the weight class.

It is very important to have accurate sizing equipment that sorts the fruit into groups, either by diameter or by weight. (Weight sorting is the preferred method.) If the weight range is too broad, recalibrate the equipment.

Boilers and Thermostatic Controls

Adequate Water Heating Capacity
The hot water facility must have adequate water heating capacity (i.e., a powerful enough boiler), and accurate enough thermostatic controls to hold the water temperature at or above the temperatures prescribed in the Treatment Schedule for the given length of time.

Thermostatic Controls (Set Point)
APHIS requires that the thermostatic controls be automatic. The temperature set point(s) are determined and approved during the official performance test, and must be high enough to ensure the water in the treatment tank will meet or exceed the minimum treatment temperature prescribed for the fruit. Once approved, do not tamper with the temperature set points. Temperature set points must remain constant for the entire shipping season. However, if the operator of the facility requests a change in set points, the inspector should conduct a new performance test. If this test is unsuccessful, revert the tanks to their prior set points.

Multiple Set Point Option
Managers of some facilities use multiple set points for each tank. The initial set point is higher than the other set points. All set points will be selected by the facility manager or systems engineer based on results of the preliminary performance test.
Nonchemical Treatments Heat, Hot Water Immersion Treatment

Water Circulation

Verify the set points during the official performance test, and the same procedure must be repeated on each subsequent commercial treatment. This system works only for tanks that treat only one cage (basket) of fruit at a time.

Important

Tanks are not allowed to have any set point that is lower than the standard treatment temperature for the commodity being treated (115 °F in the case of mangoes).

Water Circulation

Install a water circulation system in the tank to provide uniform water temperatures throughout the treatment process and to avoid the formation of cool pockets during treatment. To guarantee that the equipment is not turned off during the treatment process, the controls for the circulation pumps or propellers must be tamper resistant. For the safety of personnel working in the area, shield pulleys on all pumps located within six feet of the floor.

After the first five minutes of treatment (with the tank sensor at “lowest temperature permitted at that set point”), differences in the lowest and highest actual temperature sensor readings of more than 1.8 °F may be accepted on a case-by-case basis.

Using a flotation barrier, keep the fruit at least 4 inches (10.2cm) below the water surface during the treatment.

Temperature Sensors

Type of Sensor
Permanently install platinum 100-ohm resistive thermal detectors (RTD sensors) in the lower third of the tank. The resistance of an RTD sensor linearly changes with temperature, whereas thermistors and thermocouples are nonlinear and less stable. Major advantages of RTD sensors include long-term stability, high signal levels, and overall accuracy of the system. Place the sensor unit within the distal 1 inch (2.54cm) of the sensor rod. The sensor must have an outer sheath of 0.25 inch (6.4mm) or less in diameter.

Number of Sensors Required and Their Placement
For continuous flow systems, the minimum number of sensors required is at least 10 per tank, which must be spaced throughout the length of the conveyor. For batch systems, the requirement is at least 2 sensors per tank. However, in tanks that treat multiple baskets (cages) of fruit, there must be at least 1 sensor
per basket position. (A tank with 4 basket positions, for example, would require at least 4 sensors). In both the batch and continuous flow systems, install sensors in the lower third of the tank.

Tank Access for Temporary Placement of Portable Sensors

The hot water tank must be designed to accommodate the temporary placement of numerous portable sensors or probes to be used during the performance testing procedure required for certification or recertification. During the testing procedure and at the direction of the inspector who conducts the performance test, position the temporary sensors throughout the load of fruit. The facility is required to purchase and have available 24 portable thermistor or thermocouple sensors (each with its own flexible cord at least 10 feet in length), and a portable temperature monitor that reads to the nearest one-tenth of a degree.

Certified Glass-Mercury, Non-mercury, and Digital Thermometer

The treatment facility is required to have at least one high-accuracy, water-immersible, certified mercury, non-mercury, or digital thermometer on the premises at all times. This thermometer must be accurate to 0.1 °F (or °C) and will cover the range between 113 °F and 118 °F (45 °C to 47.8 °C). It will be used as the standard against which all sensors are calibrated.

Temperature Recorder

Use an automatic temperature recorder (strip chart or data logger) to record the time and temperature during each treatment.

Automatic Operation

The instrument used for recording the time and temperature must be capable of automatic operation whenever the hot water treatment system is activated.

Long-Term Recording

The recording equipment must be capable of nonstop recording for an extended period of time. Continuous flow systems require recording equipment capable of operating for up to 12 consecutive hours.

Recording Frequency

The time interval between prints will be no less than once every two minutes. Alternatively, a strip chart system can be used that gives continuous color pen lines. The numerical print or pen line representing each temperature channel
(sensor) must be uniquely identified by color, number, or symbol. It is **not** necessary to record temperatures from sensors located in portions of the tank **not** in use.

Accuracy
The accuracy of the temperature recording system (i.e., sensors and recorders) must be within 0.5 °F (0.3 °C) of the true temperature (as verified by a certified mercury, non-mercury, or digital thermometer). The temperature variation for the control sensors should be as close to zero as possible.

Repeatability
When used under field conditions over an extended period of time, the recording equipment must be capable of repeatability to within 0.1 °F (or C) of the true calibrated readings. Failure to maintain reliability, accuracy, and readability in a previously approved instrument will result in canceling approval. The design construction and materials must be such that the typical environmental conditions (including vibration) will **not** affect performance.

Calibration
Individually calibrate channels (sensors) against a certified mercury, non-mercury, or digital thermometer reading in tenths of a degree Fahrenheit or Centigrade, within the range of 113 °F to 118 °F (45 °C to 47.8 °C). The engineering firm that installs the recording equipment must also calibrate it. (Calibration equipment often used for this purpose includes, for example, a Decade instrument and relay range cards.) Calibrate the sensors at or near the fruit treatment temperature (around 115 °F), **not** at 32 °F.

Range
The recorder must be programmed to cover the entire range between 113 °F to 118 °F (45 °C to 47.8 °C), with a resolution of one-tenth of a degree. The range should **not** extend below 100 °F (37.8 °C) nor above 130 °F (54.4 °C). If the range band of the recorder is wider than this, restrict it (narrowed) with proper programming.

APHIS-Approved Recorder Models
Some recorder models currently on the market are **not** approved by APHIS for various reasons. For example, if the recorder only displays the sensor numbers and temperatures without making a printout on paper; or if it prints out the temperature data only after the treatment has been completed it is **not** approved by APHIS. (These are known as “memory loggers”.) These two types of recorder models do **not** provide an adequate level of monitoring during treatment. Also, revolving circular charts are **not** acceptable because of the difficulty in reading fractions of one degree.
Temperature recorder models presently approved by APHIS are listed below. They can be either of the strip chart or data logger type. Some have adjustable chart speeds. Additional temperature recorder models may be added to this list upon petition to the USDA-APHIS-PPQ-S&T-CPHST-AQI. To seek APHIS approval for recorder models not listed, submit the manufacturer’s technical brochure to the USDA-APHIS-PPQ-S&T-CPHST-AQI for evaluation.

Approved Strip Chart (Pen) Recorder Models

![Important]

Strip chart recorders are no longer approved for installation in new facilities or used to replace any style of recorder.

- Chessel 346
- Honeywell DPR 100A (3-channel capability)
- Honeywell DPR 100B (6-channel capability)
- Honeywell DPR 100C (3-channel capability)
- Honeywell DPR 100D (6-channel capability)
- Honeywell DPR 180 (36-channel capability)
- Honeywell DPR 1000 (6-channel capability)
- Honeywell DPR-3000, version D4 (32-channel capability)
- Molytek 2702
- Neuberger P1Y
- Toshiba AR201
- Tracor 3000

Approved Data Logger Recorder Models

- ASICS Systems B & C
- Chino AA Series
- Cole Parmer (32-channel capability)
- Contech (10-, 16-, and 32-channel capability)
 - Model: Smart Seda
- Flotek (must be attached to a printer)
- HACCP Warrior PTR-4 (4-channel capability)
- HAACP Warrior PTR-10 (10-channel capability)
- Hidrosoft
- Honeywell DPR 100B (6-channel capability)
Nonchemical Treatments Heat, Hot Water Immersion Treatment Temperature Recorder

- Honeywell DPR-1500 (30-channel capability)
- Honeywell DPR-3000, version D4 (32-channel capability)
- HyThsoft v2
- IBM-PC (must be attached to a printer)
- Koyo, Model Direct Logic DL 350, with Hidro Soft
- Nanmac H30-1
- National Instruments (all HTS models and Labview 6.1 software)
- NOJOXTEN-BR with software- Automation Studio V 3.09 IEC 61131-3-ST
- Omega OM-205
- Omega OM-503
- Ryan Data Mentor (12-channel capability)
- Tracor Westronics DDR10

Chart Paper Specifications

Celsius or Fahrenheit Scale Temperature can be recorded either in Fahrenheit or Celsius, although Fahrenheit is preferred by APHIS.

Scale Deflection Scale deflection on the strip chart paper must be at least 0.10 inches for each degree Fahrenheit, or at least 5mm for each degree Celsius. Greater width between whole degrees, however, is preferred. Between each line representing one degree, there must also be finer lines, each representing subdivisions of one-tenth or two-tenths of a degree, in the range of 113 °F to 118 °F (45 °C to 47.8 °C).

Sample Required Submit a sample of the strip chart or numerical printout made by the recording equipment to USDA-APHIS-PPQ-S&T-CPHST-AQI. It should be in the exact format to be used at the facility during the treatment cycle. Each symbol on the print wheel (or ink color, in the case of strip charts) must correspond to and identify the particular sensor that it represents.

Chart Speed Chart speed for strip chart recorders must be no less than 1 inch for every 5 minutes of treatment time.

Chart Length The chart paper must be long enough to display at least 1 entire treatment. Continuous flow systems must contain enough chart paper to continuously record temperatures for up to 12 consecutive hours.
Alarm System

An alarm is required for all batch (Jacuzzi) systems, in order to notify packinghouse employees that a treatment has been completed for a particular basket (cage). This system can be an audible noise (such as a horn, buzzer, or bell) or a highly visible light attached to a timing device located on the equipment that indicates time and temperature. Some facilities use both a noise and a light. To avoid “overcooking,” the alarm system alerts the operator of the hoist to remove a basket from the tank at the end of treatment.

Safeguarding the Treated Fruit

Layout and Flow Pattern
Design the flow pattern of the fruit moving through the hot water treatment process to ensure that fruit waiting to be loaded into the hot water immersion tank cannot become mixed with fruit that has already completed treatment. Submit a drawing showing the proposed layout of the packinghouse to USDA-APHIS-PPQ-S&T-CPHST-AQI for approval.

Garbage Disposal
In order not to attract fruit flies, place cut fruit, culled fruit, rotting fruit, and miscellaneous garbage into covered containers and remove from the premises daily.

Quarantine Area
Bring treated fruit to an insect-free enclosure immediately after treatment. The treated fruit must remain there until loading into insect-proof shipping containers. The designated enclosure is usually a screened room. Packing line equipment, hydrocooling equipment, and a cool storage room (if any), should be located in this area, but this equipment is not a requirement. To prevent the movement of untreated fruit (accidentally or intentionally) into the insect-free quarantine area enforce effective procedures.

Screening and Other Materials
Ordinary window screen or mosquito netting (at least 100 mesh per square inch) is sufficient to exclude fruit flies. Inspect it regularly and repair it as often as needed. Solid glass, concrete, drywall, or wooden walls are also acceptable.

Air Curtain
Place on the wall or ceiling prior to entering any quarantine area an apparatus that generates a high-velocity wind barrier or air curtain (such as fans or blowers and associated air-directing chambers or enclosures such as baffles, boxes, etc.). This device must exclude the possible entry of fruit flies into the insect-free enclosure. (For facilities approved prior to July 1, 1997, vertically hang clear plastic flaps, as minimally required, at the doors to the insect-free enclosure.
Loading of Treated Fruit

When **not** in use, close doors leading from the quarantine area to the loading dock. When loading, truck vans and containers must form a fly-proof seal with the exterior wall. Prior to loading, inspect and disinfect truck vans and containers. If wooden pallets are used, they must be completely free of wood-infesting insects and bark. Apply a numbered APHIS seal to each container before its departure.

Pretreatment Warming Options

Prewarming the fruit is sometimes desirable in order to meet the APHIS requirement that all fruit pulp temperatures be at least 70 °F before start of the certification performance test. At the very least, the fruit pulp temperature must reach the minimum pulp temperature stabilized during the certification test for commercial treatment. After prewarming, take pulp temperatures from the mangoes located at the coldest part of the crates and/or baskets. **Do not** take the pulp temperatures from the mangoes that are located on the outside of the basket or crate.

Post-Treatment Cooling Options

Cooling the fruit after hot water treatment is **not** an APHIS requirement. However, from the standpoint of fruit quality, many facilities choose to install a system to cool the fruit after removal from the hot water.

Hydrocooling of the treated mangoes is allowed after a waiting period of 30 minutes following treatment unless the original dip times indicated in the treatment schedule are extended for 10 minutes. Allowing the fruit to simply stand for at least 30 minutes after being removed from the hot water tank is thought to be helpful in killing immature stages of fruit flies because the mangoes complete their “cooking” process during that time.

Refrigerated Room

The recommended storage temperature for mangoes is between 55 °F and 57 °F (12.8 °C and 13.9 °C) at 85 percent to 90 percent relative humidity. These temperatures delay softening and prolong storage life to approximately 2 to 3 weeks.

Fans

APHIS allows the use of fans in the screen room to blow air over the fruit as soon as they are removed from the hot water tank (if desired). However, the ambient air cannot be less than 70 °F.
Hydrocooling
APHIS allows the use of a cool water tank or shower system, but with the following provisions:

- During the waiting period and hydrocooling period, safeguard the mangoes in a room or tunnel, separate from the hot water tanks
- Water temperature used during hydrocooling must be 70 °F or above
- Water used for hydrocooling should be chlorinated (not to exceed 200 ppm)
 - Any other chemicals, such as fungicides, are optional, but must be approved in advance by the FDA

Facility Changes
Hot water immersion treatment facilities whose construction was approved under earlier guidelines can continue to operate with APHIS approval. Newer facilities, however, are required to meet the current requirements outlined in this checklist, which in most cases are more strict.

Once USDA-APHIS-PPQ-S&T-CPHST-AQI has formally approved the plans and drawings for a hot water immersion treatment facility, the facility can make no further changes in the equipment without APHIS approval. Any proposed changes or improvements must be described in writing (with accompanying drawings, if necessary) and must be approved by APHIS in writing. Examples of proposed changes include adding additional treatment tanks, adding a cold storage room, and changing the model of the temperature recorder.

Safety and Health Checklist

- Adequate lavatory
- Admission of children or unauthorized persons into the treatment and packing areas prohibited if not accompanied by a responsible employee
- Approved safety ladders or walkways (catwalks, etc.) for observing treatment tank operations
- Electric power meets safety code requirements
 - Electrical wiring, including switches and other connections, contained in metal or PVC conduit and grounded to prevent electrical shock
Nonchemical Treatments Heat, Hot Water Immersion Treatment

Work Plan

- Engines, pulleys, drive belts, and other hazardous moving parts, if located within six feet of floor level, guarded with a safety shield or barrier
- Fire extinguisher located near the boiler
- First-aid kit located near moving machinery
- Hard hats for workers and visitors in the treatment and loading areas must wear (this is optional if not required by local regulations)
- Steam and hot water pipes insulated or otherwise protected
- Sufficient lighting provided in working areas

Work Plan

A Work Plan is a formal agreement signed by a representative of each treatment facility in a particular country, the Agriculture Ministry of the host government, and by USDA-APHIS. Work Plans govern the day-to-day operations of each facility and can be improved from one year to the next. Work Plans usually contain additional provisions not included in this checklist.

Fruit exporters are required to operate under general APHIS monitoring and to be in full compliance with all APHIS regulations as outlined in detail in the current Work Plan. The operator of the facility, as well as the inspector assigned to the facility, should each keep a copy available to resolve any disputes.

Plant Material Not Tolerant to Fumigation

Propagative material may be free from visible pests, but certain pathogens may cause undetectable symptoms.

Hot water dip treatment (52 °C/125.6 °F for 30 minutes), combined with hand removal of visible pests, is effective against numerous pests. See “T201-p-4” on page-5-3-21 for a list of pests controlled.

Operational procedures and equipment specifications are under development.
Address for Technical Contact

USDA-APHIS-PPQ-S&T-CPHST-AQI
1730 Varsity Drive, Suite 300
Raleigh, NC 27606
Tel: 919-855-7450
Fax: 919-855-7493
Nonchemical Treatments

Heat • Steam Treatments

Contents

Principle 3-4-1
Steam Pressure Sterilization 3-4-1
 Loose Masses of Material 3-4-2
 Closely Packed Material 3-4-2
Steam Jet Method 3-4-2

Principle

Steam at a temperature of 212 °F will destroy most pathogenic microorganisms of the common vegetative forms or the spore types when in the growing or vegetative state in a short period of exposure. Some spores, however, are much more resistant and will withstand prolonged periods of exposure to steam at atmospheric pressure. Saturated steam at temperatures of 240 °F to 248 °F (10 to 15 lbs. pure steam pressure) will destroy the most resistant spores in a brief interval of exposure. However, near-complete air discharge from the autoclave or steam chamber is necessary. When steam is admitted to a chamber from which the air is completely evacuated, the temperature of the steam throughout the chamber will advance at once to the maximum range that can be attained for the pressure carried. If air remains in the chamber, the ultimate temperature will be reduced dependent upon the quantity of air remaining. Refer to a recording or indicating thermometer for correct chamber temperature-pressure relationships.

Detailed operational procedures and equipment specifications are under development.

Steam Pressure Sterilization

Live steam is introduced into a closed chamber containing the material to be treated until the required temperature and pressure are indicated. The temperature/pressure relationship is maintained at or above this point for the required exposure period. The exposure period will depend on the nature of the material, quantity, and its penetrable condition.
Loose Masses of Material
For loose masses of material, which permit rapid and complete penetration of steam to all parts of the mass, no initial vacuum is needed, but air must be released until steam vapor escapes, and exposure at 20 pounds pressure for 10 minutes, 15 lbs. for 15 minutes, or 10 lbs. for 20 minutes is sufficient.

Closely Packed Material
For closely packed material, such as soil or baled straw, special measures are needed to ensure rapid heat penetration to all parts of the material. Baled rice straw, for example, is required to have a density of less than 30 lbs. per cubic foot since penetration at higher densities is too slow to be practical. Soil, if in large containers, will not allow adequate treatment under normal sterilization exposure periods. Quicker penetration of the steam is obtained by first exhausting the air in the chamber to a high vacuum and then introducing live steam until the required positive pressure is reached.

Examples of the pressure-temperature relationships are listed in Table 3-4-1. The gauge pressure in pounds per square inch corresponds to the temperature of saturated steam in degrees Fahrenheit. Zero gauge pressure corresponds to an absolute pressure of 14.7 lbs. per square inch. The figures are based upon the complete replacement of air by steam. If air replacement is not complete the temperature for any given pressure will be less than the corresponding temperature.

Table 3-4-1 Pressure Temperature Relationships

<table>
<thead>
<tr>
<th>Gauge Pressure (lbs. per sq. in.)</th>
<th>Temperature °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>239.4</td>
</tr>
<tr>
<td>15</td>
<td>249.8</td>
</tr>
<tr>
<td>20</td>
<td>258.8</td>
</tr>
<tr>
<td>30</td>
<td>274.1</td>
</tr>
<tr>
<td>40</td>
<td>286.7</td>
</tr>
<tr>
<td>50</td>
<td>297.7</td>
</tr>
<tr>
<td>60</td>
<td>307.4</td>
</tr>
</tbody>
</table>

Steam Jet Method
Live steam from a jet or nozzle is forced into or through a more or less loose and open mass of material in such amount and for such period required to raise the temperature of all parts of the mass to approximately 212 °F. This method takes advantage of the considerable latent heat liberated when steam condenses into water. This process does not effect complete sterilization since spore-forming bacteria are not always destroyed. Since no spore-forming
bacteria are known that cause plant diseases, however, and fungi are readily killed by the temperatures reached, this process is effective for quarantine purposes if the necessary degree of heat is generated in all parts of the material.
Nonchemical Treatments

Heat • Vapor Heat and Forced Hot Air Treatment

Contents

Introduction 3-5-1
Procedures 3-5-2
 Pretreatment 3-5-2
 Loading 3-5-3
 Conducting the Treatment 3-5-3
 Verifying the Treatment 3-5-3
 Post-Treatment Handling 3-5-4
Record Keeping 3-5-4
Common Problems and Failure Points 3-5-5

Introduction

Vapor Heat (VH) and Forced Hot Air (FHA) treatments use heated air to warm fruit to temperatures that are lethal to target pests, primarily fruit flies. Generally, VH treatment differs from FHA only in the relative humidity of the air in the treatment chamber; higher humidity levels may preserve fruit quality. Unless otherwise noted, information in this chapter applies to both VH and FHA treatments for fruits and vegetables.

Each treatment facility is encouraged to develop automated data collection systems designed to automate treatment tracking and ensure that treatment specifications are met.

This chapter describes processes for routine (commercial) treatments for fresh fruits and vegetables at VH and FHA facilities. See “Certification of Forced Hot Air and Vapor Heat Treatment Facilities” on page 6-7-1 for VH and FHA certification and equipment requirements.

VH treatment schedules can be found in T106—Vapor Heat on page 5-2-73. FHA treatment schedules can be found in T103—High Temperature Forced Air on page 5-2-60.
Procedures

Before any treatments are conducted at a facility, the authorized PPQ official or APHIS designated representative should familiarize themselves with the facility and the way the chamber functions. The official should also carefully review the treatment schedule for the commodity(ies) that will be treated, and any special requirements specified during certification, in the workplan or in the compliance agreement. The PPQ official or APHIS designated representative approving the facility has the option to increase the number of permanent temperature sensors based on testing performed at the facility.

Pretreatment

Prior to treatment, the PPQ official or APHIS designated representative must ensure that the facility and the chamber are in good working order and the temperature sensors are functioning properly. For the purposes of this chapter, the term “sensors” will refer to both permanent and portable temperature sensors. Conduct a brief facility inspection, including chamber and equipment, before any other steps in the treatment process are taken. During this inspection, the official verifies that all safeguarding and quarantine measures are in place and that there are no obvious problems that may affect the treatment. If any deficiencies are found, correct them prior to treatment. After the inspection, the official will assist facility personnel in the calibration of the sensors. Refer to the section Calibrating the Sensors on page 6-7-4 for calibration procedures.

Before treatment, the official ensures that the commodity meets the requirements specified in this manual, the certification conditions, the workplan and/or the compliance agreement. These requirements generally include:

- **Fruit size and weight requirements**: Verify the process and/or equipment used to sort the fruit by measuring or weighing the fruit that is to be treated. Weigh and measure the largest fruit per treatment lot. If fruit are found that do not meet the size and weight requirements, evaluate the sorting process and/or equipment and resort the fruit.

- **Fruit pulp temperature**: There are no specific pretreatment fruit pulp temperature requirements. However, the temperature of the fruit pulps within the treatment lot should not vary by more than 3.0 °C (5.0 °F). The PPQ official verifies that the pulp temperatures meet this requirement prior to treatment.

- **Pest inspection**: The PPQ official conducts pest inspections required by the workplan and/or compliance agreement.
Nonchemical Treatments Heat • Vapor Heat and Forced Hot Air Treatment

Procedures

Loading
Load the fruit into containers (crates, lugs, or bins) according to the requirements in the certification conditions or workplan. Generally, these requirements will indicate whether or not the fruit must be sorted and the volume of fruit allowed in each container.

Load the containers onto pallets or into cabinets according to the requirements in the certification conditions or workplan. These requirements may specify that containers with larger fruit must be located in the colder areas of the stack or that certain layers of containers are left empty when partial loads are treated.

The sensors are placed in the largest fruit in the treatment lot as it is being loaded into the containers. Insert the tip of the sensor into an area of the fruit pulp that will take the longest to reach treatment temperature. The PPQ official or APHIS designated representative monitors the placement of the sensors and verifies that the probes are placed in the locations required by the certification conditions.

Conducting the Treatment
After all the fruit is loaded into the containers and onto the pallets, and the sensors are properly installed into the heaviest fruit, load the fruit into the chamber. Close and lock the chamber doors to prevent accidental openings. The PPQ official or APHIS designated representative (and the NPPO official, if required by the work plan or compliance agreement) must initial the treatment temperature record and the chamber operator can then initiate the treatment.

During the treatment, the official must monitor the sensor data to ensure the treatment is proceeding in the approved manner. The PPQ official must also check the chamber for leaks or other problems during the treatment.

Verifying the Treatment
The PPQ official or APHIS designated representative must review the treatment temperature record after the treatment is complete. The official must ensure that the temperature and recording interval requirements have been met. Additionally, the official must verify that the requirements for the duration of the run up and dwell times are conducted according to the treatment schedule. Time requirements for the run up and dwell time are continuous. Once the official determines that all the treatment requirements are met, the official must sign and date the treatment record.

The following terms are referred to in the treatment schedules:

Important Treatment Terminology
Nonchemical Treatments Heat • Vapor Heat and Forced Hot Air Treatment

Record Keeping

- **Heat up time:** the minimum time allowed for all the temperature probes to reach the prescribed minimum pulp temperature (may also be referred to as the approach or run-up time)
- **Heat up recording interval:** the time interval required for recording temperatures during the heat up time
- **Minimum air temperature:** the minimum temperature required for the air in the chamber
- **Minimum pulp temperature at end of heat up:** the minimum temperature required for all fruit pulp temperature probes
- **Dwell time:** the length of time all pulp temperature probes must maintain the minimum pulp temperature
- **Dwell recording interval:** the time interval required for recording temperatures during the dwell time
- **Cooling method:** optional and may be either hydrocooled or air cooled

Table 3-5-1 Example of a Treatment Schedule

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Up Time</td>
<td>4 hours</td>
</tr>
<tr>
<td>Heat Up Recording Interval</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Minimum Air Temperature</td>
<td>N/A</td>
</tr>
<tr>
<td>Minimum Pulp Temperature at End of Heat Up</td>
<td>47.2 °C/117.0 °F</td>
</tr>
<tr>
<td>Dwell Time</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Dwell Recording Interval</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Cooling Method</td>
<td>Forced air or Hydrocooled</td>
</tr>
</tbody>
</table>

“N/A” in any of the requirements in the Treatment Schedule indicates that PPQ has no requirement.

Post-Treatment Handling

After the treatment is complete, move the fruit from the chamber into the quarantine area. Cool the fruit according to the requirements listed in the treatment schedule.

Record Keeping

Keep all treatment records at the treatment facility for one year after treatment. The facility must also maintain a record of all problems and/or breakdowns and any maintenance performed on the chamber. All the records listed above must be made available to the PPQ official upon request.
Common Problems and Failure Points

If the temperature recording intervals and minimum temperature requirements are **not** met, the treatment fails. The only exception to this is that a sensor may record no data for a single recording interval during the treatment. (Note: This does **not** mean the temperature may be out of range, only that the data may be missing). After reviewing the treatment data, the official should sign and date the data.

If a problem arises during treatment, such as a sensor stops recording data, records above other sensors, appears to be broken, or if the temperature drops below the required temperature, the following actions **must** be taken:

- After the treatment is complete, test the sensor according to calibration procedures.
 - If the sensor **passes** calibration, then there was a problem with the treatment. **FAIL** the treatment.
 - If the sensor **fails** calibration, then there was a problem with the sensor. **PASS** the treatment. If there is more than one failed sensor, then fail the treatment.

The facility manager must determine if the fruit will be re-treated or will be removed from the chamber into the non-quarantine area.
Nonchemical Treatments

Heat • Forced Hot Air • Niger Seed

Contents

Heat Treatment of Niger Seed (Guizotia abyssinica) 3-6-1
Minimum Requirements for Heat Treatment Facilities 3-6-1
Treatment Requirements 3-6-1
Documentation Requirements 3-6-2
Sanitation and Pest Control 3-6-2
Post Treatment Requirements 3-6-2

Heat Treatment of Niger Seed (Guizotia abyssinica)

Niger seed is imported into the United States for bird feed and is frequently contaminated with federal noxious weed seeds. In order to devitalize the weed seeds, the Niger seed is required to undergo heat treatment in accordance with T412 treatment schedule. Conduct the heat treatment in a foreign or domestic APHIS-certified treatment facility.

Minimum Requirements for Heat Treatment Facilities

If the facility is located in the United States, it must be constructed near the port environs (10 miles or less). The facility and equipment must adhere to the following requirements:

- All facilities must comply with treatment schedule T412-a in this Treatment Manual (Refer to Certification of Niger seed Treatment Facilities on page 6-6-1 for certification guidelines)
- All facilities must possess a current work plan or compliance agreement.
- Facility operators or managers must record the following information on each treatment recorder printout:
 - Date
 - Lot number
 - Operator signature

Treatment Requirements

The Niger seed heat treatment schedule requires the seed be treated for a minimum of 15 minutes at 248 °F/120 °C. Determine if the treatment standards are met using the following guidance:
Examine treatment recorder printout for completion of treatment and verify that the Niger seed was kept at the target temperature for the required time.

If records indicate that any temperature reading fell below 248 °F/120 °C for 15 minutes, nullify the treatment for that specific lot, correct the reason for the faulty treatment, and retreat the seed.

Documentation Requirements

- Maintain a logbook of all Niger seed treatments.
- Maintain records of equipment breakdowns and repairs, changes, or modifications to the treatment process, facility, and/or equipment

Sanitation and Pest Control

The Plant and Warehouse Premises

Require the facility manager to ensure that there is a cleaning and control program in the plant and/or warehouse and that there are no potential breeding grounds for pests on the premises.

Containers and Packaging

Require the facility manager to ensure that seed containers and/or packaging, whether used or new, is checked and cleaned for pests so that the packages are not a source of pests and contamination.

Waste Disposal

To minimize contamination risk and eliminate pest breeding sites, require the facility manager to implement a regular waste program for waste and nonconforming or infested produce.

Post Treatment Requirements

After treatment and cooling, immediately place the Niger seed in new bags or in a storage area only for treated seed. Dispose of the original bags in a manner that will eliminate regulated pests.

- PPQ will sample treated seeds for actionable contaminants according to guidelines in the work plan or compliance agreement or by conducting random inspections and TZ (tetrazolium) tests as needed at the port of entry.
◆ Label each treated sample with the following information:
 ❖ Bill of lading number
 ❖ Container and lot number
 ❖ Date the sample was taken
 ❖ Date the seeds were treated
 ❖ Origin of seed
 ❖ Vessel name and nationality

◆ Send the sample to an APHIS-approved testing facility.

When the laboratory results are available, send laboratory results with the above information to the address identified on the work plan or compliance agreement.
Nonchemical Treatments Heat • Forced Hot Air • Niger Seed
Post Treatment Requirements
Nonchemical Treatments

Cold Treatment (CT)

Contents

Intransit Cold Treatment in Conventional Vessels, Self-Refrigerated (Integral) Containers, and Warehouses 3-7-2
Precooling Procedures 3-7-2
Initiating Intransit Cold Treatment in Vessels and Containers 3-7-3
 Verification of Temperature Recording Equipment 3-7-3
 Calibration of Temperature Sensors 3-7-4
Loading of Commodity in Conventional Vessels and Self-Refrigerated (Integral) Containers—General 3-7-7
 Placement of Temperature Sensors 3-7-10
 Treatment Requirements 3-7-13
Prepare Documents 3-7-14
 Distribution of Documents 3-7-14
Clearance of Cold Treated Shipments 3-7-14
 Conventional Vessels 3-7-15
 Self-Refrigerated (Integral) Containers 3-7-18
Cold Treatment in Refrigerated Warehouses 3-7-20
 Initiating the Cold Treatment 3-7-20
 Placement of Temperature Sensors: 3-7-20
Quick Freeze Guidelines 3-7-21
Contact Information 3-7-21
USDA-APHIS-PPQ-S&T-CPHST-AQI 3-7-21
Intransit Cold Treatment in Conventional Vessels, Self-Refrigerated (Integral) Containers, and Warehouses

The use of sustained cold temperatures as a means of insect control has been employed for many years. Rigid adherence to specified temperatures and time periods effectively eliminates certain insect infestations. Treatments may be conducted in warehouses, refrigerated compartments of transporting vessels (Conventional Vessels), containers cooled by the ship's refrigeration system (Container Vessels) or by individually refrigerated containers (Self-Refrigerated/Integral Containers). Information concerning conventional vessels, self-refrigerated containers, and warehouses is found in this chapter.

Only certified USDA representatives have permission to conduct warehouse, vessel and/or container approval tests under the general guidance of CPHST-AQI. The following website provides information for the testing of specific vessels and/or containers:

https://treatments.cphst.org/vessels

Precooling Procedures

Experience with in-transit cold treatments and Computational Fluid Dynamics (CFD) modeling of refrigerated vessel compartments show that the fruit must be precooled at or below the prescribed cold treatment temperature before loading. Otherwise, a large quantity of fruit in the middle of large pallet groups may require a week or more to reach the cold treatment temperature.

Fruit intended for intransit cold treatment must be precooled to the temperature at which the fruit will be treated prior to beginning treatment.

The precooling process cannot be conducted in the in-transit cold treatment conveyance unless authorized by the Executive Director of USDA APHIS PPQ Plant Health Programs.

Conduct random fruit pulp sampling in the precooling location prior to loading in order to verify that the commodity has completed precooling.

Use the following general guidelines for fruit pulp sampling in the precooling location:

◆ Pulp temperatures will be taken by personnel authorized by APHIS, which includes industry representatives
Nonchemical Treatments Cold Treatment (CT)
Initiating Intransit Cold Treatment in Vessels and Containers

- Take pulp temperatures by probing the fruit on the periphery of the pallet
 - If pulp temperatures are 0.28 °C (0.5 °F) or more above the temperature at which the fruit will be treated, the pallet will remain in the precooling location for further precooling

Also, sample fruit pulp temperatures immediately before the fruit is loaded on the intransit cold treatment conveyance. Take fruit pulp temperatures by probing fruit in the top of the pallet. An official authorized by APHIS will sample the fruit pulp temperatures in all sections of the load to verify temperatures have not risen appreciably. If the pulp temperatures for the sample are 0.28 °C (0.5 °F) or more above the temperature at which the fruit will be treated, the pallet will be rejected and returned to the precooling location for further precooling until the fruit reaches the treatment temperature.

Initiating Intransit Cold Treatment in Vessels and Containers

For cold treatments conducted in approved vessels and containers, the ship’s officers will have already received instructions on the APHIS requirements from their owners. However, a discussion by the authorized APHIS official with these individuals will provide for better understanding and cooperation. Such a discussion should include:

- General treatment procedures in accordance with 7CFR 305.15
- Stowage arrangement
- Temperature sensor and instrument calibration testing
- Treatment conditions

Ensure that there is an adequate communication system in place between personnel in the compartments and the recording room.

Verification of Temperature Recording Equipment

Approved vessels and containers must be capable of maintaining fruit pulp temperatures within the specified CT schedules. To monitor these treatments, they must be equipped with a temperature recording device which meets the approval of USDA-APHIS-PPQ-S&T-CPHST-AQI. All approved temperature recording devices must be password protected and tamper-proof and have the ability to record the date, time, sensor number, and temperature during all calibrations and actual treatments.

If APHIS determines that the records and calibrations can be manipulated, the vessel and/or container will be suspended from conducting cold treatments until proper equipment is installed. Submit any changes to the temperature recording and monitoring equipment to
USDA-APHIS-PPQ-S&T-CPHST-AQI for approval before installation in the vessel or container. Compare the existing equipment with the equipment listed at http://treatments.cphst.org/vessels/ to determine if new equipment has been installed that was not approved by CPHST-AQI.

Specifications for temperature recording installations and other requirements for approval are discussed in Certification of Cold Treatment on page 6-4-1. Refer to Reference Guide to Commercial Suppliers of Treatment and Related Safety Equipment on page E-1-1 for a list of approved temperature recorders.

Strip Chart Recorder

Since December 31, 2005, strip chart recorders were no longer acceptable temperature recording devices. Consequently, by December 31, 2008, there should be no strip chart recorders in use for APHIS cold treatment. Contact CPHST-AQI for approved temperature recording instrumentation.

Data Logger

A sufficient supply of log sheets must be available to provide a continuous record of calibration and treatment temperatures. The instrument should be in operation for at least 30 minutes prior to calibration tests. Examine a completed log sheet printout and the functioning of the visual scanner, the printer, and the high limit setting. Check the log sheets for proper format and serialization. Activate the temperature set-point for an alarm printout to verify that this function is operational.

Data logger installations are utilized to record various components of the vessel's operating systems. Temperature recording is only a part of the record produced. Under CPHST-AQI approval requirements, the log sheets upon which the intransit cold treatment is recorded are generally more detailed in design than the standard commercial log sheet. They are prepared and serialized to facilitate scanning and to provide a level of security against fraudulent records. The USDA log should be printed on separate sheets with no other ship data interspersed. Data loggers are programmed to print out the temperatures above a set limit in a contrasting color. Some instruments print a symbol to indicate this. The limit is set at the time of loading to a temperature level that coincides with the projected treatment schedule.

Calibration of Temperature Sensors

Calibrate all air and pulp temperature sensors in a clean ice water slurry mixture that is at 0 °C (32 °F), the freezing/melting point of freshwater.

1. Check individual sensors to verify that they are properly labeled and correctly connected to the temperature recorder. This can be accomplished by hand warming each sensor when its' number appears on the visual display panel of the recording instrument. A temperature change, which can be observed on the instrument, should occur. If the instrument fails to react, the sensor is incorrectly connected or malfunctioning and should be corrected by the instrument representative.
2. Prepare a mixture of clean ice and fresh water in a clean insulated container.
3. Crush or chip the ice to completely fill the container.
4. Add enough water to stir the mixture.
5. Stir the ice and water for a minimum of 2 minutes to ensure the water is completely cooled and good mixing has occurred.
 - Generally, the ice will occupy approximately 85 percent of the total volume of the container, with the water occupying the remaining space.
6. Add more ice as the ice melts.
7. Stir the ice water slurry to maintain a temperature of 0 °C (32 °F).
8. Submerge the sensors in the ice water slurry without touching the sides or bottom of the container.
9. Stir the slurry mixture again.
10. Continue testing of each sensor in the ice water slurry until the temperature reading stabilizes.
11. Allow at least a 1 minute interval between two consecutive readings for any one sensor; however, the interval cannot exceed 5 minutes.
 - The difference between the two readings cannot exceed 0.1°C.
12. Record at least two consecutive readings on a written calibration report. If the two readings are different, test the sensors again and record the temperature.
13. Contact an instrument company representative immediately if the time interval exceeds the normal amount of time required to verify the reading and accuracy of the sensor and recorder system.
 - The recorder used with the sensors must be capable of printing or displaying on demand and not just at hourly intervals.
14. Have the instrument company representative correct any deficiencies in the equipment before certification.
15. Replace any sensor that reads more than plus or minus 0.3 °C (0.5 °F) from the standard 0 °C (32 °F).
16. Replace and recalibrate any sensors that malfunction.
17. Determine the calibration factors to the nearest tenth of one degree Celsius.
18. If the temperature recorder microprocessor can be zeroed, tared, or if the calibration factors can be otherwise entered into the recorder microprocessor for automatic adjustment this must be done. In this case,
verify that the adjustment factors have been entered or that the recorder was zeroed or tared by the instrument company representative. Enter zero as the calibration factor for each individual probe in the Online 556 database (if the database is not used, then enter zero for each individual probe in the written calibration report that is submitted with the shipment.)

19. If the temperature recorder microprocessor cannot be zeroed, tared, or if the calibration factors cannot be entered into the recorder microprocessor memory (so that they are sustained in memory and can be viewed again after all the factors are entered), the calibration factors for each individual probe must be recorded in the online 556 database (if the database is not used, then enter the calibration factors for each individual probe on the written calibration report that is submitted with the shipment.)

20. After the calibration factors have been accounted for, no other changes should be made to the temperature recorder microprocessor.

21. Refer to the section on Clearance of Cold Treated Shipments on page 3-7-14 for complete instructions on entering data into the Form 556 or preparing written calibration reports.
Loading of Commodity in Conventional Vessels and Self-Refrigerated (Integral) Containers—General

1. Each compartment or container must contain only one type of fruit loaded in one type of carton.

2. Load fruit directly from the precooling area so fruit temperatures do **not** rise significantly after loading and during the transfer of the container to the vessel.

3. Open the cartons in which the sensors will be located and insert the sensors well into the fruit (Figure 3-7-1). The tip of the sensor must **not** extend through the fruit.

![Figure 3-7-1 Proper Placement of Pulp Sensor within Larger Fruit](image)

In countries with which USDA-APHIS has a cooperative agreement, these activities can be conducted by qualified officials from that country. Contact the USDA-APHIS-PPQ-S&T-CPHST-AQI for a list of qualified officials.
In the case of small fruit, cover a minimum of two thirds of the tip of the sensor using multiple fruit. If, for example, the fruit is grapes, insert the sensor directly into the grapes in a shis-ka-bob fashion (Figure 3-7-2). Completely cover the probe with the top layer of fruit in the top of the box or carton located in the middle of the pallet.

![Figure 3-7-2 Proper Placement of Pulp Sensor within Smaller Fruit](image)

4. Securely close the cartons following insertion of the sensors. If the fruit is palletized, it may be necessary to insert the sensor into the fruit from the side of the carton. If the side of the carton or box is opened to insert a sensor, reseal the opened side of the carton or box using tape.
There are two sensor types used for the compartments during cold treatment.

- Ambient air sensors—the cables which are attached to the ceiling of the compartment, should be long enough to extend from the ceiling to the floor. Place the sensors on the center line of the vessel approximately 30 centimeters from the ceiling. Attach the sensors in such a way that they do not touch the bulkhead and are protected from damage from the cargo. One sensor must be located on the fore and aft bulkheads of each compartment.

- Fruit pulp sensors—the cables which are attached to the side walls of the compartment must be distributed throughout the compartment so that all areas of the compartment can be reached. The cables should be long enough to extend from the hold walls to three meters beyond the center line of the ship hold.
Placement of Temperature Sensors
All of the sensors for conventional vessels must be located at the mid level of the pallets as depicted in Figure 3-7-3. The black circles represent pulp sensors.

Figure 3-7-3 Fruit stack with middle row temperature probe placement

It is highly recommended that more temperature sensors be installed than the minimum number required for each refrigerated compartment. If a sensor malfunctions during a treatment, the certified USDA representative has the option of disregarding it, providing that an additional working sensor is present, and the functional sensors were appropriately placed, certified, and calibrated. Otherwise, the entire treatment must be repeated for the fruit in that compartment.
When loading refrigerated containers, place the warmest fruit in the last quarter of the load (near the back doors of the container), completely cover the floor and ensure that the load is of uniform height.

Place a numbered seal on the loaded container. This must not be removed until the load has been cleared at the port of destination.

Use a minimum of three pulp sensors. Place all sensors as far into a box of fruit as possible. Use Figure 3-7-4 as a general guideline for sensor placement.

- Place the first sensor, labeled USDA1, in a box at the top of the stack of fruit nearest to the air return intake.
- Place the second sensor, labeled USDA2, slightly aft of the middle of the container, halfway between the top and bottom of the stack.
- Place the third sensor, labeled USDA3, one pallet stack in from the doors of the container, halfway between the top and bottom of the stack.

Figure 3-7-4 40 foot Refrigerated Container with 18 Pallets of Fruit (not drawn to scale)
Secure the Load

Place a piece of cardboard that extends from the front edge of the second-to-last pallet row to the back doors on the container floor before the last pallet row is loaded. Once the cardboard is installed properly, load the last pallet row so the pallets rest on top of the cardboard. Place a second piece of cardboard perpendicular to the first piece of cardboard and staple to the cartons in the last pallet row (Figure 3-7-5). The placement of the cardboard between the back doors of the container and the last row of pallets aids in maximizing air flow through the pallets. Complete this procedure for all pallets in the last pallet row of the container.

Figure 3-7-5 Proper placement of cardboard between the last pallet row of fruit and the back doors of the container
Treatment Requirements
Temperatures must be recorded at intervals no longer than 1 hour apart. Gaps of longer than 1 hour may invalidate the treatment or cause treatment failure.

Fruit pulp temperatures must be maintained at the temperature specified in the treatment schedule with no more than 0.39 °C (0.7 °F) variation in temperature between two consecutive hourly readings. Failure to comply with this requirement may result in treatment failure.

The time required to complete the treatment begins when all temperature probes reach the prescribed treatment schedule temperature.
Prepare Documents

Complete the following PPQ forms and worksheets:

- “Calibration of Temperature Probes” record showing the temperature readings as taken from the temperature chart or log sheet during the calibration testing. Record readings to the nearest tenth of one degree. When the loading of each compartment has been completed, obtain the temperature reading of each fruit probe from the temperature recorder and record on this form.

- “Instructions to Captain” form letter.

- “Location of Temperature Sensors” record to show the actual position of each fruit temperature sensor. (See sample form in Appendix A.) This can be accomplished by a written description or by a diagrammatic sketch. Include compartment loading start and end times and dates on the form.

- PPQ Form 203, Foreign Site Certificate (for APHIS pre-inspected fruit)

- Shipper’s manifest containing the quantity and kind of commodity.

Distribution of Documents

Place the following documents in a sealed envelope and give to the Captain for presentation to the clearance official at the port of arrival.

- Original “Calibration of Temperature Probes”

- Original “Location of Temperature Sensors”

- Copy of the “Instructions to Captain”

For reference purposes, present the Captain with the following documents:

- Original “Instructions to Captain”

- Copy of the “Calibration of Temperature Probes”

- Copy of the “Location of Temperature Sensors”

Send copies of all documents to the clearance official at the port of arrival and to USDA-APHIS-PPQ-S&T-CPHST-AQI.

Clearance of Cold Treated Shipments

The CPHST-AQI is in the process of designing electronic versions of all required cold treatment documentation. In the future the forms that are filled out overseas (excluding the preclearance forms) will be entered on-line.
through a secured website so that the port of arrival will be able to view all required documentation before the certified vessel or container undergoing intransit cold treatment arrives at a U.S. port of entry. Until the new database and electronic forms are finished, continue following the instructions listed below.

Off-loading of self-refrigerated containerized fruit that is under treatment must be accomplished rapidly. Containers must be off-loaded and treatment reconvened within 2 or 3 hours from the time the container was disconnected from the refrigerating unit. The pulp sensors should never exceed the maximum allowable treatment temperature.

Observe the stacking pattern. Double stacking is not permitted. Do not release the shipment if the pallets have been double stacked.

Conventional Vessels

The “Calibration of Temperature Sensors” and “Location of Portable Sensors” documents from the country of origin should have been received at the port of entry prior to the arrival of the carrying vessel.

The document, “Calibration of Temperature Sensors”, is required for all shipments and includes information regarding the loading date and location of temperature sensors within the commodity, as well as calibration correction factors for every sensor.

Check the CPHST-AQI web site (http://treatments.cphst.org/vessels/) to familiarize yourself with the compartment layout.

Check the documents, and any accompanying correspondence for comments relating to deficiencies noted at origin. The documents must bear the signature of an APHIS-approved official or of an authorized official of the exporting country. A list of authorized names and signatures for each country is on file at CPHST-AQI and is available upon request.

Inform shipping line officials and pier supervisors of the quarantine safeguards to be observed pending clearance. The authorized APHIS official boarding the vessel must have several calibrated thermometers.

PPQ Form 556, In Transit Cold Treatment Report

Complete PPQ Form 556, In Transit Cold Treatment Report. Record the date and time of completion of each compartment and the officer’s signature on the temperature chart or log sheet. Do not add fruit to the compartment after loading has been completed.
Complete the entries on the PPQ Form 556 during the actual performance of each step of the clearance procedure. The PPQ Form 556 instructions provide for a progressive clearance in the event that treatments are not completed before a vessel sails for a second U.S. port.

The Officer responsible for a U.S. vessel is typically the Chief Engineer or Reefer Engineer. The Officer responsible for a Foreign Flag vessel is typically the Chief Officer or Captain.

Inform the ship’s officer to withhold discharging the treated commodity until clearance has been completed.

Obtain the clearance officer's copy of the calibration documents from ship's officer (Record in blocks 1-6, and 10).

Proceed to the data logger with the ship's officer and retrieve a temperature printout.

Review the temperature chart.

NOTICE

If the initial treatment period is broken because of excessive temperatures, failure of the recorder, or improper procedure, and the treatment is later restarted, enter the date and time of restart on the second line of item 28. Air temperatures may occasionally exceed treatment temperatures during defrost cycles; however, fruit temperatures should not rise appreciably during this time and must not exceed the temperature listed in the schedule. During non defrost times, the temperatures of the air sensors should never exceed the maximum allowable treatment temperature. For each compartment of a hold, the hourly sensor printouts will be examined by a PPQ Officer at the port of entry. Based on these records, the PPQ Official will make a determination as to whether to accept the treatment as satisfactory. In case of dispute, the ultimate decision will be made by the Officer in Charge (PPQ), who will take all factors into consideration. Occasionally, for example, there are cases in which one or two sensors in a compartment mechanically malfunctioned during the voyage, due to situations beyond the ship's control (e.g., rough seas). This is generally excusable, as long as the other sensors in the same compartment showed no readings higher than the cold treatment schedule allows. If, however, the ship stopped at another port while in route to the discharge destination in the U.S., but failed to have the facility sensor(s) repaired and recalibrated, it may be considered negligence on the part of the shipping line. The fruit from such refrigerated compartments would have to be retreated (in a cold warehouse) to be eligible for entry.

If a sensor is reading consistently high, it should be tested by using the ice-water bath technique. If this sensor proves to be accurate (i.e., readings within plus or minus 0.3 °C from zero) then it must be assumed that the high readings obtained in the fruit were indeed accurate, which would be sufficient grounds for rejection. For additional evidence, the PPQ Official can also obtain independent fruit pulp readings from a hand-held portable temperature-sensing instrument in the area of the load where high readings were obtained from the ship's sensor(s).
The vessel is permitted to store logged temperatures on magnetic media instead of printed on paper. However, the stored data must be printed in the presence of the authorized APHIS official.

Assemble log sheets so that a review can be made starting at the beginning of the temperature record. Check the calibration record; compare the actual calibration readings on log sheets with the calibration data on the calibration document (Record in block 23).

Notice

Many data logger installations are programmed to record temperature variations to one-hundredth of a degree centigrade (0.01°C). With this high resolution of temperature readings, a deviation of up to three-hundredths of a degree can be expected from consecutive readings in a standard ice water test. Accordingly, calibration certifications that are acceptable under our accuracy requirements show either the average of two consecutive calibration readings or two consecutive readings that are within three-hundredths of a degree centigrade of each other. Report deviations beyond this standard.

Review the log sheets up to when the loading of the compartment was complete. Determine the maximum and minimum fruit temperature at the time the sensors were inserted (Record in blocks 24, 25, and 26).

Continue reviewing the log sheets through the precooling period to the time when treatment commenced. Note abnormalities in the temperature readings that could indicate an irregularity in the treatment process (Record in block 27).

Review the treatment portion of the log sheets for irregularities and excessive temperatures (Record in block 28).

Notice

If the initial treatment period is broken because of excessive temperatures, failure of the data logger, or improper procedure, and the treatment is later restarted, enter the date and time of restart on the second line of item 28.

The authorized APHIS official will:

- Release shipment for discharge if all requirements have been met and notify ship's officers, pier superintendents, and Customs and Border Protection Agriculture Inspector(s).
- Hold shipment pending further evaluation if total effects of irregularities are not consistent with treatment requirements (Contact the supervisor regarding the reasons for holding the shipment).
- Record all exceptions in narrative form and attach to the clearance report.

Inspection of Load and Compartments

Time permitting, examine the load and compartments during and after unloading. Observe sensor locations, labeling, and physical condition and report irregularities.
Nonchemical Treatments Cold Treatment (CT)
Clearance of Cold Treated Shipments

Distribution of Clearance Documents

After final clearance, the completed PPQ Form 556 with supporting documents are to be distributed as follows:

- Keep copies of the PPQ Form 556 and the chart printouts at the port of arrival.
- Send copies of the PPQ Form 556 to USDA-APHIS-PPQ-S&T-CPHST-AQI.

Self-Refrigerated (Integral) Containers

Obtain the temperature printout and match it with the corresponding “Location of Temperature Sensors” and “Calibration of Temperature Probes” documents by using the container or recorder number. Check the documents and any accompanying correspondence for comments relating to deficiencies noted at origin. They must bear the signature of a PPQ Official or of an authorized official of the exporting country.

Compare the printout with the loading document to ensure the calibration factors, recorder start time, recorder serial number and recorder start date are the same. If the information is not the same, there must be proof that the equipment was exchanged and calibrated at the country of origin. Undocumented discrepancies will be cause for treatment failure.

Using PPQ Form 556, complete blocks 1-6 and 10. Record the container number in block 24. Six containers can be cleared per form.

Record the maximum and minimum fruit temperatures from the printout at time of loading (Blocks 25 and 26).

Review the temperatures and mark the printout where treatment commences at each temperature according to the appropriate treatment schedule. Determine date and time each treatment commenced (Block 27).

Review the treatment portion of the printout for irregularities and excessive temperatures (Block 28). If necessary, subtract or add correction factors to obtain the true temperature.

If the initial treatment period is broken because of excessive temperatures, failure of the data logger, or improper procedure, and the treatment is restarted, enter the date and time of restart on the second line of Block 27.

Determine the amount of time needed to complete the treatment if the treatment has not been completed, and report this to the persons responsible for the container. Check the temperature recordings to determine if the treatment has been completed at the end of the predicted completion period.
Record the last readings of the printout in Block 30. Investigate discrepancies. Submit documentation even if the treatment was negated.
Cold Treatment in Refrigerated Warehouses

The warehouse must be approved by PPQ (see Certifying Facilities).

The shipment must move directly from the port of entry to the cold storage warehouse with no diversion or delay.

The warehouse must provide the necessary security for safeguarding each shipment.

The unloading of containers which arrive at the warehouse under seal must be conducted under PPQ supervision.

Initiating the Cold Treatment

The procedures for the verification of recording equipment and calibration of temperature sensors are the same as those outlined for vessels in Intransit Cold Treatment in Conventional Vessels, Self-Refrigerated (Integral) Containers, and Warehouses on page 3-7-2, Initiating Intransit Cold Treatment in Vessels and Containers on page 3-7-3, Verification of Temperature Recording Equipment on page 3-7-3 and Calibration of Temperature Sensors on page 3-7-4. These activities must be performed under the direction of an authorized APHIS official.

Arrange stowage to provide for adequate air distribution throughout the shipment, and to allow for the sampling of pulp temperatures in any desired location. To accomplish this, leave aisles between rows of pallets, with the aisles parallel to the air flow. Allow space between pallets. Double stacking of pallets is not allowed; therefore treatments will not begin until pallets are reconfigured to a single stacked pallet arrangement. However, rack systems are acceptable provided they have been approved by CPHST-AQI.

Placement of Temperature Sensors:

After loading is completed, take fruit temperatures at various locations throughout the load to determine the location of the warmest fruit. Place temperature sensors throughout the load, being sure to place sensors in the warmest areas. Under some conditions, additional air circulation will be required to cool the shipment uniformly. The use of additional fans or blowers will depend on the particular circumstances at the time of treatment.

Placement of sensors should be under the direction of an authorized APHIS official. Insert the sensor well into the fruit. The tip of the sensor must not extend through the fruit (Figure 3-7-1 on page-3-7-7). If necessary (in the
case of small fruit), the sensor should penetrate multiple fruit (Figure 3-7-2 on page-3-7-8). The number and location of the temperature sensors are determined during warehouse certification (Figure 3-7-6).

<table>
<thead>
<tr>
<th>Cubic Feet</th>
<th>Cubic Meters</th>
<th>Number of Pallets</th>
<th>Number of Air Sensors</th>
<th>Number of Pulp Sensors</th>
<th>Total Number of Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 10,000</td>
<td>0 to 283</td>
<td>1 - 100</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>10,001 to 20,000</td>
<td>284 to 566</td>
<td>101 - 200</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>20,001 to 30,000</td>
<td>567 to 849</td>
<td>201 - 300</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>30,001 to 40,000</td>
<td>850 to 1132</td>
<td>301 - 400</td>
<td>1</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>40,001 to 50,000</td>
<td>1133 to 1415</td>
<td>401 - 500</td>
<td>1</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>50,001 to 60,000</td>
<td>1416 to 1698</td>
<td>501 - 600</td>
<td>1</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>60,001 to 70,000</td>
<td>1699 to 1981</td>
<td>601 - 700</td>
<td>1</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>70,001 to 80,000</td>
<td>1982 to 2264</td>
<td>701 - 800</td>
<td>1</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>80,001 to 90,000</td>
<td>2265 to 2547</td>
<td>801 - 900</td>
<td>1</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>90,001 to 100,000</td>
<td>2548 to 2830</td>
<td>901 - 1000</td>
<td>1</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Over 100,000</td>
<td>>2830</td>
<td>1000 +</td>
<td>Must be approved by CPHST AQI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3-7-6 Number of Sensors in a Warehouse

Quick Freeze Guidelines

Freezing will ruin the market quality of most fresh fruits and vegetables, except for thick-skinned items such as durian and coconut. Generally, this treatment is used on fruits and vegetables that will be processed into another form (e.g. for puree, juice, or mashed vegetables).

Freezing is an acceptable method of mitigating the pests listed in the schedule. Treatment may result in commodity destruction. APHIS is not liable for damage to the commodity. Importers that choose freezing as a treatment do so at their own risk.

Operational procedures and equipment specifications are under development.

Contact Information

USDA-APHIS-PPQ-S&T-CPHST-AQI
1730 Varsity Drive, Suite 300
Raleigh, NC 27606-5202
Email: CPHST.TQAU@aphis.usda.gov
Contact Information

Phone: 919-855-7450
Fax: 919-855-7493
Introduction

This chapter provides background and general information for the use of irradiation as a phytosanitary treatment of plant pests. Irradiation was first approved by APHIS in 1997 for use on papayas from Hawaii for export to the U.S. mainland, Guam, Puerto Rico, and the U.S. Virgin Islands. In 2002, irradiation was approved as a phytosanitary treatment for all admissible fresh fruits and vegetables from all countries.
Authorities and Other Responsible Parties

- 7CFR 305.31 through 305.9
- Food and Drug Administration (FDA)

The FDA is responsible for determining the labeling requirements for irradiated food.

- National nuclear regulatory authority of the country where the facility is located
- International Standard for Phytosanitary Measures #18 (ISPM)

This International Standard provides technical guidance on the specific procedures for the application of ionizing radiation as a phytosanitary treatment for regulated pests or articles.

Treatment Objectives

The objective of phytosanitary treatments is to prevent the introduction or spread of regulated pests. As a phytosanitary treatment, irradiation may reduce the risk of introduction by achieving certain responses, known as “endpoints,” in the targeted pest(s). These endpoints are:

- Inability to emerge or fly
- Inactivation or devitalization (seeds may germinate but seedlings do not grow; or tubers, bulbs or cuttings do not sprout)
- Mortality
- Sterility (inability to reproduce)

Efficacy

Unlike the Probit 9 mortality required for many chemical and nonchemical quarantine treatments, the use of irradiation as a phytosanitary measure presents a new paradigm to PPQ. The officer inspecting the treated consignment upon arrival in the U.S. may encounter living insects. However, this is to be expected since the treatment endpoint may not necessarily be mortality.
Treatment

There are three types of ionizing radiation:

- Electrons generated from machine sources up to 10 MeV (eBeam)
- Radioactive isotopes (gamma rays from cobalt-60 or cesium-137)
- X-rays (up to 5 MeV)

The unit of measure for absorbed dose from any type of radiation is gray (Gy).

Modified atmospheres with low oxygen levels may reduce treatment efficacy at a prescribed dose. Do not irradiate commodities that are in packaging or other conditions that cause oxygen levels to be less than 10%. Contact CPHST-AQI Raleigh, NC, if you have questions about the packaging.

Treatment procedures should also ensure that the minimum absorbed dose (Dmin) is fully attained throughout the commodity to provide the prescribed level of efficacy. Owing to the differences in the configuration of lots being treated, higher doses than the Dmin may be received by some of the commodities to ensure that the Dmin is achieved throughout the configured commodity. All treatments must be certified by verifying Dmin with approved dosimetry systems.

The minimum absorbed dose for the most-tolerant unmitigated pest is required if more than one pest is present. Refer to Table 5-2-2 on page 5-2-70 to determine the required minimum absorbed dose. For example, if a shipment of grapes is infested with both Mediterranean fruit fly and codling moth, the commodity would be irradiated using a minimum dose of 200 Gy.
Dosimetry

Dosimetry is the system used by the facility to determine absorbed dose. The absorbed dose is a quantity of radiation energy (measured in Gray (Gy)) absorbed per unit of mass of the commodity.

The dosimetry system should be calibrated in accordance with international standards or appropriate national standards (e.g. Standard ISO/ASTM 51261 Guide for Selection and Calibration of Dosimetry Systems for Radiation Processing).

Dose Mapping

Prior to routine treatments, the region(s) of lowest and highest dose absorbance must be mapped for each treatment configuration. Configurations may be defined by a variety of criteria which may vary by facility. Factors that affect dose mapping commonly include:

- Density and composition of the material treated
- Orientation of the product, stacking, volume and packaging
- Shape and/or size

Dose mapping of the product in each geometric packing configuration, arrangement and product density that will be used during routine treatments should be required by APHIS prior to the approval of a facility for the treatment application. Only the configurations approved by the APHIS should be used for actual treatments.

The data obtained from the dose mapping is used to determine the proper number and placement of dosimeters during routine operations.

Facility Approval

Chapter 6-8 of this manual covers the requirements for Irradiation facility approval (Certifying Irradiation Treatment Facilities on page 6-8-1).

Documentation

The tracking and reporting of an irradiation treatment is critical to the integrity of the entire irradiation process. Treatment failure is linked to non-compliance, not pest detection. Consequently, an electronic database is being developed to standardize data entry, accurately and quickly produce data summaries and analysis, and allow access to a geographically diverse group of people.
Until this electronic database is fully operational, documentation requirements for precleared articles include the completion of the PPQ Form 203, Foreign Site Certificate of Inspection and/or Treatment.

Important

The Irradiation Reporting and Accountability Database (IRAD) is a component of the Commodity Treatment Information System (CTIS) developed by USDA-APHIS-PPQ-CPHST-AQI. Access to this web-based system will be permitted depending on the user’s specific role or function in the irradiation process. CPHST-AQI will assign individual usernames and passwords.

Terminology

- **absorbed dose**—Quantity of radiation energy (in gray) absorbed per unit of mass of a specified target [ISPM No. 18]

- **dose mapping**—Measurement of the absorbed dose distribution within a process load through the use of dosimeters placed at specific locations within the process load [ISPM No. 18]

- **dosimeter**—A device that, when irradiated, exhibits a quantifiable change in some property of the device which can be related to absorbed dose in a given material using appropriate analytical instrumentation and techniques [ISPM No. 18]

- **dosimetry**—A system used for determining absorbed dose, consisting of dosimeters, measurement instruments and their associated reference standards, and procedures for the system’s use [ISPM No. 18]

- **gray (Gy)**—Unit of absorbed dose where 1 Gy is equivalent to the absorption of 1 joule per kilogram (1 Gy = 1 J.kg⁻¹) [ISPM No. 18]

- **ionizing radiation**—Charged particles and electromagnetic waves that as a result of physical interaction create ions by either primary or secondary processes [ISPM No. 18]

- **irradiation**—Treatment with any type of ionizing radiation [ISPM No. 18]

- **minimum absorbed dose**—The localized minimum absorbed dose within the process load [ISPM No. 18] (Dmin)
radura—internationally recognized symbol used to indicate when a food product has been irradiated
Residue Monitoring

Overview

Methyl bromide fumigants, except those with “Q” labels, are subject to requirements of the FIFRA Section 18 Quarantine Exemption. When commodities intended for food or feed are fumigated with methyl bromide under the FIFRA Section 18 Quarantine Exemption, one additional EPA requirement must be met: PPQ must monitor aeration by sampling the gas concentration to determine when a commodity may be released.

Currently, Plant Protection and Quarantine (PPQ) is not taking samples of commodities for residue monitoring. However, if residue monitoring becomes necessary, this section provides guidelines for taking samples that will be used for monitoring fumigant residues.

In the past, PPQ used residue monitoring to comply with the Environmental Protection Agency’s (EPA’s) guidelines for fumigation of edible food or feed products conducted under a Section 18 Quarantine Exemption. PPQ took and analyzed samples of fumigated commodities, and they reported the resulting data yearly to EPA. When a fumigation was conducted under a Section 18 Quarantine Exemption, samples were taken only when the commodity would be eaten by people or fed to animals. When the commodity would not be used for food or feed, PPQ did not take samples.

For example, if thyme would be used as an herb and fumigated under the schedule (T101-n-2), PPQ would sample the commodity because it would be eaten. On the other hand, if that same thyme were treated but imported as a cut flower, sampling would be unnecessary because it would be used for decoration—not eating.
Residue Monitoring

Instructions for Collecting, Packaging, and Shipping Residue Monitoring Samples

Contents

Safety 4-2-1
Collecting the Sample 4-2-2
Pretreatment Sample 4-2-2
Post-Treatment Samples 4-2-2
Labeling the Sample 4-2-2
Storing the Sample 4-2-3
Shipping Samples 4-2-3
Quarantine Requirements 4-2-3

Important Information

Currently, Plant Protection and Quarantine (PPQ) is not taking samples of commodities for residue monitoring. However, if residue monitoring becomes necessary, this section provides guidelines for taking samples that will be used for monitoring fumigant residues.

Safety

Pretreatment samples will be shipped with dry ice. Be sure to store dry ice in well-ventilated areas and to transport dry ice and samples packed in dry ice in well-ventilated containers. Wear gloves when handling dry ice. For detailed information, see Hazard Communication Standard on page 7-1-1.

The Department of Transportation (DOT) considers dry ice a hazardous material and requires that aircraft record the amount of dry ice carried in the cargo hold. Amounts of 5 pounds or less are not stringently regulated; however, include the weight of dry ice on the shipping label. In addition, some overnight delivery companies have restrictions on shipping dry ice. Equip shipping containers with loose-fitting lids to prevent an explosive release of sublimating carbon dioxide. Identify dry ice as ORM-A on the shipping label. Also indicate on the label that the package contains diagnostic specimens.
Collecting the Sample

You must take a sample prior to treatment (pretreatment) and after aeration is completed (post-treatment). To avoid contaminating the sample, handle it as little as possible. Take pretreatment and post-treatment samples from the same general location within a given lot (i.e., the same bags, boxes, or other containers).

Some ports receive commodities several times a month. For example, the port of Ft. Lauderdale received 20 shipments of chayote in October 1992. These shipments need not be sampled each time. For frequently received commodities, ports should develop a routine sample collection plan, such as one sample collected per week. However, when a new commodity is received or a commodity is received infrequently (once a week or less), collect a sample each time the commodity is treated.

Pretreatment Sample

1. Collect a minimum of 450g (approximately 1 lb.) except for herbs of which you need to collect 150 grams (approximately one-third pound). If you are collecting fruits or vegetables that are heavy (for example grapefruit or yams), be sure to collect at least two pieces of produce that weigh 450g.

2. Place these samples in containers with dry ice.

3. Ship the pretreatment samples separately from post-treatment samples.

Post-Treatment Samples

1. Collect a minimum of 450g (approximately 1 lb.) except for herbs of which you need to collect 150g (approximately one-third pound). If you are collecting fruits or vegetables that are heavy (for example grapefruit or yams), be sure to collect at least two pieces of produce that weigh 450g.

2. Ship the post-treatment samples separately from the pretreatment samples and in accordance with standard shipping practices. If the samples require refrigeration, then ship the samples with wet ice or ice packs. If the samples are normally shipped at ambient temperature (e.g., yams), ship them without ice.

Labeling the Sample

Label each sample container with the State, county, date, and name of contents and whether the sample is “pre” or “post” treatment. For this label, use waterproof ink on a strip of masking tape or other label material. Be sure to
attach the label before leaving the sampling site. Securely fasten a plastic envelope containing the yellow copy of the APHIS Form 2061 to the side of the sampling container. Label this envelope with the same information that you placed on the sample container (State, county, date, and name of contents and whether sample was “pre” or “post” treatment).

Storing the Sample

Immediately place the samples in a freezer or refrigerator until ready to package the samples for shipping.

Shipping Samples

Quarantine Requirements

Contact the State Plant Health Director to determine where to ship the samples. Ship all samples in leakproof, double sealed containers. Ensure the pretreatment sample is secure since it does not meet entry requirements for the United States.

Ship samples in coolers with dry ice packed above the samples. The lid of the cooler should be loose fitting to allow gasses to escape. Ship the samples using the contract overnight delivery service or the U.S. Postal Service Overnight Delivery.
Treatment Schedules

Index to Schedules

Contents

T100 - Schedules for Fruit, Nuts, and Vegetables 5-2-1
T200 - Schedules for Propagative Plant Material 5-3-1
T300 - Schedules for Miscellaneous Plant Products 5-4-1
T400 - Schedules for Miscellaneous Products 5-5-1
T500 - Schedules for Plant Pests or Pathogens 5-6-1
T600-Controlled Atmosphere Temperature Treatment System 5-7-1
Domestic Treatments 5-8-1
Treatment Schedules

T100 - Schedules for Fruit, Nuts, and Vegetables

Contents

T101—Methyl Bromide Fumigation 5-2-3
T102—Water Treatment 5-2-55
T103—High Temperature Forced Air 5-2-60
T104—Pest Specific/Host Variable 5-2-63
T105—Irradiation 5-2-68
T106—Vapor Heat 5-2-73
T107—Cold Treatment 5-2-78
T108—Fumigation Plus Refrigeration of Fruits 5-2-84
T109—Cold Treatment Plus Fumigation of Fruits 5-2-88
T110—Quick Freeze 5-2-90

Reporting Commodity Injury

Record any new or unusual observations relating to injury of commodity and report them to Quarantine Policy, Analysis and Support (QPAS) in Riverdale. Give pertinent details of the treatment and conditions regarding its application. In appraising the effect of a particular treatment, take care to distinguish between the actual or apparent effects directly attributable to the treatment and those relating to factors or conditions not subject to PPQ control.

Commodities in the T100 series are intended for consumption as food or feed. These commodities may have to be treated with methyl bromide to control a pest.

FIFRA Section 18 Exemption

Methyl bromide fumigants, except those with “Q” labels, are subject to requirements of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), Section 18 Quarantine Exemption. When commodities intended for food or feed are fumigated with methyl bromide under the FIFRA Section 18 Quarantine Exemption, one additional EPA requirement must be met: PPQ must monitor aeration by sampling the gas concentration to determine when a commodity may be released.

In this manual, fumigation schedules under the FIFRA Section 18 Quarantine Exemption are identified by the following note:
Determine the Correct Label for Fumigation

Always use the label of the fumigant to determine if the commodity can be treated. Fumigation schedules in this publication are intended to clarify and expand commercial labels for methyl bromide. The EPA only authorizes fumigation for commodities that are listed on the label of the gas being used for the fumigation. Also, to comply with State regulations, a fumigant must be registered in the State where it is being used.

Although the EPA only authorizes the use of a pesticide on a crop, animal, or site that is listed on the label of a pesticide, specific pests do not have to be listed on the label to use the pesticide. An amendment to FIFRA in 1978 permits the use of a pesticide to control a pest not on the label if the application is to a crop, animal, or site specified on the label, unless mentioned otherwise.

How Fruits and Vegetables Are Listed

Fruits and vegetables that are to be fumigated with methyl bromide (T101s) will be listed in alphabetical order. Each schedule will have an assigned letter, e.g., Apples T101-a-1, Zucchini T101-h-3. For fruits and vegetables that require treatment as a condition of entry, refer to the Fruits and Vegetables Import Requirement database for the specific treatment.
T101—Methyl Bromide Fumigation

T101-a-1 Apple and Pear

Pest: External feeders
Treatment: T101-a-1 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

T101-a-3 Apricot, Peach, Plum, Nectarine

Pest: External feeders
Treatment: T101-a-3 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

1 Fumigation may cause **severe** damage to Chinese, Japanese, Asian and Sand Pears. Obtain the importer's consent before fumigation.

2 Pluots and plumcots are considered hybrids of apricots and plums and can be treated using T101-a-3 provided they are treated as a **Section 18 Crisis Exemption**.
T101-b-1

Asparagus

Pest: External feeders such as Noctuidae spp., *Thrips* spp. (except *Scirtothrips dorsalis* from Thailand), *Copitarsia* spp.

Treatment: **T101-b-1 MB** ("Q" label only) at NAP—tarpaulin or chamber.

Fumigation may cause damage and a reduction in shelf life. Obtain the importers consent before fumigation.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2.0 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3.0 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4.0 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important

Asparagus can be fumigated with T101-b-1 in those states listed in the PPQ 2ee recommendation: California, Florida, Georgia, Illinois, New Jersey, New York, and Texas. In these states, aeration is the fumigator’s responsibility.

If asparagus is to be fumigated in states other than CA, FL, GA, IL, NJ, NY, and TX, contact USDA-APHIS-PPQ at (301)851-2312 or (301)851-2243.

T101-b-1-1

Asparagus from Thailand, Australia, and New Zealand

Pest: *Scirtothrips dorsalis* (Thailand), *Halotydeus destructor* (Australia) (New Zealand)

Treatment: **T101-b-1-1 MB** ("Q" label only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>
T101-c-1

Avocado (from Hawaii, Israel, or the Philippines)

Pest:

Ceratitis capitata (Mediterranean fruit fly), *Bactrocera dorsalis* (Oriental fruit fly), and *Bactrocera cucurbitae* (melon fly)

Treatment:

T101-c-1 MB at NAP—tarpaulin or chamber

This treatment is marginal as to host tolerance and shipper should be warned of possible injury. Treatment approved for issuance of 318.13-4e certification.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td></td>
</tr>
</tbody>
</table>

Important

Do **not** use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

Alternate Treatment—Fumigation plus refrigeration T108

T101-d-1

Banana

Pest:

External feeders such as Noctuidae, *Thrips* spp., *Copitarsia* spp.

Treatment:

T101-d-1 MB at NAP—tarpaulin or chamber

This treatment is marginal as to host tolerance and shipper should be warned of possible injury.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td></td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td></td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td></td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td></td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td></td>
</tr>
</tbody>
</table>

Important

Do **not** use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).
Bean (except for faba bean), dry

Pest: Bruchidae (seed beetles)

Treatment: **T101-e-1** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
</tbody>
</table>

see also T101-k-2 or T101-k-2-1 for fresh beans

Beet

Pest: Internal feeders

Treatment: **T101-g-1** MB chamber, 15" vacuum—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 °F or above</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
</tbody>
</table>

As of October 2008, no commercial chambers in the United States are approved for the vacuum fumigation of imported commodities. If vacuum treatment is required as a condition of entry, the consignment must be destroyed, reexported or returned to country of origin.
Beet

T101-g-1-1

Pest: External feeders

Treatment: **T101-g-1-1** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F and above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
</tbody>
</table>

Blackberry

T101-h-1

Pest: External feeders such as Noctuidae, *Thrips* spp., *Copitar sia* spp., Pentatomidae, and *Tarsonemus* spp.

Treatment: **T101-h-1** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

Blueberry

T101-i-1

Pest: External feeders

Treatment: **T101-i-1** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
</tbody>
</table>
T101-i-1-1

Blueberry

Important Lobesia botrana (European grapevine moth) has been added to this treatment schedule as the result of an emergency action required by PPQ in order to mitigate the pest risk. The emergency action is an interim measure and is pending final regulatory approval. (Federal Order DA-2013-56)

Pest: Ceratitis capitata (Mediterranean fruit fly), Anastrepha fraterculus (South American fruit fly), and Lobesia botrana (European grapevine moth)

Treatment: T101-i-1-1 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
</tbody>
</table>

T101-i-1-2

Blueberry

Important Lobesia botrana (European grapevine moth) has been added to this treatment schedule as the result of an emergency action required by PPQ in order to mitigate the pest risk. The emergency action is an interim measure and is pending final regulatory approval. (Federal Order DA-2013-56)

Pest: Ceratitis capitata (Mediterranean fruit fly), Anastrepha fraterculus (South American fruit fly), and Lobesia botrana (European grapevine moth)

Treatment: T101-i-1-2 MB at NAP—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>2.0 lbs</td>
<td>3.5</td>
</tr>
</tbody>
</table>
T101-i-1-3

Blueberry

Pest: *Lobesia botrana* (European grapevine moth)

Treatment: T101-i-1-3 MB at NAP—tarpaulin

The yellow and black colors of this schedule indicates that the authority to conduct the treatment comes from an emergency action required by PPQ in order to mitigate the pest risk. (Federal Order DA-2014-03) The emergency action is an interim measure and is pending final regulatory approval.

Fumigate after cold storage (34 °F or lower) for a minimum of 10 days. The cold storage is not subject to verification by PPQ nor CBP and is not a quarantine treatment.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>40–69 °F</td>
<td>4.0</td>
<td>0.5 hr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>55</td>
</tr>
</tbody>
</table>

Important

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

CAUTION

Phytoxicity is unknown. Obtain the importer’s consent before fumigation.
T101-i-1-4 Blueberry

Pest: *Lobesia botrana* (European grapevine moth)

Treatment: **T101-i-1-4 MB at NAP—chamber**

The yellow and black colors of this schedule indicates that the authority to conduct the treatment comes from an emergency action required by PPQ in order to mitigate the pest risk. (Federal Order DA-29014-03) The emergency action is an interim measure and is pending final regulatory approval.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50–59 °F</td>
<td>3.5 lbs</td>
<td>3.0</td>
</tr>
<tr>
<td>40–49 °F</td>
<td>4.0 lbs</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Important

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

CAUTION

Phytoxicity is unknown. Obtain the importer’s consent before fumigation.

T101-n-2 Broccoli (*Brassica oleracea var. botrytis*)

Pest: External feeders and leaf miners

Treatment: **T101-n-2 MB at NAP—tarpaulin or chamber**

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).
T101-n-2

Broccoli, Chinese (gai lon) (*Brassica alboglabra*)

Pest: External feeders and leaf miners

Treatment: **T101-n-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration_readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important: Do **not** use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

T101-n-2

Broccoli raap (rapini) (*Brassica campestris*)

Pest: External feeders and leaf miners

Treatment: **T101-n-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important: Do **not** use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).
T101-n-2

Brussels sprouts (Brassica oleracea var. gemmifera)

Pest: External feeders and leaf miners

Treatment: **T101-n-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

T101-j-1

Cabbage

Includes both European and Chinese cabbage

Pest: External feeders

Treatment: **T101-j-1** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

For other Brassica spp., use the leafy vegetable schedule, T101-n-2
T101-n-2

Cabbage (Brassica oleracea)

Pest: External feeders and leaf miners

Treatment: **T101-n-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

T101-n-2

Cabbage, Chinese (bok choy) (Brassica chinensis)

Pest: External feeders and leaf miners

Treatment: **T101-n-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

T101-n-2

Cabbage, Chinese (napa) (Brassica pekinensis)

Pest: External feeders and leaf miners

Treatment: **T101-n-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>
T101-n-2

Cabbage, Chinese mustard (gai choy) (Brassica campestris)

Pest: External feeders and leaf miners

Treatment: **T101-n-2 MB at NAP—tarpaulin or chamber**

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important: Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

T101-k-1

Cantaloupe

Pest: External feeders

Treatment: **T101-k-1 MB at NAP—tarpaulin or chamber**

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above*</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F*</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

* Use "MB 100" at 70 °F or above, use MB "Q" label at 40 °F or above.

For other melons, see T101-o-2

Important: Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).
Carrot

Pest: External feeders

Treatment: T101-l-1 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F and above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
</tbody>
</table>

T101-m-1 Carrot

Pest: Internal feeders

Treatment: T101-m-1 MB, chamber, 15" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 °F or above</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
</tbody>
</table>

As of October 2008, no commercial chambers in the United States are approved for the vacuum fumigation of imported commodities. If vacuum treatment is required as a condition of entry, the consignment must be destroyed, reexported or returned to country of origin.
T101-n-1

Cassava (manihot and yuca)
Pest: External feeders and hitchhikers³
Treatment: **T101-n-1** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
</tbody>
</table>

Important
Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

T101-n-2

Cauliflower (*Brassica oleracea var. botrytis*)
Pest: External feeders and leaf miners
Treatment: **T101-n-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important
Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

³ T101-n-1 should NOT be used for snails, but can be used for slugs.
T101-n-2

Cavalo broccolo (Brassica oleracea var. botrytis)

Pest: External feeders and leaf miners
Treatment: **T101-n-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important
Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

T101-n-1

Celeriac (celery root)

Pest: External feeders
Treatment: **T101-n-1** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
</tbody>
</table>

Important
Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).
Celery (above-ground parts)

Pest: External feeders

Treatment: T101-o-1 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

For below ground parts, use T101-n-1

Chayote (fruit only)

Pest: External feeders

Treatment: T101-p-1 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

For below ground parts, use T101-a-2 (Dasheen)
T101-r-1 Cherry

Pest: Insects other than fruit flies

Treatment: **T101-r-1** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
<td>2 hrs</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
<td>29</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>48</td>
<td>38</td>
</tr>
</tbody>
</table>

T101-s-1 Cherry

Pest: *Rhagoletis indifferent* (Western cherry fruit fly) and *Cydia pomonella* (codling moth)

Treatment: **T101-s-1** MB at NAP—chamber only

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>

T101-s-1-1 Cherry from Australia

Pest: *Ceratitis capitata* (Mediterranean fruit fly)

Treatment: **T101-s-1-1** MB at NAP—chamber only

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 °F or above</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>

NOTICE

Run the circulation fans continuously during the entire fumigation.

Do not exceed a 21% (by volume) load factor in the chamber.
Treatment Schedules
T100 - Schedules for Fruit, Nuts, and Vegetables
T101—Methyl Bromide Fumigation

T101-t-1 Chestnut

Pest: *Cydia splendana* (nut fruit tortrix) and *Curculio* spp.

Treatment: T101-t-1 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F and above</td>
<td>4 lbs</td>
<td>58</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>4 lbs</td>
<td>58</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>5 lbs</td>
<td>72</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>5 lbs</td>
<td>72</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>6 lbs</td>
<td>85</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>6 lbs</td>
<td>85</td>
</tr>
</tbody>
</table>

See also T101-u-1

Does not include water chestnut

T101-u-1 Chestnut

Pest: *Cydia splendana* (nut fruit tortrix) and *Curculio* spp.

Treatment: T101-u-1 MB in 26" vacuum—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 °F or above</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>4 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>4 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>4 lbs</td>
<td>4 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>5 hrs</td>
</tr>
</tbody>
</table>

Does not include water chestnut

T101-v-1 Chicory (above-ground parts)

Pest: External feeders

Treatment: T101-v-1 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>
Important
Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

see T101-n-1 for below-ground parts

see T101-z-1 for below-ground parts

see T101-a-2 for below-ground parts

T101-n-1

Chicory root

Pest: External feeders

Treatment: **T101-n-1 MB at NAP—tarpaulin or chamber**

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
</tbody>
</table>

Important
Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

T101-w-1

Cipollini (bulbs)

Pest: *Exosoma lusitanica* (chrysomelid beetle)

Treatment: **T101-w-1 MB in 15" vacuum—chamber**

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 °F or above</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>4 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>4 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>

As of October 2008, no commercial chambers in the United States are approved for the vacuum fumigation of imported commodities. If vacuum treatment is required as a condition of entry, the consignment must be destroyed, reexported or returned to country of origin.
T101-w-1-2
Citrus from U.S. (interstate movement)
Pest: *Ceratitis capitata* (Mediterranean fruit fly)
Treatment: T101-w-1-2 MB at NAP—tarpaulin or chamber
See “*Ceratitis capitata* (Mediterranean fruit fly) D301.32-10(c)” on page 5-8-5.

T101-n-2-1
Clementine, Grapefruit, Lemon, Lime, Orange, Mandarin, and Tangerine from Chile
Pest: External feeders and *Brevipalpus chilensis* (Chilean False Red Mite)
Treatment: T101-n-2-1 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
</tbody>
</table>

T101-j-2-1
Clementine (Tangerine), Grapefruit, Orange from Mexico and quarantine areas of the U.S.
Pest: *Anastrepha* spp.
Treatment: T101-j-2-1 MB at NAP—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 °F or above</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>

1 The temperature was changed from a minimum of 70 °F to 80 °F administratively in October 2005 due to interceptions of live *Anastrepha* larvae.

Load limit not to exceed 80 percent of chamber capacity.

Inspect a representative sample of the fruit. If the level of infestation with fruit flies is more than 0.5 percent for the lot, then the fruit is ineligible for fumigation.
**T101-n-2 Coles (Brassica spp.)*

Pest: External feeders and leaf miners

Treatment: **T101-n-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important

Do **not** use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

Important

*Coles (Brassica spp.), EPA Crop Group 5, are restricted to broccoli (Brassica oleracea var. botrytis); broccoli, Chinese (gai lan) (Brassica alboglabra); broccoli raap (rapini) (Brassica campestris); brussels sprouts (Brassica oleracea var. gemmifera); cabbage (Brassica oleracea); Cabbage, Chinese (bok choy) (Brassica chinensis); Cabbage, Chinese (napa) (Brassica pekinensis); cabbage, Chinese mustard (gai choy) (Brassica campestris); cauliflower (Brassica oleracea var. botrytis); cavalo broccolo (Brassica oleracea var. botrytis); collards (Brassica oleracea var. acephala); kale (Brassica oleracea var. acephala); kohlrabi (Brassica oleracea var. gongyiodes); mizuna (Brassica rapa Japonica Group); mustard greens (Brassica juncea); mustard spinach (Brassica rapa Perviridis Group); rape greens (Brassica napus)

Of these, cabbage (Brassica oleracea) (labeled treatment T101-j-1) is the only vegetable in this group **not** covered by a FIFRA Section 18 Exemption.
Collard Greens (*Brassica oleracea* var. *acephala*)

Pest: External feeders and leaf miners
Treatment: T101-n-2 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>0.5 hr 26 2 hrs 14</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>0.5 hr 32 2 hrs 24</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>0.5 hr 38 2 hrs 29</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>0.5 hr 43 2 hrs 34</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>0.5 hr 48 2 hrs 38</td>
</tr>
</tbody>
</table>

Important

Do **not** use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

Copra

(Dried coconuts and whole coconuts without the husk)

Pest: External feeders
Treatment: T101-x-1 MB (“Q” label only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>0.5 hr 19 2 hrs 14</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>0.5 hr 26 2 hrs 19</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>0.5 hr 32 2 hrs 24</td>
</tr>
</tbody>
</table>

Corn-on-the-cob

(Green corn, sweet corn)

Pest: *Ostrinia nubilalis* (European corn borer)
Treatment: T101-x-1-1 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>2.5 lbs</td>
<td>0.5 hr 32 2.5 hrs 24</td>
</tr>
</tbody>
</table>
T101-y-1 Cucumber

Pest: External feeders

Treatment: T101-y-1 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
</tbody>
</table>

T101-z-1 Dasheen

(Eddoe, malanga, tannia, tanya, taro, and yautia)

Pest: External feeders

Treatment: T101-z-1 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).
T101-a-2

Dasheen

Pest: Internal feeders

Treatment: **T101-a-2 MB chamber, 15" vacuum—chamber**

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 °F or above</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
</tbody>
</table>

Important

Do **not** use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

As of October 2008, **no commercial** chambers in the United States are approved for the vacuum fumigation of imported commodities. If vacuum treatment is required as a **condition of entry**, the consignment must be destroyed, reexported or returned to country of origin.

T101-b-2

Endive

Pest: External feeders

Treatment: **T101-b-2 MB at NAP—tarpaulin or chamber**

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important

Do **not** use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).
Treatment Schedules

T100 - Schedules for Fruit, Nuts, and Vegetables

T101—Methyl Bromide Fumigation

T101-c-2

Faba (Fava) bean (dried)

Pest: Bruchidae (seed beetles)

Treatment: T101-c-2 MB in 26” vacuum—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>4.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>5 hrs</td>
</tr>
</tbody>
</table>

T101-d-2

Faba (Fava) bean (dried)

Pest: Bruchidae (seed beetles)

Treatment: T101-d-2 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F and above</td>
<td>3.5 lbs</td>
<td>46</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3.5 lbs</td>
<td>46</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3.5 lbs</td>
<td>46</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3.5 lbs</td>
<td>46</td>
</tr>
</tbody>
</table>

If fresh, see Green Pod Vegetables

T101-e-2

Garlic

Pest: *Brachycerus* spp. (garlic beetles) and *Dyspessa ulula* (garlic carpenterworm)

Treatment: T101-e-2 MB in 15" vacuum—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 °F or above</td>
<td>2 lbs</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>

As of October 2008, no commercial chambers in the United States are approved for the vacuum fumigation of imported commodities. If vacuum treatment is required as a condition of entry, the consignment must be destroyed, reexported or returned to country of origin.

Load limit **not** to exceed 80 percent of chamber capacity
T101-f-2

Ginger (rhizome)

Pest: Internal feeders

Treatment: T101-f-2 MB in 15" vacuum—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 °F or above</td>
<td>2 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
</tbody>
</table>

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

As of October 2008, no commercial chambers in the United States are approved for the vacuum fumigation of imported commodities. If vacuum treatment is required as a condition of entry, the consignment must be destroyed, reexported or returned to country of origin.

T101-g-2

Ginger (rhizome)

Pest: External feeders

Treatment: T101-g-2 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
</tbody>
</table>

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).
T101-h-2

Grape

Pest: *Lobesia botrana* (European grapevine moth)

Treatment: **T101-h-2** MB at NAP—tarpaulin (4 lbs.) or chamber (3.5 lbs.)

The yellow color of this treatment indicates that the authority to conduct the treatment comes from an emergency action required by PPQ in order to mitigate the pest risk. The emergency action is an interim measure and is pending final regulatory approval.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>50 °F and above</td>
<td>3.5 lbs¹</td>
<td></td>
</tr>
<tr>
<td>40 °F and above</td>
<td>4.0 lbs²</td>
<td></td>
</tr>
</tbody>
</table>

¹ 3.5 lb. dosage: must be conducted in a chamber with a commodity load not to exceed 50%.
² 4.0 lb. dosage: must be used in conjunction with cold storage (34 °F or lower for a minimum of 10 days). The fumigation may be conducted under tarp.

T101-h-2-1

Grape

Pest: *Ceratitis capitata* (Mediterranean fruit fly) ⁴

Treatment: **T101-h-2-1** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>65-69 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
</tbody>
</table>

T101-i-2

Grape

Pest: External feeders and insects other than *Ceratitis capitata* (Mediterranean fruit fly) and mealybugs ⁴

Treatment: **T101-i-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

⁴ Effective November 19, 2010, PPQ suspended the use of T101-h-2-1 and T101-i-2 against *Lobesia botrana*. Use T101-h-2 if *Lobesia botrana* is detected.
T101-i-2-1

Grape, Baby kiwi (Actinidia arguta), and Pomegranate

Pest: *Brevipalpus chilensis* (Chilean false red mite)

Treatment: **T101-i-2-1 MB at NAP—tarpaulin or chamber**

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb./1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19 14</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26 19</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32 24</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3.0 lbs</td>
<td>38 29</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4.0 lbs</td>
<td>48 38</td>
</tr>
</tbody>
</table>

1 If the treatment is conducted in a chamber, decrease the total fumigation time to 2.5 hours.

Important

Baby kiwi and pomegranate must be treated as FIFRA Section 18 treatments. Do **not** use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

T101-i-2-2

Fig (Ficus carica)

Pest: *Brevipalpus chilensis* (Chilean false red mite)

Treatment: **T101-i-2-2 MB at NAP—chamber**

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft²)</th>
<th>Exposure Period (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70°F and above</td>
<td>2.5 lbs</td>
<td>3</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3.0 lbs</td>
<td>3</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3.5 lbs</td>
<td>3</td>
</tr>
</tbody>
</table>

Important

Do **not** use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

T101-j-2

Grapefruit and other kinds of citrus

Pest: *Aleurocanthus woglumi* (citrus blackfly)

Treatment: **T101-j-2 MB at NAP—tarpaulin or chamber**

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb./1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>16 12</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>1.5 lbs</td>
<td>19 15</td>
</tr>
<tr>
<td>65-69 °F</td>
<td>1.75 lbs</td>
<td>23 17</td>
</tr>
</tbody>
</table>
T101-k-2

Green pod vegetables
Snap, string, yard-long beans, peas, pigeon peas, and lablab beans

Two alternative treatments, T101-k-2 or T101-k-2-1

Pest: Cydia fabivora, Crocidosema aporema, Maruca vitrata (exotic legume pod borers), Melanagromyza obtusa (pigeon pea pod fly), and leaf miners

Treatment: **T101-k-2** MB in 15" vacuum—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 °F or above</td>
<td>0.5 lb</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>1 lb</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>1.5 lbs</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2 lbs</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>2.5 lbs</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>1.5 hrs</td>
</tr>
</tbody>
</table>

T101-k-2-1

Green pod vegetables
Snap, string, yard-long beans, peas, pigeon peas, and lablab beans

Two alternative treatments, T101-k-2 or T101-k-2-1

Pest: Cydia fabivora, Crocidosema aporema, Maruca vitrata (exotic legume pod borers), Melanagromyza obtusa (pigeon pea pod fly), and leaf miners

Alternative treatment: T101-k-2-1 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
</tbody>
</table>

The term “green pod vegetables” refers to legumes, not peppers nor okra.
T101-n-2-1-1 Dried Herbs, Spices, and Mint (*Mentha* spp.) (all plant parts and seeds)

Pest: Various stored product pests, not including khapra beetle

Treatment: T101-n-2-1-1 MB (“Q” label only) at NAP-tarpaulin or chamber at the following minimum concentration readings:

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>24</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2 lbs</td>
<td>24</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
</tbody>
</table>

Important: Dried herbs and spices are restricted to Allspice, (Pimenta dioica), Angelica (Angelica archangelica), Anise (Anise seed) (Pimpinella anisum), Anise star (Ilicium verum), Annatto (seed), Balm (Lemon balm) (Melissa officinalis), Basil (Ocimum basilicum), Borage (Borago officinalis), Bumet (Sanguisorba minor), Camomile (Anthemis nobilis), Caper buds (Capparis spinosa), Caraway (Carum carvi), Curaway, black (Nigelia sativa), Cardamom (Elettaria cardamomum), Cassia bark (Cinnamomum aromaticum), Cassia buds (Cinnamomum aromaticum), Catnip (Nepeta cataria), Celery seed (Apium graveolens), Chervil (dried) (Anthriscus cerefolium), Chive (Allium schoenoprasum), Chive, Chinese (Allium tuberosum), Cinnamon (Cinnamomum verum), Clary (Salvia scarea), Clove buds (Eugenia caryophyllata), Coriander (cilantro or Chinese parsley) (leaf) (Coriandrum sativum), Coriander (cinnamon) (Coriandrum sativum), Costmary (Chrysanthemeum balsamita), Culantro (leaf) (Eryngium foetidum), Culantro (seed) (Eryngium foetidum), Cumin (Cuminum cyminum), Curry (leaf) (Murra koenigii), Dill (dillweed) (Anthemis graveolens), Dill (seed) (Anthemum graveolens), Fennel (common) (Foeniculum vulgare), Fennel, Floronce (seed) (Foeniculum vulgare Azoricum group), Fenugreek (Trigonella foenumgraecum), Grains of paradise (Afromomum melgueta), Horehound (Marrium vulgare), Hyssop (Hyssopus officinalis), Juniper berry (Juniperus communis), Lavender (Lavendula officinalis), Lemongrass (Cymbopogon citratus), Lovage (leaf) (Levisticum officinale), Lovage (seed) (Levisticum officinale), Mace (Myristica fragrans), Marigold (Calendula officinalis), Marjoram (Origanum spp.) (includes sweet or annual marjoram, wild marjoram, or oregano, and pot marjoram), Mustard (seed) (Brassica juncea, B. hirta, B. nigra), Nasturtium (Tropaeolum majus), Nutmeg (Myristica fragrans Parsley (dried) (Petroselinum crispum), Pennyroyal (Mentha pulegium), Pepper, black (Piper nigrum), Poppy (seed) (Papaver somniferum), Rosemary (Rosmarinus officinalis), Rue (Ruta graveolens), Saffron (Crocus sativus), Sage (Salvia officinalis), Savory summer and winter (Satureja spp.), Sweet bay (bay leaf) (Laurus nobilis), Tansy (Tanacetum vulgare), Tarragon (Artemisia dracunculus), Thyme (Thymus spp.), Vanilla (Vanilla planifolia), Wintergreen (Gaultheria procumbens), Woodruff (Galium odorata), Wormwood (Artemisia absinthium).

5 Mint (*Mentha* spp.) must be fumigated as a Section 18 exemption.

6 If khapra beetle is intercepted on herbs and spices (dried), do not use this schedule. Contact USDA-APHIS-PPQ-S&T-CPHST-AQI, tel: 1-919-855-7450.
T101-n-2 Fresh Herbs, Spices, and Mint (*Mentha* spp.) (all plant parts except seeds)

Pest: External feeders and leaf miners

Treatment: T101-n-2 MB at NAP-tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important
Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

Important
T101-I-2

Horseradish

Pest: *Baris lepidii* (imported crucifer weevil)

Treatment: **T101-I-2** MB in 15" vacuum—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 °F or above</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>

NOTICE

As of October 2008, no commercial chambers in the United States are approved for the vacuum fumigation of imported commodities. If vacuum treatment is required as a condition of entry, the consignment must be destroyed, reexported or returned to country of origin.

T101-n-2

Kale (Brassica oleracea var. acephala)

Pest: External feeders and leaf miners

Treatment: **T101-n-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).
T101-m-2

Kiwi

Three alternative treatments, depending on the pest.

Pest: External feeders (except *Brevipalpus chilensis*, *Nysius huttoni* (wheat bug))

Treatment: **T101-m-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

T101-m-2-1

Kiwi

Pest: *Ceratitis capitata* (Mediterranean fruit fly)

Treatment: **T101-m-2-1** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>65-69 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
</tbody>
</table>

Important Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).
T101-m-2-2

Kiwi

The yellow color of this treatment indicates that the authority to conduct the treatment comes from an emergency action required by PPQ in order to mitigate the pest risk. The emergency action is pending final regulatory approval.

Pest: *Brevipalpus chilensis* (Chilean false red mite)

Treatment: T101-m-2-2 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

T101-n-2

Kohlrabi (*Brassica oleracea var. gongyiodes*)

Pest: External feeders and leaf miners

Treatment: T101-n-2 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

7 If the treatment is conducted in a chamber, decrease the total fumigation time to 2.5 hours.
T101-n-3

Kumquat (Fortunella japonica)

Pest: Ceratitis capitata (Wiedemann) and Anastrepha fraterculus (Wiedemann)

Treatment: T101-n-3 MB at NAP—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft²)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 °F or above</td>
<td>3 lbs</td>
<td>2 hours</td>
</tr>
</tbody>
</table>

T101-n-2

Leafy vegetables

Pest: External feeders and leaf miners

Treatment: T101-n-2 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft²)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

Important

Leafy vegetables, EPA Crop Group 4, (Except Brassica Vegetables) are restricted to amaranth (leafy amaranth, Chinese spinach, tampala) (Amaranthus spp.); arugula (Roquette) (Eruca sativa); cardoon (Cynara cardunculus); celery (Apium graveolens var. dulce); celery, Chinese (Apium graveolens var. secalinum); celtuce (Lactuca sativa var. angustana); chervil (Anthriscus cerefolium); chrysanthemum, edible-leaved (Chrysanthemum coronarium var. coronarium); chrysanthemum, garland (Chrysanthemum coronarium var. spatosum); corn salad (Valerianella locusta); cress garden (Lepidium sativum); cress upland (yellow rocket, winter cress) (Barbarea vulgaris); dandelion (Taraxacum officinale); dock (sorrel) (Rumex spp.); endive (escarole) (Cichorium endivia); fennel, Florence (finocchio) (Foeniculum vulgare Azoricum Group); lettuce, head and leaf (Lactuca sativa); Orach (Atriplex hortensis); parsley (Petroselinum crispum); purslane, garden (Portulaca oleracea); purslane, winter (Montia perfoliata); radicchio (red chicory) (Cichorium intybus); rhubarb (Rheum rhabarbarum); spinach (Spinacia oleracea); spinach, New Zealand (Tetragonia tetragonioides, T. expansa); spinach, vine (Malabar spinach, Indian spinach) (Basella alba); swiss chard (Beta vulgaris var. cicia). Reference 40 CFR 180.34 (f)(a)(iv)(A)
Leeks

Pest: Internal feeders (including leafminers)

Treatment: **T101-q-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
</tbody>
</table>

Lentils (Dry)

Pest: Bruchidae (seed beetles)

Treatment: **T101-e-1** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
</tbody>
</table>

Lettuce from Spain

Pest: *Autographa gamma, Helicoverpa armigera, Mamestra brassicae, Spodoptera littoralis*

Treatment: **T101-n-2** MB at NAP—tarpaulin or chamber (see Leafy vegetables for treatment schedule)
T101-b-1-1
Lychee (Litchi)

Pest: Mealybugs (Pseudococcidae)
Treatment: T101-b-1-1 MB (“Q” label only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important
T101-b-1-1 is not a substitute for the mandatory cold treatment of lychee from China and Taiwan, T107-h, which targets the pests *Bactrocera dorsalis* (Oriental fruit fly), *Bactrocera curubitae* (melon fly) and *Conopomorpha sinensis* (lychee fruit borer). Because mealybugs are not controlled by T107-h, T101-b-1-1 can be used as a follow-up treatment if mealybugs are found.

T101-o-2
Melons
(Including honeydew, muskmelon, and watermelon)
Pest: External feeders such as Noctuidae spp., *Thrips* spp., *Copitarsia* spp.
Treatment: T101-o-2 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above*</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F*</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F*</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

* Use “MB 100” at 60 °F or above, use MB “Q” label at 40 °F or above

For cantaloupe, see T101-k-1
T101-n-2

Mizuna (Brassica rapa Japonica Group)

Pest: External feeders and leaf miners

Treatment: **T101-n-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
<th>0.5 hr</th>
<th>2 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td></td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td></td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td></td>
<td>38</td>
<td>29</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td></td>
<td>43</td>
<td>34</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td></td>
<td>48</td>
<td>38</td>
</tr>
</tbody>
</table>

Important Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

T101-n-2

Mustard greens (Brassica juncea)

Pest: External feeders and leaf miners

Treatment: **T101-n-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
<th>0.5 hr</th>
<th>2 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td></td>
<td>26</td>
<td>14</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td></td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td></td>
<td>38</td>
<td>29</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td></td>
<td>43</td>
<td>34</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td></td>
<td>48</td>
<td>38</td>
</tr>
</tbody>
</table>

Important Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).
T101-n-2

Mustard spinach (*Brassica rapa Perviridis* Group)

Pest: External feeders and leaf miners

Treatment: **T101-n-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

T101-a-3

Nectarine

Pest: External feeders

Treatment: **T101-a-3** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>
T101-p-2

Okra*

Pest: *Pectinophora gossypiella* (pink bollworm)

Treatment: **T101-p-2** MB at NAP—chamber only

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 °F or above</td>
<td>1 lb</td>
<td>2 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>1.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3.5 lbs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>

*Okra may be injured by fumigation if moisture is present. The term “okra” does not include Chinese okra (*Luffa* spp.), which is a cucurbit.

T101-p-2-1

Okra*

Pest: *Pectinophora gossypiella* (pink bollworm)

Treatment: **T101-p-2-1** MB at NAP—tarpaulin

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3.5 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

*Okra may be injured by fumigation if moisture is present or if it is fumigated at temperatures greater than 90°F. The term “okra” does not include Chinese okra (*Luffa* spp.), which is a cucurbit.
Treatment Schedules

T101—Methyl Bromide Fumigation

T101-q-2

Onion*

Pest: Internal feeders (and leaf miners)

Treatment: **T101-q-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>2 lbs</td>
<td></td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td></td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td></td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td></td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td></td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td></td>
</tr>
</tbody>
</table>

*The term “onion” includes dry bulbs. It also includes leeks, shallots and chives for both above ground and below ground parts.

T101-g-1

Parsnip

Pest: Internal feeders

Treatment: **T101-g-1** MB chamber, 15" vacuum—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 °F or above</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
</tbody>
</table>

As of October 2008, **no commercial** chambers in the United States are approved for the vacuum fumigation of imported commodities. If vacuum treatment is required as a **condition of entry**, the consignment must be destroyed, reexported or returned to country of origin.
T101-a-3
Peach
Pest: External feeders
Treatment: **T101-a-3** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

T101-a-1
Pear

Pest: External feeders
Treatment: T101-a-1 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

T101-e-1
Peas (Dry)
Pest: Bruchidae (seed beetles)
Treatment: **T101-e-1** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
</tbody>
</table>

see T101-k-1 or T101-k-2 for fresh peas

Fumigation may cause **severe** damage to Chinese, Japanese, Asian and Sand Pears. Obtain the importer’s consent before fumigation.
Peppers

Pest: Internal pests (except fruit flies) and External pests (except mealy bugs)

Treatment: **T101-a-3 MB** at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

* Use "MB 100" at 70 °F or above, use MB "Q" label at 40 °F or above

Pineapple

Pest: Internal feeders

Treatment: **T101-r-2 MB** ("Q" label only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
</tbody>
</table>

Pineapple

Pest: External feeders

Treatment: **T101-s-2 MB** ("Q" label only if under 70 °F (21.1 °C)) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above*</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F*</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F**</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

* Use "MB 100" at 70 °F or above, use MB "Q" label at 40 °F or above

** 40–49°F temperature range may cause pineapple core to turn purple.
T101-t-2
Plantain
Pest: External feeders such as Noctuidae spp., Thrips spp., Copitarsia spp.
Treatment: **T101-t-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

T101-a-3
Plum
Pest: External feeders
Treatment: **T101-a-3** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>2.5 lbs</td>
<td>30</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
</tbody>
</table>

T101-u-2
Potato (white or Irish)
Pest: *Graphognathus* spp. (white fringed beetles)
Treatment: **T101-u-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>2.5 lbs</td>
<td>30</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
</tbody>
</table>
T101-v-2
Potato (white or Irish)

Pest: *Ostrinia nubilalis* (European corn borer) and *Phthorimaea operculela* (potato tuberworm)

Treatment: **T101-v-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2.75 lbs</td>
<td>33</td>
</tr>
</tbody>
</table>

T101-e-1
Pulses, dried

Pest: Bruchidae (seed beetles)

Treatment: **T101-e-1** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
</tbody>
</table>

T101-w-2
Pumpkin

Pest: External feeders

Treatment: **T101-w-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
</tbody>
</table>
T101-g-1

Radish

Pest: Internal feeders

Treatment: **T101-g-1** MB chamber, 15” vacuum—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 °F or above</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
</tbody>
</table>

As of October 2008, no commercial chambers in the United States are approved for the vacuum fumigation of imported commodities. If vacuum treatment is required as a condition of entry, the consignment must be destroyed, reexported or returned to country of origin.

T101-n-2

Rape greens (Brassica napus)

Pest: External feeders and leaf miners

Treatment: **T101-n-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>3.5 lbs</td>
<td>43</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

Of these, cabbage (Brassica oleracea) (labeled treatment T101-j-1) is the only vegetable in this group not covered by a FIFRA Section 18 Exemption.
T101-x-2

Raspberry

Pest: External feeders such as Noctuidae spp., *Thrips* spp., *Copitarsia* spp., Pentatomidae spp.

Treatment: **T101-x-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

T101-q-2

Shallots

Pest: Internal feeders (including leaf miners)

Treatment: **T101-q-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
</tbody>
</table>
T101-y-2

Squash* (winter, summer, and chayote)
Pest: External feeders
Treatment: T101-y-2 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
<th>0.5 hr</th>
<th>2 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td></td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td></td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td></td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td></td>
<td>38</td>
<td>29</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td></td>
<td>48</td>
<td>38</td>
</tr>
</tbody>
</table>

* If zucchini, see T101-h-3. If pumpkin, see T101-w-2.

** Chayote is not covered on any MB label and must be treated as a FIFRA crisis exemption. (see T101-p-1)

T101-z-2

Strawberry
Pest: External feeders
Treatment: T101-z-2 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
<th>0.5 hr</th>
<th>2 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td></td>
<td>19</td>
<td>14</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td></td>
<td>26</td>
<td>19</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td></td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td></td>
<td>38</td>
<td>29</td>
</tr>
</tbody>
</table>

* If zucchini, see T101-h-3. If pumpkin, see T101-w-2.

** Chayote is not covered on any MB label and must be treated as a FIFRA crisis exemption. (see T101-p-1)
T101-b-3-1

Sweet Potato (Ipomoea)

Pest: External and internal feeders

Treatment: **T101-b-3-1** MB at NAP—tarpaulin or chamber

This treatment is also required for the interstate movement from Hawaii.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above*</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>80-89 °F*</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>70-79 °F*</td>
<td>3.5 lbs</td>
<td>44</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>4 lbs</td>
<td>50</td>
</tr>
</tbody>
</table>

* Use “MB 100” at 70°F or above, use MB “Q” label at 60 °F or above

T101-c-3

Tomato (from quarantine areas in the United States)

Pest: *Ceratitis capitata* (Mediterranean fruit fly)

Treatment: **T101-c-3** MB at NAP—tarpaulin or chamber

See “*Ceratitis capitata* (Mediterranean fruit fly) D301.32-10(c)” on page-5-8-5.

T101-c-3-1

Tomato (from Chile)

Pest: *Tuta absoluta* (tomato fruit moth) and *Rhagoletis tomatis* (tomato fruit fly)

Treatment: **T101-c-3-1** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>3 lbs</td>
<td>43</td>
</tr>
</tbody>
</table>

NOTICE

Temperatures below 70 °F may cause injury to sweet potatoes. Fumigation below 70 °F is to be made only on specific request from the importer.

NOTICE

Sweet potatoes should be cured, free from surface moisture, and held at the fumigation temperature for 24 hours following treatment. This is not mandatory; however, following this advise will help maintain the quality of the fumigated product.
T101-d-3

Tuna (Opuntia) and all other fruits from cacti (prickly pear, pitahaya, pitaya, dragon fruit)

Pest: *Ceratitis capitata* (Mediterranean fruit fly)

Treatment: T101-d-3 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
</tbody>
</table>

Important

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).

T101-e-3

Tuna (Opuntia) and all other fruits from cacti (prickly pear, pitahaya, pitaya, dragon fruit)

Pest: External feeders and leaf miners

Treatment: T101-e-3 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

Important

Do not use this treatment schedule if its FIFRA Section 18 Exemption has expired. For the current exemption status, call your local State Plant Health Director (SPHD).
T101-g-1 Turnip

Pest: Internal feeders
Treatment: **T101-g-1 MB chamber, 15" vacuum—chamber**

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 °F or above</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
</tbody>
</table>

NOTICE As of October 2008, no commercial chambers in the United States are approved for the vacuum fumigation of imported commodities. If vacuum treatment is required as a condition of entry, the consignment must be destroyed, reexported or returned to country of origin.

T101-f-3 Yam (Dioscorea spp.)

Pest: Internal and external feeders
Treatment: **T101-f-3 MB at NAP—tarpaulin or chamber**

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3.5 lbs</td>
<td>44</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>4 lbs</td>
<td>50</td>
</tr>
</tbody>
</table>

NOTICE Temperatures below 70 °F may cause injury to yams. Fumigation below 70 °F is to be made only on specific request from the importer.

NOTICE Sweet potatoes and yams should be cured, free from surface moisture, and held at the fumigation temperature for 24 hours following treatment. This is not mandatory; however, following this advise will help maintain the quality of the fumigated product.
T101-h-3

Zucchini

Pest: External feeders

Treatment: **T101-h-3** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft²)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
</tbody>
</table>

If another variety of squash, see T101-y-2
T102—Water Treatment

Important
Whenever water comes into contact with fresh produce, the water’s quality dictates the potential for pathogen contamination. To reduce the risk of food-borne illnesses, the water used for washing, treatments, and cooling must be fortified with sodium hypochlorite (household bleach), and constantly maintained at a chlorine level not to exceed 200 ppm.

T102-b

Cherimoya from Chile

Pest: *Brevipalpus chilensis* (Chilean false red mite)

Treatment: **T102-b** Soapy water and wax

1. Immerse fruit for 20 seconds in soapy water bath of one part soap solution (such as Deterfruit) to 3,000 parts water.

2. Follow the soapy bath with a pressure shower rinse to remove all the soapy excess.

3. Immerse fruit for 20 seconds in an undiluted wax coating (such as Johnson’s Wax Primafresh 31 Kosher fruit coating). The wax coating should cover the entire surface of the fruit.

Important
At the port of entry, the PPQ Officer should check to make sure the wax coating covers the entire surface of the fruit.

T102-c

Durian and other large fruits such as breadfruit

Pest: External Feeders

Treatment: **T102-c** Warm, soapy water and brushing

1. Add detergent (such as Deterfruit) to warm water (110° to 120 °F) at the rate of one part detergent or soap to 3,000 parts water.

2. Immerse the fruit for at least 1 minute in the warm detergent water.

3. Using a brush with stiff bristles, have the importer or the importer’s agent scrub each fruit to remove any insects.

4. Using a pressure shower, have the importer or the importer’s agent rinse the fruit free from residue (detergent and dead insects).

5. Inspect each brushed and cleaned fruit. Pay particular attention to external feeders such as mealybugs and scales. If any insects remain, have the fruit retreated or have it destroyed.
Limes

Pest: Mealybugs (Pseudococcidae) and other surface pests

Treatment: **T102-e** Hot water immersion

1. Fruit must be treated in a certified hot water immersion treatment tank, and the treatment must be monitored by an inspector.

 A. Fruit must be submerged at least 4 inches below the water’s surface.

 B. Water must circulate continually and be kept at 120.2 °F (or above) for 20 minutes. Treatment time begins when the water temperature reaches at least 120.2 °F in all locations of the tank.

2. Cooling and waxing the fruit are both optional, and are the sole responsibility of the processor.

NOTICE Phytotoxic damage (increased yellowing) may occur if the temperature reaches 125.6 °F or if the treatment duration significantly exceeds 20 minutes.

Limes from Chile

Pest: *Brevipalpus chilensis* (Chilean false red mite)

Treatment: **T102-b-1** Soapy water and wax

1. Immerse fruit for 20 seconds in soapy water bath of one part soap solution (such as Deterfruit) to 3,000 parts water.

2. Follow the soapy bath with a pressure shower rinse to remove all the soapy excess.

3. Immerse fruit for 20 seconds in an undiluted wax coating (such as Johnson’s Wax Primafresh 31 Kosher fruit coating). The wax coating should cover the entire surface of the fruit.

Important

At the port of entry, the PPQ Officer should check to make sure the wax coating covers the entire surface of the fruit.
T102-d-1 Longan fruit from Hawaii

Pest: *Ceratitis capitata* (Mediterranean fruit fly) and *Bactrocera dorsalis* (Oriental fruit fly)

Treatment: **T102-d-1 Hot water immersion**

1. Submerge the fruit at least 4 inches below the water’s surface in a hot water immersion treatment tank certified by APHIS.
2. Keep the fruit submerged for 20 minutes after the water temperature reaches at least 120.2 °F in all locations of the tank. The water must circulate continually and be kept at 120.2 °F (or above) for the duration of the treatment.
3. Cool the fruit to ambient temperature. Hydrocooling for 20 minutes at 75.2 °F is recommended, though not required, to prevent injury to the fruit from the hot water immersion treatment.

T102-d Lychee (litchi) fruit from Hawaii

Pest: *Ceratitis capitata* (Mediterranean fruit fly) and *Bactrocera dorsalis* (Oriental fruit fly)

Treatment: **T102-d Hot water immersion**

1. Lychees must be thoroughly examined at the packinghouse by an inspector and found free of *Cryptophlebia spp.* (Lychee fruit moth) and other plant pests.
2. Fruit must be grown and treated in Hawaii, under monitoring of an inspector, in a certified hot water immersion treatment tank.
 - A. Fruit must be submerged at least 4 inches below the water’s surface.

9 Because *Eriophyes litchii* (lychee mite) cannot be effectively detected by inspection, and would not be effectively eliminated by hot water immersion, the lychees may not be shipped into Florida. Each carton must be stamped “Not for importation into or distribution in Florida.”

10 Use of Treatment T102-d is at the risk of the shipper. Limited research on fruit quality after treatment application indicated that fruit quality varies among cultivars. ‘Kaimana’ and ‘Kwai Mi’ (‘Tai So’) tolerate the treatment better than ‘Brewster’ and ‘Groff’; no other cultivars were tested.
B. Water must circulate constantly, and be kept at 120.2 °F (or above) for 20 minutes. Treatment time begins when the water temperature reaches at least 120.2 °F in all locations throughout the tank. Temperatures exceeding 121.1 °F can cause phytotoxic damage.

3. Hydrocooling for 20 minutes at 75.2 °F is recommended, though not required, to prevent injury to the fruit from the hot water treatment.

Mango

Pest: *Ceratitis capitata* (Mediterranean fruit fly), *Anastrepha spp.*, *Anastrepha ludens* (Mexican fruit fly)

Treatment: **T102-a** Hot water immersion

Treat the fruit in the country of origin at a certified facility under the monitoring of APHIS personnel.

1. Pre-sort mangoes by weight class. Treatment of mixed loads is not allowed.

2. Pulp temperature must be 70 °F or above before start of treatment.

3. Submerge fruit at least 4 inches below the water’s surface.

4. Water must circulate constantly and be kept at least 115 °F throughout the treatment with the following tolerances:

 - **During the first 5 minutes of a treatment**—Adjusted Tank Temperatures from *Figure 6-5-1* on page *6-5-3* that are below 113.7 °F are allowed during the first 5 minutes of a treatment only if the temperature is at least 115 °F at the end of the 5 minute period.

 - **For treatments lasting 65 to 75 minutes**—Adjusted Tank Temperatures from *Figure 6-5-1* on page *6-5-3* may fall as low as 113.7 °F for no more than 10 minutes under emergency conditions.

 - **For treatments lasting 90 to 110 minutes**—Adjusted Tank Temperatures from *Figure 6-5-1* on page *6-5-3* may fall as low as 113.7 °F for no more than 15 minutes under emergency conditions.

11 Treatment does not begin until after the fruit is immersed and the water temperature recovers to 120.2 °F (or above). Therefore, before the start of the treatment, fruit pulp temperatures of 70 °F (or above) are recommended to minimize water temperature recovery time and the overall time fruit are immersed in heated water. Fruit quality of treated lychees with initial pulp temperatures below 68 °F has not been studied.
5. Determine the dip time from Table 5-2-1.

Dip times for T102-a are valid if the fruit is not hydrocooled within 30 minutes of removal from the hot water immersion tank.

However, if hydrocooling starts immediately after the hot water immersion treatment, then the original dip time must be extended for an additional 10 minutes.

(Hydrocooling is optional and may be done only at temperatures of 70°F or above, for any length of time, or not at all.)

Table 5-2-1 Hot Water Dip Time Based on Weight of Fruit

<table>
<thead>
<tr>
<th>If the weight of the mango (in grams) is:</th>
<th>Then the dip time (in minutes) is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 375</td>
<td>65</td>
</tr>
<tr>
<td>376 to 500</td>
<td>75</td>
</tr>
<tr>
<td>501 to 700</td>
<td>90</td>
</tr>
<tr>
<td>701 to 900</td>
<td>110</td>
</tr>
</tbody>
</table>

1 Valid if the fruit is not hydrocooled within 30 minutes of removal from the hot water immersion tank.

T102-b-2

Passion Fruit from Chile

Pest: *Brevipalpus chilensis* (Chilean false red mite)

Treatment: **T102-b-2** Soapy water and wax

1. Immerses fruit for 20 seconds in soapy water bath of one part soap solution (such as Deterfruit) to 3,000 parts water.

2. Follow the soapy bath with a pressure shower rinse to remove all the soapy excess.

3. Immerses fruit for 20 seconds in an undiluted wax coating (such as Johnson’s Wax Primafresh 31 Kosher fruit coating). The wax coating should cover the entire surface of the fruit.

At the port of entry, the PPQ Officer should check to make sure the wax coating covers the entire surface of the fruit.
T103—High Temperature Forced Air

T103-a-1
Citrus from Mexico and infested areas in the United States

Pest: *Anastrepha* spp.

Treatment: T103-a-1 High temperature forced air

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Up Time</td>
<td>90 minutes</td>
</tr>
<tr>
<td>Heat Up Recording Interval</td>
<td>2 minutes</td>
</tr>
<tr>
<td>Minimum Air Temperature</td>
<td>N/A</td>
</tr>
<tr>
<td>Minimum Pulp Temperature at End of Heat Up</td>
<td>44 °C/111.2 °F</td>
</tr>
<tr>
<td>Dwell Time</td>
<td>100 minutes</td>
</tr>
<tr>
<td>Dwell Recording Interval</td>
<td>2 minutes</td>
</tr>
<tr>
<td>Cooling Method</td>
<td>Hydrocooling optional</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Size Restrictions</th>
<th>Standard Count</th>
<th>Max. Weight/Fruit</th>
<th>Max. Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>bushel</td>
<td>grams</td>
<td>ounces</td>
</tr>
<tr>
<td>Navel Orange</td>
<td>100 per 1 2/5</td>
<td>450</td>
<td>15.9</td>
</tr>
<tr>
<td>Orange (other than Navel)</td>
<td>100 per 1 2/5</td>
<td>468</td>
<td>16.4</td>
</tr>
<tr>
<td>Tangerine</td>
<td>120 per 4/5</td>
<td>245</td>
<td>8.6</td>
</tr>
<tr>
<td>Grapefruit</td>
<td>70 per 1 2/5</td>
<td>536</td>
<td>18.8</td>
</tr>
</tbody>
</table>

T103-b-1
Citrus from Hawaii

Pest: *Ceratitis capitata* (Mediterranean fruit fly), *Bactrocera dorsalis* (Oriental fruit fly), and *Bactrocera cucurbitae* (melon fly)

Treatment: T103-b-1 High temperature forced air

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Up Time</td>
<td>4 hours</td>
</tr>
<tr>
<td>Heat Up Recording Interval</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Minimum Air Temperature</td>
<td>N/A</td>
</tr>
<tr>
<td>Minimum Pulp Temperature at End of Heat Up</td>
<td>47.2 °C/117.0 °F</td>
</tr>
<tr>
<td>Dwell Time</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Dwell Recording Interval</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Cooling Method</td>
<td>Forced air or Hydrocooling</td>
</tr>
</tbody>
</table>

Notice: Tolerance of Citrus to Treatment—Users of this treatment for citrus should test the specific cultivar to determine how well it will tolerate the required heat treatment. Of all citrus species tested to date, grapefruit showed the highest tolerance to this treatment. The tolerance of citrus treated in excess of 7 hours has not been determined. Although the method of cooling fruit after treatment is optional, research indicated that forced air cooling using ambient air temperature produced the least fruit injury.
Mango from Mexico

Pest: *Anastrepha ludens* (Mexican fruit fly), *Anastrepha obliqua* (West Indian fruit fly), and *Anastrepha serpentina* (black fruit fly)

Treatment: T103-c-1 High temperature forced air

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Up Time:</td>
<td>N/A</td>
</tr>
<tr>
<td>Heat Up Recording Interval:</td>
<td>2 minutes</td>
</tr>
<tr>
<td>Minimum Air Temperature:</td>
<td>50.0 °C/122.0 °F</td>
</tr>
<tr>
<td>Minimum Pulp Temperature at End of Heat Up:</td>
<td>48.0 °C/118.0 °F</td>
</tr>
<tr>
<td>Dwell Time:</td>
<td>2 minutes</td>
</tr>
<tr>
<td>Dwell Recording Interval:</td>
<td>2 minutes</td>
</tr>
<tr>
<td>Cooling Method:</td>
<td>Forced air or Hydrocooling</td>
</tr>
<tr>
<td>Size Restrictions:</td>
<td>Fruit weight must not exceed 1 1/2 lbs. (700 grams)</td>
</tr>
</tbody>
</table>
T103-d

Mountain Papaya from Chile (T103-d-1) and Papaya from Belize and Hawaii (T103-d-2)

Pest: *Ceratitis capitata* (Mediterranean fruit fly), *Bactrocera dorsalis* (Oriental fruit fly), and *Bactrocera cucurbitae* (melon fly)

Treatment: T103-d-1 High temperature forced air

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Up Time</td>
<td>4 hours</td>
</tr>
<tr>
<td>Heat Up Recording Interval</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Minimum Air Temperature</td>
<td>N/A</td>
</tr>
<tr>
<td>Minimum Pulp Temperature at End of Heat Up</td>
<td>47.2 °C/117.0 °F</td>
</tr>
<tr>
<td>Dwell Time</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Dwell Recording Interval</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Cooling Method</td>
<td>Forced air or Hydrocooling (If papayas are hydrocooled with water lower than 54.5 °F (12.5 °C), the fruit may be damaged.)</td>
</tr>
</tbody>
</table>

NOTICE

Tolerance of Papayas to Treatment—To enable the papayas to tolerate the treatment, the fruit may first have to be conditioned. Such conditioning is the responsibility of the shipper and at the shipper's risk.

T103-e

Rambutan from Hawaii

Pest: *Ceratitis capitata* (Mediterranean fruit fly), and *Bactrocera dorsalis* (Oriental fruit fly)

Treatment: T103-e-1 High temperature forced air

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Up Time</td>
<td>1 hour</td>
</tr>
<tr>
<td>Heat Up Recording Interval</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Minimum Air Temperature</td>
<td>N/A</td>
</tr>
<tr>
<td>Minimum Pulp Temperature at End of Heat Up</td>
<td>47.2 °C/117.0 °F</td>
</tr>
<tr>
<td>Dwell Time</td>
<td>20 minutes</td>
</tr>
<tr>
<td>Dwell Recording Interval</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Cooling Method</td>
<td>Optional</td>
</tr>
</tbody>
</table>
T104—Pest Specific/Host Variable

For the treatments that follow, never exceed the labeled or Section 18 dosage and time for the specific commodity at the given temperature. Moreover, the specific commodity being treated determines if the schedule is a labeled treatment or one authorized under a Section 18 exemption. For example, oranges cannot be treated for hitchhikers using T104-a-1 at 40-49 °F because this schedule requires 4 lbs. of methyl bromide/1,000 ft³. Whereas, the methyl bromide “Q” label allows a maximum of only 3 lbs. at this temperature range. Therefore, the oranges would have to be heated to at least 50 °F before fumigation because at 50 °F a dosage of only 3 lbs./1,000 ft³ is required.

Although the following treatments are pest specific, the treatment schedule for the associated host will determine if and when a pest specific treatment can be used. Always check the schedule for the host before selecting the proper treatment schedule. Also, consult the methyl bromide labeling brochure, and do not exceed the restrictions on dosage and exposure time.
Various Commodities

Pest: Hitchhikers and surface pests such as: thrips, aphids, scale insects, leaf miners, spider mites (*Tetranychidae*), lygaeid bugs, ants, earwigs, surface-feeding caterpillars and slugs.

Treatment: T104-a-1 MB at NAP—tarpaulin or chamber.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>1.5</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2</td>
<td>26</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5</td>
<td>32</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4</td>
<td>48</td>
</tr>
</tbody>
</table>

To comply with dosage and temperature restrictions on methyl bromide labels, ONLY the fruits and vegetables listed may be fumigated with T104-a-1. If you have a commodity that is not in the list, it may be listed elsewhere in the T100 schedules for a different pest complex. Refer to the Index for a complete list of commodities for which there are approved treatment schedules. Refer to Appendix F (or 40 CFR 180.41) for a list of EPA crop groups and commodities.

The **bolded** commodities in the list are under FIFRA Section 18 Exemption.

NOTICE Do not use T104-a-1 if the FIFRA Section 18 exemption has expired. For any questions concerning the exemption status, call your State Plant Health Director or Regional Treatment Program Manager.

The commodities that are **not bold** are covered on the label. There may be some commodities that are on the label at one dosage and duration, and are also covered in the Section 18 at a different dosage and duration.

EXAMPLE: Coffee bean (roasted) is on the Chemtura MB-Q label and can be treated up to 3.0 lbs. for 24 hours. However, the Section 18 allows for coffee bean (unroasted) to be treated up to 9 lbs. for 12 hours.

12 DO NOT use T104-a-1 for Chilean False Red Mite (*Brevipalpus chilensis*).

13 Quarantine-significant slugs of the families Agriolimacidae, Arionidae, Limacidae, Milacidae, Philomycidae, and Veronicaellidae, including the following genera: *Agriolimax, Arion, Colosius, Deroceras, Diplolenodese, Leidyula, Limax, Meghimatium, Milax, Pallifera, Pseudoveronicaella, Sarasinula, Semperula, Vaginulus, Veronicaella*. Treat slugs at 60 °F (2.5 lbs.) or above.
List of Commodities Approved for Fumigation With T104-a-1:

Fumigation may cause damage to some commodities and is at the risk of the importer.

- **70 °F or above (maximum dosage 2 lbs./1000 ft³):** avocado, beet (root), blueberry, cocoa bean
- **60 °F or above (maximum dosage 2.5 lbs./1000 ft³):** coconut (unprocessed without husk), pimento, pumpkin, zucchini squash
- **50 °F or above (maximum dosage 3 lbs./1000 ft³):** clementine, coffee bean (roasted), copra (coconut), corn-on-the-cob (sweet corn), edible podded legumes, grapefruit, kumquat, lemon, lime, mandarin, Malvaceae seeds for food use, including kenaf and hibiscus, mint (dried), okra, onion, orange, parsnip, potato, radish, root and tuber crop group, rutabaga, salsify root, strawberry, sugar beet, tangelo, tangerine, tomato, turnip root
- **40 °F or above (maximum dosage 4 lbs./1000 ft³):** apple, apricot, asparagus, banana (fruit and leaf), beans (fresh), blueberry, cabbage, cactus fruit (tuna), cantaloupe, carrot, chayote, cherry, chestnut, citrus, coffee bean (unroasted), cottonseed, cucumber, cucurbit seed (unprocessed), dasheen, edible podded legumes, eggplant, fava (faba) bean (dried), fresh figs, genip, grapes, herbs (dried), honeydew melon, ivy gourd, Jerusalem artichoke, kaffir lime leaves, kola nuts, longan, loroco flower, lychee, mint (fresh), mango, muskmelon, nectarine, okra, opuntia, peach, pear, peas and beans (dried), pepper, persimmon, pineapple, pitaya/pitahaya/dragon fruit, plantain, plum, pomegranate, pointed gourd, prune, quince, rambutan, snow peas, squash (summer, winter), squash flower, sweet potato, watermelon, yam

- ANY OTHER UNLABELED commodities from the following crop groups\(^\text{14}\) are treated under FIFRA exemption: berry and small fruits, Brassica leafy vegetables, bulb vegetables, cucurbit vegetables, fresh herbs and spices, fruiting vegetables, leafy vegetables, leaves of legumes, leaves of roots and tubers, oilseed, stalk/stem/leaf petiole fruit, stone fruits including their hybrids, tropical and subtropical fruit (edible and inedible peels)

\(^{14}\) Crop groups are defined by the Environmental Protection Agency (EPA) in 40CFR 180.41 and are provided for quick reference in Appendix F in this manual.
Various Commodities

Pest: Mealybugs (Pseudococcidae)

Treatment: **T104-a-2** MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5 hr</td>
<td>2 hrs</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>2.5</td>
<td>32</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3</td>
<td>38</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>4</td>
<td>48</td>
</tr>
</tbody>
</table>

To comply with dosage and temperature restrictions on methyl bromide labels, ONLY the fruits and vegetables listed may be fumigated with T104-a-2. If you have a commodity that is not listed, it may be elsewhere in the T100 schedules for a different pest complex. Refer to the Index for a complete list of commodities for which there are approved treatment schedules. Refer to **Appendix F** (or **40 CFR 180.41**) for a list of EPA crop groups and commodities.

The **bolded** items are under FIFRA Section 18 Exemption.

NOTICE

Do not use T104-a-2 if the FIFRA Section 18 quarantine exemption has expired. For any questions concerning the exemption status, call your State Plant Health Director or Regional Treatment Program Manager.

The **not bold** are covered on the label. There may be some commodities that are on the label at one dosage and duration, and are also covered in the Section 18 at a different dosage and duration.

EXAMPLE: Coffee bean (roasted) is on the Chemtura MB-Q label and can be treated up to 3.0 lbs. for 24 hours. However, the Section 18 allows for coffee bean (unroasted) to be treated up to 9 lbs. for 12 hours.
List of Commodities Approved for Fumigation With T104-a-2:

- **80° F or above (maximum dosage 2.5 lbs./1000 ft³):** coconut (unprocessed without husk), pimento, pumpkin, zucchini squash

- **70° F or above (maximum dosage 3.0 lbs./1000 ft³):** avocado, bean, carrot, clementine, coffee bean (roasted), copra (coconut), corn-on-the-cob (sweet corn), edible podded legumes, eggplant, grapefruit, kumquat, lemon, lime, mandarin, Malvaceae seeds for food use including kenaf and hibiscus, dried mint, okra, onion, orange, parsnip, potato, radish, root and tuber crop group, rutabaga, salsify, strawberry, sugar beet, tangelo, tangerine, tomato, turnip root

- **60° F or above (maximum dosage 4.0 lbs./1000 ft³):** apple, apricot, asparagus, banana (fruit and leaf), blueberry, cabbage, cactus fruit (tuna), cantaloupe, carrot, chayote, cherry, chestnut, citron (ethrog), coffee bean (unroasted), cottonseed, cucumber, cucurbit seed (unprocessed), dasheen, edible podded legumes, fava bean (dried), fresh figs, genip, grapes, herbs (dried), honeydew melon, ivy gourd, Jerusalem artichoke, kaffir lime leaves, kola nuts, longan, lorocco flower, lychee fruit, mango, mint (fresh), muskmelon, nectarine, opuntia, okra, peach, pear, peas and beans (dried), pepper, persimmon, pineapple, pitaya/pitahaya/dragon fruit, plantain, plum, pomegranate, pointed gourd, prune, quince, rambutan, snow peas, squash (summer, winter), squash flower, sweet potato, watermelon, yam

- ANY OTHER UNLABELED commodities from the following crop groups are treated under FIFRA exemption: berry and small fruits, Brassica leafy vegetables, bulb vegetables, cucurbit vegetables, fresh herbs and spices, fruiting vegetables, leafy vegetables, leaves of legumes, leaves of roots and tubers, oilseed, stalk/stem/leaf petiole fruit, stone fruits including their hybrids, tropical and subtropical fruit (edible and inedible peels)

15 Crop groups are defined by the Environmental Protection Agency (EPA) in 40CFR 180.41 and are provided for quick reference in Appendix F in this manual.
T105—Irradiation

Irradiation (IR) is an approved treatment for all imported fruits and vegetables and for fruits and vegetables moved interstate from Hawaii, Puerto Rico, and the U.S. Virgin Islands. In addition, irradiation can be used against particular pests of cut flowers and foliage, however, some damage may occur. Refer to **Table 5-2-2** on page 5-2-69 for a list of pest-specific doses.

Treatment must be conducted at approved facilities in a foreign country, Hawaii, Puerto Rico, US Virgin Islands or any area in the US mainland that does not support fruit flies (any state except AL, AZ, CA, FL, GA\(^16\), KY, LA, MS\(^{16}\), NV, NM, NC\(^{16}\), SC, TN, TX, or VA).

Refer to chapter **Certifying Irradiation Treatment Facilities** on page 6-8-1 of this manual for facility certification requirements.

Commodities that are currently admissible with a treatment or systems approach could also use irradiation as an alternative treatment, provided all the pests targeted by the treatment or systems approach are neutralized by the irradiation dose. Use of irradiation in place of a systems approach or another treatment must be approved and appear in the this manual and FAVIR prior to use.

When designing the facility’s dosimetry system and procedures for its operation, the facility operator must address guidance and principles from American Society for Testing Materials (ASTM) standards or an equivalent standard recognized by the Administrator of APHIS.

\(^{16}\) IR facilities may be located at the airport of Atlanta, GA, maritime ports of Gulfport, MS, and Wilmington, NC, provided the conditions listed in CFR 305.31(b) are met.
The minimum absorbed doses (MAD) listed in Table 5-2-2 can be applied ONLY when all pests of concern can be mitigated. For example, if a country has Mexican fruit fly, West Indian fruit fly, and Sapote fruit fly, the MAD would have to be 100 Gy, not 70 Gy.

Table 5-2-2 Pest-Specific Minimum absorbed dose (Gy) For Any Approved Imported Fruits, Vegetables and Cut Flowers, and Fruits, Vegetables, and Cut Flowers Moved Interstate from Hawaii, Puerto Rico, and the U.S. Virgin Islands

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Minimum Absorbed Dose (Gy) Not To Exceed 1000 Gy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhagoletis pomonella</td>
<td>Apple maggot</td>
<td>60</td>
</tr>
<tr>
<td>Anastrepha ludens</td>
<td>Mexican fruit fly</td>
<td>70</td>
</tr>
<tr>
<td>Anastrepha obliqua</td>
<td>West Indian fruit fly</td>
<td></td>
</tr>
<tr>
<td>Anastrepha suspensa</td>
<td>Caribbean fruit fly</td>
<td></td>
</tr>
<tr>
<td>Conotrachelus nenuphar</td>
<td>Plum curculio</td>
<td>92</td>
</tr>
<tr>
<td>Anastrepha serpentina</td>
<td>Sapote fruit fly</td>
<td>100</td>
</tr>
<tr>
<td>Bactrocera jarvisi</td>
<td>Jarvis fruit fly</td>
<td></td>
</tr>
<tr>
<td>Bactrocera tryoni</td>
<td>Queensland fruit fly</td>
<td></td>
</tr>
<tr>
<td>Ceratitis capitata</td>
<td>Mediterranean fruit fly</td>
<td></td>
</tr>
<tr>
<td>Copitarsia declora<sup>1</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspidiotus destructor</td>
<td>Coconut scale</td>
<td>150</td>
</tr>
<tr>
<td>Bactrocera cucurbitae</td>
<td>Melon fruit fly</td>
<td></td>
</tr>
<tr>
<td>Bactrocera dorsalis</td>
<td>Oriental fruit fly</td>
<td></td>
</tr>
<tr>
<td>Cylas formicarius elegantulus</td>
<td>Sweet potato weevil</td>
<td></td>
</tr>
<tr>
<td>Euscepes postfasciatus</td>
<td>West Indian sweet potato weevil</td>
<td></td>
</tr>
<tr>
<td>Omphisa anastomosalis</td>
<td>Sweet potato vine borer</td>
<td></td>
</tr>
<tr>
<td>Pseudaulacaspis pentagona</td>
<td>White peach scale</td>
<td></td>
</tr>
<tr>
<td>Stemochetus frigidus (Fabr.)</td>
<td>Mango pulp weevil</td>
<td>165</td>
</tr>
<tr>
<td>Cydia pomonella</td>
<td>Codling moth<sup>1</sup></td>
<td>200</td>
</tr>
<tr>
<td>Epiphyas postvittana</td>
<td>Light Brown Apple Moth<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td>Grapholita molesta</td>
<td>Oriental fruit moth<sup>1</sup></td>
<td></td>
</tr>
<tr>
<td>Cryptophlebia ombrodelta</td>
<td>Litchi fruit moth<sup>1</sup></td>
<td>250</td>
</tr>
<tr>
<td>Cryptophlebia illepida</td>
<td>Koa seedworm</td>
<td></td>
</tr>
<tr>
<td>Eggs and larvae of the family Tortricidae not listed</td>
<td></td>
<td>290</td>
</tr>
<tr>
<td>Brevipalpus chilensis</td>
<td>Chilean false red mite</td>
<td>300</td>
</tr>
<tr>
<td>Stemochetus mangiferae</td>
<td>Mango seed weevil</td>
<td></td>
</tr>
<tr>
<td>Plant pests of the class Insecta not listed except pupae and adults of the order Lepidoptera</td>
<td></td>
<td>400</td>
</tr>
</tbody>
</table>

¹ Eggs and larvae only
T105-a-1

Approved imported fruits, vegetables and cut flowers, and fruits, vegetables, and cut flowers moved interstate from Hawaii, Puerto Rico, and the U.S. Virgin Islands

Treatment: T105-a-1 (IR @ 150 Gy)

Pests: All fruit flies from the family Tephritidae

(Refer to Table 5-2-2 for other pests that can be treated at 150 Gy or less.) Treat using a minimum absorbed dose of 150 Gy, not to exceed 1000 Gy.

Refer to the Hawaii Manual for detailed inspection procedures and additional entry requirements for pests not managed by 150 Gy or when a 400 Gy dose may be used instead.

Table 5-2-3 lists all currently approved countries and commodities. The irradiation facilities in each country have been approved and certified by USDA and dose mapping has occurred for each commodity. Countries and commodities can be added (or removed) from this table based on facility certification, compliance agreements, and/or work plans.

Table 5-2-3 Origin and Approved Commodity List for 150 Gy

<table>
<thead>
<tr>
<th>Origin</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grenada</td>
<td>Ambarella (Spondias dulcis), Yellow Mombin (S. mombin), Purple Mombin (S. purpurea)</td>
</tr>
<tr>
<td>Hawaii</td>
<td>Abiu, Atemoya, Banana, Breadfruit, Capsicum spp., Carambola, Citrus, Cucurbita spp., Dragon fruit (pitahaya, pitaya), Eggplant, Jackfruit, Litchi, Longan, Mangosteen, Melon, Moringa pods (Drumstick), Papaya, Pineapple, Rambutan, Sapodilla, Sweet Potato, and Tomato</td>
</tr>
<tr>
<td>Jamaica</td>
<td>Mango</td>
</tr>
<tr>
<td>Mexico</td>
<td>Carambola, Clementine/Mandarin/Tangerine (Citrus reticulata), Fig, Grapefruit (Citrus paradisi), Mango, Manzano Pepper (Capsicum pubescens), Pitahaya (Pitaya, Dragon fruit), Pomegranate, Sweet lime (Citrus limettoides), Sweet Orange (Citrus sinensis), Tangelo (Citrus tangelo)</td>
</tr>
<tr>
<td>Peru</td>
<td>Blueberry, Fig, Pomegranate</td>
</tr>
<tr>
<td>Philippines</td>
<td>Mango</td>
</tr>
</tbody>
</table>
T105-a-2

Approved imported fruits, vegetables and cut flowers, and fruits, vegetables, and cut flowers moved interstate from Hawaii, Puerto Rico, and the U.S. Virgin Islands

Treatment: T105-a-2 (IR @ 400 Gy)

Pests: Fruit flies from the family Tephritidae and all insect pests **except** adults and pupae of the order Lepidoptera

Treat using a minimum absorbed dose of 400 Gy, **not** to exceed 1000 Gy.

Table 5-2-4 lists all **currently** approved countries and commodities. The irradiation facilities in each country have been approved and certified by USDA and dose mapping has occurred for each commodity. Countries and commodities can be added (or removed) from this table based on facility certification, compliance agreements, and/or work plans.

Table 5-2-4 Origin and Approved Commodity List for 400 Gy

<table>
<thead>
<tr>
<th>Origin</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Litchi</td>
</tr>
<tr>
<td>Dominican Republic</td>
<td>Mango</td>
</tr>
<tr>
<td>Ghana</td>
<td>Eggplant, Okra, Pepper</td>
</tr>
<tr>
<td>Hawaii</td>
<td>Banana, Breadfruit, Cowpea (pod), Curry Leaf, Dragon fruit (pitahaya, pitaya), Guava, Jackfruit, Mangosteen, Melon, Moringa pods (Drumstick), and Sweet Potato Cut flowers and leis</td>
</tr>
<tr>
<td>India</td>
<td>Mango, Pomegranate</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Carambola (Star fruit), Jackfruit, Papaya, Pineapple, Rambutan</td>
</tr>
<tr>
<td>Mexico</td>
<td>Guava</td>
</tr>
<tr>
<td>Pakistan</td>
<td>Mango</td>
</tr>
<tr>
<td>Philippines</td>
<td>Litchi, Longan, Rambutan</td>
</tr>
<tr>
<td>South Africa</td>
<td>Grape, Litchi, Persimmon</td>
</tr>
<tr>
<td>Thailand</td>
<td>Dragon Fruit (pitahaya, pitaya), Litchi, Longan, Mango, Mangosteen, Pineapple, Rambutan</td>
</tr>
<tr>
<td>Viet Nam</td>
<td>Dragon Fruit (pitahaya, pitaya), Litchi, Longan, Mango, Rambutan, Star Apple</td>
</tr>
</tbody>
</table>
T105-a-3

Approved imported fruits, vegetables and cut flowers, and fruits, vegetables, and cut flowers moved interstate from Hawaii, Puerto Rico, and the U.S. Virgin Islands

Treatment: T105-a-3 (IR @ 300 Gy)

Pests: *Sternochetus mangiferae* (Mango seed weevil), and all fruit flies from the family Tephritidae

Treat using a minimum absorbed dose of 300 Gy, *not* to exceed 1000 Gy.

Table 5-2-5 lists all currently approved countries and commodities. The irradiation facilities in each country have been approved and certified by USDA and dose mapping has occurred for each commodity. Countries and commodities can be added (or removed) from this table based on facility certification, compliance agreements, and/or work plans.

Table 5-2-5 Origin and Approved Commodity List for 300 Gy

<table>
<thead>
<tr>
<th>Origin</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Mango</td>
</tr>
<tr>
<td>Hawaii</td>
<td>Mango</td>
</tr>
<tr>
<td>Philippines</td>
<td>Mango</td>
</tr>
</tbody>
</table>

T105-a-4

Mango

Treatment: T105-a-4 (IR @ 165 Gy)

Pests: *Sternochetus frigidus* (Mango pulp weevil)

Treat using a minimum absorbed dose of 165 Gy, *not* to exceed 1000 Gy.

Table 5-2-6 lists all currently approved countries and commodities. The irradiation facilities in each country have been approved and certified by USDA and dose mapping has occurred for each commodity. Countries and commodities can be added (or removed) from this table based on facility certification, compliance agreements, and/or work plans.

Table 5-2-6 Origin and Approved Commodity List for 165 Gy

<table>
<thead>
<tr>
<th>Origin</th>
<th>Commodity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philippines</td>
<td>Mango</td>
</tr>
</tbody>
</table>
T106—Vapor Heat

T106-a Various Commodities from Mexico: Clementine (T106-a-1), Grapefruit (T106-a-2), Mango (Manilla variety only; T106-a-3), Orange (T106-a-4)

Pest: *Anastrepha* spp. (includes Mexican fruit fly, *A. ludens*)

Treatment: T106-a Vapor heat

Heat Up Time:	8 hours
Heat Up Recording Interval:	5 minutes
Minimum Air Temperature:	N/A
Minimum Pulp Temperature at End of Heat Up:	43.3 °C/110.0 °F
Dwell Time:	6 hours
Dwell Recording Interval:	5 minutes
Cooling Method:	N/A

T106-b Bell Pepper (T106-b-1), Eggplant (T106-b-2), Mountain papaya (T106-b-3), Papaya (T106-b-4), Pineapple (T106-b-5), Squash (T106-b-6), Tomato (T106-b-7), Zucchini (T106-b-8)

Pest: *Ceratitis capitata* (Mediterranean fruit fly), *Bactrocera dorsalis* (Oriental fruit fly), and *Bactrocera cucurbitae* (melon fly)

Treatment: T106-b Vapor heat

Heat Up Time:	N/A
Heat Up Recording Interval:	N/A
Minimum Air Temperature:	112.0 °F
Minimum Pulp Temperature at End of Heat Up:	44.4 °C/112.0 °F
Dwell Time:	8.75 hours
Dwell Recording Interval:	5 minutes
Cooling Method:	Optional

> Comodities should be exposed at 112 °F to determine tolerance to the treatment before commercial shipments are attempted.
Clementine or Orange from Mexico

Treatment: T106-a-1-1 Vapor heat

<table>
<thead>
<tr>
<th>Heat Up Time:</th>
<th>6 hours1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Up Recording Interval:</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Minimum Air Temperature:</td>
<td>N/A</td>
</tr>
<tr>
<td>Minimum Pulp Temperature at End of Heat Up:</td>
<td>43.3 °C/110.0 °F</td>
</tr>
<tr>
<td>Dwell Time:</td>
<td>4 hours</td>
</tr>
<tr>
<td>Dwell Recording Interval:</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Cooling Method:</td>
<td>N/A</td>
</tr>
</tbody>
</table>

1 During the initial raising of fruit temperature, the temperature should be raised rapidly in the first 2 hours; the increase over the next 4 hours should be gradual.

Litchi and Longan from Hawaii

Pest: Ceratitis capitata (Mediterranean fruit fly), and Bactrocera dorsalis (Oriental fruit fly)

Treatment: T106-f Vapor heat

<table>
<thead>
<tr>
<th>Heat Up Time:</th>
<th>1 hour</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Up Recording Interval:</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Minimum Air Temperature:</td>
<td>N/A</td>
</tr>
<tr>
<td>Minimum Pulp Temperature at End of Heat Up:</td>
<td>47.2 °C/117.0 °F</td>
</tr>
<tr>
<td>Dwell Time:</td>
<td>20 minutes</td>
</tr>
<tr>
<td>Dwell Recording Interval:</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Cooling Method:</td>
<td>Cool water spray</td>
</tr>
</tbody>
</table>

Mango from the Philippines (the island of Guimaras only)

Pest: Bactrocera occipitalis, Bactrocera cucurbitae, and Bactrocera philippinensis

Treatment: T106-d-1 Vapor heat

<table>
<thead>
<tr>
<th>Heat Up Time:</th>
<th>4 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Up Recording Interval:</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Minimum Air Temperature:</td>
<td>N/A</td>
</tr>
<tr>
<td>Minimum Pulp Temperature at End of Heat Up:</td>
<td>46.0 °C/114.8 °F</td>
</tr>
<tr>
<td>Dwell Time:</td>
<td>10 minutes</td>
</tr>
<tr>
<td>Dwell Recording Interval:</td>
<td>1 minute</td>
</tr>
<tr>
<td>Cooling Method:</td>
<td>Hydrocooling optional</td>
</tr>
</tbody>
</table>
T106-d Mango from Taiwan

Pest: *Bactrocera dorsalis* (Oriental fruit fly) and *Bactrocera cucurbitae*

Treatment: T106-d Vapor heat

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Up Time</td>
<td>N/A</td>
</tr>
<tr>
<td>Heat Up Recording Interval</td>
<td>N/A</td>
</tr>
<tr>
<td>Minimum Air Temperature</td>
<td>N/A</td>
</tr>
<tr>
<td>Minimum Pulp Temperature at End of Heat Up</td>
<td>47.5 °C/115.7 °F</td>
</tr>
<tr>
<td>Dwell Time</td>
<td>30 minutes</td>
</tr>
<tr>
<td>Dwell Recording Interval</td>
<td>5 minute</td>
</tr>
<tr>
<td>Cooling Method</td>
<td>Cooling required</td>
</tr>
</tbody>
</table>

T106-c Papaya

Pest: *Ceratitis capitata* (Mediterranean fruit fly), *Bactrocera dorsalis* (Oriental fruit fly), and *Bactrocera cucurbitae* (melon fly)

Treatment: T106-c Vapor heat

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Up Time</td>
<td>4 hours</td>
</tr>
<tr>
<td>Heat Up Recording Interval</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Minimum Air Temperature</td>
<td>N/A</td>
</tr>
<tr>
<td>Minimum Pulp Temperature at End of Heat Up</td>
<td>47.2 °C/117.0 °F</td>
</tr>
<tr>
<td>Dwell Time</td>
<td>N/A</td>
</tr>
<tr>
<td>Dwell Recording Interval</td>
<td>N/A</td>
</tr>
<tr>
<td>Cooling Method</td>
<td>Optional</td>
</tr>
</tbody>
</table>
T106-e

Yellow Pitaya (*Hylocereus megalanthus*) from Colombia

- **Pest:** *Ceratitis capitata* (Mediterranean fruit fly), *Anastrepha fraterculus* (South American fruit fly)

- **Treatment:** T106-e Vapor heat

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Up Time</td>
<td>4 hours</td>
</tr>
<tr>
<td>Heat Up Recording Interval</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Minimum Air Temperature</td>
<td>N/A</td>
</tr>
<tr>
<td>Minimum Pulp Temperature at End of Heat Up</td>
<td>46.0 °C/114.8 °F</td>
</tr>
<tr>
<td>Dwell Time</td>
<td>20 minutes</td>
</tr>
<tr>
<td>Dwell Recording Interval</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Cooling Method</td>
<td>Hydrocooling optional¹</td>
</tr>
</tbody>
</table>

¹ If post-treatment cooling is conducted, wait 30 minutes after the treatment to start the forced cooling process.

T106-g

Rambutan from Hawaii

- **Pest:** *Ceratitis capitata* (Mediterranean fruit fly), and *Bactrocera dorsalis* (Oriental fruit fly)

- **Treatment:** T106-g Vapor heat

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Up Time</td>
<td>1 hour</td>
</tr>
<tr>
<td>Heat Up Recording Interval</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Minimum Air Temperature</td>
<td>N/A</td>
</tr>
<tr>
<td>Minimum Pulp Temperature at End of Heat Up</td>
<td>47.2 °C/117.0 °F</td>
</tr>
<tr>
<td>Dwell Time</td>
<td>20 minutes</td>
</tr>
<tr>
<td>Dwell Recording Interval</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Cooling Method</td>
<td>Optional</td>
</tr>
</tbody>
</table>
T106-h

Sweet Potato from Hawaii

Pest: *Cylas formicarius* (Sweet potato weevil), *Euscepes postfasciatus* (West Indian sweet potato weevil), and *Omphisa anastomosalis* (Sweet potato vine borer)

Treatment: T106-h Vapor heat

<table>
<thead>
<tr>
<th>Heat Up Time:</th>
<th>240 minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heat Up Recording Interval:</td>
<td>N/A</td>
</tr>
<tr>
<td>Minimum Air Temperature at Start of Heat Up:</td>
<td>31 °C</td>
</tr>
<tr>
<td>Minimum Air Temperature at End of Heat Up:</td>
<td>44 °C</td>
</tr>
<tr>
<td>Dwell Time:</td>
<td>190 minutes</td>
</tr>
<tr>
<td>Dwell Recording Interval:</td>
<td>5 minutes</td>
</tr>
<tr>
<td>Minimum Dwell Time Air Temperature:</td>
<td>48 °C</td>
</tr>
<tr>
<td>Minimum Dwell Time Pulp Temperature:</td>
<td>47 °C</td>
</tr>
<tr>
<td>Cooling Method:</td>
<td>N/A</td>
</tr>
</tbody>
</table>

The relative humidity in the chamber should be 95% or greater during the heat up interval (from 31 °C to 44 °C). Relative humidity requirements are for commodity quality. Failure to reach 95% relative humidity may decrease the quality of the commodity, but does not result in a treatment failure.
T107—Cold Treatment

Pulp of the Fruit
The pulp of the fruit must be at or below the indicated temperature at time of beginning treatment for all cold treatments.

Fruits for Which Cold Treatment Is Authorized
The following cold treatment schedules are authorized by Plant Protection and Quarantine (PPQ) for the control of specific pests associated with shipments of fruit. The cold treatment schedule that must be used for a specific commodity from a specific country is listed in the Fruits and Vegetables Import Requirement database (FAVIR). These cold treatment schedules indicate the specific pests for which they are designed to control.

Treatment upon arrival may be accomplished at authorized ports as named in the permits.

Treatment in transit may be authorized for specifically equipped and approved vessels or containers and from approved countries, for entry at ports named in the permits. Intransit cold treatment authorization must be preceded by a visit to the country of origin by a PPQ Official to explain loading, inspection, and certification procedures to designated certifying officials of country of origin. Refrigerated compartments on carrying vessels and cold storage warehouse must have prior certification by PPQ. Authorization of cold treatments from countries with direct sailing time less than the number of days prescribed for intransit refrigeration treatment must be contingent on importer understanding that prescribed intransit refrigeration period must be met before arrival of vessel at the approved U.S. port.

Gaps in the cold treatment data print-out for pulp sensors and air sensors shall be allowed or disallowed on a case-by-case basis, taking into account the number of gaps, the length of each gap, and the temperatures before and after. Air temperatures may occasionally exceed treatment temperatures during defrost cycles; however, fruit temperatures should not rise appreciably during this time. During non-defrost times, the temperatures of the air sensors should never exceed the maximum allowable treatment temperature.

The fruit must be precooled at or below the target treatment temperature prior to loading. A certified USDA representative must sample the fruit pulp temperatures during loading in all sections of the lot until precooling has been accomplished.
Treatment Schedules T100 - Schedules for Fruit, Nuts, and Vegetables
Fruits for Which Cold Treatment Is Authorized

T107-a

Apple, Apricot\(^{17}\), Avocado, Blueberry, Cape Gooseberry, Cherry, Citrus\(^{18}\), Ethrog, Grape, Kiwi, Loquat, Litchi (Lychee), Nectarine, Orange, Ortanique, Peach, Pear, Persimmon, Plum, Plumcot, Pomegranate, Pummelo, Quince, Sand Pear,

Pest: \textit{Ceratitis capitata} (Mediterranean fruit fly) and \textit{Ceratitis rosa} (Natal fruit fly)

Treatment: T107-a Cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 °F (1.11 °C) or below</td>
<td>14 days</td>
</tr>
<tr>
<td>35 °F (1.67 °C) or below</td>
<td>16 days</td>
</tr>
<tr>
<td>36 °F (2.22 °C) or below</td>
<td>18 days</td>
</tr>
</tbody>
</table>

Important

Pretreatment conditioning for avocado (heat shock or 100.4 °F (38 °C) for 10 to 12 hours) is optional and is the responsibility of the shipper. The pretreatment conditioning, which may improve fruit quality, is described in HortScence 29 (10): 1166-1168. 1994. and 30(5): 1052-1053 (1995)

T107-a-1

Apple, Apricot\(^{17}\), Blueberry, Cherry, Grape, Grapefruit, Kiwi, Mandarin, Nectarine, Orange, Peach, Pear, Plum, Pomegranate, Quince, Sweet Orange, Tangelo, Tangerine (includes Clementine)

Pest: \textit{Ceratitis capitata} (Mediterranean fruit fly) and species of \textit{Anastrepha} (other than \textit{Anastrepha ludens})

Treatment: T107-a-1 Cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 °F (1.11 °C) or below</td>
<td>15 days</td>
</tr>
<tr>
<td>35 °F (1.67 °C) or below</td>
<td>17 days</td>
</tr>
</tbody>
</table>

T107-a-2

Orange (\textit{Citrus sinensis}) and Tangor (\textit{Citrus nobilis}) from Australia

Pest: \textit{Ceratitis capitata} (Mediterranean fruit fly)

Treatment: T107-a-2 Cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.4 °F (3.0 °C) or below</td>
<td>20 days</td>
</tr>
</tbody>
</table>

\(^{17}\) Pluots and plumcots are considered hybrids of plums and apricots and can be treated using T107-a.

\(^{18}\) Citrus includes clementine, grapefruit, lime, lemon, mandarin, orange, satsuma, tangor, tangerine, and other fruits grown from \textit{Citrus reticulata} or its hybrids.
T107-a-3

Lemon (Citrus limon) from Australia

Pest: *Ceratitis capitata* (Mediterranean fruit fly)

Treatment: **T107-a-3** Cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.6 °F (2.0 °C) or below</td>
<td>16 days</td>
</tr>
<tr>
<td>37.4 °F (3.0 °C) or below</td>
<td>18 days</td>
</tr>
</tbody>
</table>

T107-b

Apple, Apricot, Cherry, Ethrog, Grapefruit, Litchi, Longan, Orange, Peach, Persimmon, Plum, Pomegranate, Tangerine (includes Clementine), White Zapote

Pest: *Anastrepha ludens* (Mexican fruit fly)

Treatment: **T107-b** Cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 °F (0.56 °C) or below</td>
<td>18 days</td>
</tr>
<tr>
<td>34 °F (1.11 °C) or below</td>
<td>20 days</td>
</tr>
<tr>
<td>35 °F (1.67 °C) or below</td>
<td>22 days</td>
</tr>
</tbody>
</table>

T107-c

Apple, Apricot, Carambola, Cherry, Grape, Grapefruit, Orange, Pomegranate, Tangerine (includes Clementine)

Pest: Species of *Anastrepha* (other than *Anastrepha ludens*)

Treatment: **T107-c** Cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 °F (0 °C) or below</td>
<td>11 days</td>
</tr>
<tr>
<td>33 °F (0.56 °C) or below</td>
<td>13 days</td>
</tr>
<tr>
<td>34 °F (1.11 °C) or below</td>
<td>15 days</td>
</tr>
<tr>
<td>35 °F (1.67 °C) or below</td>
<td>17 days</td>
</tr>
</tbody>
</table>

19 **Pluots** and **plumcots** are considered hybrids of plums and apricots and can be treated using **T107-b**.

20 **Pluots** and **plumcots** are considered hybrids of plums and apricots and can be treated using **T107-c**.
T107-d

Apple, Citrus\(^{21}\), Kiwi, Pear

Pest: *Bactrocera tryoni* (Queensland fruit fly)

Treatment: **T107-d** Cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 °F (0 °C) or below</td>
<td>13 days</td>
</tr>
<tr>
<td>33 °F (0.56 °C) or below</td>
<td>14 days</td>
</tr>
<tr>
<td>34 °F (1.11 °C) or below</td>
<td>18 days</td>
</tr>
<tr>
<td>35 °F (1.67 °C) or below</td>
<td>20 days</td>
</tr>
<tr>
<td>36 °F (2.22 °C) or below</td>
<td>22 days</td>
</tr>
</tbody>
</table>

T107-d-1

Cherry from Australia

Pest: *Bactrocera tryoni* (Queensland fruit fly)

Treatment: **T107-d-1** Cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.8 °F (1 °C) or below</td>
<td>14 days</td>
</tr>
<tr>
<td>37.4 °F (3 °C) or below</td>
<td>15 days</td>
</tr>
</tbody>
</table>

T107-d-2

Orange (Citrus sinensis), Tangerine/Clementine/Mandarin (C. reticulata), Tangelo (C. paradisi x C. reticulata) and Tangor (C. nobilis) from Australia

Pest: *Bactrocera tryoni* (Queensland fruit fly) and *B. neohumeralis* (lesser Queensland fruit fly)

Treatment: **T107-d-2** Cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 °F (0 °C) or below</td>
<td>13 days</td>
</tr>
<tr>
<td>33 °F (0.56 °C) or below</td>
<td>14 days</td>
</tr>
<tr>
<td>37.4 °F (3.0 °C) or below</td>
<td>16 days</td>
</tr>
</tbody>
</table>

T107-d-3

Lemon (Citrus limon) and Grapefruit from Australia

Pest: *Bactrocera tryoni* (Queensland fruit fly) and *B. neohumeralis* (lesser Queensland fruit fly)

Treatment: **T107-d-3** Cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>37.4 °F (3.0 °C) or below</td>
<td>14 days</td>
</tr>
</tbody>
</table>

\(^{21}\) Citrus includes clementine, grapefruit, lime, lemon, mandarin, orange, satsuma, tangor, tangerine, and other fruits grown from *Citrus reticulata* or its hybrids.
T107-e

Apricot\(^{22}\), **Citrus**\(^{23}\), **Grape**, **Nectarine**, **Peach**, **Plum**

Pest:
Thaumatotibia leucotreta (false codling moth), *Ceratitis capitata* (Mediterranean fruit fly), *C. quinaria* (five-spotted, Rhodesian, or Zimbabwean fruit fly), *C. rosa* (Natal fruit fly), and *Bactrocera invadens*\(^{24}\)

Treatment: **T107-e** Cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>31 °F (-0.55 °C) or below(^1)</td>
<td>22 days</td>
</tr>
</tbody>
</table>

\(^1\) The treatment shall not commence until all sensors are reading 31 °F (-0.55 °C) or below. If the temperature exceeds 31.5 °F (-0.27 °C), the treatment shall be extended one-third of a day for each day or part of a day the temperature is above 31.5 °F (-0.27 °C). If the exposure period is extended, the temperature during the extension period must be 34 °F (1.1 °C) or below. If the temperature exceeds 34 °F (1.1 °C) at any time, the treatment is nullified. Also, some freeze damage to the fruit may occur if the pulp temperature is allowed to drop below approximately 29.5 °F (-1.38 °C) (This varies with the commodity.)

T107-h

Carambola, Litchi (Lychee), Longan, Sand Pear

Pest:
Bactrocera dorsalis (Oriental fruit fly), *Bactrocera curcurbitae* (melon fly) and *Conopomorpha sinensis* (lychee fruit borer)

Treatment: **T107-h** Cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.8 °F (0.99 °C) or below</td>
<td>17 days</td>
</tr>
<tr>
<td>34.5 °F (1.38 °C) or below</td>
<td>20 days</td>
</tr>
</tbody>
</table>

T107-j

Carambola, Litchi (Lychee), Longan, Sand Pear

Pest:
Bactrocera dorsalis (Oriental fruit fly)

Treatment: **T107-j** Cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>33.8 °F (0.99 °C) or below</td>
<td>15 days</td>
</tr>
<tr>
<td>34.5 °F (1.38 °C) or below</td>
<td>18 days</td>
</tr>
</tbody>
</table>

Use T107-j when *Bactrocera dorsalis* is the **ONLY** pest of concern that is identified by APHIS PPQ import requirements.

\(^{22}\) Pluots and plumcots are considered hybrids of plums and apricots and can be treated using T107-e.

\(^{23}\) Consignments that received treatment T107-e may **only** arrive at Houston, TX, Newark, NJ, Philadelphia, PA, or Wilmington, DE.

\(^{24}\) The addition of this pest is pending regulatory approval.
T107-g Pecans and Hickory Nuts

Pest: *Curculio caryae* (Pecan weevil)

Treatment: T107-g Cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 °F (-17.78 °C) or below</td>
<td>7 days</td>
</tr>
</tbody>
</table>

T107-f Ya Pear from China

Treatment: T107-f Cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>32 °F (0 °C) or below</td>
<td>10 days</td>
</tr>
<tr>
<td>33 °F (0.56 °C) or below</td>
<td>11 days</td>
</tr>
<tr>
<td>34 °F (1.11 °C) or below</td>
<td>12 days</td>
</tr>
<tr>
<td>35 °F (1.67 °C) or below</td>
<td>14 days</td>
</tr>
</tbody>
</table>

T107-i Barhi Date (*Phoenix dactylifera* L.’Barhi’)

Pest: *Ceratitis capitata* (Mediterranean fruit fly)

Treatment: T107-i Cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 °F (1.11 °C) or below</td>
<td>14 days</td>
</tr>
<tr>
<td>35 °F (1.67 °C) or below</td>
<td>16 days</td>
</tr>
<tr>
<td>36 °F (2.22 °C) or below</td>
<td>18 days</td>
</tr>
</tbody>
</table>

T107-L Orange (*Citrus sinensis*) and Tangerine/Clementine/Mandarin (*C. reticulata*)

Pest: *Bactrocera zonata* (Peach fruit fly), *Ceratitis capitata* (Mediterranean fruit fly), *C. rosa* (Natal fruit fly), and *Anastrepha* spp. (other than *A. ludens*)

Treatment: T107-L Cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>35.0 °F (1.67 °C) or below</td>
<td>18 days</td>
</tr>
</tbody>
</table>
Fruits for Which Fumigation Followed by Cold Treatment Is Authorized

The following treatment schedules (fumigation followed by cold treatment) are authorized by Plant Protection and Quarantine (PPQ) for the control of specific pests associated with shipments of fruit. The treatment schedule that must be used for a specific commodity from a specific country is listed in the Fruits and Vegetables Import Requirement database (FAVIR). These treatment schedules indicate the specific pests for which they are designed to control.

Important

For Hawaiian-grown avocados, research has shown that, during the process of cold treatment (T108-a), a single transient heat spike of no greater than 39.6 °F (4.2 °C) and no longer than 2 hours, during or after 6 days of cold treatment, does not affect the efficacy of the treatment. However, in the absence of supporting research, such a tolerance for heat spikes shall not be extended to other fruits.

Notice

Some varieties of fruit may be injured by exposure to MB. Importers should be encouraged to treat small samples of fruit to determine tolerance levels before shipping commercial quantities. The USDA is not liable for damages caused by quarantine.
Treatment Schedules T100 - Schedules for Fruit, Nuts, and Vegetables
T108—Fumigation Plus Refrigeration of Fruits

T108-a

Apple, Apricot, Avocado, Cherry, Grape, Kiwi, Nectarine, Peach, Pear, Plum, Quince

Pest: *Bactrocera cucurbitae* (melon fly), *Bactrocera dorsalis* (Oriental fruit fly), *Bactrocera tryoni* (Queensland fruit fly), *Brevipalpus chilensis* (Chilean false red mite), *Ceratitis capitata* (Mediterranean fruit fly)

Treatment: **T108-a** Fumigation plus Cold treatment

Three alternative schedules based upon the fumigation exposure time

Important

Pretreatment conditioning for avocado (heat shock or 100.4 °F (38 °C) for 10 to 12 hours) is optional and is the responsibility of the shipper. The pretreatment conditioning, which may improve fruit quality, is described in *HortScience* 29 (10): 1166-1168. 1994. and 30(5): 1052-1053 (1995)

NOTICE

Check the Fruits and Vegetables Import Requirement database (FAVIR) to determine the required treatments for a commodity from a specific country.

Important

Some varieties of fruit may be injured by the 3-hour exposure. Importers should be encouraged to test treat small quantities to determine tolerance before shipping commercial quantities

Important

Time lapse between fumigation and start of cooling not to exceed 24 hours.

25 Plumcot and pluot are considered hybrids of plums and apricots and may also be treated using T108-a provided they are treated under Section 18 Crisis exemption.

26 Fumigation may cause severe damage to Chinese, Japanese, Asian and Sand Pears. Obtain the importer's consent before fumigation.
T108-a-1

Treatment: **T108-a-1**\(^{27}\) MB at NAP—tarpaulin or chamber followed by cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft(^3))</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F (21.11 °C) or above</td>
<td>2 lbs</td>
<td>0.5 hr: 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 hrs: 18</td>
</tr>
</tbody>
</table>

Followed by cold treatment

Refrigeration

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 to 37 °F (0.56 to 2.77 °C)</td>
<td>4 days</td>
</tr>
<tr>
<td>OR 38 to 47 °F (3.33 to 8.33 °C)</td>
<td>11 days</td>
</tr>
</tbody>
</table>

T108-a-2

Treatment: **T108-a-2**\(^{28}\) MB at NAP—tarpaulin or chamber followed by cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft(^3))</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F (21.11 °C) or above</td>
<td>2 lbs</td>
<td>0.5 hr: 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 hrs: 18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5 hrs: 18</td>
</tr>
</tbody>
</table>

Followed by cold treatment

Refrigeration

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 to 40 °F (1.11 to 4.44 °C)</td>
<td>4 days</td>
</tr>
<tr>
<td>OR 41 to 47 °F (5.0 to 8.33 °C)</td>
<td>6 days</td>
</tr>
<tr>
<td>OR 48 to 56 °F (8.88 to 13.33 °C)</td>
<td>10 days</td>
</tr>
</tbody>
</table>

\(^{27}\) **DO NOT** use T108-a-1 for Chilean False Red Mite (*Brevipalpus chilensis*). Use T108-a-3.

\(^{28}\) **DO NOT** use T108-a-2 for Chilean False Red Mite (*Brevipalpus chilensis*). Use T108-a-3.
Treatment Schedules
T100 - Schedules for Fruit, Nuts, and Vegetables
T108—Fumigation Plus Refrigeration of Fruits

T108-a-3

Treatment: T108-a-3 MB at NAP—tarpaulin or chamber followed by cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F (21.11 °C) or above</td>
<td>2 lbs</td>
<td>0.5 hr: 25, 2 hrs*: 18, 2.5 hrs: 18, 3 hrs: 17</td>
</tr>
</tbody>
</table>

Followed by cold treatment

Refrigeration

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>43 °F to 47 °F (6.11 to 8.33 °C)</td>
<td>3 days</td>
</tr>
<tr>
<td>OR 48 °F to 56 °F (8.88 to 13.33 °C)</td>
<td>6 days</td>
</tr>
</tbody>
</table>

T108-b

Apple, Grape, and Pear

Pest: Austrotortrix spp. and Epiphyas spp. (light brown apple moth complex), Bactrocera tryoni (Queensland fruit fly), Ceratitis capitata (Mediterranean fruit fly) and other fruit flies

Treatment: T108-b MB at NAP—tarpaulin or chamber followed by cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 °F (10 °C) or above</td>
<td>1.5 lbs</td>
<td>0.5 hr: 23, 2 hrs: 20</td>
</tr>
<tr>
<td>40-49 °F (4.44 to 9.44 °C)</td>
<td>2 lbs</td>
<td>0.5 hr: 30, 2 hrs: 25</td>
</tr>
</tbody>
</table>

Followed by cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 °F (0.56 °C) or below</td>
<td>21 days</td>
</tr>
</tbody>
</table>

Important

Load **not** to exceed 80 percent of chamber capacity. Time lapse between fumigation and start of cooling **not** to exceed 24 hours.

29 Fumigation may cause **severe** damage to Chinese, Japanese, Asian and Sand Pears. Obtain the importer’s consent before fumigation.
T109—Cold Treatment Plus Fumigation of Fruits

Apple, Grape, and Pear\(^\text{30}\) from Australia

Pest: \textit{Austrotortrix} spp. and \textit{Epiphyas} spp. (light brown apple moth complex), \textit{Bactrocera tryoni} (Queensland fruit fly), \textit{Ceratitis capitata} (Mediterranean fruit fly) and other fruit flies

Treatment: T109-d-1 Cold treatment followed by MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 °F (0.56 °C) or below</td>
<td>21 days</td>
</tr>
</tbody>
</table>

Followed by MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft(^3))</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F (21.11 °C) or above</td>
<td>2 lbs</td>
<td>30</td>
</tr>
<tr>
<td>60 to 69 °F (15.55 to 20.55 °C)</td>
<td>2.5 lbs</td>
<td>36</td>
</tr>
<tr>
<td>40 to 59 °F (4.44 to 15 °C)</td>
<td>3 lbs</td>
<td>44</td>
</tr>
</tbody>
</table>

Alternate treatment for \textit{Austrotortrix} and \textit{Epiphyas} is fumigation plus refrigeration (\textit{T108-b} on page 5-2-87).

Alternate treatment for grapes from Australia as a fruit fly precautionary treatment for \textit{Bactrocera tryoni} and \textit{Ceratitis capitata} is fumigation plus refrigeration (\textit{T108-a} on page 5-2-85 and \textit{T108-b} on page 5-2-87).

\(\text{NOTICE}\) Load not to exceed 80 percent of capacity.

\(\text{30}\) Fumigation may cause severe damage to Chinese, Japanese, Asian and Sand Pears. Obtain the importer’s consent before fumigation.
T109-a Apple (‘Fuji’ Apple from Japan and Korea)

Pest: *Carposina niponensis* (peach fruit moth), *Conogethes punctiferalis* (yellow peach moth), *Tetranychus viennensis* (fruit tree spider mite), *Tetranychus kanzawai* (Kanzawa mite)

Two alternative schedules based on type of container

T109-a-1 Treatment: T109-a-1 (apples in plastic field bins at maximum load factor 50 percent or less) Cold treatment followed by MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 °F (1.11 °C) or below</td>
<td>40 days</td>
</tr>
</tbody>
</table>

Followed by MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 °F or (10 °C) above</td>
<td>3 lbs</td>
<td>0.5 hr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>44</td>
</tr>
</tbody>
</table>

T109-a-2 Treatment: T109-a-2 (apples in only cardboard cartons at maximum load factor 40 percent or less) Cold treatment followed by MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 °F (1.11 °C) or below</td>
<td>40 days</td>
</tr>
</tbody>
</table>

Followed by MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>59 °F (15 °C) above</td>
<td>2 lbs 6 oz</td>
<td>0.5 hr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>35</td>
</tr>
</tbody>
</table>
T110—Quick Freeze

Under Development: See “Quick Freeze Guidelines” on page-3-7-21 for operational guidelines and equipment specifications.

Never use this treatment for the control of bruchid beetles in dried beans. Research has shown that a treatment of -18.0 °C (-0.4 °F) for 14 days would be needed to be efficacious.

Important

T110-a Treatment: T110-a — Quick Freeze

1. Initially, lower the commodity’s temperature to 0 °F (-17.77 °C) or below.
2. Hold the commodity’s temperature at 20 °F (-6.66 °C) or below for at least 48 hours.

 The commodity may be transported during the 48-hour treatment period, but at no time may the commodity’s temperature rise above 20 °F (-6.66 °C) prior to release.

Certain fruits and vegetables are admissible from all foreign countries after receiving this treatment in accordance with 7CFR 319.56-12. Also, interstate movement of all fruits and vegetables from offshore areas of the United States (except mango from Hawaii) is authorized in the frozen state after being quick frozen.

T110-b Treatment: T110-b — Quick Freeze for Destruction

T110-b may ONLY be used with permission from CPHST-AQI.

Contact 919-855-7450 for official approval.

Important

1. Initially, lower the commodity’s temperature to 0 °F (-17.77 °C) or below.
2. Hold the commodity’s temperature at 20 °F (-6.66 °C) or below for at least 48 hours.

 The commodity may be transported during the 48-hour treatment period, but at no time may the commodity’s temperature rise above 20 °F (-6.66 °C) prior to release.

3. After treatment, transport the commodity to a landfill for deep burial.
T110-c Miscellaneous Food/Feed Commodities

T110-c-1
Pest: Quarantine-significant snails of the families Bradybaenidae, Geomitridae, Helicidae, Helicellidae, Hygromiidae, and Succineidae, including the following genera:
- *Bradybaena*
- *Cochlicella*
- *Trochoidea*
- *Candidula*
- *Helicella*
- *Xerolenta*
- *Cepaea*
- *Helicostyla*
- *Xeropicta*
- *Cathaica*
- *Theba*
- *Xerosecta*
- *Cernuella*
- *Trishoplita*
- *Xerotricha*

Treatment: T110-c-1—Cold Treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 °F</td>
<td>48 hrs</td>
</tr>
</tbody>
</table>

T110-c-2
Pest: Quarantine-significant snails of the family Helicidae, including the following genera:
- *Helix*
- *Otala*

Treatment: T110-c-2—Cold Treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 °F</td>
<td>32 hrs</td>
</tr>
<tr>
<td>10 °F</td>
<td>48 hrs</td>
</tr>
</tbody>
</table>

T110-c-3
Pest: Quarantine-significant snails of the family Achatinidae, including the following genera:
- *Achatina*
- *Lignus*
- *Archachatina*
- *Limicolaria*

Treatment: T110-c-3—Cold Treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 °F</td>
<td>8 hrs</td>
</tr>
<tr>
<td>10 °F</td>
<td>16 hrs</td>
</tr>
<tr>
<td>20 °F</td>
<td>24 hrs</td>
</tr>
</tbody>
</table>

Historically these treatments have been used on nonfood/nonfeed commodities. Be aware that the treatment may result in severe damage to food or feed commodities. T110-c schedules may ONLY be used with permission from CPHST-AQI. Contact 919-855-7450 for official approval.

Temperature

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 °F</td>
<td>48 hrs</td>
</tr>
<tr>
<td>0 °F</td>
<td>32 hrs</td>
</tr>
<tr>
<td>10 °F</td>
<td>48 hrs</td>
</tr>
<tr>
<td>20 °F</td>
<td>24 hrs</td>
</tr>
</tbody>
</table>
Treatment Schedules

T200 - Schedules for Propagative Plant Material

Contents

The following schedules of the T200 series are arranged by category such as a specifically named plant, type of plant, character of growth, or pest.

Plant and plant parts treated under the T200 series schedules are not to be used for food or feed purposes.

T201—Plants

T201-q Aquatic plants infested with freshwater snails 5-3-3
T201-e-1 and T201-e-2 Bromeliads 5-3-3
T201-f-1 and T201-f-2 Cacti and other succulents 5-3-4
T201-g-1, T201-g-2 and T201-g-3 Chrysanthemum spp., rooted and unrooted cuttings 5-3-5
T201-l Commodities infested with quarantine-significant slugs 5-3-6
T201-h-1 Cycads—excluding Dioon edule (chestnut diono) 5-3-6
T201-a-1 and T201-a-2 Deciduous woody plants (dormant) 5-3-7
T201-h-2 Dioon edule (chestnut diono) 5-3-8
T201-i-1 and T201-i-2 Dieffenbachia spp., Dracaena spp., Philodendron spp. (plants and cuttings) 5-3-8
T201-b-1 Evergreens*, (Broadleaved genera, such as Azalea, Berberis, Camellia, Ilex, and Photinia) 5-3-9
T201-k-1 Foliated hosts plants of Dialeurodes citri (citrus whitefly), excluding Osmanthus americanus 5-3-10
T201-c-1 and T201-c-2 Greenhouse-grown plants, herbaceous plants and cuttings, and greenwood cuttings of woody plants 5-3-10
T201-n Host plants of Aleurocanthus woglumi (citrus blackfly) 5-3-12
T201-o-1 and T201-o-2 Host plants of Omalonyx unguis and Succinea spp. (snails) 5-3-12
T201-k-2 Nonfoliated hosts plants of Dialeurodes citri (citrus whitefly), excluding Osmanthus americanus 5-3-13
T201-d-1, T201-d-2, T201-d-3, T201-d-4, and T201-d-5 Orchids, plants, and cuttings 5-3-14
T201-e-3-1 and T201-e-3-2 Pineapple slips 5-3-15
T201-j Pines (Pinus spp.) from Canada 5-3-16
T201-m-1 Plant cuttings (Scion wood)* 5-3-17
T201-m-2 Plant cuttings (greenwood cuttings of woody plants and herbaceous plant cuttings)* 5-3-18
T201-m-3 and T201-m-4 Plant cuttings (root cuttings)* 5-3-18
T201-p Plant material not tolerant to fumigation 5-3-19

T202—Bulbs, Corms, Tubers, Rhizomes, and Roots
T202-b Astilbe roots 5-3-21
T202-c Banana roots 5-3-21
T202-j or T202-j-1 Garlic 5-3-22
T202-e-1 Gladiolus spp. 5-3-23
T202-f Horseradish roots 5-3-23
T202-g Lily bulbs packed in subsoil 5-3-24
T202-h Lycoris 5-3-24
T202-i-1 Narcissus 5-3-24
T202-a-1 Selaginella spp. (Resurrection plants) 5-3-25
T202-d Yams (Dioscorea spp.) and Sweet Potatoes (Ipomoea spp.) 5-3-26

T203—Seeds
T203-m Avocado (seeds only, without pulp) 5-3-28
T203-e or T203-e-1 Chestnuts (does not include water chestnuts) and Acorns 5-3-28
T203-i-1, T203-i-2, or T203-i-3 Conifer seeds (species with small seeds, such as Picea spp., Pinus sylvestris, and Pinus mugo) 5-3-29
T203-i-3 Cottonseed—bagged, packaged, or in bulk 5-3-31
T203-k or T203-k-1 Macadamia nuts (as seeds) 5-3-33
T203-g-1 Pods and seed of Kenaf, Hibiscus, and Okra 5-3-32
T203-k Macadamia nuts (as seeds) 5-3-33
T203-h—Rosmarinus seeds 5-3-34
T203-l Seeds 5-3-34
T203-b Seeds excluding seeds of Vicia spp. 5-3-35
T203-a-1, T203-a-2, or T203-a-3 Seeds not specifically listed in the T203 Schedules 5-3-35
T203-o-1 Seeds of Casuarina 5-3-36
T203-p Seeds of Citrus (Rutaceae family) 5-3-39
T203-j or T203-j-1 Seeds of Hevea brasiliensis (rubber tree) 5-3-37
T203-o-3, T203-c, T203-o-4-1, or T203-o-4-2 Seeds of Leguminosae (Fabaceae) 5-3-38
T203-d-1 Seeds of Leguminosae (Fabaceae), excluding Vicia faba 5-3-38
T203-o-5 Seeds of Lonicera and Other seeds 5-3-39
T203-p Seeds of Citrus (Rutaceae family) 5-3-39
T203-o-2 Seeds of Umbelliferae 5-3-39
T203-c-1 or T203-d-2 Seeds of Vicia spp. (vetch seeds) including seeds of Vicia faba (Faba or Fava bean) 5-3-40
T203-n Seeds with infested pulp 5-3-40
The condition of the plants at the time of treatment may have a bearing on reaction to treatment.

Any new or unusual observations relating to treatment tolerance of treated material should be recorded and reported to the USDA-APHIS-PPQ-S&T-CPHST-AQI, giving details of the treatment and the conditions of application. In appraising the effects of a particular treatment, take care to distinguish between the actual or apparent effects attributable to the treatment and those not related to the treatment.

CONTAINERS. Give boxes, crates, and other propagative containers the same treatment as the propagative material with which they are associated. Exceptions are necessary, however, when significant pests are found infesting containers or packing materials that would not be controlled by the treatment required for the contents.

T201—Plants

Plant Tolerance. In general, nursery stock should be fumigated in a normal atmospheric pressure (NAP) chamber. Damage may occur when treatment is performed under a tarpaulin. When selecting a treatment for a particular pest, consider the tolerance of the plant material to the treatment. Refer to the “Handbook of Plant Tolerances to Quarantine Treatments” to determine if a genus or species is tolerant to treatment.

T201-q Aquatic plants infested with freshwater snails

Pest: Snails of the following families: Amphulariidae, Bulinidae, Limnaeidae, Planorbidae, Viviparidae

Treatment: T201-q—Hot water treatment 112 °F for 10 minutes. *Elodea densa* and *Cabomba caroliniana* plants not tolerant to this treatment. Inspection stations should refer to their reference report guide for host tolerances to the hot water treatment.

T201-e-1 Bromeliads

Pest: External feeders

Treatment: T201-e-1 MB ("Q" label only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
</tbody>
</table>
Bromeliads

Pest: Internal feeders such as borers and miners
Treatment: T201-e-2 MB (“Q” label only) at 15” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
</tbody>
</table>

Cacti and other succulents

Two schedules based on type of pest
Pest: External feeders (other than soft scales) infesting collected dormant and nondormant plant material
Treatment: T201-f-1 MB (“Q” label only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Brachyrhinus larvae</td>
</tr>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>

Cacti and other succulents

Two schedules based on type of pest
Pest: Borers and soft scales
Treatment: T201-f-2 MB (“Q” label only) in 15” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Brachyrhinus larvae</td>
</tr>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>
T201-g-1

Chrysanthemum spp., rooted and unrooted cuttings

Pest: Aphids
Treatment: T201-g-1 MB (“Q” label only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft²)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>0.75 lb</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>

Vacuum fumigation requires prior consent of the importer. If consent is denied, entry should be refused unless hand removal plus 100 percent inspection is feasible.

T201-g-2

Chrysanthemum spp., rooted and unrooted cuttings

DO NOT USE this treatment schedule. The schedule is not authorized for use and will be removed or revised following a Federal Register notice according to 7 CFR 305.3.

Pest: External feeders
Treatment: T201-g-2 Malathion-carbaryl chemical dip—Hand removal of pests of infested parts *plus* a malathion-carbaryl chemical dip. Solution prepared by adding 3 level tablespoons of 25 percent malathion wettable powder and 3 level tablespoons of 50 percent carbaryl wettable powder to each gallon of water. The addition of a sticker-spreader formulation may be required for hard to wet plants. Use fresh chemicals and prepare dip for the same day use. Plants, including the roots, should be entirely submerged in the chemical dip for 30 seconds.

Obtain consent of the importer prior to treatment of the following plants since some damage may occur:
- Bromeliads, see T201-e-3-1 on page 5-3-15
- Kalanchoe synsepala, see T201-p on page 5-3-19
- Sedum adolphi, see T201-p on page 5-3-19
T201-g-3

Chrysanthemum spp., rooted and unrooted cuttings

Pest: Leafminers, aphids, mites, etc. *

Treatment: T201-g-3—Hot water at 110-111 °F for 20 minutes

*This treatment is marginal as to host tolerance.

Important

Chrysanthemum spp. from the Dominican Republic and Colombia when infested with Agromyzid leaf miners requires no treatment unless destined to Florida.

T201-l

Commodities infested with quarantine-significant slugs

Pest: Quarantine significant slugs of the families Agriolimacidae, Arionidae, Limacidae, Milacidae, Philomycidae, and Veronicellidae, including the following genera:

- *Agriolimax*
- *Leidyula*
- *Pseudoveronicella*

- *Arion*
- *Limax*
- *Sarasinula*

- *Colostus*
- *Meghimatium*
- *Semperula*

- *Deroceras*
- *Milax*
- *Vaginulus*

- *Diplosolenodes Pallifera*
- *Veronicella*

Treatment: T201-l MB (“Q” label only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90-96 °F</td>
<td>1 lb</td>
<td>12</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>1.25 lbs</td>
<td>15</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>1.5 lbs</td>
<td>18</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>1.75 lbs</td>
<td>22</td>
</tr>
</tbody>
</table>

T201-h-1

Cycads—excluding _Dioon edule_ (chestnut dioon)

Pest: External feeders

Treatment: T201-h-1 MB (“Q” label only) in 15” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-79 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>40-59 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
</tbody>
</table>
T201-a-1

Deciduous woody plants (dormant)

Pest: External feeders

Treatment: T201-a-1 MB (“Q” label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Brachyrhinus larvae</td>
</tr>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>

For gypsy moth egg masses, use **T313-a** on page **5-4-38** or **T313-b** on page **5-4-38**.

Important

If treating for mealybugs, use **T305-c** on page **5-4-19**.

Notice

This schedule is not entirely satisfactory for use against egg masses of *Yponomeuta malinellus* (apple ermine moth).

T201-a-2

Deciduous woody plants (dormant)

root cuttings, scion wood cuttings, and nonfoliated citrus whitefly host—such as *Acer, Berberis, Fraxinus, Philadelphus, Rosa, Spiraea,* and *Syringa*

Pest: Borers

Treatment: T201-a-2 MB (“Q” label only) in 26” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Brachyrhinus larvae</td>
</tr>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>

Important

Citrus whitefly hosts, see **T201-k-1** on page **5-3-10** Evergreens* broadleaved genera

03/2016-133

Treatment Manual

5-3-7
T201-h-2
Dioon edule (chestnut dioon)
For other cycads see cycads
Pest:
External feeders
Treatment:
T201-h-2 MB (“Q” label only) in 26” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-79 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>40-59 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
</tbody>
</table>

T201-i-1
Dieffenbachia spp., Dracaena spp., Philodendron spp. (plants and cuttings)
Pest:
External feeders
Treatment:
T201-i-1 MB (“Q” label only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90-96 °F</td>
<td>2 lb</td>
<td>24</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2 lbs</td>
<td>24</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
</tbody>
</table>

This treatment may cause leaf tip burn in *Dieffenbachia* (dumbcane).

Important

T201-i-2
Dieffenbachia spp., Dracaena spp., Philodendron spp. (plants and cuttings)
Pest:
Internal feeders
Treatment:
T201-i-2 MB (“Q” label only) in 26” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
</tbody>
</table>
Immature and tender plants and cuttings, and species and varieties known or considered to be affected by MB, should **not** be fumigated without consent of the importer. Without such consent, REFUSE entry.

This schedule may cause leaf tip burn in Dieffenbachia (dumbcane).

<table>
<thead>
<tr>
<th>T201-b-1</th>
<th>Evergreens* (Broadleaved genera, such as Azalea, Berberis, Camellia, Ilex, and Photinia)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Coniferous genera, such as Cedrus, Cupressus, Juniperus, Podocarpus, Thuja, and Taxus)</td>
</tr>
<tr>
<td></td>
<td>Pest: External feeder</td>
</tr>
<tr>
<td></td>
<td>Treatment: T201-b-1 MB (“Q” label only) at NAP—tarpaulin or chamber</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Brachyrhinus larvae</th>
<th>All others</th>
<th>Brachyrhinus larvae</th>
<th>All others</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>1.5 lbs</td>
<td>2.5 hrs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2 lbs</td>
<td>2.5 hrs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>2.5 lbs</td>
<td>3 hrs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>2.5 lbs</td>
<td>3.5 hrs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>2.5 lbs</td>
<td>4 hrs</td>
<td>3.5 hrs</td>
</tr>
</tbody>
</table>

*If treating for mealybugs, fumigate at 60 °F or above.

Exceptions:
- Araucaria spp., see T201-c-1 on page 5-3-10
- Azalea indica, see T201-c-2 on page 5-3-11
- Cycads, see T201-l on page 5-3-6
- Citrus whitefly hosts, see T201-k-1 on page 5-3-10
- Daphne spp., see T201-c-1 on page 5-3-10
- Lavandula spp., see T201-p-1 on page 5-3-19
- Osmanthus americanus, see T201-p-2 on page 5-3-20
- Pinus from Canada to certain States, see T201-j on page 5-3-16
- Peanuts with gypsy moth egg masses, see T313-a on page 5-4-38

Important

Some species and varieties of evergreens, particularly in Azalea and Juniperus have low tolerances and should be fumigated as in schedule T201-c; those known or believed to be intolerant should be handled under T201-p. For tolerance data, see Handbook of Plant Tolerances to Quarantine Treatments.
T201-k-1

Foliated hosts plants of *Dialeurodes citri* (citrus whitefly), excluding *Osmanthus americanus*

For *Osmanthus americanus*, see T201-p

Pest:

Dialeurodes citri (citrus whitefly)

Treatment:

T201-k-1 MB ("Q" label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³):</th>
<th>Exposure Period:</th>
</tr>
</thead>
<tbody>
<tr>
<td>85-96 °F</td>
<td>1.5 lbs Brachyrhinus larvae, 1 lb All others</td>
<td>4 hrs</td>
</tr>
<tr>
<td>80-84 °F</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs All others</td>
<td>3.5 hrs</td>
</tr>
</tbody>
</table>

T201-c-1

Greenhouse-grown plants, herbaceous plants and cuttings, and Greenwood cuttings of woody plants

For cut flowers and greenery, use T305-a, which is identical to this schedule.

Pest:

External feeders*, leaf miners, thrips

Treatment:

T201-c-1 MB ("Q" label only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80-90 °F</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>24</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>30</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3.5 lbs</td>
<td>41</td>
</tr>
</tbody>
</table>

*If treating for mealybugs, fumigate with 2.5 lbs. at 60 °F or above.
T201-c-2

Greenhouse-grown plants, herbaceous plants and cuttings, and greenwood cuttings of woody plants

Pest: Borers, soft scales

For cut flowers and greenery, use T305-b on page 5-4-18, which is identical to this schedule.

Treatment: T201-c-2 MB (“Q” label only) in 15" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft²)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-90 °F</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
</tbody>
</table>

Vacuum fumigation requires prior consent of the importer. If consent is denied, refuse entry unless T201-c-1, plus hand removal of these pests is feasible. For shipments of a size to permit 100 percent inspection, plants with these pests may be handled separately. Vacuum fumigation is not required for soft scales known to be widely distributed in the United States.

Exceptions to Schedules T201-c-1 and 2
- Bromeliads, see T201-e-3-1 on page 5-3-15
- Cacti and other succulents, see T201-f-2 on page 5-3-4
- Chrysanthemum spp., see T201-g-1 on page 5-3-5
- Cycads, see T201-I on page 5-3-6
- Cyclamen mites, T201-a-2 on page 5-3-7
- Dieffenbachia spp., Dracaena spp., and Philodendron spp., see T201-i-1 on page 5-3-8
- Kalanchoe synsepala, see T201-p-1 on page 5-3-19
- Lavandula spp., see T201-p-2 on page 5-3-20
- Orchids, see T201-d-1 on page 5-3-14
- Osmanthus americanus, see T201-p on page 5-3-19
- Pelargonium spp., see T201-p on page 5-3-19
- Sedum adolphi, see T201-p on page 5-3-19
- Plants infested with Succinea horticola, see T201-o-1 on page 5-3-12
- Plants infested with Veronicella or other slugs, see T201-I on page 5-3-6
Host plants of *Aleurocanthus woglumi* (citrus blackfly)

Pest: *Aleurocanthus woglumi* (citrus blackfly)

Treatment: T201-n MB (“Q” label only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>85 °F or above</td>
<td>1 lb</td>
<td>13</td>
</tr>
<tr>
<td>80-85 °F</td>
<td>1.25 lbs</td>
<td>16</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>65-69 °F</td>
<td>1.75 lbs</td>
<td>23</td>
</tr>
</tbody>
</table>

Precautions within citrus blackfly quarantine areas:

- Conduct tarpaulin fumigations in shaded areas, if possible, to prevent the development of high space temperatures within the tarpaulin enclosure.
- Fumigate 4 to 5 days after plants are dug, balled, and burlapped, if possible.
- Roots and soil should be moist prior to fumigation. Watering should be deferred for 12 hours after fumigation unless there is wilting, in which case, water as needed.
- Avoid excessive air circulation during fumigation or during the post-treatment aeration period.
- Avoid placing plants in direct sunlight after fumigation.

Host plants of *Omalonyx unguis* and *Succinea spp.* (snails)

These treatments are for use on plants that may not tolerate fumigation. Use either of the following treatments.

Pest: *Omalonyx unguis* and *Succinea spp.* (snails)

Treatment: T201-o-1 Water Spray—Use a high-pressure water spray on the foliage to flush snails from the plants. Care should be taken not to spray the root systems of conifers since they will be damaged. The run-off drain must be screened to catch snails before drainage into the sewer system. Reinspect plants after wash.
Host plants of *Omalonyx unguis* and *Succinea spp.* (snails)

DO NOT USE this treatment schedule. The schedule is not authorized for use and will be removed or revised following a Federal Register notice according to 7 CFR 305.3.

May 01, 2012

Treatment: **T201-o-2** Chemical Dip—Dip plants with a Malathion-carbaryl chemical dip. Solution prepared by adding 3 level tablespoons of 25 percent Malathion wettable powder and 6 level teaspoons of 50 percent carbaryl wettable powder per gallon of water with a sticker-spreader formulation.

Nonfoliated hosts plants of *Dialeurodes citri* (citrus whitefly), excluding *Osmanthus americanus*

Pest: *Dialeurodes citri* (citrus whitefly)

Treatment: T201-k-2 MB (“Q” label) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft²)</th>
<th>Exposure Period:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brachyrhinus larvae</td>
<td>All others</td>
<td></td>
</tr>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>
T201-d-1

Orchids, plants, and cuttings

Pest: External feeders, other than soft scales
Collected: Dormant or nondormant
Treatment: T201-d-1 MB (“Q” label only) at NAP tarpaulin or chamber,

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
<th>Brachyrhinus larvae</th>
<th>All others</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>2.5 hrs</td>
<td></td>
<td>2 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
<td></td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
<td></td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
<td></td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
<td></td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
<td></td>
<td>3.5 hrs</td>
</tr>
</tbody>
</table>

Some varieties of Orchids may be sensitive to methyl bromide (MB) treatments. These varieties include *Cymbidium, Cypripedium,* and *Phalaenopsis.* For alternatives, see T201-p on page 5-3-19.

Notice

If treating for mealybugs, use T305-c on page 5-4-19.

T201-d-2

Orchids, plants, and cuttings

Pest: External feeders (other than soft scales) infesting greenhouse-grown plant material
Treatment: T201-d-2 MB (“Q” label only) at NAP tarpaulin or chamber,

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>1 lb</td>
<td>2 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>1.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3.5 lbs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>
T201-d-3

Orchids, plants, and cuttings

Treatment: T201-d-3 MB (“Q” label only) in 15" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>3 lbs</td>
<td>1 hr</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>3 lbs</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
</tbody>
</table>

For nondormant plants, collected or greenhouse grown, vacuum fumigation requires prior consent of the importer. If consent is denied, REFUSE entry unless T201-a-1 plus hand removal of these pests is feasible. Plant shipments of a size to permit 100 percent inspection and pest removal may be handled separately.

T201-d-4

Orchids, plants, and cuttings

Pest: Cecidomyid galls

Treatment: T201-d-4 Excised in all cases

T201-d-5

Orchids, plants, and cuttings

Pest: Leaf miner, *Eurytoma* spp., infesting *Rhynchostylis*

Treatment: T201-d-5 Hot water—118 °F for 0.5 hour followed by a cool water bath

T201-e-3-1

Pineapple slips

Two alternative schedules

Pest: Various

Treatment: T201-e-3-1 MB (“Q” label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>1.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>
T201-e-3-2 Pineapple slips

Alternative schedule

Treatment: T201-e-3-2 MB ("Q" label only) in 26” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>1.5 lbs</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2 lbs</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2.5 lbs</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>1.5 hrs</td>
</tr>
</tbody>
</table>

Some varieties of bromeliads may be sensitive to methyl bromide (MB) treatments. These varieties include *Aechmea* spp., *Billbergia* spp., *Guzmania* spp., *Nidularium* spp., *Vriesia* spp., and other broad shiny-leaved types, and thin-leaved types. For alternatives, see *T201-p* on page 5-3-19.

T201-j Pines (*Pinus* spp.) from Canada

Destined to California, Idaho, Oregon, and Utah

Pest: *Rhyacionia buoliana* (European pine shoot moth)

Treatment: T201-j MB ("Q" label only) at NAP

Dosage rate for all schedules is 4 lbs MB (51 oz. minimum concentration)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>75 °F</td>
<td>2 hrs</td>
<td>59 °F</td>
<td>2 hrs 41 min</td>
</tr>
<tr>
<td>74 °F</td>
<td>2 hrs 1 min</td>
<td>58 °F</td>
<td>2 hrs 43 min</td>
</tr>
<tr>
<td>73 °F</td>
<td>2 hrs 2 min</td>
<td>57 °F</td>
<td>2 hrs 46 min</td>
</tr>
<tr>
<td>72 °F</td>
<td>2 hrs 4 min</td>
<td>56 °F</td>
<td>2 hrs 49 min</td>
</tr>
<tr>
<td>71 °F</td>
<td>2 hrs 7 min</td>
<td>55 °F</td>
<td>2 hrs 52 min</td>
</tr>
<tr>
<td>70 °F</td>
<td>2 hrs 9 min</td>
<td>54 °F</td>
<td>2 hrs 55 min</td>
</tr>
<tr>
<td>69 °F</td>
<td>2 hrs 11 min</td>
<td>53 °F</td>
<td>2 hrs 58 min</td>
</tr>
<tr>
<td>68 °F</td>
<td>2 hrs 14 min</td>
<td>52 °F</td>
<td>3 hrs 1 min</td>
</tr>
<tr>
<td>67 °F</td>
<td>2 hrs 16 min</td>
<td>51 °F</td>
<td>3 hrs 5 min</td>
</tr>
<tr>
<td>66 °F</td>
<td>2 hrs 19 min</td>
<td>50 °F</td>
<td>3 hrs 8 min</td>
</tr>
<tr>
<td>65 °F</td>
<td>2 hrs 22 min</td>
<td>49 °F</td>
<td>3 hrs 12 min</td>
</tr>
<tr>
<td>64 °F</td>
<td>2 hrs 25 min</td>
<td>48 °F</td>
<td>3 hrs 15 min</td>
</tr>
<tr>
<td>63 °F</td>
<td>2 hrs 28 min</td>
<td>47 °F</td>
<td>3 hrs 19 min</td>
</tr>
<tr>
<td>62 °F</td>
<td>2 hrs 31 min</td>
<td>46 °F</td>
<td>3 hrs 24 min</td>
</tr>
<tr>
<td>61 °F</td>
<td>2 hrs 35 min</td>
<td>45 °F</td>
<td>3 hrs 28 min</td>
</tr>
<tr>
<td>60 °F</td>
<td>2 hrs 38 min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Prior consent of the importer is required for fumigation at temperatures above 65 °F or below 50 °F and also for all bare-rooted pines, since some damage may occur.

Plant cuttings (Scion wood)*

- Pest: External feeders
- Treatment: T201-m-1 MB (“Q” label only) at NAP—tarpaulin or chamber

*See exceptions to plant cuttings.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period:</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>
T201-m-2

Plant cuttings (greenwood cuttings of woody plants and herbaceous plant cuttings)

Pest: External feeders

Treatment: T201-m-2 MB (“Q” label only) at NAP—tarpaulin or chamber

See exceptions to plant cuttings.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80-90 °F</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>24</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>30</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3.5 lbs</td>
<td>41</td>
</tr>
</tbody>
</table>

T201-m-3

Plant cuttings (root cuttings)

Pest: External feeders

Treatment: T201-m-3 MB (“Q” label only) at NAP—chamber

See exceptions to plant cuttings.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Exposure Period:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Brachyrhinus larvae</td>
</tr>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>
T201-m-4

Plant cuttings (root cuttings)

Pest: External feeders

Treatment: T201-m-4 MB (“Q” label only) at NAP—tarpaulin

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr 2.5 hrs 3 hrs 3.5 hrs 4 hrs</td>
</tr>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>24 16 — — —</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>30 20 — — —</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>36 24 — — —</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>36 24 — — —</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>36 24 — — 24</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>36 24 — — 24</td>
</tr>
</tbody>
</table>

*See exceptions to plant cuttings.

Important

Exceptions to Plant Cutting Commodities Treated with T201-m-1, T201-m-2, T201-m-3, and T201-m-4:
- Avocado, see **T201-p** on page 5-3-19
- Chrysanthemum, see **T201-g-1** on page 5-3-5
- Difenbahia, see **T201-i-1** on page 5-3-8
- Dracaena, see **T201-i-2** on page 5-3-8
- Lavandula, see **T201-p** on page 5-3-19
- Orchids, see **T201-d-1** on page 5-3-14
- Philodendron, see **T201-i-1** on page 5-3-8

T201-p

Plant material not tolerant to fumigation

Three treatments based on pest

Propagative material known to be sensitive to fumigation (see Handbook of Plant Tolerance to Quarantine Treatments) should be handled by the following methods for “quarantine action” pests. The selection of the method will depend upon the character of the plant material and the type of pests that may be found.

T201-p-1

Plant material not tolerant to fumigation

Pest: Actionable Pests Excluding Scale Insects

Treatment: **T201-p-1** Hand removal—With the exception of scale insects, hand removal of pests or infested parts and detailed inspection to ensure plants are pest free. If the characteristics of the plant growth, volume, or the type of pest are such that hand removal plus inspection may not provide a pest free shipment, then see **T201-p-2** on page 5-3-20 or **T201-p-3** on page 5-3-20.
T201-p-2

Plant material not tolerant to fumigation

DO NOT USE this treatment schedule. The schedule is not authorized for use and will be removed or revised following a Federal Register notice according to 7 CFR 305.3.

May 01, 2012

Pest: Actionable Pests

Treatment: **T201-p-2** Hand removal plus chemical dip—Hand removal of pests of infested parts *plus* a malathion-carbaryl chemical dip. Solution prepared by adding 3 level tablespoons of 25 percent malathion wettable powder and 3 level tablespoons of 50 percent carbaryl wettable powder to each gallon of water. The addition of a sticker-spreader formulation may be required for hard to wet plants. Use fresh chemicals and prepare dip for the same day use. Plants, including the roots, should be entirely submerged in the chemical dip for 30 seconds.

When the actionable pests are scale insects or their immature crawlers, prepare the solution by adding 4 level tablespoons of 25 percent malathion wettable powder (if the label allows) and 3 level tablespoons of 50 percent carbaryl wettable powder to each gallon of water. Labels registered for this concentration are currently available from the following companies:

- **Micro-Flo Company LLC**
 - Memphis, TN
 - Product: Malathion 25-WP
 - EPA Registration No. 051036-00033
 - (Tel 901-432-5131)

- **Cheminova Inc.**
 - Oak Hill Park
 - 1700 Route 23, Suite 210
 - Wayne, NJ 07470
 - Product Fyfanon 25 WP
 - EPA Registration No. 067760-00016
 - (Tel 201-305-6600)

T201-p-3

Deleted (Docket APHIS-13-009-2, July 21, 2015)
T201-p-4

Plant material not tolerant to fumigation

Pest: **Insects** (Aphidae, Thripidae, Formicidae, Coccidae, Pseudococcidae, Diaspididae, Pyralidae, Tortricidae, Syrphidae, Scarabaeidae, Cucurbitidae, Tenebrionidae)

Snails (Ampullariidae, Planorbidae)

Mites (Acaridae, Tarsonemidae, Tetranychidae, Tydeidae)

Nematodes (*Pratylenchus* (genus only))

Treatment: T201-p-4 Hand removal plus hot water treatment—Hot water at 52 °C/125 °F for 30 minutes

If hand removal is not feasible, allow the importer to fumigate at their own risk or return the commodity to the country of origin.

Under Development: See “Plant Material Not Tolerant to Fumigation” on page-3-3-15 for operational guidance and equipment specifications.

T202—Bulbs, Corms, Tubers, Rhizomes, and Roots

T202-b Astilbe roots

Pest: *Brachyrhinus* larvae

Treatment: T202-b MB (“Q” label only) in 26” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-96 °F</td>
<td>4 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>4 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>4 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>

For roots received in large cases packed in peat moss, temperatures apply to packing materials, if lower than root temperatures.

T202-c Banana roots

Pest: External feeders

Treatment: T202-c Hot water 110 °F for 30 minutes as pretreatment followed by 120 °F for 60 minutes. Requires consent of importer. Deny entry without consent unless 100 percent inspection plus pest removal is feasible.
T202-j

Garlic

Pest: *Brachycerus* spp. (garlic beetles) and *Dyspessa ulula* (Bkh.) (onion/garlic carpenterworm)

Treatment: T202-j MB (“Q” label only) in 15” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>1.5 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>

Important: Load limit **not** to exceed 80 percent of chamber.

T202-j-1

Garlic

Pest: *Brachycerus* spp. (garlic beetles) and *Dyspessa ulula* (Bkh.) (onion/garlic carpenterworm)

Treatment: T202-j-1 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
</tbody>
</table>

Important: This treatment is a precautionary requirement for *Brachycerus* spp. (garlic beetles) and *Dyspessa ulula* (Bkh.) (onion/garlic carpenterworm).
T202-e-1

Gladiolus spp.

Two alternative schedules

Pest: *Taeniothrips simplex* (gladiolus thrips)

Treatment: T202-e-1 MB ("Q" label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4.5 hrs</td>
</tr>
</tbody>
</table>

T202-e-2

Gladiolus spp.

Pest: *Taeniothrips simplex* (gladiolus thrips)

Treatment: T202-e-2 MB ("Q" label only) in 26" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
</tbody>
</table>

T202-f

Horseradish roots

Pest: External feeders

Treatment: T202-f MB in 15" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Brachyrhinus larvae</td>
</tr>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>
T202-g

Lily bulbs packed in subsoil

Pest: Internal feeders

Treatment: T202-g MB (“Q” label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4.5 hrs</td>
</tr>
</tbody>
</table>

Load limit 50 percent of chamber volume. Remove all wooden case covers. Overnight or longer aeration advisable.

T202-h

Lycoris

Pest: *Taeniothrips eucharii*

Treatment: T202-h MB in 26" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period:</th>
<th>Brachyrhinus larvae</th>
<th>All others</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>2.5 hrs</td>
<td>2 hrs</td>
<td></td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
<td>2 hrs</td>
<td></td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
<td>2 hrs</td>
<td></td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
<td>2.5 hrs</td>
<td></td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
<td>3 hrs</td>
<td></td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
<td>3.5 hrs</td>
<td></td>
</tr>
</tbody>
</table>

T202-i-1

Narcissus

Pest: *Steneotarsonemus laticeps* (bulb scale mite)

Treatment: T202-i-1 MB (“Q” label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>3.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>4 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>4 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>4 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>3.5 hrs</td>
</tr>
</tbody>
</table>
T202-i-2

Narcissus

Pest: *Steneotarsonemus laticeps* (bulb scale mite)

Treatment: T202-i-2 MB ("Q" label only) in 26” vacuum chamber

<table>
<thead>
<tr>
<th>Temperature °F</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>80-89</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-49</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
</tbody>
</table>

Important

Exposure measured from time bulbs reach 110 °F pulp temperature. Hot water should be applied within 1 month after normal harvest, or flower bud injury may develop.

T202-i-3

Narcissus

Pest: *Steneotarsonemus laticeps* (bulb scale mite)

Treatment: T202-i-3 Hot water, 110-111 °F for 1 hour

Selaginella spp. (Resurrection plants)

Pest: External feeders

Treatment: T202-a-1 MB ("Q" label only) at NAP—Chamber

<table>
<thead>
<tr>
<th>Temperature °F</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Brachyrhinus larvae</td>
</tr>
<tr>
<td>90-96</td>
<td>2 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>80-89</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>70-79</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>60-69</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>40-49</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>
Selaginella spp. (Resurrection plants)

Pest: External feeders

Treatment: T202-a-2 MB (“Q” label only) at NAP—Tarpaulin

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft²)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>24</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>30</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
</tbody>
</table>

Selaginella spp. (Resurrection plants)

Pest: Internal feeders

Treatment: T202-a-3 MB (“Q” label only) in 26” vacuum—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft²)</th>
<th>Exposure Period:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Brachyrhinus larvae</td>
</tr>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>

Yams (Dioscorea spp.) and Sweet Potatoes (Ipomoea spp.)

Pest: Internal and external feeders

Treatment: T202-d MB (“Q” label only) at NAP—Tarpaulin

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft²)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 and above °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3.5 lbs</td>
<td>44</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>4 lbs</td>
<td>50</td>
</tr>
</tbody>
</table>
Temperatures below 70 °F may cause injury to yams. Fumigations below 70 °F should only be made with consent of importer. The tuberous roots should be cured, free from surface moisture, and held at fumigation temperatures for 24 hours following treatment. Mandatory for yams for all foreign countries except Japan, Dominican Republic into Puerto Rico, and all of the West Indies into the U.S. Virgin Islands. Also, for interstate movement of sweet potatoes from Hawaii.
Seeds for Propagation. Precautionary treatment for small lots of seeds (1 lb or less) is not required if you can inspect 100 percent of the seeds and you do not find any pests.

Methyl bromide fumigation of seeds for propagation may effect germination. Obtain the importers consent prior to fumigation.

Avocado (seeds only, without pulp)

Pest: Avocado seed weevils (*Conotrachelus* spp., *Heilipus lauri*, and *Caulophilus latinasus*); avocado stem weevil (*Copturus aguacatae*), and avocado seed moth (*Stenoma catenifer*)

Treatment: T203-m MB (“Q” label only) in 26" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>4 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>4 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>4 lbs</td>
<td>4 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>5 hrs</td>
</tr>
</tbody>
</table>

Chestnuts (does not include water chestnuts) and Acorns

From all countries except Canada and Mexico

Pest: Internal feeders

Treatment: T203-e MB (“Q” label only) in 26" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-96 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>4 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>4 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>4 lbs</td>
<td>4 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>5 hrs</td>
</tr>
</tbody>
</table>
T203-e-1

Chestnut (does not include water chestnuts) and Acorns*

Pest: *Cydia splendana* (nut fruit tortrix) and *Curculio* spp.

Treatment: T203-e-1 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F and above</td>
<td>4 lbs</td>
<td>58</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>4 lbs</td>
<td>58</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>5 lbs</td>
<td>72</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>5 lbs</td>
<td>72</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>6 lbs</td>
<td>85</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>6 lbs</td>
<td>85</td>
</tr>
</tbody>
</table>

*It is a label violation to treat acorns at dosage rates greater than 4 lbs. Treat acorns only at 80 °F or above.

T203-i-1

Conifer seeds (species with small seeds, such as *Picea* spp., *Pinus sylvestris*, and *Pinus mugo*)

For species with small seeds, such as *Picea* spp., *Pinus sylvestris*, and *Pinus mugo*, in bags containing 75 lbs. draw an initial vacuum of at least 24 inches. Once the MB is introduced, then reduce the vacuum to NAP. This procedure is necessary for efficient penetration and distribution of the fumigant. Conifer seeds in bags of more than 75 lbs. each should be aerated in a well ventilated area for 24 hours, small seeds should be aerated for 48 hours.

Pest: External feeders

Treatment: T203-i-1 MB (“Q” label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-96 °F</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>

Load limit is 30 percent of chamber space. Moisture should not be added in fumigation of dry seeds.
Conifer seeds (species with small seeds, such as *Picea* spp., *Pinus sylvestris*, and *Pinus mugo*)

Pest: Internal feeders, nutlike seeds, or when seeds are tightly packed so as to make fumigant penetration questionable.

Treatment: T203-i-2 MB (“Q” label only) in 26” vacuum

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-96</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>70-79</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>60-69</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>40-49</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>

IMPORTANT: Load limit is 50 percent of chamber space. Plastic or impermeable liners should be removed or well perforated. This schedule is not entirely effective against some species of Chalcid wasps.

Conifer seeds (species with small seeds, such as *Picea* spp., *Pinus sylvestris*, and *Pinus mugo*)

Pest: External feeders

Treatment: T203-i-3 MB (“Q” label only) tarpaulin

The yellow color of this treatment indicates that the authority to conduct the treatment comes from an emergency action required by PPQ in order to mitigate the pest risk. The emergency action is an interim measure and is pending final regulatory approval.

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Dosage Rate (lb./1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At (x) hrs.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-96</td>
<td>2.5</td>
<td>0.5 2 4 5 6 8 10</td>
</tr>
<tr>
<td>70-79</td>
<td>3</td>
<td>0.5 2 4 5 6 8 10</td>
</tr>
<tr>
<td>60-69</td>
<td>3</td>
<td>0.5 2 4 5 6 8 10</td>
</tr>
<tr>
<td>50-59</td>
<td>3</td>
<td>0.5 2 4 5 6 8 10</td>
</tr>
<tr>
<td>40-49</td>
<td>3</td>
<td>0.5 2 4 5 6 8 10</td>
</tr>
</tbody>
</table>

NOTICE: The commodity must not exceed 30 percent of the entire tarped enclosure. Refer to *Fumigants • Methyl Bromide • Tarpaulin Fumigation* for instructions on calculating the enclosure size. Moisture should not be added in fumigation of dry seeds. Normally, dry seed shipments arriving in wet or damp condition may be injured.
T203-f-1
Cottonseed—bagged, packaged, or in bulk
Four alternative schedules
Pest: External feeders
Treatment: T203-f-1 MB (“Q” label only) at NAP—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>6 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td>OR</td>
<td>3 lbs</td>
<td>24 hrs</td>
</tr>
<tr>
<td>40-59 °F</td>
<td>7 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td>OR</td>
<td>4 lbs</td>
<td>24 hrs</td>
</tr>
</tbody>
</table>

Load limit is 50 percent of chamber volume.

Important

T203-f-2
Cottonseed—bagged, packaged, or in bulk
Pest: External feeders
Treatment: T203-f-2 MB (“Q” label only) at NAP—tarpaulin

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>7 lbs</td>
<td>0.5 hr: 54, 2 hrs: 56, 12 hrs: 27, 24 hrs: —</td>
</tr>
<tr>
<td>OR</td>
<td>5 lbs</td>
<td>0.5 hr: 40, 2 hrs: 40, 12 hrs: —, 24 hrs: 20</td>
</tr>
<tr>
<td>40-59 °F</td>
<td>8 lbs</td>
<td>0.5 hr: 64, 2 hrs: 64, 12 hrs: 32, 24 hrs: —</td>
</tr>
<tr>
<td>OR</td>
<td>6 lbs</td>
<td>0.5 hr: 48, 2 hrs: 48, 12 hrs: —, 24 hrs: 24</td>
</tr>
</tbody>
</table>

T203-f-3
Cottonseed—bagged, packaged, or in bulk
Pest: External feeders
Treatment: T203-f-3 MB (“Q” label only) in 26” vacuum—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 °F or above</td>
<td>4 lbs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>

Load limit is 50 percent of chamber volume.

Important
Cottonseed—bagged, packaged, or in bulk

Pest: External feeders
Treatment: T203-f-4 Phosphine at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (gms/1000 ft³)</th>
<th>Minimum Concentration Readings (ppm) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 °F or above</td>
<td>60 g</td>
<td>225²</td>
</tr>
</tbody>
</table>

1. 60 g/1000 ft³ (28.3 m³) is equivalent to 2.1 g/m³.
2. An average reading with no reading less than 50 ppm.

Relative humidity must be 40 percent or higher when commodity enclosed.

Aerate minimum of 24 hours.

T203-g-1

Pods and seed of Kenaf, Hibiscus, and Okra
Three alternative schedules
Pest: Internal feeders
Treatment: T203-g-1 MB (“Q” label only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>60-96 °F</td>
<td>2 lbs</td>
<td>24</td>
</tr>
<tr>
<td>OR</td>
<td>1 lb</td>
<td>12</td>
</tr>
<tr>
<td>40-59 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>OR</td>
<td>2 lbs</td>
<td>24</td>
</tr>
</tbody>
</table>

40 °F or above

T203-g-2

Pods and seeds of Kenaf, Hibiscus, and Okra
Pest: Internal feeders
Treatment: T203-g-2 MB (“Q” label only) in 26” vacuum—chamber (kenaf and okra seed only)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 °F or above</td>
<td>4 lbs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>

Load limit is 50 percent of chamber volume.
Pods and seed of Kenaf, Hibiscus, and Okra

Pest: Internal feeders

Treatment: T203-g-3 Phosphine at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (gms/1000 ft³)</th>
<th>Minimum Concentration Readings (ppm) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 °F or above</td>
<td>60 g</td>
<td>225²</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
</tr>
</tbody>
</table>

1 60 g/1000 ft³ (28.3 m³) is equivalent to 2.1 g/m³.

2 An average reading with no reading less than 50 ppm.

Relative humidity must be 40 percent or higher when commodity enclosed.

Aerate minimum of 24 hours.

Macadamia nuts (as seeds)

Pest: Cryptophlebia illepida (koa seedworm)

Treatment: T203-k MB (“Q” label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3.5 lbs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>
T203-k-1

Macadamia nuts (as seeds)

Pest: *Cryptophlebia illepida* (koa seedworm)

Treatment: T203-k-1 MB (“Q” label only) tarpaulin

The yellow color of this treatment indicates that the authority to conduct the treatment comes from an emergency action required by PPQ in order to mitigate the pest risk. The emergency action is an interim measure and is pending final regulatory approval.

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Dosage Rate (lbs./1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At (x) hrs.:</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-79</td>
<td>2</td>
<td>0.5</td>
</tr>
<tr>
<td>60-69</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>50-59</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>40-49</td>
<td>3.5</td>
<td></td>
</tr>
</tbody>
</table>

NOTICE

The commodity must not exceed 30 percent of the entire tarped enclosure. Refer to *Fumigants • Methyl Bromide • Tarpaulin Fumigation* for instructions on calculating the enclosure size.

Moisture should **not** be added in fumigation of dry seeds. Normally, dry seed shipments arriving in wet or damp conditions may be injured.

T203-h

Rosmarinus seeds

Pest: Juvenile *Helicella* spp. (snails) or Internal Feeders

Treatment: T203-h MB (“Q” label only) at 26” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>4 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>

T203-l

Seeds

Pest: *Trogoderma granarium* (khapra beetle)

Treatment: T203-l MB (“Q” label only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 °F or above</td>
<td>2.5 lbs</td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>3.5 lbs</td>
<td>30</td>
</tr>
</tbody>
</table>
T203-b

Seeds excluding seeds of *Vicia* spp.

Pest: Bruchidae (seed beetles)

Treatment: T203-b MB ("Q" label only) in 26" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³):</th>
<th>Exposure Period:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caryedon spp.</td>
<td>All others</td>
<td>Caryedon spp.</td>
</tr>
<tr>
<td>70-96 °F</td>
<td>5 lbs</td>
<td>3 lbs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>—</td>
<td>3 lbs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>—</td>
<td>3 lbs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>—</td>
<td>3 lbs</td>
</tr>
</tbody>
</table>

T203-o

(deleted)

T203-a-1

Seeds not specifically listed in the T203 Schedules

Pest: External feeders

Treatment: T203-a-1 MB ("Q" label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-96 °F</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>

NOTICE

Load limit is 30 percent of chamber space. Moisture should **not** be added in fumigation of dry seeds. Normally, dry seed shipments arriving in wet or damp condition may be injured. This schedule may scald coconut husks. (Some tropical or nutlike seeds are usually shipped damp.)

T203-a-2

Seeds not specifically listed in the T203 Schedules

Pest: Internal feeders, except *Megastigmus* spp.

Treatment: T203-a-2 MB ("Q" label only) in 26" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-96 °F</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>
T203-a-3

Seeds not specifically listed in the 203 Schedules

Pest: External feeders
Treatment: T203-a-3 MB ("Q" label only) tarpaulin

The yellow color of this treatment indicates that the authority to conduct the treatment comes from an emergency action required by PPQ in order to mitigate the pest risk. The emergency action is an interim measure and is pending final regulatory approval.

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Dosage Rate (lbs./1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At (x) hrs.:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>80-96</td>
<td>2.5</td>
<td>30</td>
</tr>
<tr>
<td>70-79</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>60-69</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>50-59</td>
<td>3</td>
<td>36</td>
</tr>
<tr>
<td>40-49</td>
<td>3</td>
<td>36</td>
</tr>
</tbody>
</table>

The commodity must not exceed 30 percent of the entire tarped enclosure. Refer to Fumigants • Methyl Bromide • Tarpaulin Fumigation for instructions on calculating the enclosure size.

Moisture should not be added in fumigation of dry seeds. Normally, dry seed shipments arriving in wet or damp conditions may be injured. This schedule may scald coconut husks. (Some tropical or nutlike seeds are usually shipped damp.)

T203-o-1

Seeds of Casuarina

Pest: Bootanomyia spp. (in Casuarina)
Treatment: T203-o-1 MB (“Q” label only) in 26" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>3.5 lbs</td>
<td>6 hrs</td>
</tr>
</tbody>
</table>
T203-j

Seeds of Hevea brasiliensis (rubber tree)

Pest: Seed-boring insects

Treatment: T203-j MB (“Q” label only) at NAP

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-96</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
</tbody>
</table>

The yellow color of this treatment indicates that the authority to conduct the treatment comes from an emergency action required by PPQ in order to mitigate the pest risk. The emergency action is an interim measure and is pending final regulatory approval.

T203-j-1

Seeds of Hevea brasiliensis (rubber tree)

Pest: Seed-boring insects

Treatment: T203-j-1 MB (“Q” label only) tarpaulin

The yellow color of this treatment indicates that the authority to conduct the treatment comes from an emergency action required by PPQ in order to mitigate the pest risk. The emergency action is an interim measure and is pending final regulatory approval.

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Dosage Rate (lbs./1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At (x) hrs.:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>80-96</td>
<td>2.5 lbs</td>
<td>30</td>
</tr>
<tr>
<td>70-79</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>60-69</td>
<td>3 lbs</td>
<td>36</td>
</tr>
</tbody>
</table>

NOTICE

The commodity must not exceed 30 percent of the entire tarped enclosure. Refer to Fumigants • Methyl Bromide • Tarpaulin Fumigation for instructions on calculating the enclosure size.

Moisture should not be added in fumigation of dry seeds. Normally, dry seed shipments arriving in wet or damp conditions may be injured.

T203-o-3

Seeds of Leguminosae (Fabaceae)

Pest: Bruchophagus spp., Eurytoma spp.

Treatment: T203-o-3 MB (“Q” label only) in 26" vacuum

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>4 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>
T203-c
Seeds of Leguminosae (Fabaceae)

Pest: *Caryedon* spp.

Treatment: T203-c MB (“Q” label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 °F or above</td>
<td>2 lbs</td>
<td>24 hrs</td>
</tr>
</tbody>
</table>

T203-o-4-1
Seeds of Leguminosae (Fabaceae)

Pest: *Caryedon* spp. (in or with, etc.)

Treatment: T203-o-4-1 MB (“Q” label only) in 26” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 °F or above</td>
<td>2 lbs</td>
<td>24 hrs</td>
</tr>
</tbody>
</table>

T203-o-4-2
Seeds of Leguminosae (Fabaceae)

Pest: *Caryedon* spp. (in or with, etc.)

Treatment: T203-o-4-2 MB (“Q” label only) in 26” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>3.5 lbs*</td>
<td>3 hrs</td>
</tr>
</tbody>
</table>

T203-d-1
Seeds of Leguminosae (Fabaceae), excluding *Vicia faba*

Pest: Bruchidae (seed beetles) excluding the beetles of *Caryedon* spp.

Treatment: T203-d-1 MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
</tbody>
</table>

Use T203-c-1 or T203-d-2 for seeds of *Vicia faba*.

Temperature

- 50 °F or above
- 70 °F or above
- 60-69 °F
- 50-59 °F
- 40-49 °F
Seeds of Lonicera and Other seeds

Pest: *Rhagoletis cerasi* (European cherry fruit fly) pupae (Diptera: Tephritidae)

Treatment: T203-o-5 MB (“Q” label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>4 lbs*</td>
<td>8 hrs</td>
</tr>
</tbody>
</table>

If seed is intended for propagation, the dosage rate may damage seed by sterilization.

Seeds of Citrus (Rutaceae family)

Pest: Citrus Canker (*Xanthomonas axonopodis*)

Treatment: T203-p Hot water plus Chemical Dip

1. Wash the seed if any mucilaginous material, such as pulp, is adhering to the seed.
2. Immerse the seed in water heated to 125 °F (51.6 °C) or higher for 10 minutes.
3. Then, immerse the seed in a solution containing 200 parts per million sodium hypochlorite at a pH of 6.0 to 7.5 for at least 2 minutes.

Seeds of Umbelliferae

Pest: *Systole* spp. (in Umbelliferae)

Treatment: T203-o-2 MB (“Q” label only) in 26" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-86 °F</td>
<td>2.5 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>4.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>5 hrs</td>
</tr>
</tbody>
</table>
Treatment Schedules

T203—Seeds

T203-c-1

Seeds of *Vicia* spp. (vetch seeds) including seeds of *Vicia faba* (Faba or Fava bean)

Pest: Bruchidae (seed beetles)

Treatment: T203-c-1 MB (“Q” label only) tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>3.5 lbs</td>
<td>46</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3.5 lbs</td>
<td>46</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3.5 lbs</td>
<td>46</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3.5 lbs</td>
<td>46</td>
</tr>
</tbody>
</table>

T203-d-2

Seeds of *Vicia* spp. (vetch seeds) including seeds of *Vicia faba* (Faba or Fava bean)

Pest: Bruchidae (seed beetles)

Treatment: T203-d-2 MB (“Q” label only) in 26” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Exposure Period:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Vicia faba</td>
</tr>
<tr>
<td>70-96 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>4.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>5 hrs</td>
</tr>
</tbody>
</table>

Seed shipments arriving wet or damp may be injured.

T203-n

Seeds with infested pulp

Pest: Fruit flies and other pulp-infesting insects

Treatment: T203-n Depulping

1. Place seed in wire basket.
2. Immerse in water at 118-125 °F for 25 minutes.
3. Remove pulp from seed under running tap water.

This treatment is effective only for fruit flies, as well as some other pulp infesting insects. Fumigation may also be required for seed weevils and other internal and external feeding insects.
Contents

The following schedules are listed by product.

T301—Cotton and Cotton Products 5-4-2
T302—Grains and Seeds Not Intended for Propagation 5-4-8
T303—Rice 5-4-15
T304—Alpha (alfa) Grass and Handicrafts (Stipa tenacissima, Ampelodesma mauritanicus) 5-4-17
T305—Cut Flowers and Greenery 5-4-18
T306—Bags and Bagging Material, Covers 5-4-19
T307—Khapra Beetle Infested Material 5-4-22
T308—Tobacco 5-4-23
T309—Broomcorn and Broomcorn Articles 5-4-26
T310—Tick-Infested Materials (Nonfood) 5-4-27
T311—Hay, Baled 5-4-29
T312—Oak Logs and Lumber 5-4-30
T313—Christmas Trees 5-4-38
T314—Logs and Firewood 5-4-39

During the extended exposure period, the concentrations must remain stable and the prescribed minimums be met at the end of the extension. Otherwise, the treatment may be voided and retreatment required. Examples of commodities for which extended exposure periods may be approved include: cotton piece goods, baled cotton, bagging, wood, marble, soil as such, etc. Examples of commodities for which no extension may be approved include: cottonseed, grain, tobacco, etc. An extension of exposure period for other purposes is not permitted except as may be prescribed in various schedules for concentration readings below minimum.

Additional safety precautions, including additional aeration, may be required because of the extended exposure period. The PPQ officer or the commercial fumigator will specify any needed precautions.
T301—Cotton and Cotton Products

T301-a-3
Baled lint or linters
Pest: *Pectinophora* spp.
Treatment: T301-a-3—MB (“Q” label only) at NAP—tarpaulin

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 °F or above</td>
<td>7 lbs</td>
<td>0.5 hr: 84, 2 hrs: 60, 12 hrs: 30, 24 hrs: —</td>
</tr>
<tr>
<td>OR</td>
<td>4 lbs</td>
<td>0.5 hr: 60, 2 hrs: 40, 24 hrs: —</td>
</tr>
</tbody>
</table>

T301-b-1-1
Baled lint, linters, waste, piece goods, gin trash
Two alternative treatments
Pest: *Trogoderma granarium* (khapra beetle)
Treatment: T301-b-1-1—MB (“Q” label only) at NAP—tarpaulin

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>8 lbs</td>
<td>0.5 hr: 96, 2 hrs: 64, 24 hrs: 35</td>
</tr>
<tr>
<td>40-59 °F</td>
<td>11 lbs</td>
<td>0.5 hr: 132, 2 hrs: 88, 24 hrs: 50</td>
</tr>
</tbody>
</table>

In addition to the space concentration readings, you must take a commodity concentration reading. The minimum concentration reading for commodity reading is as follows: For 60 °F or above—25 oz.; for 40-59 °F—30 oz.

Important
Load limit is 50 percent of chamber volume. Concentration readings may be omitted for chamber fumigations.

T301-b-1-2
Baled lint, linters, waste, piece goods, gin trash
Pest: *Trogoderma granarium* (khapra beetle)
Treatment: T301-b-1-2—MB (“Q” label only) at NAP—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>8 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-59 °F</td>
<td>9 lbs</td>
<td>3 hrs</td>
</tr>
</tbody>
</table>
T301-a-7

Cottonseed (samples and bulk)

Pest: *Pectinophora* spp.

Treatment: T301-a-7—Acid delinting and heat treatment (alternative treatment)

Cottonseed delinting is primarily intended for the elimination of surface-borne disease organisms. It is also effective against insects. To be completely effective against insects, this treatment must be carried out at approximately 145 °F (by the application of sufficient heat to the seed, or acid, or both) or by raising the temperature of the delinted seed during the subsequent drying process to 145 °F for a period of not less than 45 seconds or at least 140 °F for a period of not less than 8 minutes.

T301-b-2

Cottonseed, cottonseed products, or samples

Pest: *Trogoderma granarium* (khapra beetle)

Treatment: T301-b-2—MB (“Q” label only) at NAP—tarpaulin

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>2.5 lbs</td>
<td>30</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>3.5 lbs</td>
<td>42</td>
</tr>
</tbody>
</table>

The sorptive rates of commodities vary. When a commodity is known or suspected to be sorptive, take more gas readings than normal. Additional fumigant is added as prescribed on *Special Procedures for Adding Gas and Extending Exposure Period* on page 2-4-30.

Important

Items known to be sorptive or items whose sorptive properties are unknown are not to be fumigated in chambers at NAP unless gas readings are taken.

When both woodborers and khapra beetles are involved, use schedule T404-d on page 5-5-20.
T301-b-3

Cottonseed meal (not for food or feed)

Pest: *Trogoderma granarium* (khapra beetle)

Treatment: T301-b-3—MB (“Q” label only) at NAP

Cottonseed meal treated under this schedule is **not** to be used for food or feed.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>4 lbs</td>
<td>48</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>6 lbs</td>
<td>72</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>8 lbs</td>
<td>96</td>
</tr>
</tbody>
</table>

In addition to the space concentration readings, you must take a commodity concentration reading. The minimum concentration reading for commodity reading is as follows: For 90-96 °F—10 oz.; for 80-89 °F—15 oz.; and for 70-79 °F—20 oz.

Important

Concentration readings should be obtained within the commodity. Concentration readings **not** required for chamber fumigations.
Cotton and cotton products

Pest: *Globodera rostochiensis* (golden nematode)

Treatment: T301-c—MB ("Q" label) at NAP—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 °F or above</td>
<td>8 lbs</td>
<td>16 hrs</td>
</tr>
<tr>
<td>10.5 lbs</td>
<td>12 hrs</td>
<td></td>
</tr>
</tbody>
</table>

Cotton and cotton products

Two alternative treatments

Pest: *Anthonomus grandis* (boll weevil)

Treatment: T301-d-1-1—MB ("Q" label only) at NAP—tarpaulin

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 hr</td>
<td>2 hrs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>2.5 lbs</td>
<td>30</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>4 lbs</td>
<td>50</td>
</tr>
<tr>
<td>55-59 °F</td>
<td>5 lbs</td>
<td>64</td>
</tr>
<tr>
<td>50-54 °F</td>
<td>5.5 lbs</td>
<td>70</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>6 lbs</td>
<td>80</td>
</tr>
</tbody>
</table>

Cotton and cotton products

Pest: *Anthonomus grandis* (boll weevil)

Treatment: T301-d-1-2—Phosphine at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (g/1,000 ft³)</th>
<th>Minimum Concentration Readings (ppm) At 72 hours:</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 hr</td>
<td>2 hrs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50 °F or above</td>
<td>36 g*</td>
<td>—</td>
</tr>
</tbody>
</table>

*36g/1,000ft³ (28.3m³) is equivalent to 1.27 g/m³.

**An average reading with no reading less than 50 ppm.

Refer to the Equipment Section for a description of the MityVac® pump and the Port-a-sens phosphine detector.

Refer to Table 5-4-4 on page 5-4-41 for data on amount of phosphine liberated by various products.
T301-a-1-1

Lint, linters, cottonseed meal and hulls, gin trash, waste, or other baled or bulk commodities (except samples)

Pest: *Pectinophora* spp.

Treatment: T301-a-1-1—MB (“Q” label only) at NAP—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Bulk shipments</th>
<th>Other than bulk shipments</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>6 lbs</td>
<td>6 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td>OR</td>
<td>4 lbs</td>
<td>3 lbs</td>
<td>24 hrs</td>
</tr>
<tr>
<td>40-59 °F</td>
<td>7 lbs</td>
<td>7 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td>OR</td>
<td>5 lbs</td>
<td>4 lbs</td>
<td>24 hrs</td>
</tr>
</tbody>
</table>

T301-a-1-2

Lint, linters, cottonseed meal and hulls, gin trash, waste, or other baled or bulk commodities (except samples)

Pest: *Pectinophora* spp.

Treatment: T301-a-1-2—MB (“Q” label only) in 26” vacuum—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>8 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-59 °F</td>
<td>9 lbs</td>
<td>3 hrs</td>
</tr>
</tbody>
</table>

For propagative seed cotton, refer to T203-i-3 on page 5-3-30 through T203-f-4 on page 5-3-32.

T301-a-6

Lint, linters, and cottonseed (bulk, sacked, or packaged cottonseed, lint or linters, cottonseed hulls, gin trash, and all other baled or bulk cotton commodities)

Pest: *Pectinophora* spp.

Treatment: T301-a-6—Phosphine at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (g/1,000 ft³)</th>
<th>Minimum Concentration Readings (ppm) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 °F or above</td>
<td>60 g*</td>
<td>72 hrs: 225**, 120 hrs: 50***</td>
</tr>
</tbody>
</table>

* 60 g/1,000ft³ (28.3m³) is equivalent to 2.1g/m³.
** An average reading with no reading less than 50 ppm.
***An average of 50 PPM or more.

Aerate commodity 24 hours and/or make appropriate tests for presence of gas.
T301-a-2

Lint (except baled lint or linters), cottonseed hulls and meal, gin trash, waste, or other baled or bulk commodities (excluding samples)

Pest: *Pectinophora* spp.

Treatment: T301-a-2—MB (“Q” label only) at NAP—tarpaulin

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>40 °F or above</td>
<td>7 lbs</td>
<td>84</td>
</tr>
<tr>
<td>OR</td>
<td>5 lbs</td>
<td>60</td>
</tr>
</tbody>
</table>

T301-a-4

Packaged cottonseed

Pest: *Pectinophora* spp.

Treatment: T301-a-4—MB (“Q” label only) at NAP—tarpaulin

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>40 °F or above</td>
<td>7 lbs</td>
<td>84</td>
</tr>
<tr>
<td>OR</td>
<td>5 lbs</td>
<td>60</td>
</tr>
</tbody>
</table>

T301-a-5-1

Samples of cotton and cotton products

Two alternative treatments

Pest: *Pectinophora* spp.

Treatment: T301-a-5-1—MB at NAP—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 °F or above</td>
<td>3 lbs</td>
<td>24 hrs</td>
</tr>
</tbody>
</table>

T301-a-5-2

Samples of cotton and cotton products

Pest: *Pectinophora* spp.

Treatment: T301-a-5-2—MB in 26" vacuum—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 °F or above</td>
<td>4 lbs</td>
<td>2 hrs</td>
</tr>
</tbody>
</table>
T301-e

Cottonseed for Food or Feed

Pest: *Fusarium oxysporum* f. sp. *vasinfectum* strains VCG 01111 and VCG 01112

Treatment: T301-e—MB at NAP—tarpaulin

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>2 hrs</th>
<th>4 hrs</th>
<th>6 hrs</th>
<th>12 hrs</th>
<th>24 hrs</th>
<th>36 hrs</th>
<th>48 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 °F or above</td>
<td>7 lbs</td>
<td>60</td>
<td>50</td>
<td>50</td>
<td>35</td>
<td>20</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>5 lbs</td>
<td>20</td>
<td>—</td>
<td>20</td>
<td>20</td>
<td>15</td>
<td>15</td>
<td>15</td>
</tr>
</tbody>
</table>

T302—Grains and Seeds Not Intended for Propagation

If grain and seeds are for propagation, use appropriate treatment in T203 schedules

T302-g-1

Acorns not intended for propagation

Two alternative treatments

Pest: *Cydia splendidana* (nut fruit tortrix) and *Curculio* spp. (weevils)

Treatment: T302-g-1—MB at NAP—tarpaulin, chamber, or van container

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90-95 °F</td>
<td>4 lbs</td>
<td>58</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>4 lbs</td>
<td>58</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>5 lbs</td>
<td>72</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>5 lbs</td>
<td>72</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>6 lbs</td>
<td>85</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>6 lbs</td>
<td>85</td>
</tr>
</tbody>
</table>
T302-g-2

Acorns not intended for propagation

Pest: *Cydia splendana* (nut fruit tortrix) and *Curculio* spp. (weevils)

Treatment: T302-g-2—MB in 26” vacuum—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-96 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>4 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>4 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>4 lbs</td>
<td>4 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>5 hrs</td>
</tr>
</tbody>
</table>

Either T302-g-1 or T302-g-2 required from all countries except Canada and Mexico. Treated commodity **not** to be used for food or feed.

T302-a-1-1

Ear corn

Two alternative treatments

Pest: Borers

Treatment: T302-a-1-1—MB at NAP—chamber only

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>6 hrs</td>
</tr>
</tbody>
</table>

T302-a-1-2

Ear corn

Pest: Borers

Treatment: T302-a-1-2—Dry heat

168 °F minimum air temperature for not less than 2 hours; ears spread in single layers on slats or wire shelves.
Grains and seeds not intended for propagation, and plant gums

Pest: *Trogoderma granarium* (khapra beetle)

Treatment: T302-c-1—MB ("Q" gas only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>2.5 lbs</td>
<td>30</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>3.5 lbs</td>
<td>42</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>4.5 lbs</td>
<td>54</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>6 lbs</td>
<td>72</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>7.5 lbs</td>
<td>90</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>9 lbs</td>
<td>108</td>
</tr>
</tbody>
</table>

The following commodities are considered as "grains and seeds not for propagation" and are on the MB labels at the rates in the bulleted list:

- 40 °F and above: barley, corn, oats, popcorn, processed food and grains, rice, rye, sorghum (milo), wheat
- 80 °F and above: dried beans and peas, dried faba beans, peanuts and tree nuts (almonds, Brazil nuts, bushnuts, butternuts, cashews, filberts, hickory nuts, macadamia nuts, pecans, pistachios, walnuts)
- 90 °F and above: seeds of dried herbs and spices (refer to T101-n-2-1-1)

FIFRA Section 18:

- 40 °F and above: unprocessed cucurbit seed, coffee bean (green unroasted), and oilseeds (See “Appendix F” on page-F-1-1: Crop Group 20 for a list of commodities included in the oilseed group)

The sorptive rates of commodities vary. When a commodity is known or suspected to be sorptive, see the list of sorptive commodities in Chapter 2-3 Section *Sorption* and take more gas readings than normal. Additional fumigant is added as prescribed on *Special Procedures for Adding Gas and Extending Exposure Period* on page 2-4-30.

When both woodborers and khapra beetles are involved, use schedule T404-d on page 5-5-20.

1 Plant gums are defined as "Any of numerous polysaccharide substances of plant origin that are gelatinous when moist but harden on drying. Plant gums include but are not limited to acacia gum, guar gum, gum arabic, locust gum, and tragacanth gum." [7 CFR 319.75-1]
T302-c-2

Grains and seeds not intended for propagation, and plant gums

NOTE: Load limit is 75 percent of chamber volume.

Pest: *Trogoderma granarium* (khapra beetle)

Treatment: T302-c-2—MB (“Q” label gas) in 26” vacuum—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>8 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-59 °F</td>
<td>9 lbs</td>
<td>3 hrs</td>
</tr>
</tbody>
</table>

The following commodities are considered as "grains and seeds not for propagation" and are on the MB labels at the rates in the bulleted list:

- 40 °F and above: barley, buckwheat, corn, oats, popcorn, processed food and grains, rice, rye, sorghum (milo), wheat

T302-c-3

Grains and seeds not intended for propagation (e.g., guar “gum”)

Pest: *Trogoderma granarium* (khapra beetle)

Treatment: T302-c-3—MB (“Q” gas only) in NAP—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>2.5 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>3.5 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>4.5 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>6 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>10 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>12 lbs</td>
<td>12 hrs</td>
</tr>
</tbody>
</table>

60 °F and above: barley, buckwheat, corn, oats, popcorn, processed food and grains, rice, rye, sorghum (milo), wheat.

The sorptive rates of commodities vary. When a commodity is known or suspected to be sorptive, see the list of sorptive commodities in Chapter 2-3 Section *Sorption* and take more gas readings than normal. Additional fumigant is added as prescribed on *Special Procedures for Adding Gas and Extending Exposure Period* on page 2-4-30.

Important

Items known to be sorptive or items whose sorptive properties are unknown are **not** to be fumigated in chambers at NAP unless gas readings are taken.

When both woodborers and khapra beetles are involved, use schedule T404-d.
T302-d Grains and seeds not intended for propagation and contaminated with cottonseed

Pest: *Pectinophora* spp.

Treatment: See Cotton and Cotton Products, *T301-a-1-1* on page 5-4-6 or *T301-a-1-2* on page 5-4-6.

Alternate method—screening for removal of cotton seed contamination.

T302-e-1 Grains and seeds not intended for propagation

The following commodities are considered as "grains and seeds not for propagation" and are on the MB labels at the rates in the bulleted list:

- 40 °F and above: barley, corn, oats, popcorn, processed food and grains, rice, rye, sorghum (milo), wheat, dried beans and peas, dried faba beans, peanuts and tree nuts (almonds, Brazil nuts, bushnuts, butternuts, cashews, filberts, hickory nuts, macadamia nuts, pecans, pistachios, walnuts), seeds of dried herbs and spices (refer to T101-n-2-1-1)

FIFRA Section 18:

- 40 °F and above: unprocessed cucurbit seed, coffee bean (green unroasted), and oilseeds (*See “Appendix F” on page-F-1-1*: Crop Group 20 for a list of commodities included in the oilseed group)

Three alternative treatments

Pest: Insects other than *Trogoderma granarium* (khapra beetle)

Treatment: T302-e-1—MB ("Q" label only) at NAP—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-96 °F</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>
T302-e-2

Grains and seeds not intended for propagation

Pest: Insects other than *Trogoderma granarium* (khapra beetle)

Treatment: T302-e-2—MB (“Q” label only) at 26” vacuum—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-96 °F</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>

Important

Load limit is 50 percent of chamber volume. This vacuum treatment primarily for material so packed or packaged as to make fumigant penetration questionable.

T302-e-3

Grains and seeds not intended for propagation

Pest: Insects other than *Trogoderma granarium* (khapra beetle)

Treatment: T302-e-3—MB (“Q” gas only) at NAP—tarpaulin or chamber

The yellow color of this treatment indicates that the authority to conduct the treatment comes from an emergency action required by PPQ in order to mitigate the pest risk. The emergency action is an interim measure and is pending final regulatory approval.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80-96 °F</td>
<td>2.5 lbs</td>
<td>30</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
</tbody>
</table>

NOTICE

The commodity must not exceed 30 percent of the entire tarped enclosure. Refer to *Fumigants • Methyl Bromide • Tarpaulin Fumigation* for instructions on calculating the enclosure size.

Moisture should **not** be added in fumigation of dry seeds. Normally, dry seed shipments arriving in wet or damp conditions may be injured.
T302-f
Grains and seeds (excluding Rosmarinus seed) not intended for propagation

Pest: Snails

Treatment: T302-f—Mechanical separation by screening or hand removal. If not feasible, entry should be denied when snails are of agricultural or public health significance, or treat using appropriate schedule as listed in T403-a.

Important
For Rosmarinus seed use **T203-h** on page 5-3-34

T302-b-1-1
Shelled corn

Treatment: T302-b-1-1 *Reserved*

T302-b-1-2
Shelled corn contaminated with cottonseed

Pest: *Pectinophora* spp.

Treatment: T302-b-1-2

Important
See **T301-a-1-1** on page 5-4-6 or **T301-a-1-2** on page 5-4-6

Important
Shelled corn treated with T301 is **not** to be used for food or feed.
T303—Rice

T303-a

T303-a-1 through T303-a-3 have been removed

Effective November 1 2011, APHIS reclassified Panicle Rice Mite (*Steneotarsonemus spinki*, PRM) to a non-quarantine pest.

T303-d-1

Articles made with rice straw

Two alternative treatments

Pest: Fungous diseases of rice or internal feeders

Treatment: T303-d-1—Dry heat at 180-200 °F for 2 hours

T303-d-2

Articles made with rice straw

Pest: Fungous diseases of rice or internal feeders

Treatment: T303-d-2—Steam sterilization

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Pressure</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>260 °F</td>
<td>20 lbs</td>
<td>15 minutes</td>
</tr>
<tr>
<td>250 °F</td>
<td>15 lbs</td>
<td>20 minutes</td>
</tr>
</tbody>
</table>

T303-d-2-1

Articles made with rice straw

Pest: Fungous diseases of rice or internal feeders

Treatment: T303-d-2-1—Steam sterilization, use *T303-b-1* on page 5-4-16

T303-d-2-3

Articles made with rice straw for indoor use only

Pest: Internal feeders

Treatment: T303-d-2-3—MB (“Q” label only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>2.5 lbs</td>
<td>0.5 hr: 30, 2 hrs: 20, 4 hrs: 20, 24 hrs: 15</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>0.5 hr: 36, 2 hrs: 25, 4 hrs: 24, 24 hrs: 20</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>0.5 hr: 48, 2 hrs: 35, 4 hrs: 32, 24 hrs: 25</td>
</tr>
</tbody>
</table>
T303-d-2-2

Articles made with rice straw for indoor use only

Pest: Internal feeders

Treatment: T303-d-2-2—MB (“Q” label only) in 26" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>5 lbs</td>
<td>2.5 hrs</td>
</tr>
</tbody>
</table>

T303-b-1

Rice straw and hulls imported for purposes other than approved processing

Two alternative treatments based on how commodity is packed

Pest: Fungous diseases of rice

Treatment: T303-b-1—Steam sterilization, for closely packed commodity

Introduce the live steam into a 28" vacuum until pressure reaches 10 lbs and hold for 20 minutes. (Steam sterilization is not practical for the treatment of bales having a density greater than 30 lbs. per cubic foot.)

T303-b-2

Rice straw and hulls imported for purposes other than approved processing

Pest: Fungous diseases of rice

Treatment: T303-b-2—Steam sterilization, for commodity packed as loose masses

Use **T303-b-1** on page 5-4-16 or, if without initial vacuum, bleed air until steam vapor escapes.

T303-c-1

Rice straw and hulls imported in small lots of 25 lbs. or less

T303-c-1 is suspended until further notice. (01-14-08)

Pest: Fungous diseases of rice

Treatment: T303-c-1—Dry heat at 212 °F for 1 hour
T304—Alpha (alfa) Grass and Handicrafts (*Stipa tenacissima, Ampelodesma mauritanicus*)

Two alternative treatments

Pest: Infested with *Harmolita* spp. (jointworms)

Treatment:

T304-a—MB at NAP—chamber only

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft²)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>2.5 lbs</td>
<td>32 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3.5 lbs</td>
<td>32 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4.5 lbs</td>
<td>32 hrs</td>
</tr>
</tbody>
</table>

T304-b

Alpha (alfa) grass and handicrafts (*Stipa tenacissima, Ampelodesma mauritanicus*)

Treatment: T304-b—MB in 26” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft²)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>2.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3.5 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>5 lbs</td>
<td>2.5 hrs</td>
</tr>
</tbody>
</table>
T305—Cut Flowers and Greenery

T305-a

Cut flowers and greenery

The "external pests" controlled by this schedule do not include dormant snails. Refer to T201-o-1 on page 5-3-12 or T201-p on page 5-3-19.

Pest: External feeders, leafminers, hitchhikers, surface pests, and slugs

Treatment: T305-a—MB ("Q" label only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>1.5 lbs</td>
<td>19</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>2 lbs</td>
<td>24</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>30</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3.5 lbs</td>
<td>41</td>
</tr>
</tbody>
</table>

* For leafminers, use the initial dosage rate of 4 lbs/1,000 ft³.

T305-b

Cut flowers and greenery

Pest: Borners or soft scales

Treatment: T305-b—MB ("Q" label only) in 15" vacuum

Important: Vacuum fumigation requires prior consent of the importer. If consent denied, refuse entry unless T305-a plus hand removal of these pests is feasible. Vacuum fumigation is not required for soft scales known to be widely distributed in the U.S.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>80-90 °F</td>
<td>2.5 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
</tbody>
</table>

1 Quarantine-significant slugs of the families Agriolimacidae, Arionidae, Limacidae, Milacidae, Philomyidae, and Veronicellidae, including the following genera: Agriolimax, Arion, Colosius, Deroceras, Diplosolenodes, Leidyula, Limax, Meghimatium, Milax, Pallifera, Pseuderoveronicella, Sarasinula, Semperula, Vaginulus, Veronicella. Treat slugs at 60 F (2.5 lbs.) or above.
T305-c
Cut flowers and greenery

Pest: Mealybugs
Treatment: T305-c—MB (“Q” label only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>38</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

T306—Bags and Bagging Material, Covers

T306-a
Bags and bagging material or covers used to contain root crops

Pest: *Globodera rostochiensis* (golden nematode)
Treatment: T306-a—MB (“Q” label only) in 26” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 °F or above</td>
<td>8 lbs</td>
<td>16 hrs</td>
</tr>
<tr>
<td></td>
<td>10.5 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td></td>
<td>16 lbs</td>
<td>8 hrs</td>
</tr>
</tbody>
</table>

T306-b
Bags and bagging material or covers used for cotton only

Pest: *Pectinophora* spp.
Treatment: T306-b—MB at NAP—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³) for:</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bulk shipments</td>
<td>Other than bulk shipments</td>
</tr>
<tr>
<td>60 °F or above</td>
<td>6 lbs</td>
<td>6 lbs</td>
</tr>
<tr>
<td>60 °F or above</td>
<td>4 lbs</td>
<td>3 lbs</td>
</tr>
<tr>
<td>40-59 °F</td>
<td>7 lbs</td>
<td>7 lbs</td>
</tr>
<tr>
<td>40-59 °F</td>
<td>5 lbs</td>
<td>4 lbs</td>
</tr>
</tbody>
</table>
T306-c-1

Bags and bagging material or covers

Two alternative treatments

Pest: *Trogoderma granarium* (khapra beetle)

Treatment: T306-c-1—MB (“Q” label only) at NAP

Important

Concentration readings should be obtained within the commodity. Concentration readings **not** required for chamber fumigations.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>0.5 hr</th>
<th>2 hrs</th>
<th>24 hrs</th>
<th>28 hrs</th>
<th>32 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 °F or above</td>
<td>4 lbs</td>
<td>48</td>
<td>32</td>
<td>25</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>6 lbs</td>
<td>72</td>
<td>48</td>
<td>30</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>8 lbs</td>
<td>96</td>
<td>64</td>
<td>35</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>12 lbs</td>
<td>144</td>
<td>96</td>
<td>50</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>12 lbs</td>
<td>144</td>
<td>96</td>
<td>50</td>
<td>50</td>
<td>—</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>12 lbs</td>
<td>144</td>
<td>96</td>
<td>50</td>
<td>50²</td>
<td>50</td>
</tr>
</tbody>
</table>

1 In addition to the space concentration readings, commodity concentration reading must be taken. The minimum concentration reading for commodity reading is as follows: For 90-96 °F—10 oz.; for 80-89 °F—15 oz.; and for 70-79 °F—20 oz.

2 Optional

T306-c-2

Bags and bagging material or covers

Pest: *Trogoderma granarium* (khapra beetle)

Treatment: T306-c-2—MB (“Q” label only) in 26” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>8 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-59 °F</td>
<td>9 lbs</td>
<td>3 hrs</td>
</tr>
</tbody>
</table>
T306-d-1

Bagging from unroasted coffee beans

Two alternative treatments

Pest: Various

Treatment: T306-d-1—MB ("Q" label only) at NAP

Concentration readings should be obtained within the commodity. Concentration readings not required for chamber fumigations.

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>4 lbs</td>
<td>48</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>6 lbs</td>
<td>72</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>8 lbs</td>
<td>96</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>12 lbs</td>
<td>144</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>12 lbs</td>
<td>144</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>12 lbs</td>
<td>144</td>
</tr>
</tbody>
</table>

*In addition to the space concentration readings, you must take a commodity concentration reading. The minimum concentration reading for commodity reading is as follows: For 90-96 °F—10 oz.; for 80-89 °F—15 oz.; and for 70-79 °F—20 oz.

T306-d-2

Bagging from unroasted coffee beans

Two alternative treatments

Pest: Various

Treatment: T306-d-2—MB ("Q" label only) in 26" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>8 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-59 °F</td>
<td>9 lbs</td>
<td>3 hrs</td>
</tr>
</tbody>
</table>

Load limit maximum 75 percent of chamber volume.
T307—Khapra Beetle Infested Material

T307-a Feeds and milled products heated as a part of the processing procedure, or other commodities that can be subjected to heat

Pest: Khapra beetle
Treatment: T307-a—Heat treatment

180 °F in any part of a processing procedure or at 150 °F for a total of 7 minutes, the commodity being moved through or manipulated in the heated area in a manner to ensure that all parts meet the time and temperature requirements.

Important
This treatment should not be used except when specifically authorized in each case by the Quarantine Policy, Analysis and Support (QPAS), Riverdale, MD, office.

Important
Bags and bagging, see T306-c-1 on page 5-4-20
Cotton products, see T301-b-1-1 on page 5-4-2
Finely ground oily meals, see T306-c-1 on page 5-4-20
Grains and seeds, see T302-c-1 on page 5-4-10
Flour, see T306-c-1 on page 5-4-20
Sorptive materials, see T302-g-1 on page 5-4-8.
Goatskins, lambskins, sheepskins (skins and hides), see “T416” on page 5-5-51

Important
The following commodities have shown relatively high sorption:
Carpet backing, Cinnamon quill, Cocoa mats, Cocoa powder, Lumber, Myrobalan, Pistachio nuts, Polymide waste, Potato starch, Rubber (crepe or crude) Vermiculite, Wool (raw, except pulled)

Important
All other commodities, see T302-g-1 on page 5-4-8
T308—Tobacco

T308-e Blended strip tobacco

Pest: *Lasioderma serricorne* (Cigarette beetle) and *Ephestia elutella* (Tobacco moth)

Treatment: T308-e—Vacuum-steam flow method

1. Evacuate the chamber to the wet bulb temperature of 35 °F (0.2 in. Hg. absolute or 29.8 in. Hg. vacuum) to remove air from the tobacco mass and facilitate steam penetration.

2. Introduce steam until 160 °F is reached while maintaining vacuum to evacuate gases pushed ahead of the steam. Hold at 160 °F for 3 minutes to allow the steam to condense within the tobacco mass for the temperature to equilibrate.

3. Re-evacuate to 110 °F.

4. Introduce steam to 135 °F for 3 minutes to allow the steam to condense within the tobacco mass and for the temperature to equilibrate.

T308-c Leaf tobacco

Pest: *Lasioderma serricorne* (cigarette beetle) and *Ephestia elutella* (tobacco moth)

Treatment: T308-c—Vacuum-steam flow process followed by reconditioning

For leaf tobacco—flowing steam at 170 °F for 15 minutes in 23” vacuum. Followed by reconditioning of the tobacco to 12 to 13 percent moisture content.

T308-d Stored tobacco

Pest: *Lasioderma serricorne* (cigarette beetle) and *Ephestia elutella* (tobacco moth)

Treatment: T308-d—Kabat® (active ingredient—methoprene) is an insect growth regulator applied at the rate of 0.2 lbs. (3.9 fluid oz.) per 1,000 lbs. of tobacco.

Application should be made directly to tobacco immediately prior to compaction in hogsheads. Assure complete coverage by using multi-directional sprays and tumbling. Kabat® may be applied by use of a proportional dilution apparatus or by preparation of a dilute spray solution. Follow mixing and application instructions on the label. Zoecon Corporation will be responsible for ensuring that receivers in foreign countries will accept this treatment in lieu of fumigation.
In most cases, indication of Kabat® treatment need not be shown on the phytosanitary certificate. PPQ prefers that tobacco exporting firms utilize the letterhead certification of treatment rather than relying on the phytosanitary certificate to convey this information to foreign receivers. However, if requested, an additional declaration may be made showing application rates as supplied by the exporter if it has been determined through periodic inspection of a firm's facilities that application of the protectant is an integral part of the processing procedure.

T308-a-1

Tobacco (flue-cured and burley in hogshead and cases; turkish in bales; cigar filler/binder in cases or bales; and cigar wrappers in bales)

Four alternative treatments

Pest: \textit{Lasioderma serricorne} (cigarette beetle) and \textit{Ephestia elutella} (tobacco moth)

Treatment: T308-a-1—MB in 28" vacuum

Flue-cured and burley in hogshead and cases; Turkish in bales; cigar filler/binder in cases or bales; and cigar wrappers in bales

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>4 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>

T308-a-2

Tobacco (flue-cured and burley in hogshead and cases; turkish in bales; cigar filler/binder in cases or bales; and cigar wrappers in bales)

Treatment: T308-a-2—MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>1.25 lbs</td>
<td>72 hours</td>
</tr>
<tr>
<td>45-69 °F</td>
<td>2 lbs</td>
<td>72 hrs</td>
</tr>
</tbody>
</table>
T308-b-1

Tobacco (flue-cured and burley in hogshead and cases; turkish in bales; cigar filler/binder in cases or bales; and cigar wrappers in bales)

Treatment: T308-b-1—Phosphine at NAP—Tarpaulin or freight containers

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (g/1,000 ft³)</th>
<th>Minimum Concentration Readings (ppm) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>96 hrs</td>
</tr>
<tr>
<td>Greater than 68 °F</td>
<td>33 g*</td>
<td>200</td>
</tr>
<tr>
<td>61-68 °F</td>
<td>33 g*</td>
<td>—</td>
</tr>
</tbody>
</table>

* 33g/1,000 ft³ is equivalent to 1.17 g/m³.

Important

The tobacco industry’s Sanitation Committee considers “starting time” as the time when the minimum concentration reading is reached. It is recommended that concentration monitoring be done every 6 hours leading up to “starting time,” then again at completion (96 or 120 hours later). [Note that this concept differs from the “starting time” in other phosphine fumigation schedules. In those cases, “starting time” starts when the aluminum phosphide or magnesium phosphide are first introduced.]

Gas concentration readings and temperature readings must be taken in the middle of a tightly packed bale. The fumigation does **not** begin until the gas concentration readings reach minimum required levels.

NOTICE

Refer to the Equipment Section of this manual for a discussion of the MityVac® hand-operated gas sampling pump and the Port-a-sens phosphine monitor. See **Table 5-4-4** on page 5-4-41 for data on amount of phosphine liberated by various products.

T308-b-2

Tobacco (flue-cured and burley in hogshead and cases; turkish in bales; cigar filler/binder in cases or bales; and cigar wrappers in bales)

Treatment: T308-b-2—Phosphine at NAP—Warehouses

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (g/1,000 ft³)</th>
<th>Minimum Concentration Readings (ppm) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>96 hrs</td>
</tr>
<tr>
<td>Greater than 68 °F</td>
<td>20 g*</td>
<td>200</td>
</tr>
<tr>
<td>61-68 °F</td>
<td>20 g*</td>
<td>—</td>
</tr>
</tbody>
</table>

* 20g/1,000 ft³ is equivalent to 0.71 g/m³.
The tobacco industry’s Sanitation Committee considers “starting time” as the time when the minimum concentration reading is reached. It is recommended that concentration monitoring be done every 6 hours leading up to “starting time,” then again at completion (96 or 120 hours later). [Note that this concept differs from the “starting time” in other phosphine fumigation schedules. In those cases, “starting time” starts when the aluminum phosphide or magnesium phosphide are first introduced.]

Gas concentration readings and temperature readings must be taken in the middle of a tightly packed bale. The fumigation does not begin until the gas concentration readings reach minimum required levels.

Refer to Table 5-4-4 on page 5-4-41 for the amount of phosphine liberated by various products.

T309—Broomcorn and Broomcorn Articles

T309-a

Broomcorn and broomcorn articles

Four alternative schedules

Pest: *Ostrinia nubilalis* (European corn borers), ticks, and saw flies

Treatment: T309-a—MB in 26" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period for:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Sawflies</td>
</tr>
<tr>
<td>60 °F or above</td>
<td>2.5 lbs</td>
<td>5 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3.5 lbs</td>
<td>5 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>5 lbs</td>
<td>5 hrs</td>
</tr>
</tbody>
</table>

T309-b-1

Broomcorn and broomcorn articles

Pest: *Ostrinia nubilalis* (European corn borers), ticks, and saw flies

Treatment: T309-b-1—MB at NAP—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>2.5 lbs</td>
<td>16 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3.5 lbs</td>
<td>16 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4.5 lbs</td>
<td>16 hrs</td>
</tr>
</tbody>
</table>
T309-b-2

Broomcorn and broomcorn articles

Pest: *Ostrinia nubilalis* (European corn borers), ticks, and saw flies

Treatment: T309-b-2—MB at NAP—Railroad car, reefer, highway van, tarpaulin

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>60 °F or above</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>5 lbs</td>
<td>60</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>7 lbs</td>
<td>84</td>
</tr>
</tbody>
</table>

T309-c

Broomcorn and broomcorn articles

Pest: *Ostrinia nubilalis* (European corn borers), ticks, and saw flies

Treatment: T309-c—Steam sterilization (alternate treatment)

Introduce live steam into 25” vacuum until pressure reaches 10 psi and 240 °F, then hold for 20 minutes.

T310—Tick-Infested Materials (Nonfood)

T310-a

Nonfood materials

Three alternative treatments

Pest: Ticks

Treatment: T310-a—MB (“Q” label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>4 lbs</td>
<td>55</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>5 lbs</td>
<td>65</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>6 lbs</td>
<td>75</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>7 lbs</td>
<td>88</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>8 lbs</td>
<td>100</td>
</tr>
<tr>
<td>40-49°F</td>
<td>8 lbs</td>
<td>100</td>
</tr>
</tbody>
</table>

NOTICE

Always check the fumigant label for the proper dosage used on the commodity being treated.
T310-b

Nonfood materials

Treatment: T310-b—MB (“Q” label only) in 26” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 °F or above</td>
<td>3 lbs</td>
<td>2.5 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>3.5 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>4 lbs</td>
<td>4 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>5.5 lbs</td>
<td>5 hrs</td>
</tr>
</tbody>
</table>

Important
For all fumigations with MB, if commodity temperature is known or considered to have been below the temperature range during the previous 48 hours, use the next lower range to calculate dosage.

T310-c

Nonfood materials

Treatment: T310-c (Vacant)

T310-d

Nonfood materials

Treatment: T310-d—Sulfuryl fluoride at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>0.5 hr</td>
</tr>
<tr>
<td>50-69 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>40</td>
</tr>
</tbody>
</table>

Important
Fumigations below 50 °F to be used only on an emergency basis and specifically authorized by Quarantine Policy, Analysis and Support (QPAS) in Riverdale MD.
T311—Hay, Baled

T311
Baled hay

Pest: *Mayetiola destructor* (Hessian fly), *Oulema melanopus* (cereal leaf beetle)

Treatment: T311 Phosphine at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (g/1,000 ft³)</th>
<th>Minimum Concentration Readings (ppm) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>12 hrs</td>
</tr>
<tr>
<td>50 °F or above</td>
<td>60</td>
<td>240</td>
</tr>
</tbody>
</table>

Aerate 24 hours or until a level at or below 0.3 ppm is determined.

See *Table 5-4-4* on page 5-4-41 for data on amount of phosphine liberated by various products.
T312—Oak Logs and Lumber

There are two alternative treatments for the MB fumigation of Oak logs, T312-a and T312-a-Alternative. Do not combine the schedules.

Special Procedures for Adding Gas to Oak Logs Using T312 or T312-a-Alternative on page 5-4-32 provides specific instructions for the correct actions to take at each gas concentration reading. Refer to *Table 5-4-2 on page 5-4-33* and *Table 5-4-3 on page 5-4-36* for every reading.

The following is a list of IMPORTANT items to remember when conducting either of these treatments:

- Take gas concentration readings 30 minutes after adding gas and record the readings in the CPHST-AQI electronic 429 Fumigation database.
 - To access the 429 database go to: https://treatments.cphst.org/tqau/
- Run the fans for 30 minutes and take gas concentration readings whenever additional gas is added.
- Ensure that the gas concentration readings do not differ more than 4 ounces among the sampling lines. If they do, run the fans for 30 more minutes to equalize the gas.
- Use DrieRite® and Ascarite® during the fumigation. Replace the DrieRite® when it changes color from blue to pink. Replace the Ascarite® when the granules become hard or moist.
- Aerate the logs for a minimum of 48 hours. Follow aeration procedures under sections *Aerating Sorptive Commodities in Containers—Indoors and Outdoors* on page 2-4-44 and *Aerating Sorptive, Noncontainerized Cargo—Indoors and Outdoors* on page 2-4-42.
- Add additional time onto the end of the fumigation and record the gas concentration reading in the electronic 429 database. Explain the reason the treatment was extended in the Remarks section of the PPQ Form 429.

The 72 hour reading MUST be taken even if the fumigation has been extended. Take the 72 hour reading and then take the extra reading as required by *Table 5-4-2 on page 5-4-33* or *Table 5-4-3 on page 5-4-36* in the section *Special Procedures for Adding Gas to Oak Logs Using T312 or T312-a-Alternative on page 5-4-32*.

Refer to *Table 5-4-1* for metric equivalents for T312-a.

Table 5-4-1 Metric Equivalents for T312-a

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Temperature (°C)</th>
<th>Dosage Rate (g/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 or above</td>
<td>15</td>
<td>4.4 or above</td>
<td>240</td>
</tr>
</tbody>
</table>
T312—a

Oak logs

Pest: Oak Wilt Disease
Treatment: T312—a—MB ("Q" label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At¹:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr²</td>
</tr>
<tr>
<td>40 °F or above</td>
<td>15 lbs</td>
<td>240</td>
</tr>
</tbody>
</table>

1 Refer to Table 5-4-2 for adding gas at each reading.
2 If the fumigation is conducted in a closed-door container, take the first reading at 1 hour instead of 0.5 hours.
3 If the fumigation is conducted in a closed-door container, take the second reading at 2.5 hour instead of 2 hours.
4 After 24 hours, add enough fumigant to bring the concentration up to 240 oz.

T312—a—Alternative

Oak logs-Alternative

Pest: Oak Wilt Disease
Treatment: T312—a—Alternative—MB ("Q" label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At¹:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr²</td>
</tr>
<tr>
<td>40 °F or above</td>
<td>15 lbs</td>
<td>240</td>
</tr>
</tbody>
</table>

1 Refer to Table 5-4-3 for adding gas at each reading.
2 If the fumigation is conducted in a closed-door container, take the first reading at 1 hour instead of 0.5 hours.
3 If the fumigation is conducted in a closed-door container, take the second reading at 2.5 hour instead of 2 hours.
4 After 24 hours, add enough fumigant to bring the concentration up to 240 oz.

T312—b

Oak lumber

Pest: Oak Wilt Disease
Treatment: T312—b—MB ("Q" label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr¹</td>
</tr>
<tr>
<td>40 °F or above</td>
<td>15 lbs</td>
<td>240</td>
</tr>
</tbody>
</table>

1 If the fumigation is conducted in a closed-door container, take the first reading at 1 hour instead of 0.5 hours.
2 If the fumigation is conducted in a closed-door container, take the second reading at 2.5 hour instead of 2 hours.
3 After 24 hours, add enough fumigant to bring the concentration up to 240 oz.
Special Procedures for Adding Gas to Oak Logs Using T312 or T312-a-Alternative

There are two alternative treatments for the MB fumigation of Oak logs. Refer to Table 5-4-2 and Table 5-4-3 for actions to take during the fumigation of Oak Logs using T312-a or T312-a-Alternative.

Use the following formula to calculate the amount of gas to add to the enclosure:

\[1.6 \times (\text{number of oz. below the required minimum}) \times (\text{volume in ft}^3)/1,000 \text{ ft}^3 = \text{oz. of gas to add.}\]

After adding gas, run the fans for 30 minutes and take additional gas concentration readings.

Refer to Table 5-4-2 if using T312-a and Table 5-4-3 if using T312-a-Alternative to determine how much additional time must be added to the fumigation to compensate for the low gas concentrations.

EXAMPLE: The treatment schedule is T312-a-Alternative. The size of the enclosure is 2400 ft³. The required reading at 48 hours must be a minimum of 140 ounces. The actual lowest reading is 132 ounces. Calculate the amount of gas to add to the enclosure using the formula:

\[1.6 x (\text{the number of ounces below 140}) x (\text{volume in ft}^3)/1000 \text{ ft}^3\]

ANSWER:

\[140-132=8\]

\[1.6 x 8 x 2400=30,720/1000 = 30.72 \text{ ounces of gas to add}\]

\[30.72/16 = 1.92 \text{ pounds of gas to add}\]

Determine the amount of time to add by referring to Table 5-4-3. In this example, 1 hour will be added to the total fumigation time.

Take the regularly scheduled reading at 72 hours (the minimum should be 100 ounces.)

Take another reading at 73 hours (the minimum should be 100 ounces.)

If the minimum is not 100 ounces, add more gas and time according to Table 5-4-3.

Instructions for Adding Gas and Time to Schedule T312-a

Do not combine Schedules T312-a and T312-a-Alternative. The treatment must be aborted if any individual gas concentration reading is 50 percent or more below the minimum required concentration.
Table 5-4-2 Determine Gas Concentration Values and Corrections for Oak Log Fumigations using Schedule T312-a

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>Concentration Range</th>
<th>Action 1</th>
<th>Action 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 hour¹</td>
<td>121-239</td>
<td>1. ADD gas, and</td>
<td>2. EXTEND exposure by 0.5 hour</td>
</tr>
<tr>
<td></td>
<td>0-120</td>
<td>ABORT</td>
<td></td>
</tr>
<tr>
<td>2 hours²</td>
<td>160-239</td>
<td>1. ADD gas, and</td>
<td>2. EXTEND exposure by 0.5 hour</td>
</tr>
<tr>
<td></td>
<td>121-159</td>
<td>1. ADD gas, and</td>
<td>2. EXTEND exposure by 1.0 hour</td>
</tr>
<tr>
<td></td>
<td>0-120</td>
<td>ABORT</td>
<td></td>
</tr>
<tr>
<td>12 hours</td>
<td>190-199</td>
<td>1. ADD gas, and</td>
<td>2. EXTEND exposure by 0.5 hour</td>
</tr>
<tr>
<td></td>
<td>180-189</td>
<td>1. ADD gas, and</td>
<td>2. EXTEND exposure by 1.0 hour</td>
</tr>
<tr>
<td></td>
<td>170-179</td>
<td>1. ADD gas, and</td>
<td>2. EXTEND exposure by 1.5 hours</td>
</tr>
<tr>
<td></td>
<td>160-169</td>
<td>1. ADD gas, and</td>
<td>2. EXTEND exposure by 2.0 hours</td>
</tr>
<tr>
<td></td>
<td>150-159</td>
<td>1. ADD gas, and</td>
<td>2. EXTEND exposure by 2.5 hours</td>
</tr>
<tr>
<td></td>
<td>140-149</td>
<td>1. ADD gas, and</td>
<td>2. EXTEND exposure by 3.0 hours</td>
</tr>
<tr>
<td></td>
<td>130-139</td>
<td>1. ADD gas, and</td>
<td>2. EXTEND exposure by 3.5 hours</td>
</tr>
<tr>
<td></td>
<td>120-129</td>
<td>1. ADD gas, and</td>
<td>2. EXTEND exposure by 4.0 hours</td>
</tr>
<tr>
<td></td>
<td>110-119</td>
<td>1. ADD gas, and</td>
<td>2. EXTEND exposure by 4.5 hours</td>
</tr>
<tr>
<td></td>
<td>101-109</td>
<td>1. ADD gas, and</td>
<td>2. EXTEND exposure by 5.0 hours</td>
</tr>
<tr>
<td></td>
<td>0-100</td>
<td>ABORT</td>
<td></td>
</tr>
</tbody>
</table>
Table 5-4-2 Determine Gas Concentration Values and Corrections for Oak Log Fumigations using Schedule T312-a (continued)

<table>
<thead>
<tr>
<th>Time</th>
<th>Concentration Range</th>
<th>Instructions</th>
</tr>
</thead>
</table>
| 24 hours | 120-239 | 1. Add gas to bring the total concentration to 240 ounces.
2. DO **NOT** ADD TIME. |
| | 110-119 | 1. ADD gas, and
2. EXTEND exposure by 1.0 hour |
| | 100-109 | 1. ADD gas, and
2. EXTEND exposure by 2.0 hours |
| | 90-99 | 1. ADD gas, and
2. EXTEND exposure by 3.0 hours |
| | 80-89 | 1. ADD gas, and
2. EXTEND exposure by 4.0 hours |
| | 70-79 | 1. ADD gas, and
2. EXTEND exposure by 5.0 hours |
| | 61-69 | 1. ADD gas, and
2. EXTEND exposure by 6.0 hours |
| | 0-60 | **ABORT** |
| 36 hours | 150-159 | 1. ADD gas, and
2. EXTEND exposure by 1.0 hour |
| | 140-149 | 1. ADD gas, and
2. EXTEND exposure by 1.5 hours |
| | 130-139 | 1. ADD gas, and
2. EXTEND exposure by 2.5 hours |
| | 120-129 | 1. ADD gas, and
2. EXTEND exposure by 3.0 hours |
| | 110-119 | 1. ADD gas, and
2. EXTEND exposure by 4.0 hours |
| | 100-109 | 1. ADD gas, and
2. EXTEND exposure by 4.5 hours |
| | 90-99 | 1. ADD gas, and
2. EXTEND exposure by 5.5 hours |
| | 81-89 | 1. ADD gas, and
2. EXTEND exposure by 6.0 hours |
| | 0-80 | **ABORT** |
Table 5-4-2
Determine Gas Concentration Values and Corrections for Oak Log Fumigations using Schedule T312-a (continued)

<table>
<thead>
<tr>
<th>Time (h)</th>
<th>Concentration</th>
<th>Actions</th>
</tr>
</thead>
</table>
| 48 | 110-119 | 1. ADD gas, and
2. EXTEND exposure by 1.0 hour |
| 100-109 | | 1. ADD gas, and
2. EXTEND exposure by 2.0 hours |
| 90-99 | | 1. ADD gas, and
2. EXTEND exposure by 3.0 hours |
| 80-89 | | 1. ADD gas, and
2. EXTEND exposure by 4.0 hours |
| 70-79 | | 1. ADD gas, and
2. EXTEND exposure by 5.0 hours |
| 61-69 | | 1. ADD gas, and
2. EXTEND exposure by 6.0 hours |
| 0-60 | | ABORT |
| 72 | 70-79 | 1. ADD gas, and
2. EXTEND exposure by 3.0 hours |
| 60-69 | | 1. ADD gas, and
2. EXTEND exposure by 6.0 hours |
| 50-59 | | 1. ADD gas, and
2. EXTEND exposure by 9.0 hours |
| 41-49 | | 1. ADD gas, and
2. EXTEND exposure by 12.0 hours |
| 0-40 | | ABORT |

Important

If additional time has been added to the treatment, the 72 hour reading AND the extended time reading MUST be taken. If the minimum of 80 ounces is not met, time and gas MUST be added according to this Table.

1. If the fumigation is conducted in a closed-door container, take the first reading at 1 hour instead of 0.5 hours.
2. If the fumigation is conducted in a closed-door container, take the second reading at 2.5 hour instead of 2 hours.
Instructions for Adding Gas and Time to Schedule T312-a-Alternative
Do not combine schedules T312-a and T312-a-Alternative.

Table 5-4-3 Determine Gas Concentration Values and Corrections for Oak Log Fumigations using schedule T312-a-Alternative

<table>
<thead>
<tr>
<th>Time (hours)</th>
<th>Concentration Range</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>121-239</td>
<td>1. ADD gas, and 2. DO NOT EXTEND exposure.</td>
</tr>
<tr>
<td></td>
<td>0-120</td>
<td>ABORT</td>
</tr>
<tr>
<td>2</td>
<td>160-239</td>
<td>1. ADD gas, and 2. DO NOT EXTEND exposure</td>
</tr>
<tr>
<td></td>
<td>121-159</td>
<td>1. ADD gas, and 2. EXTEND exposure by 1.0 hour</td>
</tr>
<tr>
<td></td>
<td>0-120</td>
<td>ABORT</td>
</tr>
<tr>
<td>24</td>
<td>140-239</td>
<td>1. Add gas to bring the total concentration to 240 ounces. 2. DO NOT ADD TIME.</td>
</tr>
<tr>
<td></td>
<td>130-139</td>
<td>1. ADD gas, and 2. EXTEND exposure by 1.0 hour</td>
</tr>
<tr>
<td></td>
<td>120-129</td>
<td>1. ADD gas, and 2. EXTEND exposure by 2.5 hours</td>
</tr>
<tr>
<td></td>
<td>110-119</td>
<td>1. ADD gas, and 2. EXTEND exposure by 4.0 hours</td>
</tr>
<tr>
<td></td>
<td>100-109</td>
<td>1. ADD gas, and 2. EXTEND exposure by 5.5 hours</td>
</tr>
<tr>
<td></td>
<td>90-99</td>
<td>1. ADD gas, and 2. EXTEND exposure by 7.0 hours</td>
</tr>
<tr>
<td></td>
<td>80-89</td>
<td>1. ADD gas, and 2. EXTEND exposure by 8.5 hours</td>
</tr>
<tr>
<td></td>
<td>71-79</td>
<td>1. ADD gas, and 2. EXTEND exposure by 10.0 hours</td>
</tr>
<tr>
<td></td>
<td>0-70</td>
<td>ABORT</td>
</tr>
</tbody>
</table>
Table 5-4-3 Determine Gas Concentration Values and Corrections for Oak Log Fumigations using schedule T312-a-Alternative (continued)

<table>
<thead>
<tr>
<th>If the Reading is Taken At:</th>
<th>And the any individual concentration reading is:</th>
<th>Then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>48 hours</td>
<td>130-139</td>
<td>1. ADD gas, and 2. EXTEND exposure by 1.0 hour</td>
</tr>
<tr>
<td></td>
<td>120-129</td>
<td>1. ADD gas, and 2. EXTEND exposure by 2.5 hours</td>
</tr>
<tr>
<td></td>
<td>110-119</td>
<td>1. ADD gas, and 2. EXTEND exposure by 4.5 hours</td>
</tr>
<tr>
<td></td>
<td>100-109</td>
<td>1. ADD gas, and 2. EXTEND exposure by 6.0 hours</td>
</tr>
<tr>
<td></td>
<td>90-99</td>
<td>1. ADD gas, and 2. EXTEND exposure by 8.5 hours</td>
</tr>
<tr>
<td></td>
<td>80-89</td>
<td>1. ADD gas, and 2. EXTEND exposure by 9.5 hours</td>
</tr>
<tr>
<td></td>
<td>71-79</td>
<td>1. ADD gas, and 2. EXTEND exposure by 11 hours</td>
</tr>
<tr>
<td></td>
<td>0-70</td>
<td>ABORT</td>
</tr>
<tr>
<td>72 hours</td>
<td>90-99</td>
<td>1. ADD gas, and 2. EXTEND exposure by 1.5 hours</td>
</tr>
<tr>
<td></td>
<td>80-89</td>
<td>1. ADD gas, and 2. EXTEND exposure by 4.0 hours</td>
</tr>
<tr>
<td></td>
<td>70-79</td>
<td>1. ADD gas, and 2. EXTEND exposure by 7.5 hours</td>
</tr>
<tr>
<td></td>
<td>60-69</td>
<td>1. ADD gas, and 2. EXTEND exposure by 8.5 hours</td>
</tr>
<tr>
<td></td>
<td>51-59</td>
<td>1. ADD gas, and 2. EXTEND exposure by 11.0 hours</td>
</tr>
<tr>
<td></td>
<td>0-50</td>
<td>ABORT</td>
</tr>
</tbody>
</table>

Important

If additional time has been added to the treatment, the 72 hour reading AND the extended time reading MUST be taken. If the minimum of 100 ounces is **not** met, time and gas MUST be added according to this Table.

1. If the fumigation is conducted in a closed-door container, take the first reading at 1 hour instead of 0.5 hours.
2. If the fumigation is conducted in a closed-door container, take the second reading at 2.5 hour instead of 2 hours.
T313—Christmas Trees

T313-a

Cut conifer Christmas trees

Pest: *Lymantria dispar* (gypsy moth) egg masses

Treatment: T313-a—MB (“Q” label only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>75 °F or above</td>
<td>1.5 lbs</td>
<td>18</td>
</tr>
<tr>
<td>70-74 °F</td>
<td>2 lbs</td>
<td>24</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>2.5 lbs</td>
<td>30</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3.5 lbs</td>
<td>42</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>5 lbs</td>
<td>60</td>
</tr>
</tbody>
</table>

T313-b

Cut pine Christmas trees and pine logs

Pest: *Tomicus piniperda* (pine shoot beetle)

Treatment: T313-b—MB (“Q” label only) at NAP—chamber or tarpaulin

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2 hrs</td>
</tr>
<tr>
<td>60 °F or above</td>
<td>3 lbs</td>
<td>43</td>
</tr>
<tr>
<td>60 °F or above</td>
<td>4 lbs</td>
<td>57</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3.5 lbs</td>
<td>50</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>4 lbs</td>
<td>57</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4 lbs</td>
<td>57</td>
</tr>
</tbody>
</table>

Important

If treating pine Christmas trees for both gypsy moth egg masses and the pine shoot beetle, use the schedule for the pine shoot beetle since it is more potent.
T314—Logs and Firewood

These heat treatment procedures may employ steam, hot water, kilns, or any other method that raises the temperature of the center of the log to the minimum required temperature for the time specified. Procedures for obtaining internal log temperature can be found in the chapter "Methyl Bromide-Tarpaulin", section Logs and Lumber on page 2-4-21.

The heat treatment must be performed at an approved facility that maintains a current compliance agreement. The PPQ official will review facility treatment records to ensure the treatment temperature and duration requirements have been met.

Contact USDA-APHIS-CHPST-PPQ Pest Survey Detection and Exclusion Laboratory at 508-563-9303 ext. 259 for a list of approved facilities, temperature monitoring equipment and operational guidelines.

For annual facility certification guidelines, follow the procedures in "Certifying Facilities for the Heat Treatment of Firewood on page 6-9-1.

T314-a

Regulated Wood Articles³, including Fraxinus (Ash Logs and firewood) and all Hardwood Firewood from Emerald Ash Borer quarantine areas

Pest: Agrilus planipennis (Emerald Ash Borer)

Treatment: T314-a—Heat treatment

<table>
<thead>
<tr>
<th>Unit</th>
<th>Temperature</th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td>140.0</td>
<td>60</td>
</tr>
<tr>
<td>°C</td>
<td>60.0</td>
<td>60</td>
</tr>
</tbody>
</table>

T314-b

All logs (including firewood) from Gypsy Moth quarantine areas⁴

Pest: Lymantria dispar (Gypsy Moth egg masses)

Treatment: T314-b—Heat treatment

<table>
<thead>
<tr>
<th>Unit</th>
<th>Temperature</th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td>132.8</td>
<td>30</td>
</tr>
<tr>
<td>°C</td>
<td>56.0</td>
<td>30</td>
</tr>
</tbody>
</table>

³ Emerald Ash Borer regulated articles include: firewood of all hardwood (non-coniferous) species; nursery stock, green lumber, and other material living, dead, cut, or fallen, including logs, stumps, roots, branches, and composted and uncomposted chips of the genus Fraxinus. (7 CFR 301.53-2)

⁴
T314-c

Regulated Wood Articles

Pest: Various Wood Pests

Treatment: T314-c—Heat treatment

<table>
<thead>
<tr>
<th>Unit</th>
<th>Temperature</th>
<th>Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>°F</td>
<td>160.0</td>
<td>75</td>
</tr>
<tr>
<td>°C</td>
<td>71.1</td>
<td>75</td>
</tr>
</tbody>
</table>

4 If the regulated article originates from areas quarantine for BOTH gypsy moth and emerald ash borer, use T314-a.

5 Regulated wood articles are considered to be unprocessed logs; lumber; any whole tree; any cut tree or any portion of a tree not solely consisting of leaves, flowers, fruits, buds, or seeds; bark; cork; laths; hog fuel; sawdust; painted raw wood products; wood mulch; wood shavings; pickets; stakes; shingles; solid wood packing materials; humus; compost; and litter. (7 CFR 319.40-1)
Table 5-4-4 Amount of Phosphine Liberated by various Products. Calculate amount of product needed by using the amount of phosphine released as shown in the right column.

<table>
<thead>
<tr>
<th>Product</th>
<th>Type</th>
<th>Unit and weight in grams</th>
<th>Grams of phosphine¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degesch Fumi-Cel®</td>
<td>MP</td>
<td>1 plate; 117.0</td>
<td>33.0</td>
</tr>
<tr>
<td>Degesch Fumi-Strip®</td>
<td>MP</td>
<td>16 plates; 1872.0</td>
<td>528.0</td>
</tr>
<tr>
<td>Degesch Phostoxin®</td>
<td>AP</td>
<td>1 tablet; 3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Degesch Phostoxin® Tablet Prepac Rope</td>
<td>AP</td>
<td>1 prepac; 99.0 (strip or rope of 33 tablets)</td>
<td>33.0</td>
</tr>
<tr>
<td>Detia</td>
<td>AP</td>
<td>1 tablet; 3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Detia Rotox AP</td>
<td>AP</td>
<td>1 pellet; 0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Detia Gas EX-B</td>
<td>AP</td>
<td>1 bag or sachet; 34.0</td>
<td>11.4</td>
</tr>
<tr>
<td>Fumiphos tablets</td>
<td>AP</td>
<td>1 tablet; 3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Fumiphos pellets</td>
<td>AP</td>
<td>1 pellet; 0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Fumiphos bags</td>
<td>AP</td>
<td>1 bag; 34.0</td>
<td>11.0</td>
</tr>
<tr>
<td>Fumitoxin</td>
<td>AP</td>
<td>1 tablet; 3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Fumitoxin</td>
<td>AP</td>
<td>1 pellet; 0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Fumitoxin</td>
<td>AP</td>
<td>1 bag; 34.0</td>
<td>11.0</td>
</tr>
<tr>
<td>Gastoxin</td>
<td>AP</td>
<td>1 tablet; 3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Gastoxin</td>
<td>AP</td>
<td>1 pellet; 0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>"L" Fume</td>
<td>AP</td>
<td>1 pellet; 0.5</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>AP</td>
<td>1 pellet; 0.6</td>
<td>0.22</td>
</tr>
<tr>
<td>Phos-Kill</td>
<td>AP</td>
<td>1 tablet; 3.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Phos-Kill</td>
<td>AP</td>
<td>1 pellet; 0.6</td>
<td>0.22</td>
</tr>
<tr>
<td>Phos-Kill</td>
<td>AP</td>
<td>1 bag; 34.0</td>
<td>12.0</td>
</tr>
</tbody>
</table>

¹ Reacts with moisture in the air to yield grams of phosphine.
Commodities treated with the following schedules are **not** to be used for food or feed.

T401—Railroad Cars (Empty)
T402—Miscellaneous Areas Where Fumigation is Not Possible
T403—Miscellaneous Cargo (Nonfood, Nonfeed Commodities)
T404—Wood Products Including Containers
Partial Site List for Chemical Treatments
T405—Bags and Bagging Material
T406—Golden Nematode Contaminations
T407—Mechanical Cotton Pickers and Other Cotton Equipment
T408—Soil as Such and Soil Contaminating Durable Commodities
T409—Aircraft
T410— Tick Infestations
T411—Ant Infestations—Nonplant Products
T412—Noxious Weed Seeds (Devitalization Treatment)
T413—Brassware from Mumbai (Bombay), India
T414—Inanimate, Nonfood Articles with Gypsy Moth Egg Masses
T415—Garbage
T416—Goatskins, Lambskins, Sheepskins (Skins and Hides)

Important

Exposure period may be extended for any commodity which cannot be used for food or propagation. This extension is only a matter of convenience for the importer and is intended only for the purpose of reducing treatment costs. The request for extension must come from the importer or his authorized representative and should be confirmed in writing. A letter is not required for each treatment. A single blanket request should be considered as acceptable and renewed each year as required.

During the extended exposure period, the concentrations must remain stable and the prescribed minimums be met at the end of the extension. Otherwise, the treatment may be voided and retreatment required. Examples of commodities for which extended exposure periods may be approved include cotton piece goods, baled cotton, bagging, wood, marble, soil as such, etc. Examples of commodities for which no extension may be approved include cottonseed, grain, tobacco, etc. An extension of exposure period for other purposes is **not** permitted except as may be prescribed in various schedules for concentration readings below minimum.

Additional safety precautions, including additional aeration, may be required because of the extended exposure period. The PPQ officer or the commercial fumigator will specify any needed safety precautions.
T401—Railroad Cars (Empty)

T401-a
Railroad cars (empty)
Pest: *Pectinophora gossypiella* (pink bollworm) and fruit flies
Treatment: T401-a—MB (“Q” label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 °F or above</td>
<td>4 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td>OR</td>
<td>8 lbs</td>
<td>3 hrs</td>
</tr>
</tbody>
</table>

T401-b
Railroad cars (empty)
Pest: *Trogoderma granarium* (khapra beetle)
Treatment: T401-b—MB (“Q” label only) at NAP—tarpaulin covered car

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>90 °F or above</td>
<td>2.5 lbs</td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>3.5 lbs</td>
<td>30</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>4.5 lbs</td>
<td>42</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>6 lbs</td>
<td>54</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>7.5 lbs</td>
<td>72</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>9 lbs</td>
<td>90</td>
</tr>
</tbody>
</table>

T401-c
Railroad cars (empty)
Pest: For nematode cysts
Treatment: T401-c—High pressure steam cleaning. The debris and/or runoff from the cleaning procedure must be handled in a manner approved by local and port authority guidelines.
T402—Miscellaneous Areas Where Fumigation is Not Possible

These schedules use insecticides that may be toxic to fish, aquatic invertebrates, small mammals, birds, and bees. Do not apply directly to water, or to areas where surface water is present or to intertidal areas below the mean high water mark. Do not apply where runoff is likely to occur. Do not apply these insecticides or allow them to drift to blooming crops or weeds if bees are visiting the treatment area. ALWAYS refer to the labels for specific environmental, physical and chemical hazards, mixing and application instructions.

Apply these insecticides according to the manufacturer’s labels and all state and local restrictions. Direct the spray to areas where the insects congregate, with special attention to corners, cracks, and crevices. Before using any insecticide, verify that it is registered for use in YOUR city, state, or county.

T402-b-3-2 Deleted

T402-b-3-1 Pest: *Trogoderma granarium* (khapra beetle)

Treatment: T402-b-3-1—General surface, perimeter, spot, mist, or crack and crevice treatment

Refer to Table 5-5-4 for a partial site list. Always refer to the manufacturer’s label for specific areas of use.

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Examples of Trade Names and EPA Registration Numbers (list not all inclusive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deltamethrin 4.75% a.i.</td>
<td>Suspend SC, K-Othrine® SC (#432-763)</td>
</tr>
<tr>
<td>Malathion 57% EC</td>
<td>Clean Crop Malathion (#34704-108)</td>
</tr>
</tbody>
</table>

1. Apply at the highest rate allowed for the site on the label. (active ingredient = a.i.)

2. No endorsement is intended of the particular items listed and no discrimination is intended toward those products or companies that may not be listed. Use other formulations as long as the application method, site, and rate are listed on the label.

T402-d Pests: Miscellaneous hitchhiking insects (e.g., crickets, scarab beetles, ants, Africanized honeybee swarms)

Treatment: T402-d—General surface, perimeter, spot, mist, or crack and crevice treatment
Refer to Table 5-5-4 for a partial site list. Always refer to the manufacturer’s label for specific areas of use.

<table>
<thead>
<tr>
<th>Active Ingredient1</th>
<th>Examples of Trade Names and EPA Registration Numbers (list not all inclusive) ²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorpyrifos</td>
<td>Whitmire PT®, Duraguard ME (#499-367)</td>
</tr>
<tr>
<td>β-Cyfluthrin 11.8% a.i.</td>
<td>Tempo Ultra® SC (#432-1363)</td>
</tr>
<tr>
<td>Cyfluthrin 6% a.i.</td>
<td>Cy-Kick® CS, OPTEM® (#499-304)</td>
</tr>
<tr>
<td>Cypermethrin 25.3% a.i.</td>
<td>Demon® EC (#100-1004)</td>
</tr>
<tr>
<td>Deltamethrin 4.75% a.i.</td>
<td>Suspend SC, K-Othrine® (#432-763)</td>
</tr>
<tr>
<td></td>
<td>D-FENSE™ SC, Delta SC (#53883-276)</td>
</tr>
<tr>
<td>Lambda-Cyhalothrin 9.7% a.i.</td>
<td>Cyonara™ 9.7, Cyzmic™ CS, Demand® CS (#100-1066)</td>
</tr>
<tr>
<td>Malathion 57% EC</td>
<td>Clean Crop Malathion (#34704-108)</td>
</tr>
</tbody>
</table>

1 Apply at the highest rate allowed for the site on the label. (active ingredient = a.i.)

2 No endorsement is intended of the particular items listed and no discrimination is intended toward those products or companies that may not be listed. Use other formulations as long as the application method, site, and rate are listed on the label.

T402-c

Empty holds (precautionary treatment for grain exports)

Pest: Without khapra beetle infestation

Treatment: T402-b—MB at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>1 lb</td>
<td>10 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>1 lb</td>
<td>12 hrs</td>
</tr>
<tr>
<td>40-59 °F</td>
<td>1.5 lbs</td>
<td>12 hrs</td>
</tr>
</tbody>
</table>

Operate fans during gas introduction and for 30 minutes thereafter. During exposure period, operate fans for 30 minutes every 3 hours.

Important

If khapra beetle is present, see **T401-b** on page 5-5-2.
T402-a-1

Ship holds and any nonplant cargo material within holds

Pest: Quarantine-significant snails of the family Achatinidea, including the following genera:
- *Achatina*
- *Lignus*
- *Archachatina Limicolaria*

Treatment: T402-a-1—MB (“Q” label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>55 °F or above</td>
<td>8 lbs</td>
<td>96</td>
</tr>
</tbody>
</table>

T402-a-2

Ship holds and any nonplant cargo material within holds

Pest: Quarantine-significant snails of the families Geomitridae and Hygromiidae, including the following genera:
- *Candidula Monacha Xeropicta*
- *Cernuella Platytheba Xerosecta*
- *Cochlicella Pseudotrichia Xerotricha*
- *Helicella Trochoidea*
- *Helicopsis Xerolenta*

Treatment: T402-a-2—MB (“Q” label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>55 °F or above</td>
<td>8 lbs</td>
<td>95</td>
</tr>
</tbody>
</table>

T402-a-3

Ship holds and any nonplant cargo material within holds

Pest: Quarantine-significant snails of the families Helicidae and Succineidae, including the following genera:
- *Caracollina Omalonyx*
- *Cepaea Otala*
- *Cryptomphalus Succinea*
- *Helix Theba*

Treatment: T402-a-3—MB (“Q” label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>6 lbs</td>
<td>70</td>
</tr>
<tr>
<td>55-79 °F</td>
<td>6 lbs</td>
<td>70</td>
</tr>
<tr>
<td>40-54 °F</td>
<td>8 lbs</td>
<td>96</td>
</tr>
</tbody>
</table>
T402-b-1

Ship holds and storerooms that do not contain finely milled products such as flour or appreciable quantities of tightly packed cargo such as baled materials

Pest: *Trogoderma granarium* (khapra beetle)

Treatment: T402-b-1—MB (“Q” label only) at NAP—tarpaulin covered car

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>2.5 lbs</td>
<td>30</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>3.5 lbs</td>
<td>42</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>4.5 lbs</td>
<td>54</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>6 lbs</td>
<td>72</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>7.5 lbs</td>
<td>90</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>9 lbs</td>
<td>108</td>
</tr>
</tbody>
</table>

T402-b-2

Ship holds and storerooms that contain milled products, or with appreciable quantities of tightly packed or baled material

Pest: *Trogoderma granarium* (khapra beetle)

Treatment: T402-b-2—MB (“Q” label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90-96 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>6 lbs</td>
<td>72</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>8 lbs</td>
<td>96</td>
</tr>
</tbody>
</table>

In addition to the space concentration readings, you must take a commodity concentration reading. The minimum concentration reading for commodity reading is as follows: For 90-96 °F—10 oz.; for 80-89 °F—15 oz.; for 70-79 °F—20 oz.

Important

Concentration readings not required for chamber fumigation.

Some ships’ masters or agents prefer to abandon flour or other finely milled products to qualify for the 12 hours schedule (*T401-b* on page 5-5-2). This practice should not be discouraged if PPQ approved incineration or steam sterilization facilities are available within the port city. Small quantities may be burned or boiled on board the vessel, but in no case should the material be removed from treatment in PPQ facilities. Such articles must be left in the storeroom during the 12-hour fumigation and then removed under PPQ safeguards. This will serve to reduce the possibility of pest dispersal when the articles are removed under PPQ supervision.
T403—Miscellaneous Cargo (Nonfood, Nonfeed Commodities)

T403-a-1

Miscellaneous cargo (nonfood, nonfeed commodities)

Pest: Quarantine-significant snails of the family Achatinidae, including the following genera:

- *Achatina Lignus*
- *Archachatina Limicolaria*

Treatment: T403-a-1—use T402-a-1 for temperatures of 55 °F and above, use T403-a-6 for temperatures below 55 °F

Important

Commodity or product temperature must reach treatment temperature before exposure time begins.

T403-a-2-1

Miscellaneous cargo (nonfood, nonfeed commodities)

Three alternative treatments

Pest: Quarantine-significant snails of the families Geomitridae and Hygromiidae, including the following genera:

- *Candidula Monacha Xeropicta*
- *Cernuella Platytheba Xerosecta*
- *Cochlicella Pseudotrichia Xerotricha*
- *Helicella Trochoidea Xerolenta*

Treatment: T403-a-2-1—MB (“Q” label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>55 °F or above</td>
<td>8 lbs</td>
<td>0.5 hr 95 2 hrs 64 24 hrs 60 48 hrs 60 72 hrs</td>
</tr>
</tbody>
</table>

T403-a-2-2

Miscellaneous cargo (nonfood, nonfeed commodities)

Treatment: T403-a-2-2—MB in 26" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>8 lbs</td>
<td>16 hrs</td>
</tr>
</tbody>
</table>

T403-a-2-3

Miscellaneous cargo (nonfood, nonfeed commodities)

Treatment: T403-a-2-3—Cold treatment (for temperatures below 55 °F)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 °F</td>
<td>48 hrs</td>
</tr>
</tbody>
</table>
T403-a-3

Miscellaneous cargo (nonfood, nonfeed commodities)

Pest: Quarantine-significant slugs of the families Agriolimacidae, Arionidae, Limacidae, Milacidae, Philomycidae, and Veronicellidae, including the following genera:

- *Agriolimax*
- *Leidyula*
- *Pseudoveronicella*
- *Arion*
- *Limax*
- *Sarasinula*
- *Colosius*
- *Meghimatium*
- *Semperula*
- *Deroceras*
- *Milax*
- *Vaginulus*
- *Diplosolenodes*
- *Pallifera*
- *Veronicella*

Treatment: T403-a-3—MB at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90-96 °F</td>
<td>1 lb</td>
<td>12</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>1.25 lbs</td>
<td>15</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>1.5 lbs</td>
<td>18</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>1.75 lbs</td>
<td>22</td>
</tr>
</tbody>
</table>

T403-a-4-1

Miscellaneous cargo (nonfood, nonfeed commodities)

Three alternative schedules

Pest: Quarantine-significant snails of the family Helicidae, including the following genera:

- *Caracollina*
- *Helix*
- *Cepaea*
- *Otala*
- *Cryptomphalus*
- *Theba*

Treatment: T403-a-4-1—MB at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>6 lbs</td>
<td>70</td>
</tr>
<tr>
<td>55-79 °F</td>
<td>6 lbs</td>
<td>70</td>
</tr>
<tr>
<td>40-54 °F</td>
<td>8 lbs</td>
<td>96</td>
</tr>
</tbody>
</table>

Important

If the fumigation is done at a temperature range of 40 to 54°F, use Methyl Bromide Q gas only.
T403-a-4-2

Miscellaneous cargo (nonfood, nonfeed commodities)

Treatment: T403-a-4-2—MB (“Q” label only) in 26" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>6 lbs</td>
<td>6 hrs</td>
</tr>
</tbody>
</table>

T403-a-4-3

Miscellaneous cargo (nonfood, nonfeed commodities)

Treatment: T403-a-4-3—Cold treatment, use *T403-a-6-1* on page 5-5-10 for temperatures below 55 °F

T403-a-5-1

Miscellaneous cargo (nonfood, nonfeed commodities)

Three alternative treatments

Pest: Quarantine-significant snails of the families Bradybaenidae and Succineidae, including the following genera:

- *Bradybaena*
- *Omalonyx*
- *Cathaica*
- *Succinea*
- *Helicostyla*
- *Trishoplita*

Treatment: T403-a-5-1—MB (“Q” label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>80 °F or above</td>
<td>6 lbs</td>
<td>72</td>
</tr>
<tr>
<td>40-79 °F</td>
<td>6 lbs</td>
<td>70</td>
</tr>
</tbody>
</table>

T403-a-5-2

Miscellaneous cargo (nonfood, nonfeed commodities)

Treatment: T403-a-5-2—MB (“Q” label only) in 26" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 °F or above</td>
<td>6 lbs</td>
<td>6 hrs</td>
</tr>
</tbody>
</table>

T403-a-5-3

Miscellaneous cargo (nonfood, nonfeed commodities)

Treatment: T403-a-5-3—Cold Treatment, use *T403-a-6-1* on page 5-5-10 for temperatures below 40 °F

Important

Commodity or product must reach treatment temperature before exposure time begins.
T403-a-6-1 **Miscellaneous cargo (nonfood, nonfeed commodities)**
Three alternative treatments

Pest: Quarantine-significant snails sensitive to Cold Treatment, members of the families Bradybaenidae, Geomitridae, Helicidae, Helicellidae, Hygromiidae, and Succineidae, including the following genera:
- *Bradybaena*
- *Cochlicella*
- *Trochoidea*
- *Candidula*
- *Helicella*
- *Xerolenta*
- *Cepaea*
- *Helicostyla*
- *Xeropicta*
- *Cathaica*
- *Theba*
- *Xerosecta*
- *Cernuella*
- *Trishoplita*
- *Xerotricha*

Treatment: T403-a-6-1—Cold Treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 °F</td>
<td>48 hrs</td>
</tr>
</tbody>
</table>

T403-a-6-2 **Miscellaneous cargo (nonfood, nonfeed commodities)**

Pest: Quarantine-significant snails sensitive to Cold Treatment, certain members of the family Helicidae, including the following genera:
- *Helix*
- *Otala*

Treatment: T403-a-6-2—Cold Treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 °F</td>
<td>32 hrs</td>
</tr>
<tr>
<td>10 °F</td>
<td>48 hrs</td>
</tr>
</tbody>
</table>

T403-a-6-3 **Miscellaneous cargo (nonfood, nonfeed commodities)**

Pest: Quarantine-significant snails sensitive to Cold Treatment, of the family Achatinidae, including the following genera:
- *Achatina*
- *Lignus*
- *Archachatina*
- *Limicolaria*

Treatment: T403-a-6-3—Cold Treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 °F</td>
<td>8 hrs</td>
</tr>
<tr>
<td>10 °F</td>
<td>16 hrs</td>
</tr>
<tr>
<td>20 °F</td>
<td>24 hrs</td>
</tr>
</tbody>
</table>
T403-b

Miscellaneous cargo (nonfood, nonfeed commodities)

Pest: *Trogoderma granarium* (khapra beetle)

Treatment: T403-b—MB at NAP, use T401-b or T402-b-2

T403-c

Miscellaneous cargo (nonfood, nonfeed commodities)

Pest: *Globodera rostochiensis* (golden nematode)

Treatment: T403-c—MB (“Q” label only) in 26” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft²)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 °F or above</td>
<td>8 lbs</td>
<td>16 hrs</td>
</tr>
<tr>
<td></td>
<td>10.5 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td></td>
<td>16 lbs</td>
<td>8 hrs</td>
</tr>
</tbody>
</table>

T403-d

Miscellaneous cargo (nonfood, nonfeed commodities)

Pest: Wood Borers or termites

Treatment: T403-d see T404 schedules

T403-e-1-1

Miscellaneous cargo (nonfood, nonfeed commodities) that is not sorptive or difficult to penetrate

Pest: Quarantine-significant insects not specifically provided for elsewhere in nonfood or nonfeed commodities

Treatment: T403-e-1-1—MB (“Q” label only) at NAP—tarpaulin

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft²)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>2.5 lbs</td>
<td>30</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>3.5 lbs</td>
<td>42</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>4.5 lbs</td>
<td>54</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>6 lbs</td>
<td>72</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>7.5 lbs</td>
<td>90</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>9 lbs</td>
<td>108</td>
</tr>
</tbody>
</table>
T403-e-1-2

Miscellaneous cargo (nonfood, nonfeed commodities) that is sorptive or difficult to penetrate

Pest: Quarantine-significant insects not specifically provided for elsewhere in nonfood or nonfeed commodities

Treatment: T403-e-1-2—MB (“Q” label only) at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5 hr</td>
<td>4 hrs</td>
</tr>
<tr>
<td>90-96 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>6 lbs</td>
<td>72</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>8 lbs</td>
<td>96</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>12 lbs</td>
<td>144</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>12 lbs</td>
<td>144</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>12 lbs</td>
<td>144</td>
</tr>
</tbody>
</table>

*In addition to the space concentration readings, you must take a commodity concentration reading. The minimum concentration reading for commodity reading is as follows: For 90-96 °F—10 oz.; for 80-89 °F—15 oz.; for 70-79 °F—20 oz.; for 60-69 °F—30 oz; for 50-59 °F—30 oz; and 40-49 °F—30 oz.

This fumigation schedule may be used, for example, on finely miled products and on material that is tightly packed or baled.

T403-e-2

Miscellaneous cargo (nonfood, nonfeed commodities) that is not sorptive or difficult to penetrate

Pest: Quarantine-significant pests other than insects

Important

This would include quarantine-significant snails of the families Helicarionidae, Streptacidae, Subulinidae, and Zonitidae, as well as other noninsect pests.

Treatment: T403-e-2—MB (“Q” label only) at NAP tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5 hr</td>
<td>2 hrs</td>
</tr>
<tr>
<td>40 °F or above</td>
<td>10 lbs</td>
<td>140</td>
</tr>
</tbody>
</table>
T403-f

Miscellaneous cargo (nonfood, nonfeed commodities)

Pest: *Pieris* spp. (cabbageworms—all life stages) and all other *Lepidoptera*. Also hitchiking insects, including non-*Lepidoptera*.

Treatment: T403-f—MB at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3.5 lbs</td>
<td>40</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>4 lbs</td>
<td>45</td>
</tr>
<tr>
<td>45-49 °F</td>
<td>4.5 lbs</td>
<td>49</td>
</tr>
<tr>
<td>40-44 °F</td>
<td>5 lbs</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 hrs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27</td>
</tr>
</tbody>
</table>

A 3-hour exposure easily kills all Lepidoptera hitchhikers, including gypsy moth, and is preferred over using the much longer schedules that are aimed more at khapra beetles (T404-b-1 and T402-b-2). This schedule should not be used for mollusks (snails and slugs) or for any insect with cryptic habits (e.g., ants or borers), or for insects in diapause.

T404—Wood Products Including Containers

T404-b-5-1

Surface spray for the following pests: Borers (wood wasps, Anobiidae, Bostrichiidae, Cerambycidae, and Lyctidae), carpenter ants, and other wood infesting ants, carpenter bees and termites

Treatment: T404-b-5-1—Surface application

Refer to **Table 5-5-4** for a partial list of label-approved surfaces. Always refer to the manufacturer’s label for specific areas of use.

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Examples of Trade Names and EPA Registration Numbers (list not all inclusive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorpyrifos</td>
<td>Whitmire PT, Duraguard ME (#499-367)</td>
</tr>
<tr>
<td>Cypermethrin 25.3% a.i.</td>
<td>Demon® EC (#100-1004)</td>
</tr>
</tbody>
</table>

1. Apply at the highest rate allowed for the site and the pest on the label. (active ingredient = a.i.)
2. No endorsement is intended of the particular items listed and no discrimination is intended toward those products or companies that may not be listed. Use other formulations as long as the application method, site, and rate are listed on the label.

1. *Use Treatment Schedule T404-d on page 5-5-20 for the fumigation of any bamboo products.*
Wood products including containers

Pest: *Globodera rostochiensis* (golden nematode)

Treatment: T404-a—MB (“Q” label only) in 26” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 °F or above</td>
<td>8 lbs</td>
<td>16 hrs</td>
</tr>
<tr>
<td></td>
<td>10.5 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td></td>
<td>16 lbs</td>
<td>8 hrs</td>
</tr>
</tbody>
</table>

Wood products including containers

Pest: Borers (wood wasps, carpenter ants, carpenter bees, and termites)

Treatment: T404-b-2—SF at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>4 lbs</td>
<td>0.5 hr</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>4 lbs</td>
<td>0.5 hr</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>5 lbs</td>
<td>0.5 hr</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>6.5 lbs</td>
<td>0.5 hr</td>
</tr>
<tr>
<td>OR</td>
<td>5 lbs</td>
<td>0.5 hr</td>
</tr>
</tbody>
</table>

Do not use a filter containing sodium hydroxide (Ascarite®) with this fumigant.

Sulfuryl Fluoride (SF) is **NOT** an approved quarantine treatment for wood-boring beetles because SF has difficulty in penetrating insect eggs; therefore, many eggs will still hatch following fumigation. SF treatment of wood should be authorized only for brood-tending species of insects such as termites, bees, wasps, and ants. Even if all eggs are not killed, the hatching larvae will die of starvation, due to lack of care.
T404-b-1-1

Wood products including containers

An Ascarite® filter must be mounted on the T/C Analyzer when taking concentration readings for T404-b-1-1 treatment.

Three alternative treatments

Pest: See the pest list in Table 5-5-2

Treatment: T404-b-1-1—MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr¹</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>40-69 °F</td>
<td>5 lbs</td>
<td>60</td>
</tr>
</tbody>
</table>

1 If the fumigation is conducted in a closed-door container, take the first reading at 1 hour instead of 0.5 hours.
2 If the fumigation is conducted in a closed-door container, take the second reading at 2.5 hours instead of 2 hours.
3 If the 4- and 16-hour readings would occur outside of normal working hours, then the fumigation may be extended to a total of 24 hours, instead of 16. In that case, the 24-hr minimum concentration reading would be 25 (for the initial 3-lb dosage), or 42 (for the initial 5-lb dosage).

Refer to Table 5-5-1 for metric equivalents for T404-b-1-1.

Table 5-5-1 Metric Equivalents for T404-b-1-1

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Temperature (°C)</th>
<th>Dosage Rate (g/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 or above</td>
<td>3</td>
<td>21 or above</td>
<td>48</td>
</tr>
<tr>
<td>40-69</td>
<td>5</td>
<td>5-20</td>
<td>80</td>
</tr>
</tbody>
</table>

T404-b-1-2

Wood products including containers

Pest: See the pest list in Table 5-5-2

Treatment: T404-b-1-2—MB in 26” vacuum

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>4 lbs</td>
<td>4 hrs</td>
</tr>
<tr>
<td>40-69 °F</td>
<td>4 lbs</td>
<td>5 hrs</td>
</tr>
</tbody>
</table>
Wood products including containers

Pest: See the pest list in Table 5-5-2

Treatment: T404-b-4—Kiln Sterilization

<table>
<thead>
<tr>
<th>Dry bulb temperature (°F)</th>
<th>Wet bulb depression (°F)</th>
<th>Relative humidity (%)</th>
<th>Moisture content (%)</th>
<th>Thickness of lumber (inches)</th>
<th>Treatment Time After Kiln Reaches Conditions (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>7</td>
<td>82</td>
<td>13.8</td>
<td>1 i 2 3</td>
<td>3 5 7</td>
</tr>
<tr>
<td>130</td>
<td>16</td>
<td>60</td>
<td>9.4</td>
<td>1 2 3</td>
<td>10 12 14</td>
</tr>
<tr>
<td>125</td>
<td>15</td>
<td>61</td>
<td>9.7</td>
<td>1 2 3</td>
<td>46 48 50</td>
</tr>
</tbody>
</table>
Table 5-5-2 Pest list for T404-b-1-1, T404-b-1-2, and T404-b-4

<table>
<thead>
<tr>
<th>Coleoptera (beetles):</th>
</tr>
</thead>
<tbody>
<tr>
<td>◆ Bostrichidae (branch and twig borers)</td>
</tr>
<tr>
<td>◆ Buprestidae (metallic or flat-headed borers)</td>
</tr>
<tr>
<td>◆ Cerambycidae (long-horned or round-headed borers)</td>
</tr>
<tr>
<td>◆ Curculionidae (wood-boring and root-feeding weevils)</td>
</tr>
<tr>
<td>◆ Lyctidae (powder-post beetles)</td>
</tr>
<tr>
<td>◆ Lymexylonidae (ship timber beetles)</td>
</tr>
<tr>
<td>◆ Passalidae (bess beetles)</td>
</tr>
<tr>
<td>◆ Platypodidae (pin-hole borers)</td>
</tr>
<tr>
<td>◆ Rhyzophagidae (root-eating beetles)</td>
</tr>
<tr>
<td>◆ Salpingidae (narrow-wasted bark beetles)</td>
</tr>
<tr>
<td>◆ Scolytidae (bark/engraver beetles; also ambrosia/timber beetles)</td>
</tr>
<tr>
<td>◆ Trogositidae (bark-gnawing beetles)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hymenoptera (bees, wasps, and ants):</th>
</tr>
</thead>
<tbody>
<tr>
<td>◆ Formicidae (carpenter ants)</td>
</tr>
<tr>
<td>◆ Orussidae (parasitic wood wasps)</td>
</tr>
<tr>
<td>◆ Siricidae (wood wasps)</td>
</tr>
<tr>
<td>◆ Syntexicae (incense-cedar wood wasps)</td>
</tr>
<tr>
<td>◆ Xylocopidae (carpenter bees)</td>
</tr>
<tr>
<td>◆ Xyphydriidae (wood wasps)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isoptera (termites)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lepidoptera (moths):</th>
</tr>
</thead>
<tbody>
<tr>
<td>◆ Cossidae (carpenter worms)</td>
</tr>
<tr>
<td>◆ Sesiidae (clear-winged moths)</td>
</tr>
</tbody>
</table>
1. Minimum concentration must be met in chamber fumigations of sorptive materials. (Refer to **Sorption on page 2-3-10**.)

2. For fumigating of hardboard (Masonite), an initial dosage of 10 lb/1,000 ft³ is recommended. Inspector should be prepared to provide extra attention to maintaining minimum concentrations when fumigating this commodity.

3. If both termites and borers are present at 40-69 °F, use the schedule for borers with exposure extended to 20 hours. Use same minimum concentrations.

4. Use an Ascarite filter (in addition to a Drierite filter) if any of the following conditions apply:
 - The wood is uncured ("green").
 - The wood is manifested as guatamba wood.
 - In the two cases above, water vapor or other gases may be evolved during the fumigation, which give false (additive) readings on the gas analyzer.

5. If the 4- and 16-hour readings would occur outside of normal working hours, then the fumigation may be extended to a total of 24 hours, instead of 16. In that case, the 24-hr minimum concentration reading would be 25 (for the initial 3-lb dosage), or 42 (for the initial 5-lb dosage).

6. When conducting the fumigation with the container doors **open**, resume use of fans anytime a difference of **4 oz.** or more occurs between the highest and lowest reading.

7. When conducting the fumigation with the container doors **closed**, resume use of fans anytime a difference of **10 oz.** or more occurs between the highest and lowest reading.

8. Readings more than 5 oz. below minimum at end of exposure negates treatment. For readings less than 5 oz. below minimum at the end of exposure period, add 2 oz/1,000 ft³ for each ounce below minimum and extend exposure for 4 hours.

9. A reduction in dosage is allowed when fumigating nonsorptive commodities such as marble, shells, metal containers, etc., which have infested crating associated with them providing the following additional conditions are met:
 - Use only new 4-mil or 6-mil tarpaulins.
 - No truck trailer, van, or railroad car fumigations are permitted unless the carrier is covered with a 6-mil tarpaulin which is then sealed to the ground.
 - Use five or more sampling leads to determine minimum concentrations.

10. When fumigating wood commodities (e.g., dunnage, crating, logs) the proper fumigation temperature may be determined by inserting the tip of a dial thermometer or other temperature probe in a hole in the wood. A hole can be made with an electric or hand-powered drill or an awl. The hole diameter should be just large enough to insert the probe shaft (to lessen the influence of surrounding air). The depth should be 2 inches or half the thickness of the wood. Different areas of the load should be probed and the lowest temperature used in determining fumigation temperature. Determine the wood temperature 5 to 10 minutes after drilling the hole to allow the heat generated during drilling to dissipate.
T404-c-1-1
Wood products including containers

If using a T/C analyzer, an Ascarite® filter must be mounted when taking concentration readings for T404-c-1-1.

Pest: Termites
Three alternative treatments:

Treatment: T404-c-1-1—MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>40 °F or above</td>
<td>3 lbs</td>
<td>36</td>
</tr>
</tbody>
</table>

WARNING

- Minimum concentration must be met in NAP chamber fumigations of sorptive materials. (see *Sorption* on page 2-3-10 for a list of sorptive materials.)
- If both termites and borers are present at 40 °F–60 °F, use the schedule for borers with exposure extended to 20 hours. Use same minimum concentrations.

T404-c-1-2
Wood products including containers

Pest: Termites
Treatment: T404-c-1-2—MB in 26" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>4 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-69 °F</td>
<td>4 lbs</td>
<td>4 hrs</td>
</tr>
</tbody>
</table>

T404-c-2
Wood products including containers

Pest: Termites
Treatment: T404-c-2—SF at NAP (Do not use filters containing Ascarite with this fumigant.)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>1 lb</td>
<td>12</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>1.5 lbs</td>
<td>18</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>2.5 lbs</td>
<td>32</td>
</tr>
</tbody>
</table>
Wood products including containers

If using a T/C Analyzer, an Ascarite® filter must be mounted when taking concentration readings for the following MB-NAP treatments.

Pest: Borers and *Trogoderma granarium* (khapra beetle)

Treatment: T404-d—MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 or above</td>
<td>3.5 lbs</td>
<td>36 33 30 25 17</td>
</tr>
<tr>
<td>70-79</td>
<td>4.5 lbs</td>
<td>50 45 40 25 22</td>
</tr>
<tr>
<td>60-69</td>
<td>6 lbs</td>
<td>65 55 50 42 29</td>
</tr>
<tr>
<td>50-59</td>
<td>7.5 lbs</td>
<td>80 70 60 42 36</td>
</tr>
<tr>
<td>40-49</td>
<td>9 lbs</td>
<td>85 76 70 42 42</td>
</tr>
</tbody>
</table>

1. If the fumigation is conducted in a closed-door container, take the first reading at 1 hour instead of 0.5 hours.
2. If the fumigation is conducted in a closed-door container, take the second reading at 2.5 hour instead of 2 hours.
3. If the 16-hour reading is not performed, the 24-hour reading must have the following minimum concentrations: For 80 °F or above—25 oz.; for 70-79 °F—25 oz.; for 60-69 °F—42 oz.; for 50-59 °F—42 oz; and 40-49 °F—42 oz.
4. Due to label restrictions, MB-100 gas may not be used at 60 °F or below.
5. MB Q-gas may be used at any temperature above 40 °F.

Refer to **Table 5-5-3** for metric equivalents for T404-d.

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Temperature (°C)</th>
<th>Dosage Rate (g/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80 or above</td>
<td>3.5</td>
<td>27 or above</td>
<td>56</td>
</tr>
<tr>
<td>70-79</td>
<td>4.5</td>
<td>21-26</td>
<td>72</td>
</tr>
<tr>
<td>60-69</td>
<td>6</td>
<td>16-20</td>
<td>96</td>
</tr>
<tr>
<td>50-59</td>
<td>7.5</td>
<td>10-15</td>
<td>120</td>
</tr>
<tr>
<td>40-49</td>
<td>9</td>
<td>5-9</td>
<td>144</td>
</tr>
</tbody>
</table>

When fumigating containerized bamboo:

- If the bamboo is packaged, the packaging must be permeable to methyl bromide. If it is not permeable, require the fumigator to remove or puncture the packaging.
◆ Bamboo **must be on pallets** or have at least 2 inches ("") of clearance at the bottom of the container. If the bamboo is being fumigated in a refrigerated container, the 2" clearance **cannot** be created by the I-beam floor of the container, the bamboo bundles, or by steel poles.

![Photo](image1.png)

Photo Courtesy of USDA APHIS PPQ

Figure 5-5-1 Example of Inadequate Spacing Under Bamboo Bundles

![Photo](image2.png)

Photo Courtesy of USDA APHIS PPQ

Figure 5-5-2 Example of Inadequate Spacing Under Bamboo Bundles
There must be at least 18" of clearance on the top of the commodity to allow for gas circulation and introduction fans.

Photo Courtesy of USDA APHIS PPQ

Figure 5-5-3 Example of Adequate Space Above the Bamboo Bundles
Partial Site List for Chemical Treatments

Always refer to the manufacturer’s label for specific areas of use. Table 5-5-4 is not all-inclusive and is intended as a quick reference for PPQ officials. The label of the chemical you are using must list the site you want to treat.

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Partial Site List</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deltamethrin</td>
<td>Food/feed and non-food/non-feed areas of: aircraft (cargo only), apartment buildings, bakeries, bottling facilities, breweries, buses, cafeterias, candy plants, canneries, dairy product processing plants, food manufacturing plants, food processing plants, food service establishments, granaries and grain mills, hospitals, hotels, houses, industrial buildings, installations, kitchens, laboratories, mausoleums, meat, poultry, and egg processing and packaging plants, mobile and motor homes, nursing homes, offices, railcars, restaurants, schools, ships and vessels, trailers, trucks, warehouses, wineries</td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>Indoors, pet kennels, general surface application, barrier application, spot or crack and crevice applications, general outdoor treatment, perimeter treatments, turf grass, ornamentals, commercial ornamentals, greenhouses, and nurseries</td>
</tr>
<tr>
<td>β-Cyfluthrin</td>
<td>Food/feed and non-food/non-feed areas of: aircraft (cargo only), apartment buildings, bakeries, bottling facilities, breweries, buses, cafeterias, candy plants, canneries, dairy product processing plants, food manufacturing plants, food processing plants, food service establishments, granaries and grain mills, hospitals, hotels, houses, industrial buildings, installations, kitchens, laboratories, mausoleums, meat, poultry, and egg processing and packaging plants, mobile and motor homes, nursing homes, offices, outdoor pest control, perimeter spray, railcars, restaurants, schools, ships and vessels, trailers, trucks, warehouses, wineries</td>
</tr>
<tr>
<td>Cyfluthrin</td>
<td>In and around buildings and structures; on residential, commercial and recreational areas of turf; on ornamentals in landscapes and interior plantscapes; modes of transport; wood infesting pests; apartments, calf hutch, calving pens and parlors, campgrounds, empty chicken houses, dairy areas, dog kennels, food storage areas, grain mills, granaries, hog barns, homes, horse barns, hospitals, hotels, meat packing plants, food processing plants, milkrooms, motels, nursing homes, rabbit hutch, resorts, restaurants and other food handling establishments, schools, supermarkets, transportation equipment (buses, boats, ships, trains, trucks, planes-cargo area only), utilities, warehouses, commercial and industrial buildings</td>
</tr>
<tr>
<td>Cypermethrin</td>
<td>Buildings and structures and immediate surroundings, modes of transport, industrial buildings, houses, apartment buildings, laboratories, buses, greenhouses, and nonfood/feed areas of stores, warehouses, vessels, railcars, trucks, trailers, aircraft (cargo areas only), schools, nursing homes, hospitals (non patient areas), restaurants, hotels and food manufacturing, processing, and servicing establishments, outdoor surfaces, barrier treatment, treatment of preconstruction lumber and logs</td>
</tr>
<tr>
<td>Lambda-Cyhalothrin</td>
<td>Perimeter treatments, indoor and outdoor treatments, aircraft (cargo and other noncabin areas only), apartment buildings, boiler rooms, buses, closets, correctional facilities, decks, entries, factories, fencing, floor drains (that lead to sewers), food granaries, food grain mills, food manufacturing, processing and serving establishments; furniture, garages, garbage rooms, greenhouses (non-commercial), hospitals, hotels and motels; houses, industrial buildings, laboratories, livestock/poultry housing, landscape vegetation, locker rooms, machine rooms, mausoleums, mobile homes, mop closets, mulch, nursing homes, offices, patios, pet kennels, porches, railcars, restaurants, storage rooms, schools, sewers (dry), stores, trailers, trees, trucks, utility passages, vessels, vestibules, warehouses, wineries and yards</td>
</tr>
<tr>
<td>Malathion</td>
<td>Perimeter barrier treatments, outdoor surfaces, ornamentals, turf, mushroom houses, grain elevators and silos being prepared to store barley, corn, oats, rye, or wheat</td>
</tr>
</tbody>
</table>
The wood packing material must be stamped in a visible location on each article, with a legible and permanent mark that indicates the article has met the treatment required. The mark must be approved by the International Plant Protection Convention (IPPC). The currently approved mark is shown in Figure 5-5-4. XX would be replaced by the country code, 000 by the producer number, and YY by the treatment type (HT or MB).

![Figure 5-5-4 Example of International Plant Protection Convention Marking](image)

T404-e-1

Regulated wood packing material (WPM)

Two alternative treatments

Pest: Various

Treatment: T404-e-1—MB at NAP—tarpaulin

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr¹</td>
</tr>
<tr>
<td>69.8 °F or above</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>61°-69.8 °F</td>
<td>3.5 lbs</td>
<td>42</td>
</tr>
<tr>
<td>51.8°-61 °F</td>
<td>4 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

¹ If the fumigation is conducted in a closed-door container, take the first reading at 1.0 hour instead of 0.5 hours.

² If the fumigation is conducted in a closed-door container, take the second reading at 2.5 hour instead of 2 hours.

Regulated wood packing material is defined as all types of wood packaging materials used for or for use with cargo to prevent damage, including, but not limited to, dunnage, crating, pallets, packing blocks, drums, cases, and skids. Excluded from the definition of wood packaging materials are:

- Pieces of wood that are less than 6mm or 0.24 inches in any dimension
- Loose wood packing materials, such as wood shavings, excelsior, etc.
- Processed wood packing materials that have received more than primary processing, such as plywood, corrugated board, fiberboard, veneer, whiskey and wine barrels, oriented strand boards, etc.
Refer to Table 5-5-5 for metric equivalents for T404-e-1.

Table 5-5-5 Metric Equivalents for T404-e-1

<table>
<thead>
<tr>
<th>Temperature (°F)</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Temperature (°C)</th>
<th>Dosage Rate (g/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>69.8 or above</td>
<td>3</td>
<td>21 or above</td>
<td>48</td>
</tr>
<tr>
<td>61-69.8</td>
<td>3.5</td>
<td>16-20.9</td>
<td>56</td>
</tr>
<tr>
<td>51.8-61</td>
<td>4</td>
<td>11-15.9</td>
<td>64</td>
</tr>
</tbody>
</table>

T404-e-2
Regulated wood packing material (WPM)

Pest: Various
Treatment: T404-e-2

Heat treatment to achieve a minimum core temperature of 56 °C (132.8 °F) for a minimum of 30 minutes. Treatments must be conducted in USDA-approved facilities. Contact CPHST-AQI in Raleigh, NC for facility specifications.

T404-f
Pinus radiata wood chips from Chile and Eucalyptus wood chips from South America

Treatment: T404-f—Surface Pesticide

Refer to Table 5-5-6 for the chemical name and percentage of active ingredients. Spray the wood chips with the pesticide mixture so that all the chips are completely exposed to the chemicals. To prevent against infestation by plant pests, safeguard the wood chips during the interval between treatment and export.

Table 5-5-6 Pesticide Treatment for Pinus radiata and Eucalyptus Wood Chips

<table>
<thead>
<tr>
<th>Percentage of Active Ingredient (a.i.)</th>
<th>Pesticide</th>
</tr>
</thead>
<tbody>
<tr>
<td>64.8</td>
<td>didecyl dimethyl ammonium chloride</td>
</tr>
<tr>
<td>7.6</td>
<td>3-iodo-2-propynyl butylicarbamate</td>
</tr>
<tr>
<td>44.9</td>
<td>chlorpyrifos phosphorothioate</td>
</tr>
</tbody>
</table>
T405—Bags and Bagging Material

See T306 schedules

T406—Golden Nematode Contaminations

T406-a

Miscellaneous cargo (nonfood, nonfeed commodities)

Pest: *Globodera rostochiensis* (golden nematode)

Treatment: T406-a—MB in 26" vacuum, use T403-c

T406-c

Piers, barges, railroad cars, automobiles, used farm equipment, etc.

Pest: *Globodera rostochiensis* (golden nematode)

Treatment: T406-c—Steam Cleaning

Steam at high pressure until all soil is removed. Treated surfaces should be thoroughly wet and heated. The debris and/or runoff from the cleaning procedure must be handled in a manner approved by local and port authority guidelines.

T406-b

Used farm equipment, construction equipment, containers, etc.

Pest: *Globodera rostochiensis* (golden nematode)

Treatment: T406-b—MB (“Q” label only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>60 °F or above</td>
<td>15 lbs</td>
<td>180</td>
</tr>
</tbody>
</table>

Soil should be easily crumbled but not wet. The soil should not exceed 12 inches in the smallest dimension.
Used farm equipment (without cabs), construction equipment (without cabs), and used containers

Pest: *Globodera rostochiensis* (golden nematode)

Treatment: T406-d—Steam at NAP—tarpaulin, or tent

Steam heat for 60 minutes after all temperature sensors reach 140°F (60°C).
(see sensor placement and other requirements below)

Important

This treatment must be conducted under the following minimum ambient air temperatures, which will vary with the volume of the treatment enclosure:

- For treatment enclosures of 4,000 ft³ or less, the minimum air temperature is 40 °F.
- For treatment enclosures greater than 4,000 ft³ and less than or equal to 6,000 ft³, the minimum air temperature is 60 °F.

This treatment is not recommended for treatment enclosures greater than 6,000 ft³.

Step 1—Determine if the temperature and volume requirements can be met

If you cannot meet the temperature and enclosure volume requirements, do not use this treatment.

Step 2—Assemble articles to be treated

Articles to be treated should be placed as close together as possible. Arrange articles to allow space for placement of the steam distribution manifold.

Step 3—Place the steam distribution manifold pipe beneath articles to be treated

The steam distribution manifold should be assembled and placed beneath the articles to be treated in order to facilitate steam distribution. A flexible steam introduction hose, approximately 20 feet in length, connects the steam generator to a 10 foot long U-shaped pipe capped at the ends, with 0.5 inch holes every 12 inches. This pipe serves as the steam distribution manifold.

Step 4—Place temperature recording sensors on the article to be treated

When the treatment is being conducted in enclosures 4,000 ft³ or less, use at least four temperature recording sensors in addition to the sensor on the steam generator. Place sensors in hard-to-treat cracks or crevices on the equipment or containers. Position sensors in the following locations:

1. Front high—near the top of the front of the equipment or load
2. Center middle—midway from the top and bottom of the center of the equipment or load

3. Center bottom—bottom of the center of the equipment or load, but at least 3 inches above the floor if the equipment is flush with the floor

4. Rear bottom—bottom of the rear of the equipment, but at least 3 inches above the floor if the equipment is flush with the floor

When the treatment is being conducted in enclosures greater than 4,000 ft³ and less than or equal to 6,000 ft³, use at least eight temperature recording sensors in addition to the sensor on the steam generator. Again, place sensors in hard-to-treat cracks or crevices on the equipment or containers. Position probes in the following locations:

1. Front high—near the top of the left side of the front of the equipment or load
2. Front low—bottom of the right side of the front of the equipment or load, but at least 3 inches above the floor if the equipment is flush with the floor
3. Center high—near the top of the center of the equipment or load on the right side
4. Center middle—midway from the top and bottom of the center of the equipment or load
5. Center low—bottom of the center of the equipment or load on the left side, but at least 3 inches above the floor if the equipment is flush with the floor
6. Rear high—near the top of the rear of the equipment on the right side
7. Rear middle—midway from the top and bottom of the rear of the equipment
8. Rear low—bottom of the rear of the equipment or load on the left side, but at least 3 inches above the floor if the equipment is flush with the floor.

Step 5—Enclose the article to be treated with a trapaulin or tent

If a tarpaulin (6 mil plastic) is used instead of a tent, pad sharp edges of the equipment or containers before covering with the tarp.

If the equipment or containers will be moved into an enclosure, such as a tent, it may be more practical to place the temperature sensors after this step. In either case, the front of the equipment or load and the front of the enclosure should face in the same direction.
Step 6—Place the steam generator at an open end of the enclosure and seal the enclosure
The steam generator is placed approximately 20 feet from the front of the enclosure and connected to a steam introduction line (hose.) The steam introduction line is connected to the steam distribution manifold pipe which is situated under the articles to be treated. The enclosure is sealed at the base including the point at which the introduction line enters the enclosure. An airtight seal is not essential for steam treatment; therefore small pinholes are acceptable.

Step 7—Steam heat the enclosure for 60 minutes after all temperature sensors reach a minimum 140°F (60°C)

Use only a steam generator approved by APHIS.
The maximum temperature in the enclosure should not exceed 160°F (71°C).
The temperature should be recorded once every 2 minutes during the treatment.

T407—Mechanical Cotton Pickers and Other Cotton Equipment

Mechanical cotton pickers and other cotton equipment

Pest: *Pectinophora gossypiella* (pink bollworm)

Treatment: T407—MB ("Q" label only) at NAP—tarpaulin, chamber, railroad car, or van

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 °F or above</td>
<td>4 lbs</td>
<td>0.5 hr</td>
</tr>
<tr>
<td></td>
<td>8 lbs</td>
<td>48</td>
</tr>
</tbody>
</table>

This treatment is designed to kill exposed larvae, larvae within green cotton bolls or single locks of seed cotton, or loose trash. Any materials such as sacked or bulked seed, cotton waste, lint, linters, or any packaged commodity shall be treated in accordance with T301.
T408—Soil as Such and Soil Contaminating Durable Commodities

T408-e-1 Herbarium specimens of mosses and liverworts in soil and originating in golden nematode-free countries

Pest: (Precautionary)

Treatment: T408-e-1—MB (“Q” label only) in 26" vacuum (Precautionary fumigation)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>3.5 hrs</td>
</tr>
</tbody>
</table>

T408-e-2 Herbarium specimens of mosses and liverworts in soil and originating in golden nematode-free countries

Pest: *Globodera rostochiensis* (golden nematode)

Treatment: T408-e-2—MB (“Q” label only) in 26" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 °F or above</td>
<td>8 lbs</td>
<td>16 hrs</td>
</tr>
<tr>
<td></td>
<td>10.5 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td></td>
<td>16 lbs</td>
<td>8 hrs</td>
</tr>
</tbody>
</table>
T408-a

Soil as such

Two alternative treatments

Pest: Various pests and pathogens found in soil (including striga)

Treatment: T408-a—Dry heat

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>230 °F to 249 °F</td>
<td>16 hours</td>
</tr>
<tr>
<td>250 °F to 309 °F</td>
<td>2 hours</td>
</tr>
<tr>
<td>310 °F to 379 °F</td>
<td>30 minutes</td>
</tr>
<tr>
<td>380 °F to 429 °F</td>
<td>4 minutes</td>
</tr>
<tr>
<td>430 °F to 450 °F</td>
<td>2 minutes</td>
</tr>
</tbody>
</table>

Spread soil evenly throughout the treatment chamber. Soil depth **must not** exceed 6 inches. Take temperature readings using a calibrated temperature probe at various locations throughout the entire mass. The exposure period does not begin until the entire mass reaches treatment temperature, as verified by a calibrated temperature probe.

Contact CPHST AQI Raleigh for information regarding placement and number of temperature probes.

Important

T408-b

Soil as such

Pest: Various pest and pathogens found in soil

Treatment: T408-b—Steam—250 °F at 15 lbs pressure (p.s.i.) for 0.5 hour

Preheat laboratory autoclaves. Restrict soil depth to 2 inches when treating quantities of soil in trays. Restrict each package weight to 5 lbs. or less when treating individual packages. Load with adequate spacing. Large commercial steam facilities which operate at pressures up to 60 lbs. psi will permit treatment of greater soil depth.

T408-b-1

Soil contaminating durable commodities (e.g., equipment, cobblestone, marble)

Pest: Various pests and pathogens found in soil

Treatment: Steam Cleaning

Steam at high pressure until all soil is removed. Treated surfaces should be thoroughly wet and heated. The debris and/or runoff from the cleaning procedure must be handled in a manner approved by local and port authority guidelines.
T408-c-1 **Soil as such**
Two alternative treatments

Pest: *Globodera rostochiensis* (golden nematode)
 Treatment: T408-c-1—MB ("Q" label only) in 26" vacuum, see T403-c on page 5-5-11 for loose and friable material only.

Soil to be fumigated in containers—no dimensions of which can exceed 24 inches.

T408-c-2 **Soil as such**
Pest: *Globodera rostochiensis* (golden nematode)
 Treatment: T408-c-2—MB ("Q" label only) at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
<th>0.5 hr</th>
<th>2 hrs</th>
<th>24 hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>15 lbs</td>
<td></td>
<td>180</td>
<td>120</td>
<td>72</td>
</tr>
</tbody>
</table>

Important: Soil should be friable, moist, but not wet. Soil must not be more than 12 inches in depth. If stacked in containers, 12 inches of space must be left between levels.

T408-d-1 **Soil as such**
Two alternative treatments

Pest: Insects
 Treatment: T408-d-1—Screening through 16 mesh screens will remove most larvae and pupae, except smaller types.

T408-d-2 Treatment: T408-d-2—Freezing—0 °F for 5 days

T408-f **Soil contaminated durable commodities (e.g., equipment, cobblestone, marble)(precautionary treatment)**

Pest: Soil fungi, nematodes, and certain soil insects
 Treatment: T408-f—Steam Cleaning

Steam at high pressure until all soil is removed. Treated surfaces should be thoroughly wet and heated.

The debris and/or runoff from the cleaning procedure must be handled in a manner approved by local and port authority guidelines.
T408-g-1
Soil contaminated nonfood or nonfeed commodities

Two alternative treatments

Pest: *Striga* spp. (witchweed)

Treatment: T408-g-1—MB ("Q" label only) (tarpaulin)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>10 lbs</td>
<td>24 hrs</td>
</tr>
<tr>
<td></td>
<td>20 lbs</td>
<td>15.5 hrs</td>
</tr>
</tbody>
</table>

T408-g-2
Soil contaminated nonfood or nonfeed commodities

Pest: *Striga* spp. (witchweed)

Treatment: T408-g-2—MB ("Q" label only) (tarpaulin)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>15 lbs</td>
<td>0.5 hr: 164</td>
</tr>
</tbody>
</table>

Important

Soil must be friable, moist, but not wet. The soil shall not exceed 12 inches in least dimension.

T409—Aircraft

Refer to the Chemical Treatments section for *Aerosols on page 2-12-1* for application information.

The aircraft volumes in *Table 5-5-7* on page 5-5-36 through *Table 5-5-29* on page 5-5-46 represent standard configurations of aircraft. Check with the captain or contact the following manufacturers to determine if the aircraft has been modified from the standard configuration and determine the actual volume.

Airbus Industries of North America, Inc.

Website: http://www.airbus.com/aircraft.html

Boeing (includes McDonald Douglas aircraft)

Website: http://www.boeing.com
European Aeronautic Defense and Space Company-EADS
(merger of Aerospatiale, Daimler Chrysler Aerospace, and Casa)

Web site: http://www.eads.com

T409-a Aircraft

Pest: *Trogoderma granarium* (khapra beetle)

Treatment: T409-a—General surface, perimeter, spot, mist, or crack and crevice using Deltamethrin 4.75% a.i.

<table>
<thead>
<tr>
<th>Active Ingredient</th>
<th>Examples of Trade Names and EPA Registration Numbers (list not all inclusive)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deltamethrin 4.75% a.i.</td>
<td>Suspend SC, K-Othrine® SC (#432-763)</td>
</tr>
<tr>
<td></td>
<td>D-FENSE SC, Delta SC (#53883-276)</td>
</tr>
</tbody>
</table>

1. Apply at the highest rate allowed for the site on the label. (active ingredient = a.i.) Follow application instructions on the label.

2. No endorsement is intended of the particular items listed and no discrimination is intended toward those products or companies that may not be listed. Use other formulations provided the application method, site, and rate are listed on the label.

T409-b Aircraft

Pest: Hitchhiking insect pests, except khapra beetle

Two alternative treatments—T409-b-1 and T409-b-3.

No endorsement is intended of the particular items listed and no discrimination is intended toward those products or companies that may not be listed. Use other formulations provided the application method, site, and rate are listed on the label.

Important

Do not subject these chemicals to extreme temperatures.

Refer to Table 5-5-7 through Table 5-5-29 for spray times of a variety of commercial aircraft. If the aircraft you are treating is not listed, refer to the formula in Figure 2-12-1 on page-2-12-2 to calculate the spray time.
T409-b-1

Treatment: T409-b-1—d-phenothrin aerosol (10 percent) (EPA reg# 10308-21)

10% d-phenothrin is **not** approved for use in California, **except** in Federal installations such as military airports.

<table>
<thead>
<tr>
<th>Application Rate (g/1000 ft³)</th>
<th>Spray Rate (g/sec)</th>
<th>Turn off ventilation system and seal the cargo space for (x) minutes</th>
<th>Ventilate the space for (x) minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>5¹</td>
<td>15 minutes</td>
<td>15 - 30</td>
</tr>
</tbody>
</table>

¹ To control the spray time within smaller spaces, use the red extender tube on the nozzle of the aerosol can. When the extender tube is used, the spray rate is 2.5 grams per second.

Important

Aerosol disinfection of U.S. military aircraft must conform to requirements in the "DEPARTMENT OF DEFENSE CUSTOMS AND BORDER CLEARANCE POLICIES AND PROCEDURES" DoD 4500.9-R (Defense Transportation Regulation Part V).

T409-b-2

This is a placeholder for a future treatment.

T409-b-3

Treatment: T409-b-3—2% d-phenothrin + 2% permethrin (EPA reg# 83795-1—Callington 1-Shot™)

CAUTION

Do **not** apply in the passenger cabin area of the aircraft or when passengers or crew are present.

<table>
<thead>
<tr>
<th>Application Rate (g/1000 ft³)</th>
<th>Spray Rate (g/sec)</th>
<th>Turn off ventilation system and seal the cargo space for (x) minutes</th>
<th>Ventilate the space for (x) minutes</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>2</td>
<td>15 minutes</td>
<td>30</td>
</tr>
</tbody>
</table>
Table 5-5-7 Airbus Industries

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>A300</td>
<td>Cabin</td>
<td>27,100</td>
<td>27.1</td>
<td>43.5</td>
<td>7 cans + 17 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-#1</td>
<td>3,722</td>
<td>3.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-#2</td>
<td>1,265</td>
<td>1.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-#3</td>
<td>565</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A300-600R</td>
<td>Cabin</td>
<td>?</td>
<td>?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(passenger)</td>
<td>Forward</td>
<td>1,134</td>
<td>1.1</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td>(long-range)</td>
<td>Aft</td>
<td>1,134</td>
<td>1.1</td>
<td></td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Bulk</td>
<td>400</td>
<td>0.4</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>A300-600</td>
<td>Main</td>
<td>9,950</td>
<td>10.0</td>
<td>16.0</td>
<td>2 cans + 50 sec</td>
</tr>
<tr>
<td>(freighter)</td>
<td>Pit-Fwd</td>
<td>1,900</td>
<td>1.9</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>2,250</td>
<td>2.2</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>A300-600</td>
<td>Main</td>
<td>19,069</td>
<td>19.1</td>
<td>30.5</td>
<td>5 cans + 7 sec</td>
</tr>
<tr>
<td>(FEDEX)</td>
<td>Pit-Fwd</td>
<td>2,684</td>
<td>2.7</td>
<td>4.5</td>
<td>54 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>2,154</td>
<td>2.2</td>
<td>3.5</td>
<td>44 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Back</td>
<td>742</td>
<td>0.7</td>
<td>1.0</td>
<td>14 sec</td>
</tr>
<tr>
<td>A300</td>
<td>Main</td>
<td>11,943</td>
<td>11.9</td>
<td>19.0</td>
<td>3 cans + 13 sec</td>
</tr>
<tr>
<td>(convertible)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A300B4</td>
<td>Main</td>
<td>9,950</td>
<td>10.0</td>
<td>16.0</td>
<td>2 cans + 50 sec</td>
</tr>
<tr>
<td>(freighter)</td>
<td>Pit-Fwd</td>
<td>1,900</td>
<td>1.9</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>1,850</td>
<td>1.9</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>A310</td>
<td>Main</td>
<td>7,950</td>
<td>8.0</td>
<td>13.0</td>
<td>2 cans + 10 sec</td>
</tr>
<tr>
<td>(freighter)</td>
<td>Pit-Fwd</td>
<td>1,260</td>
<td>1.3</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>1,550</td>
<td>1.6</td>
<td>2.5</td>
<td></td>
</tr>
<tr>
<td>A310</td>
<td>Main</td>
<td>14,650</td>
<td>14.7</td>
<td>23.5</td>
<td>3 cans + 69 sec</td>
</tr>
<tr>
<td>(FEDEX)</td>
<td>Pit-Fwd</td>
<td>1,942</td>
<td>1.9</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>1,271</td>
<td>1.3</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Back</td>
<td>742</td>
<td>0.7</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>A320-200</td>
<td>N/A</td>
<td>982</td>
<td>0.9</td>
<td>1.5</td>
<td></td>
</tr>
</tbody>
</table>

Table 5-5-8 Antonov

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN 124 and 126</td>
<td>N/A</td>
<td>26,485</td>
<td>26.5</td>
<td>42.5</td>
<td>7 cans + 5 sec</td>
</tr>
</tbody>
</table>
Table 5-5-9 ATR

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/ Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATR 42 (CTO) (Container Transport Option)</td>
<td>Bulk</td>
<td>890</td>
<td>0.9</td>
<td>1.5</td>
<td>18 sec</td>
</tr>
<tr>
<td>ATR 72 (CTO)</td>
<td>Bulk</td>
<td>1,285</td>
<td>1.3</td>
<td>2.0</td>
<td>26 sec</td>
</tr>
</tbody>
</table>

Table 5-5-10 BAC (British Aircraft Corp)

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/ Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>111-200, 300, and 400</td>
<td>Cabin</td>
<td>4,056</td>
<td>4.1</td>
<td>6.5</td>
<td>1 can + 7 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>380</td>
<td>0.4</td>
<td>0.5</td>
<td>8 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>154</td>
<td>0.2</td>
<td>0.5</td>
<td>4 sec</td>
</tr>
<tr>
<td>111-500</td>
<td>Cabin</td>
<td>5,094</td>
<td>5.1</td>
<td>8.0</td>
<td>1 can + 27 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>451</td>
<td>0.5</td>
<td>1.0</td>
<td>10 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>260</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
</tr>
<tr>
<td>VC 10</td>
<td>Cabin</td>
<td>6,750</td>
<td>6.8</td>
<td>11.0</td>
<td>1 can + 61 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>744</td>
<td>0.7</td>
<td>1.0</td>
<td>14 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>820</td>
<td>0.8</td>
<td>1.5</td>
<td>16 sec</td>
</tr>
<tr>
<td>Super VC 10</td>
<td>Cabin</td>
<td>7,850</td>
<td>7.9</td>
<td>12.5</td>
<td>2 cans + 8 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>744</td>
<td>0.7</td>
<td>1.0</td>
<td>14 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>820</td>
<td>0.8</td>
<td>1.5</td>
<td>16 sec</td>
</tr>
</tbody>
</table>

Table 5-5-11 BAC (Aerospatiale)

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/ Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concorde</td>
<td>Cabin</td>
<td>5,100</td>
<td>5.1</td>
<td>8.0</td>
<td>1 can + 27 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>241</td>
<td>0.2</td>
<td>0.5</td>
<td>10 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>468</td>
<td>0.5</td>
<td>1.0</td>
<td>20 sec</td>
</tr>
</tbody>
</table>
Table 5-5-12 Boeing

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/ Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>707-120, 120B, and 220</td>
<td>Cabin</td>
<td>7,484</td>
<td>7.5</td>
<td>12.0</td>
<td>2 cans</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>755</td>
<td>0.8</td>
<td>1.5</td>
<td>16 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>910</td>
<td>0.9</td>
<td>1.5</td>
<td>18 sec</td>
</tr>
<tr>
<td></td>
<td>Fl. Deck</td>
<td>451</td>
<td>0.5</td>
<td>1.0</td>
<td>10 sec</td>
</tr>
<tr>
<td>707-320C</td>
<td>Bulk</td>
<td>7,548</td>
<td>7.5</td>
<td>12.0</td>
<td>2 cans</td>
</tr>
<tr>
<td>707-320, 420</td>
<td>Cabin</td>
<td>8,074</td>
<td>8.0</td>
<td>13.0</td>
<td>10 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>870</td>
<td>0.9</td>
<td>1.5</td>
<td>18 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>905</td>
<td>0.9</td>
<td>1.5</td>
<td>18 sec</td>
</tr>
<tr>
<td></td>
<td>Fl. Deck</td>
<td>451</td>
<td>0.5</td>
<td>1.0</td>
<td>10 sec</td>
</tr>
<tr>
<td>720</td>
<td>Cabin</td>
<td>6,860</td>
<td>6.9</td>
<td>11.0</td>
<td>1 can + 63 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>688</td>
<td>0.7</td>
<td>1.0</td>
<td>14 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>690</td>
<td>0.7</td>
<td>1.0</td>
<td>14 sec</td>
</tr>
<tr>
<td></td>
<td>Fl. Deck</td>
<td>451</td>
<td>0.5</td>
<td>1.0</td>
<td>10 sec</td>
</tr>
<tr>
<td>727-100C</td>
<td>Bulk</td>
<td>4,168</td>
<td>4.2</td>
<td>7.0</td>
<td>1 can + 9 sec</td>
</tr>
<tr>
<td>727-100 (passenger)</td>
<td>Cabin</td>
<td>4,560</td>
<td>4.6</td>
<td>7.5</td>
<td>1 can + 17 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>900</td>
<td>0.9</td>
<td>1.5</td>
<td>17 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>425</td>
<td>0.4</td>
<td>0.5</td>
<td>18 sec</td>
</tr>
<tr>
<td></td>
<td>Fl. Deck</td>
<td>451</td>
<td>0.5</td>
<td>1.0</td>
<td>10 sec</td>
</tr>
<tr>
<td>727-200C</td>
<td>Bulk</td>
<td>8,032</td>
<td>8.0</td>
<td>13.0</td>
<td>2 cans + 10 sec</td>
</tr>
<tr>
<td>727-200 (passenger)</td>
<td>Cabin</td>
<td>6,561</td>
<td>6.6</td>
<td>10.5</td>
<td>1 can + 57 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>690</td>
<td>0.7</td>
<td>1.0</td>
<td>14 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>760</td>
<td>0.8</td>
<td>1.5</td>
<td>16 sec</td>
</tr>
<tr>
<td></td>
<td>Fl. Deck</td>
<td>451</td>
<td>0.5</td>
<td>1.0</td>
<td>10 sec</td>
</tr>
<tr>
<td>737-100</td>
<td>Cabin</td>
<td>4,636</td>
<td>4.6</td>
<td>7.5</td>
<td>1 can + 17 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>280</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>406</td>
<td>0.4</td>
<td>0.5</td>
<td>8 sec</td>
</tr>
<tr>
<td>737-200 (passenger)</td>
<td>Cabin</td>
<td>4,636</td>
<td>4.6</td>
<td>7.5</td>
<td>1 can + 17 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>370</td>
<td>0.4</td>
<td>0.5</td>
<td>8 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>505</td>
<td>0.5</td>
<td>1.0</td>
<td>10 sec</td>
</tr>
<tr>
<td>737-200C</td>
<td>Bulk</td>
<td>3,602</td>
<td>3.6</td>
<td>6.0</td>
<td>1 can</td>
</tr>
<tr>
<td>737-300</td>
<td>Cabin</td>
<td>4,900</td>
<td>4.9</td>
<td>8.0</td>
<td>1 can + 23 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>425</td>
<td>0.4</td>
<td>1.0</td>
<td>8 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>650</td>
<td>0.7</td>
<td>1.0</td>
<td>14 sec</td>
</tr>
<tr>
<td></td>
<td>Fl. Deck</td>
<td>225</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
</tr>
<tr>
<td>737-400</td>
<td>Cabin</td>
<td>5,600</td>
<td>5.6</td>
<td>9.0</td>
<td>1 can + 37 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>600</td>
<td>0.6</td>
<td>1.0</td>
<td>12 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>770</td>
<td>0.8</td>
<td>1.5</td>
<td>16 sec</td>
</tr>
<tr>
<td></td>
<td>Fl. Deck</td>
<td>225</td>
<td>0.2</td>
<td>0.5</td>
<td>4 sec</td>
</tr>
<tr>
<td>737-500</td>
<td>Cabin</td>
<td>4,340</td>
<td>4.3</td>
<td>7.0</td>
<td>1 can + 11 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>290</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>535</td>
<td>0.5</td>
<td>1.0</td>
<td>10 sec</td>
</tr>
<tr>
<td></td>
<td>Fl. Deck</td>
<td>255</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
</tr>
<tr>
<td>747 Combi</td>
<td></td>
<td>6,886</td>
<td>6.9</td>
<td>11.0</td>
<td>1 can + 63 sec</td>
</tr>
<tr>
<td>747F</td>
<td></td>
<td>22,952</td>
<td>23.0</td>
<td>37.0</td>
<td>6 cans + 10 sec</td>
</tr>
</tbody>
</table>
Table 5-5-12 Boeing (continued)

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>747-100, 200</td>
<td>Cabin</td>
<td>27,650</td>
<td>27.7</td>
<td>44.5</td>
<td>7 cans + 29 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>3,485</td>
<td>3.5</td>
<td>6.0</td>
<td>70 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>3,015</td>
<td>3.0</td>
<td>5.0</td>
<td>60 sec</td>
</tr>
<tr>
<td></td>
<td>Fl. Deck</td>
<td>920</td>
<td>0.9</td>
<td>1.5</td>
<td>18 sec</td>
</tr>
<tr>
<td></td>
<td>U. Deck</td>
<td>1,370</td>
<td>1.4</td>
<td>2.0</td>
<td>28 sec</td>
</tr>
<tr>
<td></td>
<td>Belly</td>
<td>1,000</td>
<td>1.0</td>
<td>1.5</td>
<td>20 sec</td>
</tr>
<tr>
<td>747-300, 400</td>
<td>Cabin</td>
<td>27,650</td>
<td>27.7</td>
<td>44.5</td>
<td>7 cans + 29 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>3,485</td>
<td>3.5</td>
<td>5.5</td>
<td>70 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>3,015</td>
<td>3.0</td>
<td>5.0</td>
<td>60 sec</td>
</tr>
<tr>
<td></td>
<td>Fl. Deck</td>
<td>920</td>
<td>0.9</td>
<td>1.5</td>
<td>18 sec</td>
</tr>
<tr>
<td></td>
<td>U. Deck</td>
<td>2,800</td>
<td>2.8</td>
<td>4.5</td>
<td>56 sec</td>
</tr>
<tr>
<td></td>
<td>Belly</td>
<td>1,000</td>
<td>1.0</td>
<td>1.5</td>
<td>20 sec</td>
</tr>
<tr>
<td>757-200 (passenger)</td>
<td>Pit-Fwd</td>
<td>652</td>
<td>0.6</td>
<td>1.0</td>
<td>12 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>1,086</td>
<td>1.1</td>
<td>2.0</td>
<td>22 sec</td>
</tr>
<tr>
<td>757-200PF</td>
<td>Bulk</td>
<td>8,405</td>
<td>8.4</td>
<td>13.5</td>
<td>2 cans + 18 sec</td>
</tr>
<tr>
<td>767-200</td>
<td>Main</td>
<td>14,255</td>
<td>14.3</td>
<td>23.0</td>
<td>3 cans + 61 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>1,470</td>
<td>1.5</td>
<td>2.5</td>
<td>30 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>1,470</td>
<td>1.5</td>
<td>2.5</td>
<td>30 sec</td>
</tr>
<tr>
<td>767-300 (passenger)</td>
<td>Cabin</td>
<td>10,497</td>
<td>10.5</td>
<td>17.0</td>
<td>2 cans + 60 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>1,920</td>
<td>1.9</td>
<td>3.0</td>
<td>38 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>1,680</td>
<td>1.7</td>
<td>2.5</td>
<td>34 sec</td>
</tr>
<tr>
<td></td>
<td>Aft+Bulk</td>
<td>430</td>
<td>0.4</td>
<td>0.5</td>
<td>8 sec</td>
</tr>
<tr>
<td>777-200</td>
<td>Cabin</td>
<td>20,700</td>
<td>20.7</td>
<td>33.0</td>
<td>5 cans + 39 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>280</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>4,630</td>
<td>4.6</td>
<td>7.5</td>
<td>1 can + 17 sec</td>
</tr>
<tr>
<td></td>
<td>Aft+Bulk</td>
<td>4,220</td>
<td>4.2</td>
<td>6.5</td>
<td>1 can + 9 sec</td>
</tr>
</tbody>
</table>

Table 5-5-13 Canadair

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL-44</td>
<td>Bulk</td>
<td>6,235</td>
<td>6.2</td>
<td>10.0</td>
<td>1 can + 49 sec</td>
</tr>
<tr>
<td>CL-440</td>
<td>Bulk</td>
<td>13,798</td>
<td>13.8</td>
<td>22.0</td>
<td>3 cans + 51 sec</td>
</tr>
</tbody>
</table>

Table 5-5-14 Casa

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-212</td>
<td>N/A</td>
<td>777</td>
<td>0.8</td>
<td>1.5</td>
<td>16 sec</td>
</tr>
<tr>
<td>ATR 72 (CTO)</td>
<td>N/A</td>
<td>1,528</td>
<td>1.5</td>
<td>2.5</td>
<td>30 sec</td>
</tr>
</tbody>
</table>
Table 5-5-15 Cessna

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³, Units</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/ Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caravan</td>
<td>N/A</td>
<td>452</td>
<td>0.5</td>
<td>1.0</td>
<td>10 sec</td>
</tr>
</tbody>
</table>

Table 5-5-16 Convair

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³, Units</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/ Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>240</td>
<td>Cabin</td>
<td>1,650</td>
<td>1.7</td>
<td>2.5</td>
<td>34 sec</td>
</tr>
<tr>
<td>Pit-Fwd</td>
<td>193</td>
<td>0.2</td>
<td></td>
<td>0.5</td>
<td>4 sec</td>
</tr>
<tr>
<td>Belly</td>
<td>88</td>
<td>0.1</td>
<td></td>
<td>---¹</td>
<td>2 sec</td>
</tr>
<tr>
<td>340 & 44-</td>
<td>Cabin</td>
<td>1,816</td>
<td>1.8</td>
<td>3.0</td>
<td>36 sec</td>
</tr>
<tr>
<td>Pit-Fwd</td>
<td>158</td>
<td>0.2</td>
<td></td>
<td>0.5</td>
<td>4 sec</td>
</tr>
<tr>
<td>Pit-Aft</td>
<td>193</td>
<td>0.2</td>
<td></td>
<td>0.5</td>
<td>4 sec</td>
</tr>
<tr>
<td>Belly</td>
<td>78</td>
<td>0.1</td>
<td></td>
<td>---¹</td>
<td>2 sec</td>
</tr>
<tr>
<td>880 & 800M</td>
<td>Cabin</td>
<td>5,802</td>
<td>5.8</td>
<td>9.5</td>
<td>1 can + 41 sec</td>
</tr>
<tr>
<td>Pit-Fwd</td>
<td>415</td>
<td>0.4</td>
<td></td>
<td>0.5</td>
<td>8 sec</td>
</tr>
<tr>
<td>Pit-Aft</td>
<td>488</td>
<td>0.5</td>
<td></td>
<td>1.0</td>
<td>10 sec</td>
</tr>
<tr>
<td>990</td>
<td>Cabin</td>
<td>6,336</td>
<td>6.3</td>
<td>10.0</td>
<td>1 can + 51 sec</td>
</tr>
<tr>
<td>Pit-Fwd</td>
<td>488</td>
<td>0.5</td>
<td></td>
<td>1.0</td>
<td>10 sec</td>
</tr>
<tr>
<td>Pit-Aft</td>
<td>497</td>
<td>0.5</td>
<td></td>
<td>1.0</td>
<td>10 sec</td>
</tr>
</tbody>
</table>

¹ In these small volume spaces, use the extender and calculate the application time using a rate of 2.5 grams per second. At a rate of 2.5 grams per second, the following table will give the spray time:

<table>
<thead>
<tr>
<th>1,000 ft³ Units</th>
<th>Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>10.5</td>
</tr>
<tr>
<td>0.2</td>
<td>20.5</td>
</tr>
<tr>
<td>0.3</td>
<td>31.0</td>
</tr>
<tr>
<td>0.4</td>
<td>41.5</td>
</tr>
</tbody>
</table>

Table 5-5-17 de Havilland

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³, Units</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/ Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dash 7, Series 100 (all cargo)</td>
<td>N/A</td>
<td>240</td>
<td>0.2</td>
<td>0.5</td>
<td>4 sec</td>
</tr>
<tr>
<td>DHC-6 Twin Otter, Series 300 (cargo version)</td>
<td>Fwd</td>
<td>38</td>
<td>0.1</td>
<td>---¹</td>
<td>2 sec</td>
</tr>
<tr>
<td></td>
<td>Aft</td>
<td>88</td>
<td>0.1</td>
<td>---¹</td>
<td>2 sec</td>
</tr>
<tr>
<td></td>
<td>Bulk</td>
<td>384</td>
<td>0.4</td>
<td>0.5</td>
<td>8 sec</td>
</tr>
<tr>
<td>Dash 7, Series 100, Combi (50 passengers)</td>
<td>N/A</td>
<td>240</td>
<td>0.2</td>
<td>0.5</td>
<td>4 sec</td>
</tr>
</tbody>
</table>
Table 5-5-17 de Havilland (continued)

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dash 7, Series 100, Combi (18 passengers)</td>
<td>N/A</td>
<td>240</td>
<td>0.2</td>
<td>0.5</td>
<td>4 sec</td>
</tr>
<tr>
<td>Dash 8, Series 300, Combi (49 passengers)</td>
<td>N/A</td>
<td>400</td>
<td>0.4</td>
<td>0.5</td>
<td>8 sec</td>
</tr>
<tr>
<td>Dash 8, Series 100, Combi (37 passengers)</td>
<td>N/A</td>
<td>300</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
</tr>
<tr>
<td>Dash 8, Series 100, Combi (20 passengers)</td>
<td>N/A</td>
<td>775</td>
<td>0.8</td>
<td>1.5</td>
<td>16 sec</td>
</tr>
</tbody>
</table>

1 In these small volume spaces, use the extender and calculate the application time using a rate of 2.5 grams per second. At a rate of 2.5 grams per second, the following table will give the spray time:

<table>
<thead>
<tr>
<th>1,000 ft³ Units</th>
<th>Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.5</td>
</tr>
<tr>
<td>0.2</td>
<td>0.5</td>
</tr>
<tr>
<td>0.3</td>
<td>1.0</td>
</tr>
<tr>
<td>0.4</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Table 5-5-18 Dornier

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>228-212</td>
<td>N/A</td>
<td>642</td>
<td>0.6</td>
<td>1.0</td>
<td>12 sec</td>
</tr>
</tbody>
</table>

Table 5-5-19 Embraer

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>EMB-120 Brasilia</td>
<td>N/A</td>
<td>1,193</td>
<td>1.2</td>
<td>2.0</td>
<td>24 sec</td>
</tr>
<tr>
<td>EMB-110 Brasilia</td>
<td>N/A</td>
<td>523</td>
<td>0.5</td>
<td>1.0</td>
<td>10 sec</td>
</tr>
</tbody>
</table>
Table 5-5-20 Fairchild

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>Aerosol Calculations</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/ Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expediter</td>
<td>NA</td>
<td>580</td>
<td>0.6</td>
<td>1.0</td>
<td>12 sec</td>
<td></td>
</tr>
<tr>
<td>Metro II & IIA</td>
<td>NA</td>
<td>580</td>
<td>0.6</td>
<td>1.0</td>
<td>12 sec</td>
<td></td>
</tr>
<tr>
<td>F27</td>
<td>Cabin</td>
<td>2,900</td>
<td>2.9</td>
<td>4.5</td>
<td>58 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit</td>
<td>192</td>
<td>0.2</td>
<td>0.5</td>
<td>4 sec</td>
<td></td>
</tr>
<tr>
<td>FH11227</td>
<td>Cabin</td>
<td>3,200</td>
<td>3.2</td>
<td>5.0</td>
<td>64 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit</td>
<td>192</td>
<td>0.2</td>
<td>0.5</td>
<td>4 sec</td>
<td></td>
</tr>
</tbody>
</table>

Table 5-5-21 Fokker

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>Aerosol Calculations</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/ Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>F27</td>
<td>N/A</td>
<td>198</td>
<td>0.2</td>
<td>0.5</td>
<td>4 sec</td>
<td></td>
</tr>
<tr>
<td>F28</td>
<td>N/A</td>
<td>290</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
<td></td>
</tr>
<tr>
<td>F100C</td>
<td>Bulk</td>
<td>2,070</td>
<td>2.0</td>
<td>3.0</td>
<td>40 sec</td>
<td></td>
</tr>
</tbody>
</table>

Table 5-5-22 Lockheed

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>Aerosol Calculations</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/ Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electra</td>
<td>Cabin</td>
<td>5,160</td>
<td>5.2</td>
<td>8.5</td>
<td>1 can + 29 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>254</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>274</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
<td></td>
</tr>
<tr>
<td>L1011 (100)</td>
<td>Cabin</td>
<td>23,100</td>
<td>23.1</td>
<td>37.0</td>
<td>6 cans + 12 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>1,600</td>
<td>1.6</td>
<td>2.5</td>
<td>32 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Ctr</td>
<td>1,600</td>
<td>1.6</td>
<td>2.5</td>
<td>32 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>700</td>
<td>0.7</td>
<td>1.0</td>
<td>14 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Galley</td>
<td>1,380</td>
<td>1.4</td>
<td>2.0</td>
<td>28 sec</td>
<td></td>
</tr>
<tr>
<td>L-1011-1</td>
<td>Cargo</td>
<td>3,900</td>
<td>3.9</td>
<td>6.0</td>
<td>1 can + 3 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Holds</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L-100-30</td>
<td>N/A</td>
<td>6,057</td>
<td>6.1</td>
<td>10.0</td>
<td>1 can + 47 sec</td>
<td></td>
</tr>
</tbody>
</table>

Table 5-5-23 McDonnel-Douglas

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>Aerosol Calculations</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/ Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC-3</td>
<td>Bulk</td>
<td>1,300</td>
<td>1.3</td>
<td>2.0</td>
<td>26 sec</td>
<td></td>
</tr>
<tr>
<td>DC-6 (cargo)</td>
<td>Bulk</td>
<td>3,354</td>
<td>3.4</td>
<td>5.5</td>
<td>68 sec</td>
<td></td>
</tr>
<tr>
<td>Aircraft, model, and series</td>
<td>Area</td>
<td>Volume ft³</td>
<td>1,000 ft³ Units</td>
<td>T409-b-1 Spray Time in Seconds</td>
<td>T409-b-3 Cans/ Spray Time in Seconds</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------</td>
<td>------------</td>
<td>-----------------</td>
<td>-------------------------------</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>DC-6 (passengers)</td>
<td>Cabin</td>
<td>4,332</td>
<td>1.3</td>
<td>7.0</td>
<td>26 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>200</td>
<td>0.2</td>
<td>0.5</td>
<td>4 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>173</td>
<td>0.2</td>
<td>0.5</td>
<td>4 sec</td>
<td></td>
</tr>
<tr>
<td>DC-6A</td>
<td>Cabin</td>
<td>4,375</td>
<td>4.4</td>
<td>7.0</td>
<td>1 can + 13 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>267</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>300</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
<td></td>
</tr>
<tr>
<td>DC-6B</td>
<td>Cabin</td>
<td>4,375</td>
<td>4.4</td>
<td>7.0</td>
<td>1 can + 13 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>276</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>242</td>
<td>0.2</td>
<td>0.5</td>
<td>4 sec</td>
<td></td>
</tr>
<tr>
<td>DC-7B</td>
<td>Cabin</td>
<td>4,612</td>
<td>4.6</td>
<td>7.0</td>
<td>1 can + 17 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>267</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>364</td>
<td>0.4</td>
<td>0.5</td>
<td>8 sec</td>
<td></td>
</tr>
<tr>
<td>DC-7C</td>
<td>Cabin</td>
<td>4,778</td>
<td>4.8</td>
<td>7.5</td>
<td>1 can + 21 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>312</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>339</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
<td></td>
</tr>
<tr>
<td>DC-8-50</td>
<td>Cabin</td>
<td>12,911</td>
<td>12.9</td>
<td>20.5</td>
<td>3 cans + 33 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>690</td>
<td>0.7</td>
<td>1.0</td>
<td>14 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>700</td>
<td>0.7</td>
<td>1.0</td>
<td>14 sec</td>
<td></td>
</tr>
<tr>
<td>DC-8-54F</td>
<td>Main</td>
<td>5,984</td>
<td>6.0</td>
<td>9.5</td>
<td>1 can + 45 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>690</td>
<td>0.7</td>
<td>1.0</td>
<td>14 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>700</td>
<td>0.7</td>
<td>1.0</td>
<td>14 sec</td>
<td></td>
</tr>
<tr>
<td>DC-8-55F</td>
<td>Main</td>
<td>5,878</td>
<td>5.9</td>
<td>9.5</td>
<td>1 can + 43 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>690</td>
<td>0.7</td>
<td>1.0</td>
<td>14 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>700</td>
<td>0.7</td>
<td>1.0</td>
<td>14 sec</td>
<td></td>
</tr>
<tr>
<td>DC-8-61 & 63</td>
<td>Cabin</td>
<td>15,955</td>
<td>16.0</td>
<td>25.5</td>
<td>4 cans + 20 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>1,290</td>
<td>1.3</td>
<td>2.0</td>
<td>26 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>1,210</td>
<td>1.2</td>
<td>2.0</td>
<td>24 sec</td>
<td></td>
</tr>
<tr>
<td>DC-8-62</td>
<td>Cabin</td>
<td>13,739</td>
<td>13.7</td>
<td>22.0</td>
<td>3 cans + 49 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>799</td>
<td>0.8</td>
<td>1.5</td>
<td>16 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>816</td>
<td>0.8</td>
<td>1.5</td>
<td>16 sec</td>
<td></td>
</tr>
<tr>
<td>DC-8-62CF</td>
<td>Main</td>
<td>6,442</td>
<td>6.4</td>
<td>10.0</td>
<td>1 can + 53 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>800</td>
<td>0.8</td>
<td>1.5</td>
<td>16 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>815</td>
<td>0.8</td>
<td>1.5</td>
<td>16 sec</td>
<td></td>
</tr>
<tr>
<td>DC-8-63F and DC-8-73F</td>
<td>Main</td>
<td>10,350</td>
<td>10.4</td>
<td>16.5</td>
<td>2 cans + 58 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>1,290</td>
<td>1.3</td>
<td>2.0</td>
<td>26 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>1,210</td>
<td>1.2</td>
<td>2.0</td>
<td>24 sec</td>
<td></td>
</tr>
<tr>
<td>DC-8-71CF</td>
<td>Main</td>
<td>8,148</td>
<td>8.1</td>
<td>13.0</td>
<td>2 cans + 12 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>1,290</td>
<td>1.3</td>
<td>2.0</td>
<td>26 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>1,210</td>
<td>1.2</td>
<td>2.0</td>
<td>24 sec</td>
<td></td>
</tr>
<tr>
<td>DC-8-61CF & 71CF</td>
<td>Main</td>
<td>15,472</td>
<td>15.5</td>
<td>25.0</td>
<td>4 cans + 10 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>1,290</td>
<td>1.3</td>
<td>2.0</td>
<td>26 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>1,210</td>
<td>1.2</td>
<td>2.0</td>
<td>24 sec</td>
<td></td>
</tr>
<tr>
<td>DC-9-10</td>
<td>Cabin</td>
<td>4,056</td>
<td>4.1</td>
<td>6.5</td>
<td>1 can + 7 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>1,000</td>
<td>1.0</td>
<td>1.5</td>
<td>20 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>619</td>
<td>0.6</td>
<td>1.0</td>
<td>12 sec</td>
<td></td>
</tr>
<tr>
<td>Aircraft, model, and series</td>
<td>Area</td>
<td>Volume ft³</td>
<td>1,000 ft³ Units</td>
<td>T409-b-1 Spray Time in Seconds</td>
<td>T409-b-3 Cans/ Spray Time in Seconds</td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------------</td>
<td>--------------------------------</td>
<td>--------------------------------------</td>
<td></td>
</tr>
<tr>
<td>DC-9-10AF</td>
<td>Main</td>
<td>2,386</td>
<td>2.4</td>
<td>4.0</td>
<td>48 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>373</td>
<td>0.4</td>
<td>0.5</td>
<td>8 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>327</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
<td></td>
</tr>
<tr>
<td>DC-9-30</td>
<td>Cabin</td>
<td>5,094</td>
<td>5.1</td>
<td>8.0</td>
<td>1 can + 27 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>1,386</td>
<td>1.4</td>
<td>2.0</td>
<td>28 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>832</td>
<td>0.8</td>
<td>1.5</td>
<td>16 sec</td>
<td></td>
</tr>
<tr>
<td>DC-9-32AF</td>
<td>Main</td>
<td>3,300</td>
<td>3.3</td>
<td>5.5</td>
<td>66 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>562</td>
<td>0.6</td>
<td>1.0</td>
<td>12 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>333</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
<td></td>
</tr>
<tr>
<td>DC-9-33CF</td>
<td>Main</td>
<td>2,944</td>
<td>2.9</td>
<td>4.5</td>
<td>58 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>562</td>
<td>0.6</td>
<td>1.0</td>
<td>12 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>333</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
<td></td>
</tr>
<tr>
<td>DC-40</td>
<td>Cabin</td>
<td>5,535</td>
<td>5.5</td>
<td>9.0</td>
<td>1 can + 35 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>1,290</td>
<td>1.3</td>
<td>2.0</td>
<td>26 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>1,040</td>
<td>1.0</td>
<td>1.5</td>
<td>20 sec</td>
<td></td>
</tr>
<tr>
<td>DC-10-10CF & 10F, also</td>
<td>Main</td>
<td>12,236</td>
<td>12.2</td>
<td>19.5</td>
<td>3 cans + 19 sec</td>
<td></td>
</tr>
<tr>
<td>DC-10-30CF & 30F</td>
<td>Pit-Fwd</td>
<td>3,020</td>
<td>3.0</td>
<td>5.0</td>
<td>60 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Ctr</td>
<td>1,935</td>
<td>1.9</td>
<td>3.0</td>
<td>38 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>510</td>
<td>0.5</td>
<td>1.0</td>
<td>10 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fl. Deck</td>
<td>400</td>
<td>0.4</td>
<td>0.5</td>
<td>8 sec</td>
<td></td>
</tr>
<tr>
<td>MD 8-61/63</td>
<td>Main</td>
<td>11,173</td>
<td>11.2</td>
<td>18.0</td>
<td>3 cans</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>1,290</td>
<td>1.3</td>
<td>2.0</td>
<td>26 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>1,210</td>
<td>1.2</td>
<td>2.0</td>
<td>24 sec</td>
<td></td>
</tr>
<tr>
<td>MD8-62</td>
<td>Main</td>
<td>8,862</td>
<td>8.9</td>
<td>14.0</td>
<td>2 cans + 28 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>800</td>
<td>0.8</td>
<td>1.5</td>
<td>16 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>815</td>
<td>0.8</td>
<td>1.5</td>
<td>16 sec</td>
<td></td>
</tr>
<tr>
<td>MD9-10</td>
<td>Main</td>
<td>3,582</td>
<td>3.6</td>
<td>6.0</td>
<td>1 can</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>393</td>
<td>0.4</td>
<td>0.5</td>
<td>8 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>254</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
<td></td>
</tr>
<tr>
<td>MD9-30</td>
<td>Main</td>
<td>4,525</td>
<td>4.5</td>
<td>7.0</td>
<td>1 can + 15 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>562</td>
<td>0.6</td>
<td>1.0</td>
<td>12 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>333</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
<td></td>
</tr>
<tr>
<td>MD9-40</td>
<td>Main</td>
<td>4,926</td>
<td>4.9</td>
<td>8.0</td>
<td>1 can + 23 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>618</td>
<td>0.6</td>
<td>1.0</td>
<td>12 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>350</td>
<td>0.4</td>
<td>0.5</td>
<td>8 sec</td>
<td></td>
</tr>
<tr>
<td>MD-11F</td>
<td>Main Deck</td>
<td>15,530</td>
<td>15.5</td>
<td>25.0</td>
<td>4 cans + 10 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lower Deck</td>
<td>4,976</td>
<td>5.0</td>
<td>8.0</td>
<td>1 can + 25 sec</td>
<td></td>
</tr>
<tr>
<td>MD-11 Combi</td>
<td>Main</td>
<td>5,822</td>
<td>5.8</td>
<td>9.5</td>
<td>1 can + 41 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>3,655</td>
<td>3.7</td>
<td>6.0</td>
<td>1 can</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Ctr</td>
<td>2,685</td>
<td>2.7</td>
<td>4.5</td>
<td>54 sec</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>510</td>
<td>0.5</td>
<td>1.0</td>
<td>10 sec</td>
<td></td>
</tr>
<tr>
<td>MD-80 JT8D-217</td>
<td>Lower Hold</td>
<td>1,253</td>
<td>1.3</td>
<td>2.0</td>
<td>26 sec</td>
<td></td>
</tr>
<tr>
<td>MD-80 JT8D-219</td>
<td>Lower Hold</td>
<td>1,013</td>
<td>1.0</td>
<td>1.5</td>
<td>20 sec</td>
<td></td>
</tr>
<tr>
<td>MD 81 & 82</td>
<td>Cargo</td>
<td>1,253</td>
<td>1.3</td>
<td>2.0</td>
<td>26 sec</td>
<td></td>
</tr>
<tr>
<td>MD-83</td>
<td>Cargo</td>
<td>1,013</td>
<td>1.0</td>
<td>1.5</td>
<td>20 sec</td>
<td></td>
</tr>
</tbody>
</table>
Table 5-5-23 McDonnel-Douglas (continued)

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>Aerosol Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>T409-b-1 Spray Time in Seconds</td>
<td>T409-b-3 Cans/ Spray Time in Seconds</td>
</tr>
<tr>
<td>MD-87 Cargo</td>
<td>938</td>
<td>0.9</td>
<td>1.5</td>
<td>18 sec</td>
</tr>
<tr>
<td>or 697</td>
<td>0.7</td>
<td>1.0</td>
<td>1.0</td>
<td>14 sec</td>
</tr>
<tr>
<td>MD-88 Cargo</td>
<td>1,013</td>
<td>1.0</td>
<td>1.5</td>
<td>20 sec</td>
</tr>
<tr>
<td>or 1,253</td>
<td>1.3</td>
<td>2.0</td>
<td></td>
<td>26 sec</td>
</tr>
</tbody>
</table>

Table 5-5-24 SAAB

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>Aerosol Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>T409-b-1 Spray Time in Seconds</td>
<td>T409-b-3 Cans/ Spray Time in Seconds</td>
</tr>
<tr>
<td>340 B/QC</td>
<td>N/A</td>
<td>1,303</td>
<td>1.3</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>26 sec</td>
</tr>
</tbody>
</table>

Table 5-5-25 Shorts

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>Aerosol Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>T409-b-1 Spray Time in Seconds</td>
<td>T409-b-3 Cans/ Spray Time in Seconds</td>
</tr>
<tr>
<td>330</td>
<td>N/A</td>
<td>1,230</td>
<td>1.2</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>24 sec</td>
</tr>
<tr>
<td>360 and 360-F</td>
<td>N/A</td>
<td>1,450</td>
<td>1.5</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30 sec</td>
</tr>
</tbody>
</table>

Table 5-5-26 Sidely

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>Aerosol Calculations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>T409-b-1 Spray Time in Seconds</td>
<td>T409-b-3 Cans/ Spray Time in Seconds</td>
</tr>
<tr>
<td>Carvelle Cabin</td>
<td>5,600</td>
<td>5.6</td>
<td>9.0</td>
<td>1 can + 37 sec</td>
</tr>
<tr>
<td>Pit-Fwd</td>
<td>258</td>
<td>0.3</td>
<td>0.5</td>
<td>6 sec</td>
</tr>
<tr>
<td>Pit-Aft</td>
<td>116</td>
<td>0.1</td>
<td>---¹</td>
<td>2 sec</td>
</tr>
</tbody>
</table>

¹ In these small volume spaces, use the extender and calculate the application time using a rate of 2.5 grams per second. At a rate of 2.5 grams per second, the following table will give the spray time:

<table>
<thead>
<tr>
<th>1,000 ft³ Units</th>
<th>Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.10.5</td>
<td>0.20.5</td>
</tr>
<tr>
<td>0.31.0</td>
<td>0.41.5</td>
</tr>
</tbody>
</table>

```
### Table 5-5-27  Tupolev

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/ Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>TU-154</td>
<td>Bulk</td>
<td>5,000</td>
<td>5.0</td>
<td>8.0</td>
<td>25 sec</td>
</tr>
</tbody>
</table>

### Table 5-5-28  Vickers

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/ Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merchantman</td>
<td>Bulk</td>
<td>5,040</td>
<td>5.0</td>
<td>8.0</td>
<td>1 can + 25 sec</td>
</tr>
<tr>
<td>Viscount</td>
<td>Bulk</td>
<td>3,000</td>
<td>3.0</td>
<td>5.0</td>
<td>60 sec</td>
</tr>
</tbody>
</table>

### Table 5-5-29  Military Aircraft

<table>
<thead>
<tr>
<th>Aircraft, model, and series</th>
<th>Area</th>
<th>Volume ft³</th>
<th>1,000 ft³ Units</th>
<th>T409-b-1 Spray Time in Seconds</th>
<th>T409-b-3 Cans/ Spray Time in Seconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-5A</td>
<td>Main</td>
<td>46,651</td>
<td>46.7</td>
<td>74.5</td>
<td>12 cans + 34 sec</td>
</tr>
<tr>
<td></td>
<td>U. Deck Fwd. &amp; Fl. Deck</td>
<td>6,147</td>
<td>6.1</td>
<td>10.0</td>
<td>1 can + 47 sec</td>
</tr>
<tr>
<td></td>
<td>U. Floor</td>
<td>5,147</td>
<td>5.1</td>
<td>8.0</td>
<td>1 can + 27 sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6,294</td>
<td>6.3</td>
<td>10.0</td>
<td>1 can + 51 sec</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12 cans + 34 sec</td>
</tr>
<tr>
<td>C-17</td>
<td>Main</td>
<td>20,875</td>
<td>20.9</td>
<td>33.5</td>
<td>5 cans + 43 sec</td>
</tr>
<tr>
<td>C-26</td>
<td>Cabin</td>
<td>500</td>
<td>0.5</td>
<td>1.0</td>
<td>10 sec</td>
</tr>
<tr>
<td></td>
<td>Pit</td>
<td>198</td>
<td>0.2</td>
<td>0.5</td>
<td>4 sec</td>
</tr>
<tr>
<td>C-130</td>
<td>Main</td>
<td>8,340</td>
<td>8.3</td>
<td>13.5</td>
<td>2 cans + 16 sec</td>
</tr>
<tr>
<td>C-130 LG382</td>
<td></td>
<td>4,737</td>
<td>4.7</td>
<td>7.5</td>
<td>1 can + 19 sec</td>
</tr>
<tr>
<td>C-130 LG385-G</td>
<td></td>
<td>6,057</td>
<td>6.1</td>
<td>10.0</td>
<td>1 can + 47 sec</td>
</tr>
<tr>
<td>C-135</td>
<td>Cabin</td>
<td>6,000</td>
<td>6.0</td>
<td>9.5</td>
<td>1 can + 45 sec</td>
</tr>
<tr>
<td>C-141</td>
<td>Main</td>
<td>12,000</td>
<td>12.0</td>
<td>19.0</td>
<td>3 cans + 15 sec</td>
</tr>
<tr>
<td>C-141B</td>
<td>Main</td>
<td>13,701</td>
<td>13.7</td>
<td>22.0</td>
<td>3 cans + 49 sec</td>
</tr>
<tr>
<td>KC-10</td>
<td>Cabin</td>
<td>4,056</td>
<td>4.1</td>
<td>6.5</td>
<td>1 can + 7 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Fwd</td>
<td>1,000</td>
<td>1.0</td>
<td>1.5</td>
<td>20 sec</td>
</tr>
<tr>
<td></td>
<td>Pit-Aft</td>
<td>619</td>
<td>0.6</td>
<td>1.0</td>
<td>12 sec</td>
</tr>
</tbody>
</table>
**T410—Tick Infestations**

**T410**

**Nonplant articles (i.e., bat guano, fence posts, etc.)**

Pest: Ticks

Treatment: Use T310 schedules, Tick-infested materials (nonfood)

**T411—Ant Infestations—Nonplant Products**

**T411**

Pest: Ants

Treatment: T411—MB at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft²)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>2 lbs</td>
<td>24</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>2.5 lbs</td>
<td>30</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>3 lbs</td>
<td>36</td>
</tr>
</tbody>
</table>

**T412—Noxious Weed Seeds (Devitalization Treatment)**

**T412-a**

**Guizotia abyssinica (niger seed)**

Pest: Weed seeds of the following genera:

- *Asphodelus fistulosus* (onionweed)
- *Digitaria* spp. (includes African couchgrass)
- *Oryza* spp. (red rice)
- *Paspalum scrobiculatum* (Kodo-millet)
- *Prosopis* spp. (includes mesquites)
- *Solanum viarum* (tropical soda apple)
- *Striga* spp. (witchweed)
- *Urochloa panicoides* (liver-seed grass)

Treatment: T412-a—Dry Heat Treatment at 248°F (120°C) for 15 minutes

*Important*

Do not start counting time until the entire mass reaches the required temperature.
T412-b-1  Noxious weed seeds (devitalization treatment)
Pest:  *Cuscuta* spp.

Two alternative treatments

Treatment:  T412-b-1—Dry heat—commodity heated to 212°F (100°C) for 15 minutes

T412-b-2  Noxious weed seeds (devitalization treatment)
Pest:  *Cuscuta* spp.

Treatment:  T412-b-2—Steam heat—commodity heated to 212°F (100°C) for 15 minutes

T412-b-3  Deleted

T413—Brassware from Mumbai (Bombay), India

T413-a  Brassware from Mumbai (Bombay), India
Two alternative treatments

Pest:  *Trogoderma granarium* (khapra beetle)

Treatment:  T413-a—MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>2.5 lbs</td>
<td>30</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>3.5 lbs</td>
<td>42</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>4.5 lbs</td>
<td>54</td>
</tr>
<tr>
<td>60-69 °F¹</td>
<td>6 lbs</td>
<td>72</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>7.5 lbs</td>
<td>90</td>
</tr>
<tr>
<td>40-49 °F²</td>
<td>9 lbs</td>
<td>108</td>
</tr>
</tbody>
</table>

1  Use MB 100 gas at 60 °F or above.
2  Use MB "Q" gas at 40 °F or above.

Important
When both woodborers and khapra beetles are involved, use schedule T404-d on page 5-5-20.
**T413-b**

Brassware from Mumbai (Bombay), India

Treatment:  T413-b—MB in 26” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>8 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-59 °F</td>
<td>9 lbs</td>
<td>3 hrs</td>
</tr>
</tbody>
</table>

1  Use MB 100 gas at 60 °F or above.
2  Use MB “Q” gas at 40 °F or above.

**NOTICE**

Load limit is 75 percent of chamber volume.

---

**T414—Inanimate, Nonfood Articles with Gypsy Moth Egg Masses**

**T414**

Inanimate, nonfood articles with Gypsy Moth egg masses

Pest:  Gypsy Moth egg masses

Treatment:  T414—MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>50 °F or above</td>
<td>3.5 lbs</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>2.5 lbs</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>2 lbs</td>
<td>24</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>4.5 lbs</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>3.25 lbs</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>2.25 lbs</td>
<td>30</td>
</tr>
</tbody>
</table>

**Important**

For *Lymantria dispar* (gypsy moth) egg masses on such items as outdoor household articles, quarry products, lumber, logs, and timber products.
**T415—Garbage**

Three alternative treatments are approved. The treatments can be used for commodity destruction.

**T415-a Garbage**

Pest: Insect pest and pathogens  
Treatment: T415-a—Heat Treatment- Incinerate to ash.

*Important*

Caterers under compliance agreement using an incinerator for garbage must comply with the following conditions:

- Incinerator must be capable of reducing garbage to ash
- Incinerator must be maintained adequately to assure continued operation

**T415-b Garbage**

Pest: Insect pest and pathogens  
Treatment: T415-b—Dry heat or Steam- commonly heated to internal temperature of 212 °F (100 °C) for 30 minutes followed by burial in a landfill.

*Important*

Caterers under compliance agreement using a sterilizer must comply with the following conditions:

The sterilizer must be capable of heating garbage to an internal temperature of 212° F and maintaining it at that temperature for a minimum of 30 minutes.

Reevaluate and adjust the sterilization cycle twice a year using a thermocouple to recalibrate the temperature recording device. Adjusting the sterilization cycle semiannually will assure that all garbage processed is heated to a minimum internal temperature of 212° F for at least 30 minutes, and that the temperature recording device accurately reflects the internal temperature of the sterilizer.

Observe all reevaluations and adjustments.

The operator is to date and initial time/temperature records for each batch of garbage sterilized. The supervisor is to review and sign each time/temperature record. The facility must retain records for 6 months for review by PPQ.

Clean the drain in the bottom of the sterilizer between each cycle to assure proper heat circulation.
**T415-c**

**Garbage**

Pest: Insect pest and pathogens

Treatment: T415-c—Grinding and discharge into an approved sewage system

Grinding and discharging is allowed into an approved sewage system. An approved sewage system is designed and operated in such a way as to preclude the discharge of sewage effluents onto land surfaces or into lagoons or other stationary waters, is adequate to prevent the dissemination of plant pests and livestock or poultry diseases, and is certified by an appropriate government official as currently complying with the applicable laws for environmental protection.

**T416—Goatskins, Lambskins, Sheepskins (Skins and Hides)**

Three alternative treatments

- **Important** Fur, horsehair articles, and leather goods (skins and hides), may cause off-odors that may be unacceptable when exposed to methyl bromide (MB).

- **Important** Items known to be sorptive or items whose sorptive properties are unknown are not to be fumigated in chambers at NAP unless gas concentration readings are taken.

**T416-a-1**

**Goatskins, lambskins, sheepskins (skins and hides)**

Pest: *Trogoderma granarium* (khapra beetle)

Treatment: MB (“Q” gas only) at NAP—tarpaulin

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>90 °F or above</td>
<td>2.5 lbs</td>
<td>30</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>3.5 lbs</td>
<td>42</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>4.5 lbs</td>
<td>54</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>6 lbs</td>
<td>72</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>7.5 lbs</td>
<td>90</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>9 lbs</td>
<td>108</td>
</tr>
</tbody>
</table>
The sorptive rates of commodities vary. When a commodity is known or suspected to be sorptive (see *Sorption* on page 2-3-10), take more gas readings than normal. Additional fumigant is added as prescribed in Additional Readings on page 2-4-29.

When both woodborers and khapra beetles are involved, use schedule *T404-d* on page 5-5-20.

**T416-a-2**

**Goatskins, lambskins, sheepskins (skins and hides)**

*NOTICE* Load limit is 75 percent of chamber volume.

**Pest**
*Trogoderma granarium* (khapra beetle)

**Treatment** MB (“Q” label gas) in 26” vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 °F or above</td>
<td>8 lbs</td>
<td>3 hrs</td>
</tr>
<tr>
<td>40-59 °F</td>
<td>9 lbs</td>
<td>3 hrs</td>
</tr>
</tbody>
</table>

**T416-a-3**

**Goatskins, lambskins, sheepskins (skins and hides)**

**Pest**
*Trogoderma granarium* (khapra beetle)

**Treatment** MB (“Q” gas only) in 26" vacuum—chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>90-96 °F</td>
<td>2.5 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td>80-89 °F</td>
<td>3.5 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td>70-79 °F</td>
<td>4.5 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td>60-69 °F</td>
<td>6 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td>50-59 °F</td>
<td>10 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td>40-49 °F</td>
<td>12 lbs</td>
<td>12 hrs</td>
</tr>
</tbody>
</table>
Amount of Phosphine liberated by various products

Calculate amount of product needed by using the amount of phosphine released as shown in the right column.

Table 5-5-30  Amount of Phosphine Liberated by Various Products

<table>
<thead>
<tr>
<th>Product</th>
<th>Type</th>
<th>Unit and weight in grams</th>
<th>Grams of phosphine*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Degesch Fumi-Cel®</td>
<td>MP</td>
<td>1 plate; 117.0</td>
<td>33.0</td>
</tr>
<tr>
<td>Degesch Fumi-Strip®</td>
<td>MP</td>
<td>16 plates; 1872.0</td>
<td>528.0</td>
</tr>
<tr>
<td>Degesch Phostoxin®</td>
<td>AP</td>
<td>1 tablet; 3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Degesch Phostoxin® Tablet Prepac Rope</td>
<td>AP</td>
<td>1 prepac; 99.0 (strip or rope of 33 tablets)</td>
<td>33.0</td>
</tr>
<tr>
<td>Detia</td>
<td>AP</td>
<td>1 tablet; 3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Detia Rotox AP</td>
<td>AP</td>
<td>1 pellet; 0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Detia Gas EX-B</td>
<td>AP</td>
<td>1 bag or sachet; 34.0</td>
<td>11.4</td>
</tr>
<tr>
<td>Fumiphos tablets</td>
<td>AP</td>
<td>1 tablet; 3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Fumiphos pellets</td>
<td>AP</td>
<td>1 pellet; 0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Fumiphos bags</td>
<td>AP</td>
<td>1 bag; 34.0</td>
<td>11.0</td>
</tr>
<tr>
<td>Fumitoxin</td>
<td>AP</td>
<td>1 tablet; 3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Fumitoxin</td>
<td>AP</td>
<td>1 pellet; 0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>Fumitoxin</td>
<td>AP</td>
<td>1 bag; 34.0</td>
<td>11.0</td>
</tr>
<tr>
<td>Gastoxin</td>
<td>AP</td>
<td>1 tablet; 3.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Gastoxin</td>
<td>AP</td>
<td>1 pellet; 0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>“L” Fume</td>
<td>AP</td>
<td>1 pellet; 0.5</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>AP</td>
<td>1 pellet; 0.6</td>
<td>0.22</td>
</tr>
<tr>
<td>Phos-Kill</td>
<td>AP</td>
<td>1 tablet; 3.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Phos-Kill</td>
<td>AP</td>
<td>1 pellet; 0.6</td>
<td>0.22</td>
</tr>
<tr>
<td>Phos-Kill</td>
<td>AP</td>
<td>1 bag; 34.0</td>
<td>12.0</td>
</tr>
</tbody>
</table>

*Reacts with moisture in the air to yield grams of phosphine.
Contents

The following Schedules are listed by plant pest or pathogen

General Schedules
T501—Pest: Chrysomyxa spp.  5-6-3
    Pest: Chrysomyxa spp.  5-6-3
    Pest: Cercospora spp.  5-6-4
    Pest: Phoma chrysanthemi  5-6-3
T502—Pest: Potato cyst nematode  5-6-4
T503—Pest: Diseases listed in 7CFR 319.24: Downy Mildews and
    Physoderma diseases of Maize  5-6-5
T504—Pest: Flag smut  5-6-5
T505—Treatment for Infestation of Chrysomyxa spp. on various
    commodities  5-6-6
T506—Pest: Potato cyst nematode  5-6-7
T507—Pest: Phyllosticta bromeliae, Uredo spp. (when destined to Florida,
    refuse entry)  5-6-8.
    Pest: Septoria gentianae  5-6-8
T508—Pest: Rusts  5-6-8
T509—Pest: Cylindrosporium camelliae  5-6-9
    Opodotrella orchidearum Phomopsis orchidophilia Phyllachora
    spp. (except U. scabies)  5-6-9
T510—Pest: Various corn-related diseases  5-6-9
T511—T511—Precautionary treatment for Citrus Canker (Xanthomonas
    axonopodis)  5-6-10
T512—(Deleted)  5-6-11
T513—Pest: Ascochyta spp.  5-6-11
T514—Pest: Xanthomonas albilineans and X. vasculorum  5-6-11
T515—Pest: Various sugarcane-related diseases  5-6-12
T516 (Deleted)  5-6-12
TT517 (Deleted)  5-6-12
T518—Pest: Various rice-related diseases  5-6-12
T519—Pest: Various rice-related diseases  5-6-13
T520—Pest: Verticillium albo-atrum  5-6-14
T521—Pest: Various Plant Pathogenic Fungi and Bacteria  5-6-14
Hot Water Treatments

T551—**Pest: Globodera rostochiensis, G. pallida**  5-6-15

T552—**Pest: Bulb nematodes: Ditylenchus dipsaci, D. destructor**  5-6-15

T553—Pest: Root-knot nematodes (Meloidogyne spp.)  5-6-16
Pest: Lesion nematodes (Pratylenchus spp.)  5-6-16
Pest: Golden nematodes (Globodera rostochiensis and G. pallida)  5-6-16
Pest: Foliar nematodes (Aphelenchoides fragariae)  5-6-16
Pest: Cyst nematodes (Heterodera humuli)  5-6-16

T554—Pest: Bulb nematodes—Ditylenchus dipsaci and D. destructor  5-6-16

T555—Pest: Bulb nematodes—Ditylenchus dipsaci  5-6-17

T556—Pest: Root-knot nematodes (Meloidogyne spp.)  5-6-17

T557—Pest: Meloidogyne spp. and Pratylenchus spp.  5-6-17

T558—Pest: Pratylenchus spp. (surface diseases)  5-6-17

T559—Pest: White tip nematode (Aphelenchoides besseyi)  5-6-18

T560—Pest: Meloidogyne spp.  5-6-18.

T561—Treatment for Infestations of Cercospora mamaonis and Phomopsis carica-papayae on Papayas  5-6-18

T562—(deleted)  5-6-19

T563—(deleted)  5-6-19

T564—Pest: Foliar nematodes (Aphelenchoides fragariae)  5-6-21

T565—**Pest: Ditylenchus destructor**  5-6-19

Pest: Ditylenchus dipsaci  5-6-20i
Pest: Aphelenchoides subtenuis, Ditylenchus destructor  5-6-19
Pest: Globodera rostochiensis, G. pallida  5-6-20

T566—Pest: Precautionary treatment for corn-related diseases  5-6-20
Pest: Aphelenchoides fragariae  5-6-20

T567—Pest: Bulb nematodes (Ditylenchus dipsaci)  5-6-20

T568—Pest: Foliar nematodes (Aphelenchoides fragariae)  5-6-21

T569—Pest: Foliar nematodes (Aphelenchoides fragariae)  5-6-21

T570—Pest: Pratylenchus spp.  5-6-21.

Pest: Aphelenchoides fragariae spp.  5-6-21
The following section lists the recommended treatments or actions to be applied to items or commodities found infected with various diseases, or infested with various plant pests including nematodes. Commodities may include cut flowers and greenery, propagative plant materials, as well as entire plants. Due to recent restrictions and prohibitions on the use of certain chemicals, every effort has been made to substitute the best alternative treatment available to us. The diseases and commodities for which these treatments are recommended are listed in the Index to Schedules and with the following treatment schedules. Ports should endeavor to make post-treatment examinations or arrange to have the consignee or importer submit data concerning the material following the treatment. Ports should forward any information of this nature to:

USDA-APHIS-PPQ-S&T-CPHST-AQI
1730 Varsity Drive, Suite 300
Raleigh, NC 27606

T501—Treatment for infestation of *Chrysomyxa* spp., *Cercospora* spp., and *Phoma chrysanthemi* on various commodities

**T501**

<table>
<thead>
<tr>
<th><strong>Azalea</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pest: <em>Chrysomyxa</em> spp.</td>
</tr>
<tr>
<td>Treatment: T501-1 Remove infected parts and treat all plants of same species in shipment with 4-4-50 Bordeaux dip or spray.</td>
</tr>
</tbody>
</table>

See alternative treatment **T505-1** for *Chrysomyxa* spp.

**Important**

<table>
<thead>
<tr>
<th><strong>Azaleodendron</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pest: <em>Chrysomyxa</em> spp.</td>
</tr>
<tr>
<td>Treatment: T501-2 Remove infected parts and treat all plants of same species in shipment with 4-4-50 Bordeaux dip or spray.</td>
</tr>
</tbody>
</table>

see alternative treatment **T505-1** for *Chrysomyxa* spp.

**Important**

<table>
<thead>
<tr>
<th><strong>Chrysanthemum</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pest: <em>Phoma chrysanthemi</em></td>
</tr>
<tr>
<td>Treatment: T501-4 Remove infected parts and treat all plants of same species in shipment with 4-4-50 Bordeaux dip or spray.</td>
</tr>
</tbody>
</table>
T501-5 **Christmas trees**
Pest: *Phoma chrysanthemi*
Treatment: T501-5 Remove infected parts and treat all plants of same species in shipment with 4-4-50 Bordeaux dip or spray.

T501-3 **Orchid**
Pest: *Cercospora* spp.
Treatment: T501-3 Remove infected parts and treat all plants of same species in shipment with 4-4-50 Bordeaux dip or spray.

T501-6 **Rhododendron**
Pest: *Chrysomyxa* spp.
Treatment: T501-6 Remove infected parts and treat all plants of same species in shipment with 4-4-50 Bordeaux dip or spray.

**Important**
see alternative treatment T501-2 for *Chrysomyxa* spp.

---

**T502—Treatment for infestation of Potato cyst nematode on various commodities**

**T502-1** **Bags and bagging used for commodities grown in soil**
Pest: Potato cyst nematode
Treatment: T502-1 Methyl bromide—8 lbs/1,000 ft$^3$ for 16 hours in 26” vacuum at 40 °F or above.

**T502-2** **Covers used for commodities grown in soil**
Pest: Potato cyst nematode
Treatment: T502-2 Methyl bromide—8 lbs/1,000 ft$^3$ for 16 hours in 26” vacuum at 40 °F or above.

**T502-3** **Soil**
Pest: Potato cyst nematode
Treatment: T502-3 Methyl bromide—8 lbs/1,000 ft$^3$ for 16 hours in 26” vacuum at 40 °F or above.
**T503—Treatments for Infestations of Downy Mildews and *Physoderma* diseases of Maize**

**T503-1 Bags and bagging (used) for small grains**

- Pest: Diseases listed in 7CFR 319.24: Downy Mildews and *Physoderma* diseases of Maize

Alt. treatments:

- **Treatment**: T503-1-2 Hot water treatment—soak in water slightly below boiling (212 °F) for 1 hour.
- **Treatment**: T503-1-3 Live steam for 10 minutes at 240 °F, NAP. For baled material, live steam at 10 pounds pressure for 20 minutes.
- **Treatment**: T503-1-4 Dry heat at 212 °F for 1 hour. Treat small bales only.

**T503-2 Covers used for small grains**

- Pest: Diseases listed in 7CFR 319.24: Downy Mildews and *Physoderma* diseases of Maize

Alt. treatments:

- **Treatment**: T503-2-2 Hot water treatment—soak in water slightly below boiling (212 °F) for 1 hour.
- **Treatment**: T503-2-3 Live steam for 10 minutes at 240 °F, NAP. For baled material, live steam at 10 pounds pressure for 20 minutes.
- **Treatment**: T503-2-4 Dry heat at 212 °F for 1 hour. Treat small bales only.

**T504—Treatment for Infestation of Flag Smut on various commodities**

**T504-1 Bags and bagging (used) for small grains**

- Pest: Flag smut

Alt. treatments:

- **Treatment**: T504-1-1 Dry heat at 212 °F for 1 hour. Treat small bales only.
- **Treatment**: T504-1-2 Steam at 10 pounds pressure at 242 °F (114 °C) for 20 minutes.
**T504-2**

**Covers used for wheat**

Pest: Flag smut  
Alternative treatments:  
Treatment: T504-2-1 Dry heat at 212 °F for 1 hour. Treat small bales only.  
Treatment: T504-2-2 Steam at 10 pounds pressure at 242 °F (114 °C) for 20 minutes.

---

**T505—Treatment for Infestation of *Chrysomyxa* spp. on various commodities**

**T505-1**

**Azaleodendron**

Pest: *Chrysomyxa* spp.  
Alternative treatments:  
Treatment: T505-1-1 Treat with mancozeb or other approved fungicide of equal effectiveness. (Use label instructions for treatment.)  
Treatment: T505-1-2 see alternative treatment T501

**T505-2**

**Rhododendron**

Pest: *Chrysomyxa* spp.  
Alternative treatments:  
Treatment: T505-2-1 Treat with mancozeb or other approved fungicide of equal effectiveness. (Use label instructions for treatment.)  
Treatment: T505-2-2 see alternative treatment T501-1
T506—Treatment for Infestation of Potato Cyst Nematode on various commodities

T506-1 Containers

Pest: Potato cyst nematode
Alternative treatments:

Treatment: T506-1-1 MB ("Q" label only) in 26" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 °F or above</td>
<td>8 lbs</td>
<td>16 hrs</td>
</tr>
<tr>
<td>OR</td>
<td>10.5 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td>OR</td>
<td>16 lbs</td>
<td>8 hrs</td>
</tr>
</tbody>
</table>

T506-2 Nonplant articles

Pest: Potato cyst nematode
Alternative treatments:

Treatment: T506-2-1 MB ("Q" label only) in 26" vacuum

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 °F or above</td>
<td>8 lbs</td>
<td>16 hrs</td>
</tr>
<tr>
<td>OR</td>
<td>10.5 lbs</td>
<td>12 hrs</td>
</tr>
<tr>
<td>OR</td>
<td>16 lbs</td>
<td>8 hrs</td>
</tr>
</tbody>
</table>


Live steam is introduced into a closed chamber containing the material to be treated until the required temperature and pressure are indicated. The temperature/pressure relationship is maintained at or above this point for the required exposure period. The exposure period will depend on the nature of the material, quantity, and its penetrable condition.

For loosely packed material which permit rapid and complete penetration of steam to all parts of the mass, no initial vacuum is needed but air must be released until steam vapor escapes, and exposure at 20 pounds pressure for 10 minutes, 15 pounds for 15 minutes, or 10 pounds for 20 minutes is sufficient.

For tightly packed material, such as soil, special measures are needed to ensure rapid heat penetration to all parts of the material. Soil, if in large containers, will not allow adequate treatment under normal sterilization exposure periods.
Quicker penetration of the steam is obtained by first exhausting the air in the chamber to a high vacuum and then introducing live steam until the required positive pressure is reached.

T507—Treatment for Infestation of *Phyllosticta bromeliae, Uredo* and *Septoria gentianae* on various commodities

**T507-1 Bromeliads**

**Pest:** *Phyllosticta bromeliae, Uredo* spp. (when destined to Florida, refuse entry)

**Treatment:** T507-1 Remove infected leaves and treat all plants of same species in shipment with Captan following label directions.

![Important]

Advising importer or consignee that treatment may cause commodity damage.

**T507-2 Gentiana**

**Pest:** *Septoria gentianae*

**Treatment:** T507-2 Remove infected leaves and treat all plants of same species in shipment with Captan following label directions.

![Important]

Advising importer or consignee that treatment may cause commodity damage.

T508—Treatment for Infestation of Rusts on various commodities

**T508-1 Orchids (to Florida)**

**Pest:** Rusts

**Treatment:** T508-1 *For rust-infected shipments to Florida*: Refuse entry to all infected plants and all other plants of the same species or variety in the shipment. Treat other orchid species in the shipment (which may have become contaminated) with Captan. Repackage treated orchids in clean shipping containers. For rusts on orchids to States other than Florida, follow the procedures in T509.
T509—Treatment for Infestation of Various Plant Pests of Camellia and Orchids

T509-1

Camellia

Pest: *Cylindrosporium camelliae*

Alternative treatments:

Treatment: T509-1-1 *Light infection*: Remove infected leaves and dip or spray plant with 4-4-50 Bordeaux. Dry quickly and thoroughly before release.

Treatment: T509-1-2 *Heavy infection*: Refuse entry.

T509-2

Orchids


Alternative treatments:

Treatment: T509-2-1 *Light infection*: Remove infected leaves and dip or spray plant with 4-4-50 Bordeaux. Dry quickly and thoroughly before release.

Treatment: T509-2-2 *Heavy infection*: Refuse entry.

T510—Treatment for Infestation of Various Corn-Related diseases

T510-1

Corn (seed) (Commercial lots (not for propagation))

Pest: Various corn-related diseases

Treatment: T510-1 Live steam from jet or nozzle into loose masses of material until all parts reach 212 °F.
**T511—Precautionary treatment for Citrus Canker (Xanthomonas axonopodis)**

**T511-1** Seeds of *Citrus* spp., *Fortunella* spp., *Clausena lansium*, and *Poncirus trifoliata* (and all cultivars, varieties, and hybrids)

Pest: Citrus Canker (*Xanthomonas axonopodis pv. citri*)

Treatment: T511-1

Treat seeds for possible infection with citrus canker bacteria by first washing the seeds to remove the pulp. Next, immerse the seeds in water at 125 degree F or higher for 10 minutes. Then immerse seed for a period of at least 2 minutes in a 0.525 percent sodium hypochlorite solution at a pH of 6.0 to 7.5. Drain, dry and repack near original moisture content.

**T511-2** Fruit of *Citrus* spp., *Fortunella* spp., *Clausena lansium*, and *Poncirus trifoliata* (and all cultivars, varieties, and hybrids)

Pest: Citrus Canker (*Xanthomonas axonopodis*)

Treatment: T511-2

There are three chemical treatments approved for use as part of a systems approach at an approved packing house in the exporting country.

**Table 5-6-1  Citrus Canker Chemical Treatments**

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium hypochlorite</td>
<td>200 ppm (pH = 6.0 - 7.5)</td>
</tr>
<tr>
<td>Sodium o-phenyl phenate</td>
<td>1.86 - 2.0% of the total solution</td>
</tr>
<tr>
<td>Peroxyacetic acid</td>
<td>85 ppm</td>
</tr>
</tbody>
</table>
T512—(Deleted)

T513—Treatment for Infestations of *Ascochyta* on various commodities

T513-1 Orchids

Pest: *Ascochyta* spp.

Treatment: T513-1 Defoliate if leaf-borne only; refuse entry if pseudo-bulbs infected.

T514—Treatment for Infestations of *Xanthomonas albilineans* and *X. vasculorum*

T514-1 Saccharum (sugarcane) (seed pieces)

Pest: *Xanthomonas albilineans* and *X. vasculorum*

Treatment: T514-1 Presoak in water at room temperature for 24 hours then immerse in water at 122 °F for 3 hours.

This treatment may damage sprouted cane.

T514-2 Saccharum (sugarcane) (True seed (fuzz))

Pest: *Xanthomonas albilineans* and *X. vasculorum*

Treatment: T514-2 Immerse in 0.525 percent sodium hypochlorite solution for 30 minutes followed by at least 8 hours air drying before packaging. (Dilute 1 part Clorox or similar solution containing 5.25 percent sodium hypochlorite in 9 parts of water. If using “ultra strength” chlorine bleach, use only 3/4 as much bleach).

T514-3 Saccharum (sugarcane) (Bagasse)

Pest: *Xanthomonas albilineans* and *X. vasculorum*

Treatment: T514-3 Dry heat treatment for 2 hours at 158 °F.

T514-4 Saccharum (sugarcane) (Field and processing equipment)

Pest: *Xanthomonas albilineans* and *X. vasculorum*

Treatment: T514-4 Remove all debris and soil from equipment with water at high pressure (300 pounds per square inch minimum) or with steam.
T515—Treatment for Infestations of various Sugarcane-Related diseases

T515-1 **Sugarcane (Baled)**

Pest: Various sugarcane-related diseases

Alternative treatments:

Treatment: T515-1 Introduce live steam into 25\textquotedbl vacuum until pressure reaches 15 to 20 pounds. Hold until center of bale is 220 °F–230 °F and maintain for 30 minutes.

T515-2-1 **Sugarcane (Loose Sugarcane)**

Treatment: T515-2-1 Introduce steam into 25\textquotedbl vacuum (or if with initial vacuum, “bleed” air until steam vapor fills chamber).

T515-2-3 **Sugarcane (Loose Sugarcane)**

Treatment: T515-2-3 Dry heat—212 °F for 1 hour.

T515-2-4 **Sugarcane (Loose Sugarcane)**

Treatment: T515-2-4 Remove the pulp in water at 190 °F–205 °F, followed by drying at 212 °F for 1 hour.

T515-2-5 **Sugarcane (Loose Sugarcane)**

Treatment: T515-2-5 Flash heated to 1,000 °F (Arnold dryer).

T516 (Deleted)

T517 (Deleted)

T518—Treatment for Infestations of Various Rice-Related diseases

T518-1 **Brooms made of rice straw**

Pest: Various rice-related diseases

Treatment: T518-1 Dry heat at 170 °F for 4.5 hours—may take 2 hours to reach this temperature.

T518-2-1 **Novelties made of rice straw**

Two alternative treatments
**T518-2-2 Novelties made with rice straw**

Pest: Various rice-related diseases  
Treatment: T518-2-2 Steam sterilization

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Pressure</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>260 °F</td>
<td>20 lbs</td>
<td>15 minutes</td>
</tr>
<tr>
<td>250 °F</td>
<td>15 lbs</td>
<td>20 minutes</td>
</tr>
</tbody>
</table>

**T519—Treatment for Infestations of Various Rice-Related diseases**

**T519-1 Closely packed rice straw and hulls**

Pest: Various rice-related diseases  
Treatment: T519-1 Introduce steam into 28" vacuum until pressure reaches 10 pounds and hold for 20 minutes.

**T519-2 Loose rice straw and hulls**

Pest: Various rice-related diseases  
Treatment: T519-2 Introduce steam into 28" vacuum (or if without initial vacuum, “bleed” air until steam vapor escapes) until pressure reaches 20 pounds AND temperature 259 °F and hold for 10 minutes (OR 10 pounds and 240 °F for 20 minutes).

Important

see also T518-1.
**T520—Treatment for Infestation of Verticillium albo-atrum on various commodities**

**T520-1**

*Seeds of alfalfa (Medicago falcata, M. gaetula, M. glutinosa, M. media, and M. sativa) from Europe*

Pest: *Verticillium albo-atrum*

Alternative treatments:

Treatment: T520-1-1 Dust with 75 percent Thiram at the rate of 166 grams per 50 kilograms of seed (3.3g/kg).

Treatment: T520-1-2 Treat with a slurry of Thiram 75 WP at a rate of 166 grams per 360 milliliters of water per 50 kilograms of seed (3.3g pesticide/7.2ml water/kg seed).

**T521—Treatment for Infestation of Plant Pathogenic Fungi and Bacteria on Articles Made with Dried Plant Material**

**T521**

Pest: Various Plant Pathogenic Fungi and Bacteria

Dried plant material includes, but is not limited to, lemon grass, bamboo leaf decorations, grass arrangements, bundles, and baskets.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Temperature</th>
<th>Time (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moist heat (air with high levels of water vapor, as from steam)</td>
<td>80 °C (176 °F)</td>
<td>1</td>
</tr>
<tr>
<td>Dry heat (air free of water vapor)</td>
<td>80 °C (176 °F)</td>
<td>2</td>
</tr>
</tbody>
</table>

Treatment time does not start until the entire commodity has reached treatment temperature. Warn the importer of the possibility of damage to the commodity prior to treatment. Ensure that the commodity does not come in contact with heating elements or open flame. The treatment facility must be approved by USDA-APHIS-PPQ-S&T-CPHST-AQI, certified on an annual basis by PPQ, and have a Compliance Agreement with PPQ.

**Under Development:** See “Heat • Steam Treatments” on page-3-4-1 for operational procedures and equipment guidelines.
T551—Treatment for Infestation of *Globodera rostochiensis* and *G. pallida* (Nematodes) on *Convallaria* (pips)

T551-1  **Convallaria (pips)**  
**Pest:**  *Globodera rostochiensis, G. pallida*  
**Treatment:** T551-1 Keep pips frozen until time for treatment, then thaw enough to separate bundles one from another just before treatment begins. Without preliminary warm-up, immerse in hot water at 118 °F for 30 minutes, following with a 5 minute drain, finishing with 5 minutes cooling dip or hosing with tap water.

T552—Treatment for Infestation of *Ditylenchus dipsaci* and *D. destructor*

T552-1  **Allium, Amaryllis, and Bulbs (NSPF)**  
**Pest:** Bulb nematodes: *Ditylenchus dipsaci, D. destructor*  
**Treatment:** T552-1 Presoak bulbs in water at 75 °F for 2 hours, then at 110 °F—111 °F for 4 hours.

T553—Treatment for Infestations of Nematodes on various plant commodities

T553-1  **Achimenes, Actinidia, Agapanthus, Aloe, Amorphophallus (bulbs), Ampelopsis, Anchuse, Anemone, Astilbe, Begonia (tubers), Bletilla hyacinthina (bulbs) (NSPF), Cactus, Calliopsis, Campanula, Cestrum, Cimicifuga, Cissus, Clematis, Convolvulus japonicus, Corytholoma, Curcuma (turmeric), Cyclamen, Cytisus, Dahlia (tubers), Dracaena, Epimedium pinnatum (only; other spp. not tolerant), Euonymus alata (only), Eupatorium, Euphorbia, Fragaria (strawberry), Gardenia, Gentiana, Gerbera, Gesneria, Geum, Gladiolus, Heliopsis, Helleborus, Hibiscus, Hosta, Hoya, Iris, Jasminum, Kaempferia, Kohleria, Naegelia, Orchid, Ornithogalum, Paeonia, Passiflora, Polyanthes (tuberose),**
**Primula, Reichsteineria, Sansevieria, Scabiosa, Sedum, Senecio (Lingularis), Thompsonia nepalensis, Tydaea, Verbena, Vitis (grape), Weigela, Zantedeschia, Zingiberaceae**

Pest: Root-knot nematodes (*Meloidogyne* spp.)

Treatment: T553-1 Hot water at 118 °F for 30 minutes.

---

**T553-2**

**Anchusa, Astilbe, Clematis, Dicentra, Gardenia, Helleborus, Hibiscus, Kniphofia, Primula**

Pest: Lesion nematodes (*Pratylenchus* spp.)

Treatment: T553-2 Hot water at 118 °F for 30 minutes.

---

**T553-3**

**Armoracea (horseradish roots), bulbs (NSPF)**

Pest: Golden nematodes (*Globodera rostochiensis* and *G. pallida*)

Treatment: T553-3 Hot water at 118 °F for 30 minutes.

---

**T553-4**

**Bletilla hyacinthina (alternate treatment: T564)**

Pest: Foliar nematodes (*Aphelenchoides fragariae*)

Treatment: T553-4 Hot water at 118 °F for 30 minutes.

---

**T553-5**

**Humulus**

Pest: Cyst nematodes (*Heterodera humuli*)

Treatment: T553-5 Hot water at 118 °F for 30 minutes.

---

**T554—Treatment for Infestations of *Ditylenchus dipsaci* and *D. destructor* on Hyacinthus**

**T554-1**

**Hyacinthus (bulbs), Iris (bulbs and rhizomes), Tigridia**

Pest: Bulb nematodes—*Ditylenchus dipsaci* and *D. destructor*

Alternative treatments

Treatment: T554-1-1 Presoak in water at 70 °F–80 °F for 2.5 hours, followed by hot water immersion at 110 °F–111 °F for 1 hour.

Treatment: T554-1-2 Hot water immersion at 110 °F–111 °F for 3 hours with no presoaking.
**T555—Treatment for Infestations of *Ditylenchus dipsaci* on *Narcissus***

*T555-1* *(bulbs)*

**Pest:** Bulb nematodes—*Ditylenchus dipsaci*

**Treatment:** T555-1 Presoak in water at 70 °F–80 °F for 2 hours, then at 110 °F–111 °F until all bulbs reach that temperature and hold for 4 hours.

---

**T556—Treatment for Infestations of Root-Knot Nematodes (*Meloidogyne* spp.) on *Calla***

*T556-1* *(rhizomes)*

**Pest:** Root-knot nematodes (*Meloidogyne* spp.)

**Treatment:** T556-1 Dip in hot water at 122 °F for 30 minutes.

---

**T557—Treatment for Infestations of *Meloidogyne* spp. and *Pratylenchus* spp. on *Chrysanthemum* (not including *Pyrethrum*)***

*T557-1* *(not including Pyrethrum)*

**Pest:** *Meloidogyne* spp. and *Pratylenchus* spp.

**Treatment:** T557-1 Dip in hot water at 118 °F for 25 minutes.

---

**T558—Treatment for Infestations of *Pratylenchus* surface diseases on *Fragaria* (strawberry)**

*T558-1* *(strawberry)*

**Pest:** *Pratylenchus* spp. (surface diseases)

**Treatment:** T558-1 Dip in hot water at 127 °F for 2 minutes.
T559—Treatment for Infestations of Foliar Nematodes on Begonia and Oryza (paddy rice)

**T559-1**

*Begonia*

Pest: White tip nematode (*Aphelenchoides besseyi*)

Treatment: T559-1 Dip in hot water at 118 °F for 5 minutes.

**T559-2**

*Oryza (paddy rice)*

Pest: White tip nematode (*Aphelenchoides besseyi*)

Treatment: T559-2 Dip in hot water at 132.8 °F (56 °C) for 15 minutes.

T560—Treatment for Infestations of *Meloidogyne* spp. on Rosa

**T560-1**

*Rosa spp. (except multiflora, which is not tolerant)*

Pest: *Meloidogyne* spp.

Treatment: T560-1 Dip in hot water at 123 °F for 10 minutes.

T561—Treatment for Infestations of *Cercospora mamaonis* and *Phomopsis carica-papayae* on Papayas

**T561**

*Papayas*

Pest: *Cercospora mamaonis* and *Phomopsis carica-papayae*

Treatment: T561-1 Dip in hot water at 120.2 °F (49 °C) for 20 minutes.
**T564—Treatment for Infestations of Foliar Nematodes on various commodities**

**T564-1**  
*Astilbe, Bletilla hyacinthina, Cimicifuga, Epimedium pinnatum (only; other spp. not tolerant), Hosta, Paeonia*  
Pest: Foliar nematode (*Aphelenchoides besseyi*)  
Treatment: T564-1 Presoak in water at 68 °F for 1 hour followed by hot water soak at 110 °F for 1 hour. Then dip in cold water and let dry.

---

**Importante**  
see Alternative treatment for *Bletilla hyacinthina*: T553-1

---

**T565—Treatment for Infestations of Nematodes on various commodities**

**T565-1**  
*Amaryllis*  
Pest: *Ditylenchus destructor*  
Treatment: T565-1 Hot water at 110 °F for 4 hours (should be done immediately after digging)

**T565-2**  
*Crocus*  
Pest: *Aphelenchoides subtenuis, Ditylenchus destructor*  
Treatment: T565-2 Hot water at 110 °F for 4 hours (should be done immediately after digging)

**T565-3**  
*Gladiolus*  
Pest: *Ditylenchus destructor*  
Treatment: T565-3 Hot water at 110 °F for 4 hours (should be done immediately after digging)
T565-4  **Scilla**  
Pest:  *Ditylenchus dipsaci*
Treatment:  T565-4 Hot water at 110 °F for 4 hours (should be done immediately after digging)

T565-5  **Solanum (potato tubers)**  
(see Restricted Entry Orders, Part 321)  
Pest:  *Globodera rostochiensis, G. pallida*
Treatment:  T565-5 Hot water at 110 °F for 4 hours (should be done immediately after digging)

---

**T566—Treatment for Infestations of various diseases on Broomcorn, Broomcorn Articles, and Lilium (bulbs)**

**T566-1  Broomcorn**  
Pest:  Precautionary treatment for corn-related diseases  
Treatment:  T566-1 Hot water at 102 °F.

**T566-2  Broomcorn Articles**  
Pest:  Precautionary treatment for corn-related diseases  
Treatment:  T566-2 Hot water at 102 °F.

**T566-3  Lilium (bulbs)**  
Pest:  *Aphelenchoides fragariae*
Treatment:  T566-3 Hot water at 102 °F.

---

**T567—Treatment for Infestations of Bulb nematodes on various commodities**

**T567-1  *Muscari, Ornithogalum, Polyanthes* (tuberose)**  
Pest:  Bulb nematodes (*Ditylenchus dipsaci*)  
Treatment:  T567-1 Dip in hot water at 113 °F for 4 hours.
T568—Treatment for Infestations of Foliar nematodes on Senecio

T568-1  
**Senecio** (Lingularis)  
Pest: Foliar nematodes (*Aphelenchoides fragariae*)  
Treatment: T568-1 Treat with hot water at 110 °F for 1 hour.

T569—Treatment for Infestations of Foliar nematodes on *Fragaria* (strawberry)

T569-1  
**Fragaria** (strawberry)  
Pest: Foliar nematodes (*Aphelenchoides fragariae*)  
Treatment: T569-1 Hot water at 121 °F for 7 minutes. (National Plant Board Conference, Tennessee, 1968)

T570—Treatment for Infestations of various diseases Acalypha and Aconitum

T570-1  
**Acalypha**  
Pest: *Pratylenchus* spp.  
Treatment: T570-1 Hot water dip at 110 °F for 50 minutes. (Tolerance not established.)

T570-2  
**Aconitum**  
Pest: *Aphelenchoides fragariae* spp.  
Treatment: T570-2 Hot water dip at 110 °F for 50 minutes. (Tolerance not established.)

T571—(Deleted)
Treatment Schedules

*T600-Controlled Atmosphere Temperature Treatment System*

This information in this chapter has been removed.
Treatment Schedules  T600-Controlled Atmosphere Temperature Treatment System
This information in this chapter has been removed.
Domestic Treatments

Contents

Fruit Fly Family Tephritidae D301.32-10(a)  5-8-4
Soil in Containerized Nursery Stock  5-8-3
Fruits, Vegetables, Cut Flowers, Foliage  5-8-4
Anastrepha ludens (Mexican fruit fly) D301.32-10(b)  5-8-4
   White Sapote (Casimiroa edulis)  5-8-4
   Citrus  5-8-4
   Pear, Quince, Citron  5-8-4
Ceratitis capitata (Mediterranean fruit fly) D301.32-10(c)  5-8-5
   Tomato  5-8-5
   Citrus  5-8-5
   Bell pepper  5-8-6
Bactrocera dorsalis (Oriental fruit fly) D301.32-10(d)  5-8-7
   Tomato  5-8-7
   Citrus and Grape  5-8-7
   Bell pepper  5-8-9
Anastrepha serpentina (Sapote fruit fly) D301.32-10(e)  5-8-9
   Citrus  5-8-9
Pine Shoot Beetle (Tomicus piniperda)  5-8-9
   Pine logs and pine lumber with bark attached, pine bark products, and pine
   stumps  5-8-9
   Christmas trees, pine nursery stock, raw pine materials for pine wreaths and
   garlands  5-8-10
   Christmas trees, raw pine materials for pine wreaths and garlands  5-8-10
Citrus Canker (Xanthomonas axonopodis)  5-8-10
   Regulated Fruit  5-8-11
   Regulated Seed  5-8-11
   Vehicles, equipment, and other inanimate articles  5-8-12
Asian Citrus Psyllid (Diaphorina citri Kuwayama)  5-8-13
   Curryleaf (Bergera (=Murraya) koenigii) and other regulated articles for
   consumption, apparel or similar personal accessory, or decorative use
   5-8-13
   Citrus nursery stock and related hosts  5-8-13
Imported Fire Ant (Solenopsis invicta and S.richteri)  5-8-14
   Used Soil Moving Equipment  5-8-14
   Hay and Straw  5-8-15
   Nursery Stock—Balled or in Containers  5-8-15
   In-Field Treatment For B&B Stock Prior to Harvest  5-8-21
   Blueberries and Other Fruit and Nut Nursery Stocks  5-8-22
   Greenhouse Grown Plants  5-8-22
Grass—Sod  5-8-23
Soil—Bulk  5-8-23
Soil Samples  5-8-24
Sugarcane Leaf Scald and Gummosis disease (Xanthomonas albilineans and X.vasculorum)  5-8-24
  Seed pieces  5-8-24
  True seed (fuzz)  5-8-24
  Bagasse  5-8-25
  Field and processing equipment  5-8-25
  Juice  5-8-25
Karnal Bunt (Tilletia indica)  5-8-25
  Equipment, grain elevators, conveyances, and other structures used for storing and handling wheat, durum wheat, or triticale  5-8-25
Phytophthora ramorum  5-8-26
  Soil  5-8-26
  Wreaths, garlands, and greenery of host material  5-8-26
  Bay leaves  5-8-26
Sweet Orange Scab (SOS), Elsinoë australis (Federal Order DA-2013-13)  5-8-27
  Regulated Articles  5-8-27
Guignardia citricarpa, fungal pathogen causing the disease Citrus Black Spot (CBS) (Federal Order DA-2012-09)  5-8-29
  Regulated Articles  5-8-29

Introduction

The treatments listed in this section are to be used ONLY for domestic movement of regulated articles and are conducted in conjunction with a systems approach. State and local guidelines may apply.

D301.32-10—Fruit Fly Treatments

The fruit fly treatments are organized by family or genus and species, and then by approved site or commodity.

Several treatments in this section are equivalent to treatments for imported commodities found in T100 - Schedules for Fruit, Nuts, and Vegetables.

In these cases, click on the hyperlink provided to go to the appropriate treatment.
Soil in Containerized Nursery Stock

Refer to the appropriate EPA-approved document that gives PPQ the authority to treat at the rates described in the treatment schedules. Examples of documents include chemical manufacturer labels, special local need registration (24c or SLN), and Section 18 quarantine exemptions.

Contact the National Fruit Fly Coordinator to find out if the chemicals in the treatment schedules are registered for use in your state.

Treatment: **D301.32-10(a-1)** — Chemical treatment Diazinon

**Application Instructions**

Apply to nursery stock using equipment that generates a coarse, low-pressure spray. Soak the entire contents of the nursery stock container. Do not drench to the point of runoff. Do not allow the solution to enter sewers, drains, bodies of water, or aquatic habitats.

**Table 5-8-1  Diazinon Dosages for Nursery Stock**

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Dosage Rate (lb. a.i. per acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diazinon</td>
<td>5.0</td>
</tr>
</tbody>
</table>

Treatment: **D301.32-10(a-2)** — Chemical treatment Lambda-Cyhalothrin

The yellow and black colors of this schedule indicates that the authority to conduct the treatment comes from an emergency action required by PPQ in order to mitigate the pest risk. The emergency action is an interim measure and is pending final regulatory approval.

**Table 5-8-2  Lambda-Cyhalothrin Dosages for Nursery Stock**

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Dosage Rate (lb. a.i per acre)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambda-Cyhalothrin</td>
<td>0.4</td>
</tr>
</tbody>
</table>

**Application Instructions**

Apply to nursery stock using equipment that generates a coarse, low-pressure spray. Soak the entire contents of the nursery stock container. Do not drench to the point of runoff. Do not allow the solution to enter sewers, drains, bodies of water, or aquatic habitats.
Fruits, Vegetables, Cut Flowers, Foliage

Treatment: D301.32-10 (a-3) — Irradiation using 70–150 Gy (not to exceed 1,000 Gy)

Refer to Table 5-8-3 for a list of fruit flies that can be irradiated. Treat using the minimum absorbed dose.

Treatments must be approved in advance by PPQ Field Operations. Facilities located in AL, AZ, CA, FL, GA, KY, LA, MS, NV, NM, NC, SC, TN, TX, or VA will require additional safeguarding measures described in 7 CFR 305.9(a).

Table 5-8-3 Pest-Specific Minimum Absorbed Dose (Gy) for Fruit Fly Irradiation

<table>
<thead>
<tr>
<th>Scientific Name</th>
<th>Common Name</th>
<th>Minimum Absorbed Dose (Gy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anastrepha ludens</td>
<td>Mexican fruit fly</td>
<td>70</td>
</tr>
<tr>
<td>Anastrepha obliqua</td>
<td>West Indian fruit fly</td>
<td>70</td>
</tr>
<tr>
<td>Anastrepha serpentina</td>
<td>Sapote fruit fly</td>
<td>100</td>
</tr>
<tr>
<td>Anastrepha suspensa</td>
<td>Caribbean fruit fly</td>
<td>70</td>
</tr>
<tr>
<td>Bactrocera cucurbitae</td>
<td>Melon fruit fly</td>
<td>150</td>
</tr>
<tr>
<td>Bactrocera dorsalis</td>
<td>Oriental fruit fly</td>
<td>150</td>
</tr>
<tr>
<td>Bactrocera jarvisi</td>
<td>Jarvis fruit fly</td>
<td>100</td>
</tr>
<tr>
<td>Bactrocera tryoni</td>
<td>Queensland fruit fly</td>
<td>100</td>
</tr>
<tr>
<td>Ceratitis capitata</td>
<td>Mediterranean fruit fly</td>
<td>100</td>
</tr>
<tr>
<td>All other fruit flies of the family Tephritidae which are not listed above</td>
<td>150</td>
<td></td>
</tr>
</tbody>
</table>

White Sapote (Casimiroa edulis)

Treatment: D301.32-10(b-1) — Cold treatment (equivalent to T107-b)

Citrus

Treatment: D301.32-10(b-2) — High temperature forced air treatment (equivalent to T103-a-1)

Pear, Quince, Citron

Treatment: D301.32-10(b-3) — Cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 °F (0.56 °C) or below</td>
<td>18 days</td>
</tr>
<tr>
<td>34 °F (1.11 °C) or below</td>
<td>20 days</td>
</tr>
<tr>
<td>35 °F (1.67 °C) or below</td>
<td>22 days</td>
</tr>
</tbody>
</table>
**Tomato**

**Treatment: D301.32-10(c-1) — MB at NAP**

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>0.5 hr: 26, 2 hrs: 21, 3.5 hrs: 21, 4 hrs: —</td>
</tr>
<tr>
<td>65-69 °F</td>
<td>2 lbs</td>
<td>0.5 hr: 26, 2 hrs: 21, 3.5 hrs: —, 4 hrs: 19</td>
</tr>
</tbody>
</table>

**WARNING**

Host tolerance is marginal. Warn the shipper of possible injury.

**Treatment: D301.32-10(c-2) — Vapor heat**

( equivalent to **T106-b**)  

**Citrus**

**Treatment: D301.32-10(c-3) — MB at NAP — tarpaulin or chamber**

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>0.5 hr: 26, 2 hrs: 21, 3.5 hrs: 22</td>
</tr>
</tbody>
</table>

1 This treatment is currently NOT AUTHORIZED pending EPA-approval to increase the duration to 3.5 hours.

**Treatment: D301.32-10(c-4) — Cold treatment**

( equivalent to **T107-a**)  

**Treatment: D301.32-10(c-5) — MB at NAP — tarpaulin or chamber followed by cold treatment**

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 °F (21.11 °C) or above</td>
<td>2 lbs</td>
<td>0.5 hr: 25, 2 hrs: 18</td>
</tr>
</tbody>
</table>

**Followed by cold treatment**

**Refrigeration**

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 to 37 °F (0.56 to 2.77 °C)</td>
<td>4 days</td>
</tr>
<tr>
<td>OR 38 to 47 °F (3.33 to 8.33 °C)</td>
<td>11 days</td>
</tr>
</tbody>
</table>
Domestic Treatments

Bell pepper

Treatment: D301.32-10(c-6) — MB at NAP—tarpaulin or chamber followed by cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F (21.11 °C)</td>
<td>2 lbs</td>
<td></td>
</tr>
<tr>
<td>or above</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Followed by cold treatment

Refrigeration

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 to 40 °F (1.11 to 4.44 °C)</td>
<td>4 days</td>
</tr>
<tr>
<td>OR 41 to 47 °F (5.0 to 8.33 °C)</td>
<td>6 days</td>
</tr>
<tr>
<td>OR 48 to 56 °F (8.88 to 13.33 °C)</td>
<td>10 days</td>
</tr>
</tbody>
</table>

Treatment: D301.32-10(c-7) — MB at NAP—tarpaulin or chamber followed by cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F (21.11 °C)</td>
<td>2 lbs</td>
<td></td>
</tr>
<tr>
<td>or above</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Followed by cold treatment

Refrigeration

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>43 °F to 47 °F (6.11 to 8.33 °C)</td>
<td>3 days</td>
</tr>
<tr>
<td>OR 48 °F to 56 °F (8.88 to 13.33 °C)</td>
<td>6 days</td>
</tr>
</tbody>
</table>

Bell pepper

Treatment: D301.32-10(c-8) — Vapor heat (equivalent to T106-b)
**Bactrocera dorsalis** (Oriental fruit fly)
**D301.32-10(d)**

### Tomato

**Treatment:** D301.32-10(d-1) — MB at NAP

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F or above</td>
<td>2 lbs</td>
<td>26</td>
</tr>
</tbody>
</table>

**WARNING**

Host tolerance is marginal. Warn the shipper of possible injury.

**Treatment:** D301.32-10(d-2) — Vapor heat

(equivalent to T106-b)

### Citrus and Grape

**Treatment:** D301.32-10(d-3) — MB at NAP—tarpaulin or chamber followed by cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F (21.11 °C) or above</td>
<td>2 lbs</td>
<td>25</td>
</tr>
</tbody>
</table>

Followed by cold treatment

### Refrigeration

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 to 37 °F (0.56 to 2.77 °C)</td>
<td>4 days</td>
</tr>
<tr>
<td>OR 38 to 47 °F (3.33 to 8.33 °C)</td>
<td>11 days</td>
</tr>
</tbody>
</table>
Treatment: D301.32-10(d-4) — MB at NAP—tarpaulin or chamber followed by cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F (21.11 °C)</td>
<td>2 lbs</td>
<td>25</td>
</tr>
<tr>
<td>or above</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Followed by cold treatment

Refrigeration

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>34 to 40 °F (1.11 to 4.44 °C)</td>
<td>4 days</td>
</tr>
<tr>
<td>OR 41 to 47 °F (5.0 to 8.33 °C)</td>
<td>6 days</td>
</tr>
<tr>
<td>OR 48 to 56 °F (8.88 to 13.33 °C)</td>
<td>10 days</td>
</tr>
</tbody>
</table>

Treatment: D301.32-10(d-5) — MB at NAP—tarpaulin or chamber followed by cold treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0.5 hr</td>
</tr>
<tr>
<td>70 °F (21.11 °C)</td>
<td>2 lbs</td>
<td>25</td>
</tr>
<tr>
<td>or above</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Followed by cold treatment

Refrigeration

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>43 °F to 47 °F (6.11 to 8.33 °C)</td>
<td>3 days</td>
</tr>
<tr>
<td>OR 48 °F to 56 °F (8.88 to 13.33 °C)</td>
<td>6 days</td>
</tr>
</tbody>
</table>

Treatment: D301.32-10(d-6) — Cold treatment followed by MB at NAP—tarpaulin or chamber

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>33 °F (0.56 °C) or below</td>
<td>21 days</td>
</tr>
</tbody>
</table>

Followed by MB at NAP—tarpaulin or chamber
### Bell pepper

**Treatment:** D301.32-10(d-7) — Vapor heat (equivalent to T106-b)

### Citrus

**Treatment:** D301.32-10(e-1) — Methyl bromide (equivalent to T101-j-2-1)

### Pine Shoot Beetle (*Tomicus piniperda*)

Cut trees at least 2 weeks prior to treatment in order to reduce possible damage by the fumigant to the trees. APHIS assumes no responsibility for damage due to the phytotoxic effects of these treatments.

### Pine logs and pine lumber with bark attached, pine bark products, and pine stumps

**Treatment:** D301.50-10(a) — MB at NAP tarp or chamber (equivalent to T404-b-1-1)
**Domestic Treatments**

**Citrus Canker (Xanthomonas axonopodis)**

---

**D301.50-10(b)**

**Christmas trees, pine nursery stock, raw pine materials for pine wreaths and garlands**

Treatment: D301.50-10(b)—Cold Treatment

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Exposure Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.5 °F (-20.6 °C)</td>
<td>1 hour</td>
</tr>
</tbody>
</table>

Load the commodity into an APHIS-approved refrigeration unit. Do not start the treatment time until the refrigeration unit reaches the treatment temperature.

**D301.50-10(c)**

**Christmas trees, raw pine materials for pine wreaths and garlands**

Treatment: D301.50-10(c)—MB at NAP tarp or chamber (equivalent to **T313-b**)

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Dosage Rate (lb/1,000 ft³)</th>
<th>Minimum Concentration Readings (ounces) At:</th>
</tr>
</thead>
<tbody>
<tr>
<td>60°F or above</td>
<td>3 lbs</td>
<td>2 hrs</td>
</tr>
<tr>
<td>60°F or above</td>
<td>4 lbs</td>
<td>43</td>
</tr>
<tr>
<td>50-59°F</td>
<td>3.5 lbs</td>
<td>50</td>
</tr>
<tr>
<td>50-59°F</td>
<td>4 lbs</td>
<td>57</td>
</tr>
<tr>
<td>40-49°F</td>
<td>4 lbs</td>
<td>57</td>
</tr>
</tbody>
</table>

---

**D301.75-11**

**Citrus Canker (Xanthomonas axonopodis)**

Conduct treatments at a commercial packinghouse operating under a compliance agreement.

All personnel using these treatments must clean their hands using one of the following disinfectants:

- Gallex 1027 Antimicrobial Soap
- Hibiclens
- Hibistat
- Sani Clean Hand Soap
- Seventy Percent Isopropyl Alcohol

---

**Important**
Domestic Treatments
Citrus Canker (Xanthomonas axonopodis)

**Regulated Fruit**

**D301.75-11 (a-1)**
Treatment: D301.75-11(a-1) — Chemical Treatment

Thoroughly wet the fruit for at least 2 minutes with a solution containing 200 parts per million sodium hypochlorite. Maintain the solution at a pH of 6.0 to 7.5.

**D301.75-11 (a-2)**
Treatment: D301.75-11(a-2) — Chemical Treatment

Thoroughly wet the fruit with a solution containing sodium o-phenyl phenate (SOPP) at a concentration of 1.86 to 2.0 percent of the total solution. If the solution has sufficient soap or detergent to cause a visible foaming action, wet for 45 seconds. If the solution does not contain sufficient soap to cause a visible foaming action, wet for 1 minute.

**D301.75-11 (a-3)**
Treatment: D301.75-11(a-3) — Chemical Treatment

Thoroughly wet the fruit with a solution of 85 parts per million peroxyacetic acid for at least 1 minute.

**Regulated Seed**

**D301.75-11(b)**
Treatment: D301.75-11(b) — Chemical and Heat Treatment (equivalent to F511-1)

Following extraction from fruit treated as described in D301.75-11(a-1,2,3), the seed must be:

1. Cleaned free of pulp
2. Immersed for 10 minutes in water heated to 125 °F (51.6 °C) or higher

---

1 Regulated fruit is defined as any fruit, seed, plant, plant part, grass, or tree in all species, clones, cultivars, strains, varieties, and hybrids of the genera *Citrus* and *Fortunella*, and all clones, cultivars, strains, varieties, and hybrids of the species *Clausena lansium* and *Poncirus trifoliata*. The most common of these are: lemon, pummelo, grapefruit, key lime, persian lime, tangerine, satsuma, tangor, citron, sweet orange, sour orange, mandarin, tangelo, ethrog, kumquat, limequat, calamondin, trifoliate orange, and wampi.

2 Regulated seed is defined as any seed in all species, clones, cultivars, strains, varieties, and hybrids of the genera *Citrus* and *Fortunella*, and all clones, cultivars, strains, varieties, and hybrids of the species *Clausena lansium* and *Poncirus trifoliata*.
3. Immersed for at least 2 minutes in a solution containing 200 parts per million sodium hypochlorite (0.525 percent), with the solution maintained at a pH of 6.0 to 7.5.

Important

Prepare the sodium hypochlorite solution by diluting 1 part Clorox (containing 5.25 percent sodium hypochlorite) in 9 parts of water. If using "Ultra strength" bleach, use only three-fourths as much bleach.

Adjust the pH using acetic acid (vinegar or any dilute acid) under a fume hood or in a well ventilated area.

Vehicles, equipment, and other inanimate articles

D301.75-11(d) Treatment: D301.75-11(d) — Chemical or Heat Treatment

All vehicles, equipment, and other articles for which treatment is required must be cleaned and disinfected by removing all plants, leaves, twigs, fruit, and other plant parts from all areas of the equipment or vehicles, including in cracks, under chrome strips, and on the undercarriage of vehicles, by wetting all surfaces (including the inside of boxes and trailers), to the point of runoff, with one of the following disinfectants:

- 200-ppm solution of sodium hypochlorite with a pH of 6.0 to 7.5
- 0.2-percent solution of a quaternary ammonium chloride (QAC) compound
- Solution of hot water and detergent, under high pressure (at least 30 pounds per square inch), at a minimum temperature of 160 °F
- Steam, at a minimum temperature of 160 °F at the point of contact
- Solution containing 85 parts per million peroxyacetic acid (indoor use only)
D301.76  
**Asian Citrus Psyllid (Diaphorina citri Kuwayama)**

**D301.76 (a-1)**  
Curryleaf (*Bergera (=Murraya) koenigii*) and other regulated articles for consumption, apparel or similar personal accessory, or decorative use

Origin: Areas without citrus greening (Citrus huanglongbing (HLB))

Treatment: D301.76 (a-1) — MB at NAP tarp or chamber  
(equivalent to T101-n-2)

Notice: Curry leaf and kaffir lime leaf must be treated as a Section 18 crisis exemption. In addition, clementine, tangerine, mandarin, lemon, lime, orange, tangelo and citron must be treated using 3 pounds at 50 °F. The label does not allow fumigation of these citrus commodities at dosages greater than 3 pounds.

**D301.76 (a-2)**

Treatment: D301.76 (a-2) — Irradiation at 400 Gy  
(equivalent to T105-a-2)

Treat using a minimum absorbed dose of 400 Gy, **not** to exceed 1000 Gy

**D301.76(a-3)**  
Curryleaf (*Bergera (=Murraya) koenigii*), Kaffir lime leaf (*Citrus hystrix*), and Bael leaf (*Aegle marmelos*) for consumption

Treatment: D301.76 (a-3) — Processing

Notice: The processing protocol has been added under the authority of Federal Order DA-2015-04, published January 01, 2015 and is pending final regulatory approval. The treatment is subject to change or removal based on public comment. (7 CFR 305.3(b)(2))

Processing includes specific harvesting, washing, rinsing, drying, and packaging requirements. Refer to the Protocol for Interstate Movement of Fresh, Mature Leaves of Kaffir Lime, Curry, and Bael for detailed instructions. The approved washing products are listed in Table 5-8-4.

**Table 5-8-4  Food Grade Washing Products for Leaf Washing for ACP**

<table>
<thead>
<tr>
<th>Product</th>
<th>Rate Per Gallon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environne</td>
<td>1/4 cup</td>
</tr>
<tr>
<td>Rebel Green</td>
<td>1/4 cup</td>
</tr>
<tr>
<td>Veggie Wash</td>
<td>1/4 cup</td>
</tr>
</tbody>
</table>

**D301.76 (b)**  
**Citrus nursery stock and related hosts**

Origin: Areas with ACP

Treatment: D301.76(b)—Chemical Treatment

---

3 Refer to the USDA Citrus Greening web site for a current list of areas without citrus greening.
Domestic Treatments
Imported Fire Ant (Solenopsis invicta and S. richteri)

Treat plants with an APHIS-approved soil drench or in-ground granular systemic insecticide, followed by a foliar spray at specified time periods prior to shipment. (Refer to Table 5-8-5.) The treatments will be followed by a visual inspection for living psyllids according to the requirements listed in 7 CFR 301.76 and the Citrus Nursery Stock Protocol.

Table 5-8-5 APHIS-approved Insecticides for Control of Psyllids on Citrus

<table>
<thead>
<tr>
<th>USDA Approved Soil Drench or In-ground Granular Chemicals:</th>
<th>USDA Approved Foliar Chemicals:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dinotefuran</td>
<td>Bifenthrin</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>Chlorpyrifos</td>
</tr>
<tr>
<td></td>
<td>Deltamethrin</td>
</tr>
<tr>
<td></td>
<td>Fenpropathrin</td>
</tr>
<tr>
<td></td>
<td>Imidacloprid/Cyfluthrin</td>
</tr>
</tbody>
</table>

Apply the SOIL DRENCH or IN-GROUND GRANULAR chemicals no more than 90 days but no less than 30 days prior to interstate movement. All treatments must be applied according to their EPA label, including application directions, restrictions on place of application, and any other precautions and statements pertaining to Worker Protection Standards.

Apply the FOLIAR chemicals no more than 10 days prior to interstate movement. All treatments must be applied according to their EPA label, including application directions, restrictions on place of application, and any other precautions and statements pertaining to Worker Protection Standards.

D301-81-10 Imported Fire Ant (Solenopsis invicta and S. richteri)

Used Soil Moving Equipment

D301.81-10(1) Treatment: D301.81-10(1) — Cleaning Treatment

Used soil moving equipment is eligible for movement when an inspector determines that one of the following procedures has been done:

4 Regulated articles for Asian Citrus Psyllid (ACP) and Citrus Greening (CG) (hosts within the plant family Rutaceae) may be intended for consumption, as apparel or similar personal accessory, or decorative use:

All plants and plant parts (including leaves), except fruit, of the following species: Aegle marmelos, Aeglopis chevalieri, A. paniculata, Amyris madrensis, Atalantia spp. (including Atalantia monophylla), Balsamocitris dawei, Bergera (=Murraya) koenigii, Calodenrum capense, Choisya ternate, C. arizonica, X Citronculus webbri, Citropsis articulata, Citropsis gilletiana, Citrus madurensis (=X Citrofortunella microcarpa), Citrus spp., Clausena anisum-olens, C. excavate, C. indica, C. lansium, Eremocitrus glauca, Eremocitrus hybrid, Eschenbeckia berlandieri, Fortunella spp., Limonia acidissima, Merrillia caloxylon, Microcitrus australasica, M. australis, M. papuana, X Microcitronella spp., Murraya spp., Naringi crenulata, Pamburus missionis, Poncirus trifoliata, Severinia buxifolia, Swinglea glutinosa, Tetradium ruticarpum, Todalia asiatica, Triphasia trifolia, Vepris (=Toddalia) lanceolata, and Zanthoxylum fagara.

5 Refer to the USDA Citrus Greening web site for a current list of areas with ACP.
Domestic Treatments
Imported Fire Ant (Solenopsis invicta and S.richteri)

- It has been brushed free of noncompacted soil
- It has been washed free of noncompacted soil
- Noncompacted soil has been removed with air pressure equipment using compressors designed specifically for this purpose. Such compressors must provide free air delivery of no less than 30 ft³ per minute at 200 pounds per in².

Certification Period: The certification will be valid as long as the equipment remains free of noncompacted soil.

Limitations: Regardless of the type of cleaning equipment used, all debris and noncompacted soil must be removed unless it is steam-heated by a “steam jenny” to disinfest the articles. Used soil-moving equipment, such as bulldozers, dirt pans, motor graders, and draglines, are difficult to clean sufficiently to eliminate pest risk.

Steam may remove loose paint and usually is not recommended for use on equipment with conveyor belts and rubber parts.

D301.81-10(2) Hay and Straw
Baled hay and straw stored in direct contact with the ground is ineligible for movement from the quarantined area to an area outside the quarantine, unless inspected, found free of IFA, and issued a certificate.

D301.81-10(3) Nursery Stock—Balled or in Containers
There are four application methods for plants in containers or balled and burlaped. The methods are:

- Method A—Immersion
- Method B—Drench
- Method C—Topical
- Method D—Granular Incorporation

Method A—Immersion

Equipment: You will need an open-top, watertight container sufficiently large to accommodate the treating solution and plants

Procedure: Follow these steps to treat the plants:
Step 1 Choose an appropriate site.
Locate the immersion tank in a well-ventilated place. The location should be covered if possible. Do not remove burlap wrap or plastic containers with drain holes before immersion.

Step 2 Immerse the plants.
Immerse the soil balls and containers, singly or in groups, so that the soil is completely covered by the insecticidal solution. Allow the plants to remain in the solution until bubbling ceases.

Thorough saturation of the plant balls or containers with the insecticide solution is essential!

Step 3 Remove the plants from the dip.
After removal from the dip, set the plants on a drainboard until adequately drained.

Step 4 Add treating mixture.
As treating progresses, add freshly prepared insecticide mixture to maintain the liquid at immersion depth.

Step 5 Dispose of solution.
Dispose of tank contents 8 hours after mixing. Disposal must comply with state and local regulations.

Do not permit runoff of the solution from the treatment area! Dispose of excess and unused solution in accordance with state and local regulations.

Important

Wear rubber gloves, boots, and apron during this operation.

Insecticides, Dosages, and Certification Periods
Refer to Table 5-8-6 for dosages and certification periods for approved insecticides.

### Table 5-8-6  Insecticides for Immersion Treatment of Balled or Containerized Plants

<table>
<thead>
<tr>
<th>Insecticide (liquid)</th>
<th>Dosage (lb. active ingredient per 100 gallons water)</th>
<th>Certification period (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorpyrifos</td>
<td>0.125</td>
<td>30</td>
</tr>
<tr>
<td>Bifenthrin</td>
<td>0.115</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td>0.05</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>0.025</td>
<td>60</td>
</tr>
</tbody>
</table>

**Exposure Period:** Plants certifiable immediately upon completion of treatment.

Environmental factors significantly affect phytotoxicity. Dwarf yaupon, some varieties of azaleas, camellias, poinsettias, rose bushes, and variegated ivy may show phytotoxicity to chlorpyrifos. It is recommended that a small group of plants be treated at the recommended rate under the anticipated growing conditions and observed for phytotoxic symptoms for at least seven days before a large number of plants are treated.

The professional user assumes responsibility for determining if bifenthrin is safe to treat plants under commercial growing conditions.

**Method B—Drench**

**Equipment:** You will need the following pieces of equipment to drench the plants:

- A large-capacity bulk mixing tank, either pressurized or gravity-flow for mixing and holding the insecticide solution
- Properly equipped hoses and watering nozzles that can be attached to the mixing tank and used to thoroughly saturate the plant balls with insecticide solution

**Step 1 Prepare the solution**

The volume of the treating solution must be at least 20 percent (1/5) of the volume of the container.
Insecticides and Dosages

Table 5-8-7  Insecticides and Dosages for Drenching Plants in Containers

<table>
<thead>
<tr>
<th>Insecticide (liquid)</th>
<th>Dosage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorpyrifos (4EC)</td>
<td>4 fl. oz. per 100 gal water</td>
</tr>
<tr>
<td>Chlorpyrifos (2EC)</td>
<td>8 fl. oz. per 100 gal water</td>
</tr>
<tr>
<td>Bifenthrin</td>
<td>25 parts per million (ppm)</td>
</tr>
</tbody>
</table>

1  Dose rate for bifenthrin is 25 ppm based on dry weight bulk density of the potting media. Refer to Table 5-8-8 for bulk density calculations.

Table 5-8-8  Bifenthrin calculations based on Bulk Density

<table>
<thead>
<tr>
<th>Potting Media Bulk Density (lb/yr³)</th>
<th>Oz. bifenthrin/100 gal water</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>2.4</td>
</tr>
<tr>
<td>400</td>
<td>4.8</td>
</tr>
<tr>
<td>600</td>
<td>7.2</td>
</tr>
<tr>
<td>800</td>
<td>9.6</td>
</tr>
<tr>
<td>1,000</td>
<td>12.0</td>
</tr>
<tr>
<td>1,200</td>
<td>14.4</td>
</tr>
<tr>
<td>1,400</td>
<td>16.8</td>
</tr>
</tbody>
</table>

Step 2 Apply the solution

Apply solution to the point of saturation one time only. The volume of the solution should be one-fifth the volume of the container.

Important

Thorough saturation of the plant balls or containers with the insecticide solution is essential. Do not permit runoff of the solution from the treatment area! Dispose of excess and unused solution in accordance with state and local regulations.

Exposure Period: Plants are certifiable immediately upon completion of treatment.

Certification period

Table 5-8-9  Certification period for Plants in Containers

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Certification Period (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorpyrifos</td>
<td>30</td>
</tr>
<tr>
<td>Bifenthrin</td>
<td>180</td>
</tr>
</tbody>
</table>
Balled and Burlapped (B&B) Plants

Step 1 Select a site for the treatment
Move the plants to a well-ventilated place normally used to maintain plants prior to shipment. The treatment locations should be covered, if possible. The treatment will be enhanced by adding any agricultural wetting agent or surfactant.

Step 2 Apply the solution
Do not remove burlap wrap or baskets from plants prior to treatment. The total volume of the treating solution must be 20 percent (1/5) the volume of the root ball. Treat plants singly or in groups with the chlorpyrifos solution twice in one day. Apply one-half the total drench solution, wait at least 30 minutes, then rotate the root ball and apply the second one-half drench solution. Rotating or flipping the root ball between drench applications is required to insure all sides of the root ball are sufficiently treated.

Dosage:

<table>
<thead>
<tr>
<th>Chlorpyrifos formulation</th>
<th>Amount of formulation to make 100 gallons of treating solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 EC</td>
<td>16 fl. oz. (472 ml)</td>
</tr>
<tr>
<td>2 EC</td>
<td>8 fl. oz. (236 ml)</td>
</tr>
<tr>
<td>4 EC</td>
<td>4 fl. oz. (118 ml)</td>
</tr>
</tbody>
</table>

Exposure Period: Plants are certifiable immediately upon completion of treatment.

Certification period: 30 days.

Changes to the method for application have been added under the authority of SPRO-DA-2015-15, published March 31, 2015. The revision is subject to change or removal based on public comment. (7 CFR 305.3(b)(2))

Wear rubber gloves, boots, and apron during this operation.
**Method C—Topical Application**

Bifenthrin liquid is the only insecticide and formulation registered for topical application. Use this method only with nursery stock in 3- and 4-quart containers. Penetration of the insecticide in larger containers does not provide sufficient residual activity. Prepare a mix with the appropriate amount of bifenthrin in 1,000 oz. of water based on the container size and the bulk density of potting media. Refer to **Table 5-8-11** for calculations based on bulk density and container size.

<table>
<thead>
<tr>
<th>Potting Media Bulk Density (lb/yd³)</th>
<th>Oz. Bifenthrin liquid/1,000 fl. oz. water</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>3.6</td>
</tr>
<tr>
<td>400</td>
<td>7.2</td>
</tr>
<tr>
<td>600</td>
<td>10.8</td>
</tr>
<tr>
<td>800</td>
<td>14.4</td>
</tr>
<tr>
<td>1,000</td>
<td>18.0</td>
</tr>
<tr>
<td>1,200</td>
<td>21.6</td>
</tr>
<tr>
<td>1,400</td>
<td>25.2</td>
</tr>
</tbody>
</table>

Apply 1 fluid ounce of the mix to each container evenly distributed over the surface of the potting media.

Irrigate all treated containers with 1.5 inches of water following application.

**Certification period:** 180 days.

**Method D—Granular Incorporation**

There are three granular insecticides registered and approved for incorporation into potting media:

- Granular bifenthrin
- Granular tefluthrin
- Granular fipronil

Use soil mixing equipment that will adequately mix and thoroughly blend the required dosage of insecticide throughout the potting media.

---

**Do not permit runoff of the solution from the treatment area! Dispose of excess and unused solution in accordance with state and local regulations.**

---
Dosage is based on the bulk density of the potting media and the desired certification period. Dosage is expressed as parts per million (ppm) and calculated by the following formula:

$$\text{Bulk density of media} \times \frac{\text{desired ppm}}{\text{concentration of pesticide}} = \text{lbs. insecticide needed per cubic yard of media}$$

**Figure 5-8-1 Formula for Calculating Granular Insecticide for Treating Potting Media for IFA**

**Table 5-8-12 Application Rates for Incorporation of Granular Insecticides into Potting Media**

<table>
<thead>
<tr>
<th>Insecticide</th>
<th>Dosage (ppm)</th>
<th>Certification period (months after treatment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifenthrin</td>
<td>10</td>
<td>0–6 months</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0–12 months</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0–24 months</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Continuous(^1)</td>
</tr>
<tr>
<td>Tefluthrin</td>
<td>10</td>
<td>0–18</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Continuous(^1)</td>
</tr>
<tr>
<td>Fipronil</td>
<td>10</td>
<td>0–6 months</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0–12 months</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0–24 months</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>Continuous(^1)</td>
</tr>
</tbody>
</table>

\(^1\) Continuous certification with 25 ppm dosage when all other provisions of the Imported Fire Ant detection, control, exclusion, and enforcement program for nurseries producing containerized plants are met (7 CFR 301.81-11)

**In-Field Treatment For B&B Stock Prior to Harvest**

This in-field treatment is based on a sequential application of abamectin, fenoxycarb, hydramethylnon, metaflumizone, methoprene, or pyriproxyfen bait followed by a broadcast application of chlorpyrifos. The combination treatment is necessary since broadcast application of chlorpyrifos (or other short-term residual insecticides) usually does not eliminate large, mature IFA colonies, and baits are not capable of providing a residual barrier against reinfestation by new queens. Therefore, the approved bait application will drastically reduce the IFA population while chlorpyrifos, applied
approximately five days later, will destroy any remaining weakened colonies and also leave a residual barrier against reinfestation by new queens for at least 12 weeks.

**Method:** Apply approved bait only when ants are actively foraging using a granular applicator capable of applying the labeled rates (1.0–1.5 lb (0.45–0.68 kg)) of bait per acre. Three to five days after the approved bait application, apply chlorpyrifos broadcast at 6.0 lb (2.7 kg) active ingredient (a.i.) per acre. Treatment area must extend at least 10 feet beyond the base of all plants that are to be certified.

**Dosage:** Apply approved baits at 1.0–1.5 lb (0.45–0.68 kg) bait/acre. Apply granular chlorpyrifos at 6.0 lb (2.7 kg) a.i./acre.

**Exposure Period:** 30 days. Plants are certifiable 30 days after treatment.

**Certification Period:** 12 weeks; an additional 12 weeks of certification can be obtained with a second application of granular chlorpyrifos.

**Blueberries and Other Fruit and Nut Nursery Stocks**
Certain states have special local need labeling in accordance with section 24(c) of FIFRA for D-z-n Diazinon AG-500 and D-z-n Diazinon 50W, which APHIS will recognize as a regulatory treatment for containerized nonbearing blueberries and fruit and nut plants. Follow the label directions for use.

**Greenhouse Grown Plants**
Greenhouse grown plants are certifiable without treatment if the inspector determines that the greenhouse is constructed of fiberglass, glass, or plastic in such a way that IFA is physically excluded and cannot become established within the enclosure. No other treatment of the plants will be necessary if they are not exposed to infestation.
**Domestic Treatments**

*Imported Fire Ant (Solenopsis invicta and S.richteri)*

**Grass—Sod**

*Method:*

**Step 1 Apply the insecticide.**

- Chlorpyrifos: apply a single broadcast application of chlorpyrifos with ground equipment
- Fipronil or bifenthrin: apply two sequential broadcast applications one week apart of granular fipronil or liquid bifenthrin

**Table 5-8-13 Pesticide Dosages for Grass Sod**

<table>
<thead>
<tr>
<th>Material</th>
<th>Dosage (lb. a.i. per acre)</th>
<th>Exposure Period</th>
<th>Certification period (after exposure period)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorpyrifos</td>
<td>8.0</td>
<td>48 hours</td>
<td>6 weeks</td>
</tr>
<tr>
<td>Fipronil-granular</td>
<td>Apply 0.0125 two times, one week apart for a total dosage of 0.0250.</td>
<td>30 days</td>
<td>20 weeks</td>
</tr>
<tr>
<td>Bifenthrin-liquid</td>
<td>Apply a dosage of 0.2 two times, one week apart for a total dosage of 0.4. Apply the first dosage of 0.2 and then 7 days later apply a second dosage of 0.2 (total dosage of 0.4)</td>
<td>4 weeks (28 days)</td>
<td>16 weeks</td>
</tr>
</tbody>
</table>

**EXAMPLE:** You are applying liquid bifenthrin to 1 acre of fire ant infested grass sod. Using a broadcast applicator, apply 0.2 lb. a.i. per acre and then 7 days later, apply a second dosage of 0.2 lb. a.i. per acre. After 28 days exposure period, you may harvest and ship sod for 16 weeks. After that time to continue harvesting from the same area, you would need to re-treat.

**Step 2 Water the treated areas.**

Immediately after treatment, water the treated areas with at least ½ inch of water.

**Soil—Bulk**

*Method:* Bulk soil is eligible for movement when heated either by dry or steam heat after all parts of the mass have been brought to the required temperature.

**Temperature:** 150°F (65.5°C).

**Certification Period:** As long as protected from recontamination.
D301.81-10(10)  
**Soil Samples**  
Soil samples are eligible for movement when heated or frozen as follows:

**Method:** Soil samples are heated either by dry heat or steam heat. All parts of the mass must be brought to the required temperature.

**Temperature:** 150°F (65.5°C).

**Certification Period:** As long as protected from recontamination.

**Method:** Soil samples are frozen in any commercial cold storage, frozen food locker, or home freezer capable of rapidly reducing to and maintaining required temperature. Soil samples will be placed in containers, such as plastic bags—one sample per bag. The containers will be arranged in the freezer in a manner to allow the soil samples to freeze in the fastest possible time. If desired, the frozen samples may be shipped in one carton.

**Temperature:** -10° to -20°F (-23° to -29°C) for at least 24 hours.

**Certification Period:** As long as protected from recontamination.

---

D301.87-10  
**Sugarcane Leaf Scald and Gummosis disease (*Xanthomonas albilineans* and *X.vasculorum*)**

**Seed pieces**

**D301.87-10(a)**  
Treatment: D301.87-10(a) Hot water  
(equivalent to T514-1)

Presoak in water at room temperature for 24 hours then immerse in water at 122 °F for 3 hours.

**True seed (fuzz)**

**D301.87-10(b)**  
Treatment: D301.87-10(b) Chemical Treatment  
(equivalent to T514-2)

Immerse in 0.525 percent sodium hypochlorite solution for 30 minutes followed by at least 8 hours air drying before packaging. (Dilute 1 part Clorox or similar solution containing 5.25 percent sodium hypochlorite; if using “ultra strength” chlorine bleach, use only 3/4 as much bleach).
**Bagasse**

**D301.87-10(c)**  
Treatment: D301.87-10(c)—Dry heat treatment  
(equivalent to **T514-3**)

Apply dry heat for 2 hours at 158 °F.

**Field and processing equipment**

**D301.87-10(d)**  
Treatment: D301.87-10(d)—High Pressure Wash  
(equivalent to **T514-4**)

Remove all debris and soil from equipment with water at high pressure (300 pounds per square inch minimum) or with steam.

**Juice**

**D301.87-10(e)**  
Treatment: D301.87-10(e)—Heat

Heat at 212 °F (100 °C) for 10 minutes or more.

---

**D301.89  Karnal Bunt (Tilletia indica)**

*Equipment, grain elevators, conveyances, and other structures used for storing and handling wheat, durum wheat, or triticale*

**D301.89-13(a)**  
Treatment: D301.89-13(a)—Chemical Treatment

1. Wet all surfaces to the point of runoff with **one** of the following 1.5 percent sodium hypochlorite solutions:
   - One part Ultra Clorox brand regular bleach (6 percent sodium hypochlorite; EPA Reg. No. 5813-50) in 3 parts water
   - One part CPPC Ultra Bleach 2 (6.15 percent sodium hypochlorite; EPA Reg. No. 67619-8) in 3.1 parts water

2. Let stand for 15 minutes.

3. Thoroughly wash down all surfaces after 15 minutes to minimize corrosion.

**D301.89-13(b)**  
Treatment: D301.89-13(b)—Steam

Apply steam to all surfaces until the point of runoff, and so that a temperature of 170 °F is reached at the point of contact.
Domestic Treatments
Phytophthora ramorum

D301.89-13(c)  Treatment: D301.89-13(c)—Hot water and high pressure

Clean with a solution of detergent and water at a minimum temperature of 170 °F. Apply under pressure of at least 30 pounds per square inch.

D301.92  Phytophthora ramorum

Soil

D301.92-10(a)  Treatment: D301.92-10(a)—Heat Treatment

Heat to a temperature of at least 180 °F at the center of the load for 30 minutes in the presence of an inspector.

Wreaths, garlands, and greenery of host material

D301.92-10(b)  Treatment: D301.92-10(b)—Hot water

Dip for 1 hour in water that is held at a temperature of at least 160 °F.

Bay leaves

D301.92-10(c)  Treatment: D301.92-10(c)—Vacuum heat

(formerly T111-a-1)

1. Place bay leaves in a vacuum chamber.
2. Starting at 0 hour, gradually reduce to 0.133 Kpa vacuum at 8 hours.
3. Maintain the vacuum until the end of the treatment, 22 hours.
4. Gradually increase the temperature in the vacuum chamber from ambient temperature at 0 hour to 60C at 5 hours.
5. After 5 hours, gradually lower the temperature to 30C at 22 hours.

The total length of the treatment is 22 hours.
Regulated Articles

Conduct treatments at a commercial packinghouse operating under a compliance agreement. Regulated fruit can move interstate with a certificate to all States. For interstate movement under a limited permit, refer to the APHIS-Approved Packing House Procedures.

**WARNING**

Chemicals and fungicides must be applied in accordance with label directions.

**Step 1: Wash**
**Step 2: Brush**
**Step 3: Surface disinfect using at least one of the chemicals in DA-2013-13.**

**DA-2013-13 (a-1)**
Treatment: DA-2013-13 (a-1) — Chemical Treatment

Thoroughly wet the fruit for at least 2 minutes with a solution containing 200 parts per million sodium hypochlorite. Maintain the solution at a pH of 6.0 to 7.5.

**DA-2013-13 (a-2)**
Treatment: DA-2013-13 (a-2) — Chemical Treatment

Thoroughly wet the fruit with a solution containing sodium o-phenyl phenate (SOPP) at a concentration of 1.86 to 2.0 percent of the total solution. If the solution has sufficient soap or detergent to cause a visible foaming action, wet for 45 seconds. If the solution does not contain sufficient soap to cause a visible foaming action, wet for 1 minute.

**DA-2013-13 (a-3)**
Treatment: DA-2013-13(a-3) — Chemical Treatment

Thoroughly wet the fruit with a solution of 85 parts per million peroxyacetic acid for at least 1 minute.

---

6 Regulated articles include fruit, plants, plant products (except seeds) of *Citrus* spp. and *Fortunella* spp. Regulated fruit must be free of leaves, stems that are 1-inch or less in length, or other regulated material.
Step 4: Treat with at least one of the fungicides in Table 5-8-14.

Table 5-8-14 Sweet Orange Scab Approved Fungicides

<table>
<thead>
<tr>
<th>Chemical Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imazalil</td>
</tr>
<tr>
<td>Thiabendazole</td>
</tr>
<tr>
<td>Combination of fludioxonil plus azoxystrobin</td>
</tr>
</tbody>
</table>

Step 5: Wax.
**Guignardia citricarpa**, fungal pathogen causing the disease Citrus Black Spot (CBS) *(Federal Order DA-2012-09)*

**Regulated Articles**

Conduct treatments at a commercial packinghouse operating under a compliance agreement. Regulated fruit can move interstate with a certificate to all States. For interstate movement under a limited permit, refer to the APHIS-Approved Packing House Procedures.

> **WARNING**
> Chemicals and fungicides must be applied in accordance with label directions.

**Step 1: Wash**

**Step 2: Brush**

**Step 3: Surface disinfect using at least one of the chemicals in DA-2012-09**

**DA-2012-09 (a-1)**

Treatment: DA-2012-09(a-1) — Chemical Treatment

Thoroughly wet the fruit for at least 2 minutes with a solution containing 200 parts per million sodium hypochlorite. Maintain the solution at a pH of 6.0 to 7.5.

**DA-2012-09 (a-2)**

Treatment: DA-2012-09(a-2) — Chemical Treatment

Thoroughly wet the fruit with a solution containing sodium o-phenyl phenate (SOPP) at a concentration of 1.86 to 2.0 percent of the total solution. If the solution has sufficient soap or detergent to cause a visible foaming action, wet for 45 seconds. If the solution does not contain sufficient soap to cause a visible foaming action, wet for 1 minute.

**DA-2012-09 (a-3)**

Treatment: DA-2012-09(a-3) — Chemical Treatment

Thoroughly wet the fruit with a solution of 85 parts per million peroxyacetic acid for at least 1 minute.

---

7 Regulated articles include fruit, plants, plant products of *Citrus* spp.
Step 4: Treat with at least one of the fungicides in Table 5-8-15.

Table 5-8-15  Citrus Black Spot Approved Fungicides

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Imazalil</td>
<td></td>
</tr>
<tr>
<td>Thiabendazole</td>
<td></td>
</tr>
</tbody>
</table>

Step 5: Wax.
Certifying Facilities

Overview

Contents

Certification of Vacuum Fumigation Chambers 6-2-1
Certifying Atmospheric Fumigation Chambers 6-3-1
Certification of Cold Treatment  6-4-1
Certification of Hot Water Immersion Facilities 6-5-1
Certification of Niger seed Treatment Facilities 6-6-1
Certification of Forced Hot Air and Vapor Heat Treatment Facilities 6-7-1
Certifying Irradiation Treatment Facilities 6-8-1
Certifying Facilities for the Heat Treatment of Firewood 6-9-1

The Certification of Facilities section of this manual is organized by the following categories:

◆ Vacuum Fumigation Chambers
◆ Atmospheric Fumigation Chambers
◆ Cold Treatment Facilities
◆ Hot Water Immersion Facilities
◆ Niger seed Treatment Facilities
◆ Forced Hot Air and Vapor Heat Treatment Facilities
◆ Irradiation Treatment Facilities
◆ Firewood Heat Treatment Facilities

Domestic and foreign treatment facilities must be certified by APHIS before they can perform treatments to meet United States quarantine requirements. Specific requirements for each type of facility are included in this section.
After USDA-APHIS-PPQ-S&T-CPHST-AQI has approved blueprints or drawings of a treatment facility, the treatment facility can request certification from Plant Protection and Quarantine at local ports or State Plant Health Directors.

Send blueprints or drawings of **domestic** treatment facilities to:

**Important**

USDA-APHIS-PPQ-S&T-CPHST-AQI  
1730 Varsity Drive, Suite 300  
Raleigh, NC 27606  
tel: 919-855-7450

Request for certification can be sent to State Plant Directors listed on [this website](https://www.aphis.usda.gov/aphis/ourfocus/planthealth/ppq-program-overview/ct_sphd).

Send blueprints or drawings and request for certification of **foreign** treatment facilities to:

**Important**

Director, Preclearance Programs  
USDA, APHIS, PPQ  
4700 River Road, Unit 60  
Riverdale, MD 20737  
tel: 301-851-2312

For foreign treatment facilities, the company requesting certification is responsible for paying money into a trust fund account to pay the salary, travel costs, and per diem of a PPQ Officer to be sent on temporary duty.

Sea-going vessels that participate in the APHIS cold treatment program for fresh fruit may be certified at a port in the USA or at a foreign port. Also, if the certification is to be carried out overseas, a trust fund account will be needed to cover the costs. (For details call PPQ Quarantine Policy, Analysis and Support (QPAS), tel: 301-851-2312.)
Certifying Facilities

Certification of Vacuum Fumigation Chambers

Contents

Construction and Performance Standards  6-2-1
  Vacuum Chamber  6-2-1
  Vacuum Pump  6-2-2
  Fumigant Introduction Systems  6-2-2
  Circulation and Exhaust System  6-2-2
  Accessories  6-2-3
  Certification Standards  6-2-4

Construction and Performance Standards

Vacuum fumigation consists of placing the commodity in a gastight metal chamber, removing most of the air, and replacing a small portion of it with a gas which is lethal to insects and other pests. Vacuum fumigation provides a more rapid penetration of commodities undergoing treatment than is obtained in normal atmospheric fumigations.

Vacuum Chamber

Vacuum chambers are usually of welded steel construction. A rectangular chamber might be preferred for more effective use of space. Reinforcement of the chamber body by means of steel ribs, or other supports, is usually required to enable the chamber to withstand the difference in pressures when the vacuum is drawn. Doors can be provided at one or both ends of the chamber. In cylindrical chambers, the doors can be either concave or convex, but in rectangular chambers flat doors are commonly used with suitable reinforcements. The doors can be hinged at the side, or at the top and counterbalanced. Many doors are fitted with special mechanisms for rapid closing. Door gaskets should be durable and at the same time provide gastight seal. To a large extent, the efficiency of a chamber depends upon the tightness with which the door or doors will seal. All other chamber openings must be equally tight to sustain the prescribed vacuum over a specified period of time.

To permit circulation beneath the load, the chamber must be designed to enable the stacking of commodities on pallets, skids, or small trucks. Small chambers that are usually hand loaded have removable floors.
Vacuum Pump
Each installation requires a high quality, high capacity vacuum pump. The vacuum pump should have the capacity to reduce the chamber pressure to 1 to 2 inches (25 to 51 millimeters) of mercury (28 to 29 inches or 711 to 737 millimeters vacuum) in 15 minutes or less.

Fumigant Introduction Systems
The size of the chamber will determine the introduction system needed. For small chambers and for introducing fumigants in small quantities, measure the fumigant by volume using a graduated dispenser. For larger chambers place the gas supply cylinder on a platform scale and measure the amount of fumigant by weight.

For methyl bromide, a volatilizing unit is required to ensure fumigant introduction in a gaseous state. The volatilizer is located outside of the chamber between the gas cylinder or dispenser and the introduction port of the chamber. Essentially, the volatilizer consists of a metal coil submerged in water hot enough to vaporize the fumigant. The volatilizer must maintain the water temperature to at least 150 °F throughout the entire gas introduction period.

Within the chamber the gas introduction system should consist of tubing with multiple, graduated openings that will provide uniform distribution of the fumigant throughout the length of the chamber. Ensure that the fumigant enters the chamber from multiple points along the ceiling.

Circulation and Exhaust System
Adequate gas distribution is often hindered by the cargo placed in the chamber. To overcome this, equip vacuum chambers with a circulation system. If fans are employed, the number of fans required would depend upon the chamber design, volume, and loading arrangements. A minimum of 2 fans is normally required for chambers of over 1,000 cubic feet capacity (28.31 m³). Place the fans at opposite ends of the chamber facing each other—one high, one low. Additional fans might be required for larger chambers. The fans should be capable of circulating air at the rate of at least one-third the volume of the chamber per minute. Some fumigants require nonsparking, explosion-proof-type circulation systems.

In most installations, the vacuum pump is used to remove the fumigant following the exposure period. The air-gas mixture is pumped out of the chamber through exhaust ducts or stacks installed for that purpose. The actual height of these stacks will vary with the location of the chamber, and may be regulated by local, state or federal safety ordinances.
Accessories
Equip chambers with a vacuum gauge and an instrument for measuring and recording the vacuum drawn and maintained during the exposure period.

Install a temperature recording system in chambers used for quarantine treatments that are 6 or more hours in length. Combination temperature and vacuum recorders are available.

Temperature sensors are usually attached to the outside of the chamber with a remote sensing unit attached to the inside wall or inserted into the product. Specifications for the temperature recording system are as follows:

- Accurate to within ± 0.6 °C or ±1.0 °F in the treatment temperature range of 4.4 °C to 26.7 °C (40 °F to 80 °F)
- Calibrated annually by the National Institute of Standards and Technology (NIST) or by the manufacturer
  - The calibration certificate will list a correction factor, if needed, and the correction factor would be applied to the actual temperature reading to obtain the true temperature.
- Capable of printing all temperature readings or downloading data to a secure source once per hour throughout the entire treatment (all temperature data must be accessible at a safe distance during the fumigation)
- Tamper-proof

If one or more of the temperature readings go below 40 °F the fumigation will be considered a failed treatment. The commodity must be re-treated, returned to the country of origin, reexported, or destroyed.

**CAUTION**
Commodities used for food or feed may not be re-treated. If commodities fall into this category, the only options are the following:

- Return to the country of origin
- Reexported to another country if they will accept the shipment
- Destroy by incineration
Certification Standards

To qualify for program approval, vacuum chambers must be able to meet or exceed specified vacuum leakage tests. There are four classification levels in which a chamber may be certified. The tests are listed in Table 6-2-1 and determine the classification under which the chamber qualifies.

There should be no commodity in the chamber during the certification procedure.

Table 6-2-1 Vacuum Chamber Classification Table

<table>
<thead>
<tr>
<th>Classification</th>
<th>Initial vacuum (inches)</th>
<th>Allowable vacuum loss</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 hr</td>
<td>6 hr</td>
</tr>
<tr>
<td>Superior</td>
<td>28 1/2</td>
<td>—</td>
</tr>
<tr>
<td>A</td>
<td>28 1/2</td>
<td>1/2&quot;</td>
</tr>
<tr>
<td>B</td>
<td>28 1/2</td>
<td>1&quot;</td>
</tr>
<tr>
<td>C</td>
<td>26</td>
<td>1&quot;</td>
</tr>
</tbody>
</table>

In addition to the classification tests in Table 6-2-1, **ALL** chambers must be capable of meeting the following requirement: A vacuum equivalent to 26 inches (660 mm) of mercury is drawn. The vacuum is then reduced to 5 inches (127 mm) and held for a period of 4 hours. A vacuum of 2 inches (55 mm) or more after 4 hours is considered adequate for this test.

- Chambers classified “Superior” or “A” are approved for all vacuum treatments. These chambers are to be tested annually.
- Chambers classified “B” are approved for all vacuum schedules up to and including 28-inch (711 mm) sustained vacuum. These chambers are to be tested semiannually.
- Chambers classified “C” are approved for all vacuum schedules up to and including 26-inch (711 mm) sustained vacuum. These chambers are to be tested semiannually.

During each certification, conduct a preventative maintenance inspection. The maintenance inspection will ensure the merit of each unit and correct any deficiencies prior to certification. Refer to Table 6-2-2 for an inspection checklist.

Never use methyl bromide to check for leaks in the chamber. Use compressed air to check for leaks.
Once the chamber has met the requirements in Table 6-2-1 and passes the preventative maintenance check, the approving APHIS official must complete PPQ Form 480, Treatment Facility Construction, Operation and Test Data, and PPQ Form 482, Certificate of Approval. A copy of each of the forms should be given to the owner/operator of the chamber and also mailed to:

USDA-APHIS-PPQ-S&T-CPHST-AQI
1730 Varsity Drive, Suite 300
Raleigh, NC 27606

Approving a chamber for vacuum fumigation does not include approving atmospheric (NAP) fumigations. If the vacuum chamber will also be used as a normal atmospheric pressure chamber, it must also pass a pressure leakage test (see page 6-3-9).

Actual detailed instructions for constructing a vacuum chamber are not included in this discussion. The information presented is designed to list the component parts needed and the function of each. Instructions and additional information can be obtained from the following list of vacuum chamber manufacturers. In furnishing the names of these dealers, no discrimination is intended against any firm whose name may have been omitted. Neither does this program endorse the firms mentioned nor guarantee the reliability of their products. The list is furnished solely for information and convenience.
### Table 6-2-2  Chamber Checklist

<table>
<thead>
<tr>
<th>Chamber and Volatilizer</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has chamber been measured and total volume calculated?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has chamber been checked for integrity?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>◆ Smoke test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>◆ Pressure test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have fans been tested to recirculate at least one third of the total volume per minute?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is gas monitoring required (by the workplan)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>◆ If yes, are sampling leads properly placed (in commodity, if required)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>◆ Are sampling leads one quarter inch inner diameter and free from blockage?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Will a scale be used to apply fumigant?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>◆ If yes, has the scale been calibrated and certified this year?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>◆ Is the graduated dispenser in good condition?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are the door seals and gaskets in good condition?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the copper tubing in the volatilizer intact? (check for holes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are the vacuum and temperature gages accurate?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Required Equipment

- Tape measure or electronic measuring device
- Calculator
- Stop watch
- Air (leaf) blower with appropriate fittings and adapters
- Manometer (including tubing and appropriate liquid)
- Digital anemometer
- Gas detection device (calibrated within one year)
- Dessicant (Drierite®) and Ascarite®
- Auxiliary pump (for large chambers)
- Digital thermometer (accuracy 0.1 F) with probe

### Required Safety Equipment

- Gas leak detection device
- Self contained breathing apparatus
- First aid kit, including eye wash
- Emergency medical treatment facility map and phone number

### Required Documentation

- PPQ Form 480, Treatment Facility
- PPQ Form 482, Certificate of Approval
- Material safety data sheet
- Warning placard (English and Spanish)
- Special local need label and permit (if applicable)
Certifying Facilities

Certifying Atmospheric Fumigation Chambers

Contents

Construction and Performance Standards 6-3-1
  Basic Elements for Design and Construction of Chambers 6-3-2
  Pallets and Bins 6-3-3
  Gastight Construction 6-3-3
  Circulation and Exhaust Systems 6-3-6
  Fumigant Dispensing System 6-3-7
  Pressure-Leakage Test for NAP Fumigation Chambers 6-3-9
  Other Auxiliary Equipment 6-3-10
  Phosphine Chambers 6-3-11
  Checklist 6-3-12

Construction and Performance Standards

The primary purpose of a program fumigation is to obtain quarantine control of the pests in all stages of development in, on, or with the product being fumigated. A fumigation chamber is defined as a stationary enclosure into which the product can be loaded and where the fumigant will be maintained at the prescribed concentration for the required exposure period.

When constructing an atmospheric fumigation chamber, the primary consideration is making it as gastight as possible. In addition, companies must install circulation equipment in chambers that are to be used for methyl bromide (MB) fumigations to ensure proper distribution of the fumigant throughout the chamber. The chamber must retain these qualities of tightness and fumigant circulation during every fumigation.

Although chamber sizes are not restricted to specific dimensions, companies should size chambers according to the volume of material to be fumigated. Experience has shown that two moderately sized chambers are preferable to one large chamber.

Chamber manufacturers should select the construction material according to the type of product to be fumigated and the method of operation involved. Wood frame construction with light metal sheathing or plywood can be used if the products to be fumigated are lightweight and are to be hand loaded. Heavy...
products, often loaded by machinery or handtrucks, require heavy-gauge sheet metal, masonry, or metal plate construction. It is advisable to construct the chamber in the most durable manner consistent with its intended use.

Auxiliary equipment is required to measure, vaporize, circulate, and exhaust the fumigant. Chamber manufacturers should size such equipment according to the volume of the chamber. When relatively small amounts of MB are to be used, they are often measured by volume in graduated dispensers. When larger amounts are to be used, the fumigant is most often measured by weight with the use of an approved and calibrated measuring scale.

Chambers can be equipped with heating or refrigeration units depending on the climatic environment and the products to be fumigated. Product injury or an ineffective fumigation can occur within certain temperature ranges. Although provisions for temperature control are not generally mandatory, in certain fumigation operations, temperature control is necessary and therefore must be considered in the design and construction of fumigation chambers.

While complete construction details for an atmospheric fumigation chamber are not contained in this chapter, sufficient information is available to develop specifications for a proposed structure. Firms considering chambers for approval by the USDA must submit a completed fumigation chamber approval application and other required information (e.g., manuals, technical sheets) to their local APHIS-PPQ contact. Local APHIS-PPQ personnel will determine the feasibility of constructing the proposed chamber with regards to PPQ resources and requirements. If these are permitted, local personnel will review the submitted application for completeness and forward to the National Operations Manager for Import and Exclusion Treatments.

National Operations Manager, Import and Exclusion Treatments
USDA-APHIS-PPQ
1730 Varsity Drive, Suite 300
Raleigh, NC 27606

The National Operations Manager will subsequently forward the application to the following office:

USDA-APHIS-PPQ-S&T-CPHST-AQI
1730 Varsity Drive, Suite 300
Raleigh, NC 27606

**Basic Elements for Design and Construction of Chambers**

- Gastight and remains so during every use
Certifying Facilities  Certifying Atmospheric Fumigation Chambers
Construction and Performance Standards

- Provides an efficient system for circulating and exhausting the fumigant
- Provides an efficient system of dispensing the fumigant
- Provides heating or refrigeration units when required for fumigation efficiency, to prevent product injury, or to meet label temperature requirements
- Provides a temperature recording system when treatments are six hours or longer in duration
- Provides suitable fittings to facilitate a pressure-leakage test and gas concentration sampling

The criteria listed above deal primarily with the efficiency of the fumigation chamber itself. In determining the ultimate design and construction, it is essential to give consideration to the safe and practical operation of the facility.

All requirements outlined in this chapter apply to all USDA-approved fumigation chambers that use MB and phosphine, unless specifically noted. See “Phosphine Chambers” on page-6-3-11 for additional information specific to phosphine.

Pallets and Bins
All material placed in the chamber must be on pallets or bins. Load pallets and bins in the chamber so that there is at least two inches of space under the commodity and between each pallet or bin. Fumigation of double-stacked commodities has been conducted in some locations, and approval for this practice is granted on an individual basis. The proposed double-stacked configuration must be designed to ensure that safe and effective fumigations are conducted. Prior to chamber certification, take gas concentration readings throughout the fumigated load to demonstrate that even readings can be achieved with the proposed configuration.

Do not fumigate items or combinations of items (e.g., commodity, packaging) that are sorptive or whose sorptive capacities are unknown unless gas readings are taken by an APHIS representative. Take gas readings for each chamber certification and anytime there is a change in commodity, packaging material, increase in chamber load capacity, or changes to the chamber itself (unless the effect of the change is known and will not decrease gas concentrations below required levels.) Refer to Fumigants • Methyl Bromide on page 2-3-1 for additional information on sorption, sorptive materials, and packaging.

Gastight Construction
Interior surfaces must be impervious to the fumigant and can be constructed of metal, cement, concrete block, tile, or plywood. Any other material that is to be used on the interior surface of the chamber must be approved by PPQ prior to installation. Sorbent materials (e.g., foam, insulation) cannot be installed on
the interior surfaces of the chamber, although they can be used in areas that will not be exposed to the fumigant. PPQ does allow the use of foam to seal joints in a phosphine chamber.

Introduction lines, fittings, pipes, exhaust stacks, and other structures that could come into contact with MB should be constructed of the following materials that are compatible with this gas:

- Brass
- Copper
- Carbon steel
- Stainless steel
- Polyethylene
- Polypropylene
- Polytetrafluoroethylene (PTFE; Teflon®)

Aluminum and galvanized metal are also acceptable if no liquid MB could come into contact with these materials, although there may be possible reactivity problems with long-term use.

Do not use the following materials for introduction lines, fittings, pipes, or other structures that could come into contact with MB:

- Natural rubber
- Nylon
- Polyvinyl chloride (PVC)
- Tygon® tubing should not be used as gas sampling or introduction lines

Seal joints with appropriate compound, solders, or welds for the construction materials used. When wood or a combination of wood and sheet metal are used, seal all joints and seams with a nonhardening material. This makes a gastight seal and allows for expansion and contraction without leakage. Use mastic tape to seal the seams between wall joints in plywood chambers. In masonry construction, joint (strike) the mortar between all courses of cement blocks to produce a smooth, compact surface. Poured concrete structures should also have smooth, compact surfaces. Weld all metal joints.

Fit all doors and vents with proper gaskets. PPQ recommends that chamber operators replace all door and vent door gaskets (regardless of construction material) once per season in chambers that receive moderate use. In chambers
that receive heavier use (e.g., fumigations performed several times per week for an entire season), it is recommended that the gaskets be replaced more frequently.

The following list of materials are compatible with MB and can be used as construction material for gaskets:

- Fluoroelastomer (FKM) (for example, Dupont™ Viton®)
- Ethylene Propylene Diene Monomer (EPDM) (acceptable even though chemical compatibility charts indicate that it should not be exposed to MB; inspect regularly for damage and replace when needed)
- Neoprene (acceptable even though chemical compatibility charts indicate that it should not be exposed to MB; inspect regularly for damage and replace when needed)
- Nitrile (Buna-N)
- Silicone
- Polytetrafluoroethylene (PTFE; Teflon®)

Ensure that all openings for wiring, thermometers, tubing, and ports for pressure-leakage tests, etc. are gastight. PPQ requires a minimum of three fittings to be installed in each chamber for measuring gas concentration. Additional fittings may be required in certain circumstances, such as large chambers or chambers in which the commodity will be double-stacked.

Paint interior surfaces (except for metal) with epoxy resin, vinyl plastic, or asphalt base paints. Additional paint types may be approved if the manufacturer’s specifications show compatibility of the paint with the fumigant to be used. Such paint coverings make the surfaces less sorptive, an important factor in maintaining gas concentrations. Although not mandatory, many fumigation chamber operators install concrete bumpers on the floor around the sides of the chamber to prevent forklift damage to the walls.

Aluminum base paints are not acceptable because of the corrosive effect caused by a reaction between such paints and the fumigant.

The construction and fastening of chamber doors is most critical to the chamber’s ability to hold the gas. Chamber doors can be mounted using hinges, sliding rails, cantilevers, etc., and can be tightened against the associated gasket with turn-screws, hydraulic rams, clamps, etc. Approval will be based on review of the individual system. PPQ does note that small guillotine-style doors are less likely to leak than many other door types and chamber doors that are hinged at the top are less likely to sag than those hinged at the side.
Heavy-duty or industrial hinges are required for doors that are hinged at the side. Regardless of the method used to mount and fasten the doors, it is important that a high-quality gasket is installed around the entire perimeter of the chamber opening. To obtain the maximum seal possible, uniformly and tightly compress the doors against the gaskets.

**Circulation and Exhaust Systems**

Fans or blowers delivering the prescribed minimum air movement are essential to proper fumigant distribution.

Various methods can be used to circulate the fumigant within the chamber. Equipment should be capable of circulating air at the rate of at least one-third the volume of the chamber per minute. A minimum of two fans is required for chambers greater than 1,000 cubic feet, although this requirement may be waived by local APHIS-PPQ personnel on an individual basis, i.e., when one fan can be shown to achieve adequate and uniform gas concentrations throughout the fumigated load. Position the fans in one of these three configurations:

- at opposite ends of the chamber, facing each other—one high and one low
- all mounted high on one wall of the chamber
- one fan is placed at the top and one at the bottom of a duct or enclosed space

Local APHIS-PPQ personnel may also approve chamber setups resembling precoolers. In this arrangement, two rows of pallets are positioned with approximately a two-foot tunnel in between them and a large fan (that meets minimum air flow requirements) at the front that pulls the fumigant through the pallets and redistributes it above the pallets into the room. In some cases, this setup may utilize a second fan which can both facilitate the circulation of the air/gas mixture and serve as the exhaust fan during aeration.

Ductwork is recommended for larger chambers, especially those that are long and narrow. It serves to pick up the air/gas mixture near the floor and blow it across the top of the load.

Additional fans might be required in certain cases (e.g., larger chambers, chambers in which the commodities are double-stacked, chambers without ductwork or return fans.) A blower located outside the chamber can also be used, but this method increases the possibility of leakage considerably.

**NOTICE**

Deviations from these guidelines may be permissible but will require additional testing to ensure efficacy.
Size exhaust blowers according to the volume of the chamber. Volume of enclosure (in cubic feet) divided by the sum of cubic feet per minute (cfm) of the exhaust fan(s) or exhaust blower equals the number of minutes required per complete gas volume exchange. Sixty minutes divided by the number of minutes per gas volume exchange equals the number of complete gas exchanges per hour.

APHIS PPQ requires a minimum of four gas exchanges per hour during aeration, although fifteen or higher is preferable, especially for perishable commodities. The quality of perishable commodities may be impacted even at or around the minimum required aeration rate of four gas exchanges per hour. If the exhaust flow is connected to a MB recovery system, it must not impede the flow rate to less than four volumes per hour. Frequently, circulation and exhaust systems are designed to utilize the same blower. Extend the exhaust stack at least 15 feet above all nearby structures. Local air quality control agencies may require more stringent measures. It is essential that the air/gas mixture is vented to the outside, with all local safety ordinances being followed.

**Fumigant Dispensing System**

The dispensing system needed will vary with the type of fumigant being used. The fumigant MB is usually introduced into the chamber through an introduction line extending from the volatilizer to the air stream in front of the introduction fan. Within the chamber, this tube should contain properly spaced openings through which the fumigant is dispersed.

Ensure that no liquid MB comes into contact with the commodity by one of the following methods:

- Placing a piece of impermeable sheeting (e.g., plastic or rubberized canvas) over the commodity below and to the front of each gas introduction line
- Placing a drip pan wherever the gas is introduced into the chamber
- Using a gas introduction line with holes in the sides but solid on the bottom

Graduated dispensers are used to measure small quantities of MB by volume and generally should not be used to introduce fumigant into chambers larger than 2,000 cubic feet. Place the dispenser in the introduction line between the supply cylinder and the volatilizer. For larger quantities of fumigant, place the supply cylinder on a platform scale and weigh the fumigant used. The measured amount of fumigant must pass through a volatilizer where it is converted from a liquid to a vapor.
The volatilizer consists of a metal coil submerged in heated water. When 5 pounds or less of MB are used, a simple volatilizer can be made with a 25-foot coil of 3/8 inch outer diameter coiled copper tubing immersed in a container of hot water. When amounts greater than 5 pounds are to be used, the copper tubing used in the volatilizer must consist of a minimum of 50 feet of 1/2 inch outer diameter coiled copper tubing. Volatilizers constructed as sealed metal units, in which there is no way to verify the amount or type of tubing inside, should be replaced at the discretion of local APHIS-PPQ personnel. The water in the volatilizer must reach 200 °F or above with a minimum temperature of 150 °F during gas introduction. The fumigator must provide local PPQ personnel with a record of the temperature of the water in the volatilizer both at the beginning and the end of gas introduction.

You are not required to record the temperature of the water in the volatilizer in the electronic 429 database.

The line that runs from the methyl bromide cylinder to the copper tubing in the volatilizer must be a 3000 PSI hydraulic high pressure hose (preferably steel-braided) with a 3/8 inch or larger inner diameter. The line that exits the volatilizer and runs into the enclosure must be a 350 PSI tubing with a ½ inch or greater inner diameter. The chamber operator may wish to install either a pressure release trap (i.e., burp tube) or pull a slight vacuum in the chamber prior to dispensing the fumigant to mitigate against the increased pressure accompanying gas introduction, although neither of these recommendations is mandatory.

The maximum rate of fumigant introduction from a gas introduction line is 4 pounds of gas per minute, unless the fumigator can demonstrate that a faster rate of introduction would not result in the temperature of the water in the volatilizer falling below 150 °F anytime during the entire gas introduction process. This temperature requirement is necessary to ensure that no MB can be introduced as a liquid into the chamber. Purge all gas introduction lines with either compressed air or nitrogen after gas introduction.

Calibrate both the scale and the thermometer on the volatilizer annually, although the latter may instead be replaced annually with a thermometer that comes with a certificate of calibration. Written documentation of calibration must be present at the time of fumigation. All calibrations must be performed by the appropriate state governmental department of weights and measures, the National Institute of Standards and Technology (NIST), or an approved calibration company.
Pressure-Leakage Test for NAP Fumigation Chambers

Before a chamber is used for fumigation, it must be checked for tightness using a pressure-leakage test. The chamber must pass this test to be certified. The certifier may also perform a smoke candle test to identify the location of any leaks which could pose safety hazards during fumigation, especially if the retention time is low during the pressure-leakage test or the certifier suspects leakage. This will allow the operator the opportunity to correct these spots before any MB is introduced into the chamber, thus minimizing the likelihood of human exposure to the fumigant.

Conduct the pressure-leakage test using an open-arm or electronic manometer. See “Manometers” on page-8-1-21 for a detailed description of this type of manometer. Refer to Manometer (used in chamber pressure leakage test) on page E-1-36 for a list of approved manometers.

The procedure for conducting a pressure-leakage test is as follows:

1. Install an opening (usually 2-inches in diameter) in the chamber to which a blower or other device for introducing air can be attached.

2. Attach a 2-inch ball-valve between the opening (pipe fitting) and the blower. This will stop the flow of air when the chamber has reached pressure and prevent the air from venting out of that opening.

3. Install an additional opening, such as a gas sampling line opening, for the manometer. This opening should be located within 15 inches of the hole for the blower. Both openings should be situated approximately 4 to 5 feet from the floor, so readings can easily be taken.

4. Close chamber as for fumigation.

5. Attach one end of the manometer to the chamber opening.

6. Pressurize the chamber using a blower (or other device that blows high volumes of air) to a total pressure of 25 mm (12.5mm in each arm of the manometer) for chambers constructed partially or entirely of plywood or 50 mm for chambers constructed of materials such as cement or cinder blocks.

7. Discontinue blower and close its opening.

8. Observe time for pressure to recede.

For a chamber constructed of materials such as cement or cinder blocks, the time lapse for the chamber pressure to recede from 25 mm to 2.5 mm in each arm of the manometer must be:

- 22 to 29 seconds; reinspect chambers every 6 months
- 30 seconds or longer; reinspect chambers annually
For plywood chambers, the time lapse for the chamber pressure to recede from 12.5 mm to 1.25 mm in each arm must be:

- 60 seconds or longer; reinspect chambers annually

During each certification, PPQ personnel must conduct a preventative maintenance inspection. The maintenance inspection will ensure the merit of each unit and correct any deficiencies prior to certification. Refer to Table 6-3-1 for an inspection checklist.

Once the chamber has passed the pressure-leakage test and the preventative maintenance check, the approving APHIS official must complete PPQ Form 480, Treatment Facility Construction, Operation and Test Data, and PPQ Form 482, Certificate of Approval. A copy of each of the forms should be given to the owner/operator of the chamber and also mailed to:

USDA-APHIS-PPQ-S&T-CPHST-AQI
1730 Varsity Drive, Suite 300
Raleigh, NC  27606

**Other Auxiliary Equipment**

For chambers located inside a building, USDA requires that low-level gas monitoring devices be installed in the same room as the fumigation chamber. Multiple monitors may be necessary depending on the configuration of the facility.

According to the needs of the operation, other auxiliary equipment may be necessary. When heat is required, steam pipes or low-temperature electric strip heaters are generally recommended. Do **not** use open flame or exposed electric coils as they tend to break down the gas and form undesirable compounds. Size refrigeration units to the volume of the chamber and the type and amount of commodity involved.

Install a temperature monitoring device in chambers used for quarantine treatments that are 6 hours or more in duration. Temperature recording thermometers are usually attached to the outside of the chamber with a remote sensing unit attached to the inside wall or inserted into the product. Specifications for the temperature recording system are as follows:

- Accurate to within ± 0.6 °C or ±1.0 °F in the treatment temperature range of 4.4 °C to 26.7 °C (40 °F to 80 °F)
- Calibrated annually by the National Institute of Standards and Technology (NIST) or by the manufacturer
- The calibration certificate will list a correction factor, if needed, and the correction factor would be applied to the actual temperature reading to obtain the true temperature.
Capable of printing all temperature readings or downloading data to a secure source **once per hour** throughout the entire treatment (all temperature data must be accessible at a safe distance during the fumigation)

- Tamper-proof

**Phosphine Chambers**

Phosphine can react with certain metals (e.g., gold, silver, copper, brass, and other copper alloys) and cause corrosion, especially at higher temperatures and relative humidities. Fans, blowers, and tubing should not be constructed from these or any other materials, such as urethane or other rubber, that are not resistant to phosphine. It is recommended that all wiring be external to the chamber, but is required (at a minimum) that all wiring, electrical and exhaust systems be non-sparking and explosion proof.

All gas dispensing equipment used with cylinderized formulations of phosphine must be approved by the registrant. VAPORPH3OS can only be introduced via Cytec-approved blending equipment. ECO2FUME must be introduced via stainless steel or hydraulic dispensing lines of suitable pressure rating and materials of construction, as determined by Cytec. Heat sources are generally not used or necessary in phosphine introduction, although some methods of cylinderized phosphine introduction may use electric vaporizers. Contact the registrant for additional information on this issue. Circulation fans are not needed in phosphine chambers.
Checklist
Use the checklist in Table 6-3-1 as a guide during chamber certification.

Table 6-3-1 Chamber Checklist

<table>
<thead>
<tr>
<th>Chamber and Volatilizer</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Has chamber been measured and total volume calculated, including all areas where the fumigant penetrates (e.g., ductwork)?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Has chamber been checked for integrity?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>◆ Smoke test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>◆ Pressure test</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Have fans been tested to recirculate at least one third of the total volume per minute?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can gas monitoring be adequately performed?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>◆ Are sampling leads properly placed?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>◆ Are sampling leads one quarter inch inner diameter polyethylene or polypropylene and free from blockage?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Will a scale be used to apply fumigant?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>◆ If yes, has the scale been calibrated and certified this year?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>◆ If no, is the graduated dispenser in good condition?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Are the door seals and gaskets in good condition?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the copper tubing in the volatilizer intact? (check for holes, if possible)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Is the temperature gauge accurate and has it been calibrated within one year?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Required Equipment and Documentation

- Tape measure or electronic measuring device
- Calculator
- Stop watch
- Air (leaf) blower with appropriate fittings and adapters
- Manometer (including tubing and appropriate liquid)
- Digital anemometer
- Gas detection device (calibrated within one year)
- Dessicant (Drierite®) and Ascarite®
- Auxiliary pump (for large chambers)
- Digital thermometer (resolution 0.1 °F) with probe
- Smoke candles
- Gas leak detection device
- Self contained breathing apparatus
- First aid kit, including eye wash
- Emergency medical treatment facility map and phone number
- PPQ Form 480, Treatment Facility Construction, Operation, and Test Data
- PPQ Form 482, Certificate of Approval
- Material safety data sheet
- Warning placard (English and Spanish)
- Special local need label and permit (if applicable)
Certifying Facilities

Certification of Cold Treatment

Contents

Introduction  6-4-1
Standards for Temperature Recording Systems  6-4-2
  Temperature Recording System  6-4-2
  Temperature Sensors  6-4-3
Certification of Vessels Used for Intransit Cold Treatment  6-4-4
  Plan and Specification Approval  6-4-4
  Certification Testing  6-4-5
  Documentation  6-4-8
  Certificate of Approval  6-4-8
  Application for USDA Vessel Approval  6-4-9
Certification of Self Refrigerated Containers Used for Intransit Cold Treatment  6-4-11
  Certification Requirements  6-4-11
  Letter of Certification  6-4-11
  Application for USDA Container Certification  6-4-12
Certification of Warehouses Used for Cold Treatment  6-4-14
  Plan and Specification Approval  6-4-14
  Certification Testing  6-4-14
  Calibration of Temperature Sensors  6-4-15
  Frequency of Certification Testing  6-4-17
  Application for USDA Warehouse Approval  6-4-18
Contact Information  6-4-21

Introduction

Since the early 1900s, sustained cold temperature has been employed as an effective post-harvest method for the control of the Mediterranean and certain other tropical fruit flies. Exposing infested fruit to temperatures of 2.2 °C (36 °F) or below for specific periods of time results in the mortality of the various life stages of this group of notoriously injurious insects. Procedures were developed to effectively apply cold treatment (CT) to fruit while in transport in refrigerated holds of ships, in refrigerated containers, and in warehouses located in the country of origin or in the United States.
Self-refrigerated (Integral) containers, conventional vessels, and warehouses utilized for regulatory cold treatment are subject to approval by the USDA. Approval is needed only when treating fruit under USDA regulations and does not constitute an endorsement for the carrying or storage of refrigerated cargo.

Only officials authorized by APHIS have permission to conduct warehouse, vessel or container certification under the general guidance of CPHST-AQI. Refer to the following web site for a complete list of USDA-certified vessels and containers for intransit cold treatment:

https://treatments.cphst.org/vessels/

Standards for Temperature Recording Systems

Temperature recording systems may consist of various electronic components such as temperature sensors, computers, printers, and cables and are required for temperature recording installations in cold treatment vessels, refrigerated containers, or warehouses. Submit plans and specifications of the temperature recording system to USDA-APHIS-PPQ-CPHST-AQI-Raleigh for review and approval before installation.

Temperature Recording System

◆ **Accuracy** — The accuracy of the system must be within plus or minus 0.3 °C (0.5 °F) of the true temperature in the range of minus 3 °C (27 °F) to plus 3 °C (37 °F).
  
  ▶ Ensure the instrument is capable of repeatability in the range of minus 3 °C to plus 3 °C (27 °F to 37 °F.)

◆ **Automatic Operation** — The system must be capable of automatic operation whenever the treatment system is activated.

◆ **Long-Term Recording** — The system must be capable of continuous recording of date, time, sensor number, and temperature during all calibrations and for the duration of a voyage and/or treatment period.

◆ **Password Protection** — All approved temperature recording devices must be password protected and tamper-proof.

◆ **Recording Frequency** — The time interval between prints will be no less than **once every hour**. For each sensor, the temperature value, location/identification, time and date must print **once per hour**.

◆ **Repeatability** — When used under treatment conditions over an extended period of time, the system must be capable of repeatability in the range of minus 3 °C to plus 3 °C (27 °F to 37 °F.) The design, construction and materials must be such that the typical environmental conditions (including vibration) will **not** affect performance.
**Certifying Facilities Certification of Cold Treatment Standards for Temperature Recording Systems**

- **Range**—The recorder must be programmed to cover the entire range between minus 3 °C to plus 3 °C (27 °F to 37 °F), with a resolution of 0.1 °C or °F.

- **Visual Display**—The system must have a visual display so the temperature can be reviewed manually during the treatment and calibrations.

**Temperature Sensors**

- **Construction Standards**—Sensors should have an outer sheath diameter of 0.25 inches (6.4 millimeters) or less. The sensing unit must be in the first inch of the sensor.

- **Identification**—Identify all sensors to distinguish the sensors in one compartment from those in other compartments.
  - Place an identifying number on the box where the sensor originates and on a permanent tag where the cable joins the sensor.
  - Identify the sensors for each compartment so the air sensors are numbered first (e.g., A1, A2—air; A3, A4,..., etc.,—fruit pulp.)

- **Location**—Post a diagram next to the recording instrument that shows the location and identification of each sensor by compartment.
  - Air sensors—Place sensors on the center line of the vessel, fore and aft, approximately 30 centimeters from the ceiling and connected to cables at least 3 meters in length
  - Fruit sensors—Distribute fruit sensors throughout the compartment so all areas of the compartment can be reached (5- to 15-meter cable lengths are usually sufficient.) The number and location is dependent upon cubic capacity of the compartment. Refer to Figure 6-4-1 on page-6-4-6 for guidance for vessels and Figure 6-4-6 on page-6-4-15 for guidance for warehouses. Three temperature sensors are required for refrigerated containers. These are labeled USDA1, USDA2, and USDA3.

Contact USDA-APHIS-PPQ-CPHST-AQI-Raleigh for a complete list of approved temperature recording systems.
Certification of Vessels Used for Intransit Cold Treatment

Vessels used in cold treatment must be certified by a qualified APHIS-PPQ employee or a designated representative before treating fruit under USDA regulations. Refrigeration (reefer) vessels presented for approval must be classified under the rules of the American Bureau of Shipping or a comparable internationally recognized ship classification society.

Submit plans, drawings and specifications to USDA-APHIS-PPQ-CPHST-AQI-Raleigh prior to the first vessel certification. Conduct certification tests prior to the vessel receiving final approval to conduct a cold treatment. Certification will be performed every three years or sooner if APHIS determines that a malfunction or alteration of the system warrants a recertification.

Plan and Specification Approval

Prior to the start of vessel construction, an application for vessel approval, detailed drawings of the vessel's physical characteristics and a written description of the all the equipment related to treatment must be reviewed and approved by USDA-APHIS-PPQ-CPHST-AQI-Raleigh (all plans and supporting materials must be submitted in Standard English.)

Plans and specifications must include the following information:

- Completed Application for Vessel Approval (an example of a completed Application is provided on page 6-4-9)
- Drawings showing the dimensions of the refrigerated compartments
- Example of an hourly printout from the recording system (must include date, time, temperature unit, vessel name)
- Number and location of air and pulp sensors in each compartment (see Figure 6-4-1 on page-6-4-6)
- Specifications of the recording system
- Specifications of refrigeration equipment (including air circulation)

The review of plans and process descriptions may take up to sixty days and subsequent requests for additional information may further extend this time.

Vessel owners will receive a letter granting plan approval or describing plan deficiencies and necessary remedial measures.

Following plan approval, the vessel should be built according to the plans.
If deviations from the plans are necessary, **USDA-APHIS-PPQ-CPHST-AQI-Raleigh** must approve the changes (changes should be submitted in a manner similar to that described in "Plan and Specification Approval").

**Certification Testing**

Make the vessel available for an on-site certification visit by a PPQ official when all documents and a completed Application have been submitted and approved by the **USDA-APHIS-PPQ-CPHST-AQI-Raleigh**.

**Important**

Do **not** conduct vessel certification if temperatures in the vessel holds are lower than -1.0 °C (plus or minus 0.3 °C) or 30.2 °F (plus or minus 0.5 °F).

Contact the State Plant Health Director or Officer-In-Charge at the port of call to arrange vessel certification at a US port.

Establish a cooperative agreement and other arrangements as needed with USDA for vessel certification inspections made at a foreign location. This will require a 60-day notification before the inspection can be scheduled. For specific information on the required procedure, contact:

**USDA-APHIS-PPQ**  
Preclearance and Offshore Programs  
4700 River Road, Unit 67  
Riverdale, MD 20737  
Phone: 301-851-2162

A representative from the temperature recorder company who is familiar with the installation, should be on hand to correct any deficiencies in the system.

Before requesting final inspection, the vessel's owner must complete all arrangements. Calibration and identification tests will be made during the inspection. Clean containers filled with crushed ice and fresh water must be made available for the immersion of the temperature sensors.
Determining the Number of Temperature Sensors

The number and location of temperature sensors is based on the cubic capacity of the compartment. Refer to Figure 6-4-1 to determine the number and location of sensors. Always place the air sensors on the fore and aft bulkheads. Always distribute the pulp sensors throughout the compartment so that all areas can be reached.

<table>
<thead>
<tr>
<th>Cubic Feet</th>
<th>Cubic Meters</th>
<th>Number of Air Sensors¹</th>
<th>Number of Pulp Sensors</th>
<th>Total Number of Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 10,000</td>
<td>0 to 283</td>
<td>2 or 3</td>
<td>2</td>
<td>4 or 5</td>
</tr>
<tr>
<td>10,001 to 15,000</td>
<td>284 to 425</td>
<td>2 or 3</td>
<td>3</td>
<td>5 or 6</td>
</tr>
<tr>
<td>15,001 to 25,000</td>
<td>426 to 708</td>
<td>2 or 3</td>
<td>4</td>
<td>6 or 7</td>
</tr>
<tr>
<td>25,001 to 45,000</td>
<td>709 to 1,274</td>
<td>2 or 3</td>
<td>5</td>
<td>7 or 8</td>
</tr>
<tr>
<td>45,001 to 70,000</td>
<td>1,275 to 1,980</td>
<td>2 or 3</td>
<td>6</td>
<td>8 or 9</td>
</tr>
<tr>
<td>70,001 to 100,000</td>
<td>1,981 to 2,830</td>
<td>2 or 3</td>
<td>8</td>
<td>10 or 11</td>
</tr>
<tr>
<td>&gt; 100,000</td>
<td>&gt; 2,830</td>
<td></td>
<td></td>
<td>Contact CPHST-AQI</td>
</tr>
</tbody>
</table>

1 In the case of twin deck compartments, two air sensors are required in the upper deck plus one air sensor in the lower compartment. This sensor should be located on the bulkhead farthest from the cooling unit.

Figure 6-4-1 Number of Temperature Sensors per compartment

It is highly recommended that more temperature sensors be installed than the minimum number required for each refrigerated compartment. If a sensor malfunctions during a treatment, the Port Director has the option of disregarding it, providing that an additional working sensor is present, and the functional sensors were uniformly distributed. Otherwise, the entire treatment must be repeated for the fruit in that compartment.

Designate two of the sensors as air sensors, and the others as pulp sensors. Any sensors above the required minimum may be either pulp or air sensors.

For compartments exceeding 100,000 cubic feet, contact the USDA-APHIS-PPQ-CPHST-AQI-Raleigh for the minimum number of required sensors.

Important

Calibrate all temperature sensors using a clean ice water slurry at 0 °C (32 °F).

Notice

It is APHIS policy to use the standard "rounding rule". In determining calibration factors, if the reading is .05 or higher, round to the next higher number in tenths. If it is .04 or lower, round to the lower number. For example: If the calibration factor was .15, round to .2. If it was .32, round to .3. Similar rounding can be used in actual treatment readings. If an actual reading was 34.04, round to 34.0, add or subtract the calibration factor, if necessary. If it was 34.07, round to 34.1, add or subtract the calibration factor, if necessary.

Use the following steps to make the ice water slurry:
1. Check individual sensors to verify that they are properly labeled and correctly connected to the temperature recorder. This can be accomplished by hand warming each sensor when its’ number appears on the visual display panel of the recording instrument. A temperature change, which can be observed on the instrument, should occur. If the instrument fails to react, the sensor is incorrectly connected or malfunctioning and should be corrected by the instrument representative.

2. Prepare a mixture of clean ice and fresh water in a clean insulated container.

3. Crush or chip the ice and completely fill the container.

4. Add enough water to stir the mixture.

5. Stir the ice and water for a minimum of 2 minutes to ensure the water is completely cooled and good mixing has occurred.
   - The percentage of ice is estimated at 80 to 85 percent while the water fills the air voids (15 to 20 percent).

6. Add more ice as the ice melts.

7. Prepare and stir the ice water slurry to maintain a temperature of 0 °C (32 °F).

8. Submerge the sensors in the ice water slurry without touching the sides or bottom of the container.

9. Stir the mixture.

10. Continue testing of each sensor in the ice water slurry until the temperature reading stabilizes.

11. Record two consecutive readings of the stabilized temperature on the temperature chart or logsheet.
   - The temperature recording device should be in manual mode to provide an instantaneous readout.

12. Allow at least a 1 minute interval between two consecutive readings for any one sensor; however, the interval should not exceed 5 minutes.
   - The variance between the two readings should not exceed 0.1°.

13. Contact an instrument company representative immediately if the time interval exceeds the normal amount of time required to verify the reading and accuracy of the sensor and recorder system.
   - The recorder used with the sensors must be capable of printing or displaying on demand and not just at hourly intervals.

14. Correct any deficiencies in the equipment before certification.
15. Replace any sensor that reads more than plus or minus 0.3 °C (0.5 °F) from the standard 0 °C (32 °F).

16. Replace and recalibrate any sensors that malfunction.

17. Document the recalibration and replacement of the sensor(s).

18. Determine the calibrations to the nearest tenth of one degree.

A certification test is required every three years. No extensions to this three year requirement will be granted. Make requests for renewal at least 60 days before expiration to the CPHST-AQI or USDA PPQ Preclearance programs. Certification testing is also required anytime a malfunction, breakdown or other failure occurs (excluding temperature sensors) that requires modifications to the recording and monitoring system(s).

**Documentation**

The APHIS official will document all tests during certification. Send a copy of the signed PPQ Form 449-R, Temperature Recording Calibration Report, copies of all charts and/or printouts, and any other pertinent addenda or appendices to the USDA-APHIS-PPQ-CPHST-AQI-Raleigh for final approval.

**Certificate of Approval**

Upon meeting all requirements, the vessel will be designated as approved to conduct intransit cold treatments under the provisions of the PPQ's Fruit and Vegetable Quarantine 56. A PPQ Form 482, Certificate of Approval, listing the approved refrigerated compartments will be issued to the vessel. This approval is for equipment only, and each shipment of fruit must satisfy all requirements as described in Section 319.56 and 305.15 of the Code of Federal Regulations as a condition of entry into the United States.
Application for USDA Vessel Approval

Visit the Commodity Treatment Information System web site or contact USDA-APHIS-PPQ-CPHST-AQI-Raleigh for a fillable, electronic Vessel Approval Application.

![Application for USDA Vessel Approval](image)

**Figure 6-4-2  Example of a Completed Application for USDA Vessel Approval, page 1 of 2**
Attach vessel schematic(s) to include the following:
All information must be clearly referenced in supporting technical documents.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Reference Page or Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Sensor location</td>
<td>Page 6</td>
</tr>
<tr>
<td>(b) Sensor number</td>
<td>Page 2</td>
</tr>
<tr>
<td>(c) Sensor type (air or pulp)</td>
<td>Page 3</td>
</tr>
<tr>
<td>(d) Compartment identifiers</td>
<td>Page 4</td>
</tr>
<tr>
<td>(e) Airflow direction</td>
<td>Page 6</td>
</tr>
<tr>
<td>(f) Refrigeration Unit locations</td>
<td>Page 6</td>
</tr>
<tr>
<td>(g) Recorder location</td>
<td>Page 6</td>
</tr>
</tbody>
</table>

Ensure that a list of compartment identifiers with corresponding cubic capacity is attached to this application.

3. Refrigeration Unit
Make of Refrigeration Unit: Besab
Location of Refrigeration Unit: Power Plant
Airflow maximum rate (cfm): 3000
Airflow direction: aft
Model of Refrigeration Unit: 067Vn123
Model Year: 2001

4. Temperature Recorder
Manufacturer: Mycom
Model: Maros
Node Year: 2003
Serial number(s): 5549876, 8875665
Quantity of recorders: 2
Is this a USDA approved recorder: Yes: ☐ No: ☐

Accuracy:
Recorder (Must be accurate to within +/- 0.15 C in the range of +/- 3.6 C): Yes
Recorder plus Sensor (Must be accurate to within +/- 0.30 C in the range of +/- 3.6 C): Yes

5. Temperature Sensors
Accuracy (Must be accurate to within +/- 0.15 C in the range of +/- 3.6 C): Yes

Are these USDA approved temperature sensors: Yes: ☐ No: ☐
Do sensors numbers match the numbers on the recorder: Yes: ☐ No: ☐

<table>
<thead>
<tr>
<th>Description</th>
<th>Air Sensors</th>
<th>Pulp Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturer</td>
<td>Mycom</td>
<td>Mycom</td>
</tr>
<tr>
<td>Model</td>
<td>RM105</td>
<td>RM115</td>
</tr>
<tr>
<td>Length of sensor cable</td>
<td>3 meters</td>
<td>15 meters</td>
</tr>
<tr>
<td></td>
<td>(Must extend from ceiling to floor)</td>
<td>(Must extend beyond centerline of the vessel compartment)</td>
</tr>
</tbody>
</table>

X

Requestor’s Signature

Date (mm-dd-yyyy)

Form T-CT-V-A-124

Approved on

The USDA is an equal opportunity provider and employer.
Certification of Self Refrigerated Containers Used for Intransit Cold Treatment

Certify refrigerated containers used as cold treatment facilities before carrying treated fruit under USDA regulations. Classify refrigerated containers under the rules of the American Bureau of Shipping or a comparable internationally recognized classification society.

Certification Requirements

Complete an Application for Container Certification and submit to USDA-APHIS-PPQ-CPHST-AQI-Raleigh. All plans and supporting materials must be submitted in Standard English. Refer to Figure 6-4-4 on page-6-4-12 for an example of a completed Application for Container Certification.

Include the following specifications in the application:

- Air flow rate
- Container size
- Make and model of refrigeration unit
- Make and model of temperature recorder/control unit
- Type of sensor
  - At least 3 sensors are necessary for each container and must be labeled USDA1, USDA2 and USDA3

Letter of Certification

Upon meeting all requirements, the container(s) will be certified to conduct intransit cold treatments under the provisions of the PPQ Fruit and Vegetable Quarantine 56. A Letter of Certification listing the refrigerated container(s) will be issued to the owner. This certification is for container(s) only, and each shipment of fruit must satisfy all requirements as described in Section 319.56 and 305.15 of the Code of Federal Regulations as a condition of entry for importation into the United States.
Application for USDA Container Certification

Visit the Commodity Treatment Information System web site or contact USDA-APHIS-PPQ-CPHST-AQI-Raleigh for a fillable, electronic Vessel Approval Application.

Figure 6-4-4  Example of a Completed Application for USDA Container Certification, page 1 of 2
4. Container Information

<table>
<thead>
<tr>
<th>Container Code and Numbers</th>
<th>BIC:  APRU</th>
<th>Begin: 901664</th>
<th>End: 905154</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Number of Containers in Series</td>
<td>299</td>
<td>Date of Construction (mm/yyyy): 06/2009</td>
<td></td>
</tr>
<tr>
<td>External Dimensions (feet):</td>
<td>Length: 40</td>
<td>Width: 8'</td>
<td>Height: 9.6'</td>
</tr>
</tbody>
</table>

5. Refrigeration Unit

<table>
<thead>
<tr>
<th>Make: Carrier</th>
<th>Model: S/N:MT40-001-009</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of Manufacture: 2008</td>
<td>Location of the Unit: Inside the container</td>
</tr>
<tr>
<td>Airflow Maximum Rate (cubic feet per minute): 1400</td>
<td>Bottom Air Delivery? Yes</td>
</tr>
</tbody>
</table>

6. Temperature Controller

<table>
<thead>
<tr>
<th>Make: Carrier</th>
<th>Model: MicroLink 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year of Manufacture: 2008</td>
<td></td>
</tr>
<tr>
<td>Is a modem connected to the controller/recorder? Yes</td>
<td>No</td>
</tr>
<tr>
<td>If Yes, specify model:</td>
<td></td>
</tr>
</tbody>
</table>

7. Temperature Sensors: Indicate which approved sensors will be used with the temperature monitoring and control system:

- Thermistor
- ET0702
- PT100
- NTC

X John Johnson
Requestor's Name/Signature
Date (mm/dd/yyyy)

**************DO NOT WRITE BELOW – FOR USDA PURPOSES ONLY – DO NOT WRITE BELOW**************

Reviewer:

Date Application Received

Approved Not Approved Date

Reviewer's Signature

Container ID # Document File Name

Comments:

The USDA is an equal opportunity provider and employer.

Form T-CE-C-C-107

Approved 4/9/2009

Revision: 02
Page 2 of 2
Certification of Warehouses Used for Cold Treatment

The local APHIS-PPQ inspector will certify refrigerated warehouses for use as cold treatment facilities before treating fruit under USDA regulations. In addition to the general requirements, warehouse approval is subject to specific geographical pest-risk considerations as outlined in Title 7, Section 305.6 of the Code of Federal Regulations.

USDA-APHIS-PPQ-CPHST-AQI-Raleigh will approve plans and specifications prior to the initial warehouse certification. Conduct a performance survey prior to the warehouse receiving approval to conduct cold treatments under USDA regulations.

Plan and Specification Approval

Prior to the start of warehouse construction, submit a completed Application for Warehouse Approval, detailed drawings of the physical characteristics, and a written description of all the treatment related equipment to USDA-APHIS-PPQ-CPHST-AQI-Raleigh. All plans and supporting materials must be submitted in Standard English. An example of a completed Application is provided in Figure 6-4-7 on page-6-4-18.

Include the following information in the Application:

- Address of the warehouse location
- Drawings showing the dimensions, cubic capacity and door locations
- Make and model of the refrigeration equipment
- Name and address of the firm owning the warehouse chamber
- Number and location of sensors (Figure 6-4-6 on page-6-4-15)
- Method for segregating fruit under treatment and securing it from other foreign or domestic articles
- Specification of the air circulation system; must indicate the number of air changes and direction of air flow
- Specifications of the recording system

Certification Testing

When all documents and a completed Application have been submitted and approved by the USDA-APHIS-PPQ-CPHST-AQI-Raleigh, the warehouse owner should make the warehouse available for an on-site certification visit.
Certifying Facilities  Certification of Cold Treatment
Certification of Warehouses Used for Cold Treatment

by a local PPQ official. To arrange warehouse certification, contact the State Plant Health Director or Officer-In-Charge for the port. Before requesting final inspection, the warehouse owner must complete all arrangements as directed by the PPQ officer. The PPQ official will conduct calibration and identification tests during the inspection.

The number and location of temperature sensors is based on the cubic capacity. Refer to Figure 6-4-6 to determine the number and location of sensors. The minimum requirement is three sensors—one air sensor and two pulp sensors. Sensor cables must be long enough to reach all areas of the load.

Determining the Number of Temperature Sensors

The number and location of temperature sensors is based on the cubic capacity. Refer to Figure 6-4-6 to determine the number and location of sensors. The minimum requirement is three sensors—one air sensor and two pulp sensors. Sensor cables must be long enough to reach all areas of the load.

<table>
<thead>
<tr>
<th>Cubic Feet</th>
<th>Cubic Meters</th>
<th>Number of Pallets</th>
<th>Number of Air Sensors</th>
<th>Number of Pulp Sensors</th>
<th>Total Number of Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 10,000</td>
<td>0 to 283</td>
<td>1 - 100</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>10,001 to 20,000</td>
<td>284 to 566</td>
<td>101 - 200</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>20,001 to 30,000</td>
<td>567 to 849</td>
<td>201 - 300</td>
<td>1</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>30,001 to 40,000</td>
<td>850 to 1132</td>
<td>301 - 400</td>
<td>1</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>40,001 to 50,000</td>
<td>1133 to 1415</td>
<td>401 - 500</td>
<td>1</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>50,001 to 60,000</td>
<td>1416 to 1698</td>
<td>501 - 600</td>
<td>1</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>60,001 to 70,000</td>
<td>1699 to 1981</td>
<td>601 - 700</td>
<td>1</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>70,001 to 80,000</td>
<td>1982 to 2264</td>
<td>701 - 800</td>
<td>1</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>80,001 to 90,000</td>
<td>2265 to 2547</td>
<td>801 - 900</td>
<td>1</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>90,001 to 100,000</td>
<td>2548 to 2830</td>
<td>901 - 1000</td>
<td>1</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Over 100,000</td>
<td>&gt;2830</td>
<td>1000 +</td>
<td>Must be approved by CPHST-AQI</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 6-4-6   Number of Sensors in a Warehouse

Important

If a refrigerated room is equipped according to the cubic capacity of the storage area (rather than of the load itself), the same criteria apply.

It is highly recommended that additional sensors beyond the required minimum be installed.

Calibration of Temperature Sensors

Calibrate all temperature sensors using a freshwater ice water slurry at 0 °C (32 °F).

NOTICE

It is APHIS policy to use the standard "rounding rule". In determining calibration factors, if the reading is .05 or higher, round to the next higher number in tenths. If it is .04 or lower, round to the lower number. For example: If the calibration factor was .15, round to .2. If it was .32, round to .3. Similar rounding can be used in actual treatment readings. If an actual reading was 34.04, round to 34.0, add or subtract the calibration factor, if necessary. If it was 34.07, round to 34.1, add or subtract the calibration factor, if necessary.
Use the following steps to make the ice water slurry:

1. Prepare a mixture of clean ice and fresh water in a clean insulated container.
2. Crush or chip the ice and completely fill the container.
3. Add enough water to stir the mixture.
4. Stir the ice and water for a minimum of 2 minutes to ensure the water is completely cooled and good mixing has occurred.
   - The percentage of ice is estimated at 80 to 85 percent while the water fills the air voids (15 to 20 percent).
5. Add more ice as the ice melts.
6. Prepare and stir the ice water slurry to maintain a temperature of 32 °F. (0 °C)
7. Submerge the sensors in the ice water slurry without touching the sides or bottom of the container.
8. Stir the mixture.
9. Continue testing of each sensor in the ice water slurry until the temperature reading stabilizes.
10. Record two consecutive readings of the stabilized temperature on the temperature chart or logsheet.
    - The temperature recording device should be in manual mode to provide an instantaneous readout.
11. Allow at least a 1 minute interval between two consecutive readings for any one sensor; however, the interval should not exceed 5 minutes.
    - The variance between the two readings should not exceed 0.1°.
12. Contact an instrument company representative immediately if the time interval exceeds the normal amount of time required to verify the reading and accuracy of the sensor and recorder system.
    - The recorder used with the sensors must be capable of printing or displaying on demand and not just at hourly intervals.
13. Correct any deficiencies in the equipment before certification.
14. Replace any sensor that reads more than plus or minus 0.3 °C (0.5 °F) from the standard 0 °C (32 °F).
15. Replace and recalibrate any sensors that malfunction.
17. Determine the calibrations to the nearest tenth of one degree.
Frequency of Certification Testing

A certification test is required every year. Sumit requests for recertification to the local PPQ office at least 60 days before expiration. Certification testing is also required anytime a malfunction, breakdown or other failure occurs (excluding temperature sensors) that requires modifications to the recording and monitoring system(s).
Application for USDA Warehouse Approval

Visit the Commodity Treatment Information System web site or contact USDA-APHIS-PPQ-CPHST-AQI-Raleigh for a fillable, electronic Vessel Approval Application.

Figure 6-4-7  Example of a Completed Application for USDA Warehouse Approval, page 1 of 3
Attach a warehouse schematic(s) that includes the following:
All information must be clearly referenced in supporting technical documents.

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Reference Page or Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Delineations of treatment areas to be certified</td>
<td>See page 5</td>
</tr>
<tr>
<td>(b) Cubic capacity of each treatment area to be certified</td>
<td>See page 3</td>
</tr>
<tr>
<td>(c) Total cubic capacity of warehouse</td>
<td>See page 2</td>
</tr>
<tr>
<td>(d) Sensor location</td>
<td>See page 4</td>
</tr>
<tr>
<td>(e) Sensor number</td>
<td>See page 4</td>
</tr>
<tr>
<td>(f) Sensor type (air or pulp)</td>
<td>See page 1</td>
</tr>
<tr>
<td>(g) Treatment area identifiers</td>
<td>See page 2</td>
</tr>
<tr>
<td>(h) Airflow direction</td>
<td>See page 1</td>
</tr>
<tr>
<td>(i) Refrigeration unit location</td>
<td>See page 1</td>
</tr>
<tr>
<td>(j) Recorder location</td>
<td>See page 1</td>
</tr>
</tbody>
</table>

Also attach a description of the method used to segregate fruit under PPQ treatment from other foreign or domestic articles.

3. Refrigeration Unit

<table>
<thead>
<tr>
<th>Make of Refrigeration Unit:</th>
<th>Carrier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model of Refrigeration Unit:</td>
<td>G5E</td>
</tr>
<tr>
<td>Location of Refrigeration Unit:</td>
<td>Equipment Room 1</td>
</tr>
<tr>
<td>Model Year:</td>
<td>1998</td>
</tr>
</tbody>
</table>

Airflow maximum rate (cfm): 1250
Airflow direction: East to West

4. Temperature Recorder

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>ACR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>Smart Recorder</td>
</tr>
<tr>
<td>Node Year:</td>
<td>2005</td>
</tr>
<tr>
<td>Serial number(s):</td>
<td>123545647899, 1234564789, 123789456</td>
</tr>
<tr>
<td>Quantity of recorders:</td>
<td></td>
</tr>
</tbody>
</table>

Location of unit(s): Portable

Accuracy: Recorder (Must be accurate to within ±0.15°C in the range of ±3.6°C): 0.1
Recorder plus Sensor (Must be accurate to within ±0.30°C in the range of ±3.8°C): 0.3

Is this a USDA approved recorder?: Yes

5. Temperature Sensors

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>ACR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>165</td>
</tr>
<tr>
<td>Node Year:</td>
<td>2005</td>
</tr>
</tbody>
</table>

Accuracy (Must be accurate to within ±0.15°C in the range of ±3.6°C): 0.1

Length of sensor cable (must be long enough to reach fruit in all parts of the stack): 15 meters

Do sensor numbers match the numbers on the recorder: Yes [x] No [ ]

x Requestor's Signature
Date (mm-dd-yyyy)

Form T-CT-W-A-123
Rev: 01
Page 2 of 3

The USDA is an equal opportunity provider and employer.

Fig. 6-4-8 Example of a Completed Application for USDA Warehouse Approval, page 2 of 3
Figure 6-4-9  Example of a Completed Application for USDA Warehouse Approval, page 3 of 3
Contact Information

USDA-APHIS-PPQ-CPHST-AQI-Raleigh
1730 Varsity Drive
Suite 300
Raleigh, NC 27606
Phone: 919-855-7450
FAX: 919-855-7493
Email: cphst.tqau@aphis.usda.gov
Certifying Facilities

Certification of Hot Water Immersion Facilities

Contents

Introduction 6-5-1
Preliminary Performance Testing 6-5-1
New Procedures for Hot Water Facility Certification and Commercial Testing 6-5-2
Procedures for Conducting the Annual APHIS Performance Test 6-5-4
Protocols for Foreign Treatment Facilities 6-5-7
Address for Technical Contact 6-5-7

Introduction

Quarantine treatment by immersion in hot water is used primarily for fruits that are hosts of tropical fruit flies. Exposing the fruit to a temperature of at least 115 °F (46.1 °C) for specific periods of time (depending upon the specific pest, type of fruit, and size of fruit) constitutes a quarantine treatment. The U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS) incorporates this principle of insect control into its regulations to facilitate the importation or interstate movement of certain fruits from areas where tropical fruit flies are the significant pests of concern.

Commercial facilities using hot water immersion treatment are subject to USDA-APHIS, certification on an annual basis. More frequent tests may be required at the option of APHIS. APHIS certification is given solely in conjunction with quarantine treatment requirements.

The certifying official shall check with the manager of the facility to be sure that he is aware of the requirement for using potable water. Whenever water comes into contact with fresh produce, the water's quality dictates the potential for pathogen contamination. To reduce the risk of food-borne illnesses, the water used for washing, treatments, and cooling must be fortified with sodium hypochlorite (household bleach), and constantly maintained at a chlorine level not to exceed 200 ppm.

Important

Preliminary Performance Testing

If the facility has not been previously certified by APHIS, the operators should conduct preliminary, informal performance tests on their own (together with an engineer, if needed), to assure themselves that their equipment is in good working order.
By trial and error, the manager of the facility should decide on a tentative temperature set point for their tanks. This should be done by immersing one or more full baskets of fruit into each tank, to be certain that the water temperature (nearest the fruit) reaches at least 115.0 °F (46.1 °C) within 5 minutes. A thermostatic set point for each tank is typically in the range of 115.8 °F to 116.9 °F (46.6 °C to 47.2 °C).

As an option, some hot water immersion systems use an initial higher set point for the first several minutes, then automatically drop to a lower set point for the remainder of the treatment. (If this programming option is used, the change to the second set point must be done automatically, not manually.)

Data from the preliminary tests need not be recorded on official forms. These data, however, must be presented to APHIS, as evidence that the facility is ready for the official performance test.

Once the facility has been officially certified, APHIS does not require the facility to present preliminary performance test data in subsequent years, except when there have been major engineering changes to the equipment.

New Procedures for Hot Water Facility Certification and Commercial Testing

These guidelines have been issued to provide a more accurate reflection of the tank’s coldest temperatures. They are not intended to replace existing procedures, but to be used in conjunction with the current operational framework. These guidelines are only needed for facilities not capturing interior probe temperatures with actual sensors and are only in place until each facility begins capturing interior temperatures with actual sensors. Furthermore, these guidelines will be in effect until each facility develops a procedure for placing probes in the coldest locations of the tank. Facilities already using temporary probes as a routine part of commercial testing can disregard the procedures outlined below. All new equipment and procedures must be approved by the USDA-APHIS-PPQ-S&T-CPHST-AQI before implementation.
Refer to Figure 6-5-1 for information regarding adjusted temperatures and set points:

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tank Sensor (Lowest) (°F)</td>
<td>Portable Sensor (Lowest) (°F)</td>
<td>Adjusted Tank Sensor Temperature (°F)</td>
<td>Set Point (°F)</td>
<td>Treatment Interval (minutes)</td>
<td>Pulp Temperature (°F)</td>
</tr>
<tr>
<td>116.0</td>
<td>115.9</td>
<td>115.1</td>
<td>117.0</td>
<td>5</td>
<td>78</td>
</tr>
<tr>
<td>115.5</td>
<td>115.4</td>
<td>115.1</td>
<td>116.0</td>
<td>6 - 30</td>
<td>78</td>
</tr>
<tr>
<td>115.3</td>
<td>115.2</td>
<td>115.1</td>
<td>115.5</td>
<td>31 - 60</td>
<td>78</td>
</tr>
<tr>
<td>115.1</td>
<td>115.0</td>
<td>115.1</td>
<td>115.3</td>
<td>61 - 75</td>
<td>78</td>
</tr>
<tr>
<td>115.0</td>
<td>115.0</td>
<td>115.0</td>
<td>115.0</td>
<td>76 - 90</td>
<td>78</td>
</tr>
</tbody>
</table>

Figure 6-5-1 Hypothetical Certification Results: Treatment Tank with Multiple Set Points

1. Adjusted Tank Sensor Temperature Equation:
   
   Take the amount of temperature exceeding 115.0 from Portable Sensor (Lowest) in column 2, and subtract it from Tank Sensor (Lowest) in column 1 (116.0 - 0.9 = 115.1).

1. Average minimum pulp temperatures must be taken from a minimum of 5 fruit extracted from the coldest fruit before treatment. On certification day, this average pulp temperature becomes the minimum commercial treatment pulp temperature permitted. All fruit must be at or above 70 °F to be hot water treated.

2. The "adjusted tank sensor temperature" is determined by taking the amount of temperature exceeding 115.0 from Portable Sensor (Lowest) in column 2, and subtract it from Tank Sensor (Lowest) in column 1.

3. During certification, establish the set point with its lowest corresponding charted temperature. Document these values on the PPQ Form 482, Certificate of Approval and an attachment in the format of Figure 6-5-1.

4. The Figure 6-5-1 attachment and PPQ Form 482 must be displayed in a prominent location at the facility.

5. During commercial treatments, the "Adjusted Tank Sensor Temperature" is used as the lowest treatment temperature. The commercial treatment fails if the tank temperature is below the "Adjusted Tank Sensor Temperature".

**Mango temperatures prior to treatment**

During certification, determine and record an average pulp temperature (prior to treatment). Calculate this averaged pulp temperature by averaging pulp temperatures from the 5 "coldest" mangoes before treatment (mangoes extracted from the coldest locations). This temperature becomes the minimum pretreatment pulp temperature allowable for commercial treatments.
Therefore, during subsequent commercial treatments, mangoes must be at or above this minimum temperature before beginning treatment. (Any fruit below 70 °F cannot be treated per manual requirements).

**Permanent probe temperatures**

During certification, record from the printout/chart each set point with its lowest corresponding charted (permanent probe) temperature. A treatment tank may have one set point or multiple set points. If the tank has multiple set points, these set points are for a fixed length of treatment time. Refer to Figure 6-5-1 for a detailed explanation. This "adjusted tank temperature sensor" (always above 115.0 °F) becomes the lowest temperature permitted for that set point, or the "standard" at that set point. Commercial temperatures (permanent probe temperatures from the chart/printout) must be equal to or greater than the set point standard for each length of time. Document each "adjusted tank sensor temperature" determined during certification, on the PPQ Form 482, Certificate of Approval and on the attachment to the Certificate.

**Procedures for Conducting the Annual APHIS Performance Test**

To approve the facility, the APHIS officer (or designated representative) shall take the following steps:

1. **If the facility has not** been previously certified, or if modifications have been made since the last performance test, compare the plans and drawings with the actual installation.
   
   Clearly show dimensions, water circulation, temperature sensing and recording systems, and safeguarding precautions in the plans and specifications.

2. Conduct a performance test (at least annually), during an actual treatment (as described below), to determine (or verify) a temperature "set point" for the system, and to determine the minimum duration of time required between the immersion of successive baskets of fruit within the same tank.

3. Inspect the heating, water circulation, and alarm systems, and check to see that all necessary safeguards (including screens, fans, locks, and air curtains) are secure and operational.

4. Calibrate the portable sensors, recording the results on APHIS form 205 (or a plain sheet of paper).

   **A.** Using a factory-calibrated, mercury, non-mercury or digital thermometer as the standard, compare the reading of each portable sensor to the standard, and record any deviation.
B. To facilitate this process, a specially designed, portable temperature calibrator may be used, which uses either hot air or a swirling hot water bath, set at approximately the temperature at which treatments will take place; a treatment tank can also be used for this purpose, provided that the water is kept in motion.

5. Examine the calibration of the tank’s permanent RTD sensors, and record the results on APHIS form 206.

6. Tape the cords of three or four portable “water temperature sensors” to the skins of three or four selected fruits in each basket. (Do not cover the end of the sensor with tape.)

7. Insert a portable “pulp temperature sensor” approximately one centimeter into the flesh of one or more fruits in the tank.
   
   A. Hold the sensor in place with tape.
   
   B. It is not necessary to have a pulp temperature sensor in each basket.

8. Set the fruit at ambient temperature (70 °F or above) immediately prior to the performance test.

   If the fruit is pre-warmed by artificial means, note this routine as a condition of approval that should be followed for each commercial treatment.

9. On the location diagram (APHIS form 207), show the relative position of each portable sensor used in the test, and indicate whether it is a “water” or a “pulp” sensor. Number each sensor.

10. While the fruit are immersed in water, use an electronic thermometer to monitor the temperatures of each portable sensor at various times throughout the test. (record this information on APHIS form 208 for each tank.)

    As a second option, a portable, automatic recording instrument can be used; it must, however, operate independently from the temperature recording system installed at the facility.

11. During the performance test, lower the baskets of fruit into the hot water immersion tank.

    A. Closely monitor the “water temperature sensors” during the first five minutes of treatment.

    APHIS requires that the temperatures of all “water temperature sensors” must reach at least 115 °F (46.1 °C) within 5 minutes; if not, in order to achieve the 5-minute temperature recovery
requirement, repeat the test using other fruit, using a slightly higher water temperature set point, and/or a slightly longer time interval between subsequent basket immersions.

**B.** Run the test for the full duration (up to 90 minutes, depending upon fruit size).

During that time, all “water temperature sensors” must read at least 115 °F (46.1 °C) at the 5 minute point and beyond; in addition, the “pulp temperature sensor” (or sensors) must read at least 113 °F (45 °C) by the end of the test.

---

**Important**

It should be noted that APHIS standards for passing the official performance test are higher than the standards accepted for commercial treatments. This is intentional. *During commercial treatments* of mangoes, the water in the tank is allowed up to 5 minutes to reach the minimum treatment temperature of 115 °F after the fruit have been submerged.

**Important**

The mango hot water schedules also have a built-in tolerance for subnormal temperatures in the range of 113.7 °F to 114.9 °F for up to 10 minutes (in the case of 65 or 75-minute treatments), or 15 minutes (in the case of 90-minute treatments). This tolerance was designed to “save” an ongoing treatment during an emergency situation such as an electrical power outage. However, *for purposes of the official performance test*, all water temperature sensors are required to read at least 115.0 °F within the first 5 minutes, and to maintain temperatures at or above that threshold during the remainder of the treatment.

---

**12.** For issuance of a Certificate of Approval (PPQ form 482), submit all supporting documents to the APHIS-Regional Office (or to another APHIS office delegated by the Region).

**13.** APHIS will certify the facility only when all requirements are met, including *two* successful hot water immersion treatments in each tank, using standard fruit loads.

For annual recertification, however, only *one* successful performance test is required per tank, unless the Work Plan requires additional tests. Submit a copy of PPQ Form 482, the corresponding attachment (Figure 6-5-1), all forms used in the certification or recertification and printouts from the temperature recorder to USDA-APHIS-PPQ-S&T-CPHST-AQI.
Protocols for Foreign Treatment Facilities

Contact the USDA APHIS PPQ Preclearance and Offshore Programs Unit in Riverdale, MD, to obtain protocols for foreign treatment facilities.

Address for Technical Contact

USDA-APHIS-PPQ-S&T-CPHST-AQI
1730 Varsity Drive, Suite 300
Raleigh, NC 27606

Tel: 919-855-7450
Fax: 919-855-7493
Certifying Facilities  Certification of Hot Water Immersion Facilities
Address for Technical Contact
Certifying Facilities

Certification of Niger seed Treatment Facilities

Contents

PPQ Regulation for the Entry of Niger Seeds into the United States 6-6-1
The Certification Process 6-6-1
—Submission and Approval of Engineering Construction Plan and Facility Requirements 6-6-1
—Request Certification for a Treatment Facility 6-6-2
—Conduct the Certification Test 6-6-2
—Certification of the Treatment Facility 6-6-4

PPQ Regulation for the Entry of Niger Seeds into the United States

In accordance with the guidance provided in this manual, heat treat Niger seeds (Guizotia abyssinica) from any foreign place for possible infestation with noxious weeds seeds or prohibited pathogens at or before the time of arrival into the United States. Conduct the heat treatment in a foreign or domestic APHIS-certified treatment facility.

The Certification Process

Certification of Niger seed treatment facilities includes the following steps:

“Step 1—Submission and Approval of Engineering Construction Plan and Facility Requirements” on page-6-6-1

“Step 2—Request Certification for a Treatment Facility” on page-6-6-2

“Step 3—Conduct the Certification Test” on page-6-6-2

“Step 4—Certification of the Treatment Facility” on page-6-6-4

Step 1—Submission and Approval of Engineering Construction Plan and Facility Requirements

The facility submits an engineering construction plan and facility requirements to the appropriate State and country officials and to USDA-APHIS-PPQ-S&T-CPHST-AQI for approval. The plans must include facility dimensions, capacity, heating unit specifications, and temperature/time recording system specifications.
Facilities must comply with state, local, and country requirements. Design the equipment in a manner that will maintain the temperature at or above temperatures prescribed in the treatment schedule, T412-a. When the plans and requirements are approved, construct the treatment facility accordingly. Advanced written approval from CPHST-AQI is required for any modification of the original plans.

**Step 2—Request Certification for a Treatment Facility**

The facility must submit a written request to APHIS-PPQ to request certification of a Niger seed treatment facility. The request should include the following:

- Names, addresses, and phone numbers of the facility, facility manager or supervisor, and plant construction engineer
- Assurance that the facility manager accepts responsibility for facility operations
- Assurance that the required equipment is on-site
- Data from at least two preliminary performance tests indicating the facility meets performance requirements for certification, including copies of completed recorder printouts

**Step 3—Conduct the Certification Test**

Initial certification testing will be conducted by CPHST-AQI in conjunction with PPQ. For the purpose of recertification, CPHST-AQI can delegate this responsibility to others.

**Equipment and Materials**

The treatment facility must supply the following equipment and materials in order to conduct a performance test for certification:

- Copy of plans and specifications showing dimensions and other details of heating and temperature recording systems
- Certified calibrated thermometer (temperature range to at least 270 °F (132.2 °C))
- Stopwatch and tape measure
- Temperature recording system to record temperature and treatment time

**Facility Standards and Specifications**

To qualify for certification/recertification, the treatment facility must conform to the following minimum standards and specifications:
Certifying Facilities  Certification of Niger seed Treatment Facilities
PPQ Regulation for the Entry of Niger Seeds into the United States

- An action plan to address any pests that may be associated with the storage, treatment, and shipment of Niger seeds
- Audible alarm or highly visible light on burners or other equipment to indicate that the treatment equipment is not operating properly
- Automatic and continuous heating controls throughout the treatment process (manual adjustments are allowed but must not negate the PPQ Form 480 guidelines)
- Gear systems used to control the Niger seed conveyor (if applicable) capable of being adjusted as needed to meet treatment requirements (the speed of the treatment conveyor cannot exceed the speed recorded on the PPQ Form 480)
- Permanent temperature sensors (minimum of 2) placed at the beginning and end of treatment area in the seeds at commercial treatment depth
  - Accuracy of the temperature recording system and permanent sensors must be within plus or minus 0.5 °F (0.3 °C) of true temperature
- Portable temperature sensors (provided by facility or certifier) accurate to plus or minus 0.1 °C and calibrated at least once a year. The sensor must come with a calibration sheet containing correction factors not to exceed plus or minus 0.1 °C. Apply the calibration factors to the portable sensor readings.
- Proper sanitation measures to ensure there are no potential breeding grounds for pests on the premises and therefore, little risk of reinfestation or cross-contamination
- Recording system capable of recording temperature readings on a recorder printout in time intervals not exceeding 4 minutes between reading
- Secure valves and controls that affect heat flow to the treatment system to avoid manipulation during the treatment process by unauthorized personnel
- Seed processing equipment with the ability to divert for retreatment any untreated or treated seeds that do not meet treatment standards
- Speed indicator located on the conveyor for continuous treatment areas
- System to divert any untreated seeds away from the treated seeds (DO NOT mix treated and untreated seed)
Treated seeds stored in a location separate from the untreated seeds. The treated and untreated seeds must be handled in a manner to prevent cross-contamination.

**Important**
The appropriate permits and approval to import Niger seeds must be approved by PPQ Permit Unit prior to shipping the commodity to the United States.

### Step 4—Certification of the Treatment Facility
Use the following steps to obtain certification:

1. Record the speed of the belt before Niger seeds are in the treatment area. Place an object at beginning of belt. Use a stop watch or digital watch to record the time for the object to go from the beginning to end of treatment area. The speed must be 15 minutes or greater.

2. Attach approved portable temperature sensors (minimum of 2) to the facility permanent sensors to duplicate the same angle and depth as the permanent sensors (the sensors are located at the beginning and end of the treatment area.)

3. Niger seeds must be at maximum depth during the certification.

4. Treat the seed at 248 °F/120 °C for four or more hours. Seed that passes the certification is considered a positive treatment. The treated seed must pass TZ (tetrazolium) testing as stated in the work plan or compliance agreement.

5. Record the hertz or RPM of the treatment conveyor belt speed during certification. Verify that the speed indicator has been calibrated during the past year. Record the speed of the treatment conveyor belt on the PPQ Form 482.

6. Record the time that the treatment started and stopped on the portable sensor printout and facility recorder printout.

7. Check the system to verify that no cross-contamination has occurred.

8. Place the treated seed in new bags or store in silos designated for treated seed.

9. Verify that all portable sensors recorded 248 °F/121 °C or higher during the 4 or more hour treatment.

10. Ensure compliance with the latest work plan or compliance agreement.

11. Repeat treatment if the certification fails.
If treatment standards are not met during performance testing, APHIS will not certify the facility. Provide a copy of the data sheet with explanation as to why the test was not acceptable to the facility operator for corrective action.

Certification of the Niger facility and equipment will be given after a successful treatment has been recorded (4 or more hours at 248 °F/120 °C). Upon certification, APHIS will issue a Certificate of Approval (PPQ Form 482). The conditions of approval must contain the following:

- Must operate under the latest work plan or compliance agreement
- Treat the seed for at least 15 minutes at a temperature of at least 248 °F/120 °C. Temperatures below 248 °F/120 °C will nullify the treatment.
- Treatment conveyor belt must operate at a speed not to exceed (x) Hertz or (x) RPM (x = speed of treatment conveyor belt)
Certifying Facilities

Certification of Forced Hot Air and Vapor Heat Treatment Facilities

Contents

Introduction 6-7-1
Plan and Process Approval 6-7-2
Preliminary Performance Testing 6-7-3
Official Certification Testing 6-7-4
  Calibrating the Sensors 6-7-4
  Thermal Mapping 6-7-5
Conducting a Test Treatment 6-7-6
Certification 6-7-7
  Verification of Sensor Calibration 6-7-7
Documentation 6-7-7
Contact Information 6-7-8

Introduction

Forced hot air (FHA) and vapor heat (VH) treatment facilities must be certified by a qualified APHIS inspector. For brevity, “certification” and “re-certification” will both be referred to as “certification” in this chapter.

For foreign treatment facilities, the physical location of the facility must be approved by the USDA APHIS PPQ Preclearance and Offshore Programs (POP). Domestic treatment facilities are approved by PPQ Field Operations or other entity defined in the workplan. After PPQ or POP approves the facility location and prior to the first facility certification, USDA-APHIS-PPQ-S&T-CPHST-AQI must approve the plan and process description. Facilities must conduct tests prior to APHIS certification to ensure that the chamber meets treatment requirements. Certification tests must be carried out prior to treatment at the beginning of the shipping season once per year or whenever APHIS determines that a malfunction or alteration in the system warrants a certification test.

Certification will be granted on the basis of the ability of the chamber to meet treatment requirements, extent and condition of phytosanitary safeguards, sanitary (human health) conditions, and safety conditions. Facilities must be certified for each species (in some cases each variety or subspecies) of fruit,
each chamber load configuration (half full, quarter full, etc.), and, for some species, each size class of fruit treated. For example, mango and papaya are separate species and must be certified separately.

Facilities should be aware that certification may **not** be the only condition under which they may treat fruit for shipment to or within the United States. In addition to certification, there are other requirements such as operational workplans, compliance agreements, and import permits that must be satisfied prior to treatment. Treatment facility managers outside the United States should contact POP. Managers of facilities in the United States or its territories should contact their local PPQ office for a complete list of requirements.

**Plan and Process Approval**

Prior to the start of facility construction, a detailed plan of the facility's physical characteristics and a written, step by step, description of all the processes related to treatment must be approved by **USDA-APHIS-PPQ-S&T-CPHST-AQI** (all plans and supporting materials must be submitted in Standard English). Plans and process descriptions for facilities within the United States and its territories must be submitted through the local PPQ office. Facilities outside the United States should consult POP for the appropriate plan submission procedure.

At a minimum, plans must include the following information as diagrams and/or written descriptions:

- Areas designated for fruit arrival
- Areas designated for loading of treated fruit
- Areas for storage of untreated fruit
- Crates, lugs, bins, etc., that will be used to hold fruit during treatment, including total volume and projected fruit capacity
- Delineations of area(s) for storage of treated and untreated fruit
- Description of all processes related to treatment of fruit. These descriptions should reference diagrams with numbers where appropriate
- Hot water bath used for sensor calibration must have an accuracy of ±0.3 °C (0.5 °F)
- Physical location of facility
- Post-treatment cooling system
- Post-treatment packing
- Pre-treatment sorting and grading areas
Certifying Facilities  Certification of Forced Hot Air and Vapor Heat Treatment Facilities

Preliminary Performance Testing

- Reference thermometer must be approved by USDA-APHIS-PPQ-S&T-CPHST-AQI or listed in Appendix E of this manual. Calibrate reference thermometers once per year using an approved company listed in Appendix E of this manual.

- Systems designed to ensure phytosanitary security of the treated fruit

- Systems designed to ensure water which comes into contact with fruit is free of microbial or any other contaminants that may adversely affect human health

- Temperature recording system requirements
  - Permanent and portable sensors and the temperature recorder must have an accuracy of ±0.3 °C (0.5 °F) and must be approved by USDA-APHIS-PPQ-S&T-CPHST-AQI or listed in Appendix E.
  - Permanent sensors issued by the chamber manufacturer (not portable sensors) must be platinum 100-ohm resistive thermal detectors (RTD). The sensor unit must be within the distal 1 inch (2.54 cm) of the sensor. The sensor must have an outer sheath of 0.25 inches (6.4 mm) or less in diameter.
  - Recorder must be capable of printing the date, time, temperature (°F or °C), and alarms.

- Treatment chamber including heating system, crate arrangement within the chamber, and air flow

The number of permanent sensors is determined by the facility manufacturer. The APHIS official is responsible for facility approval and has the option to increase the number of permanent sensors as determined during chamber certification.

The process of reviewing the plans and process descriptions may take as long as sixty days and subsequent requests for additional information may further extend this time. Facilities should take this time constraint into account when developing a project timeline. Facilities will receive a letter granting plan approval or describing plan deficiencies. Plan approvals expire one year from the approval date if the facility has not been certified.

Preliminary Performance Testing

Following plan approval, the facility should be built according to the facility engineered plans. If deviations from the plans (including changes to the heating and temperature recording systems) are necessary, USDA-APHIS-PPQ-S&T-CPHST-AQI must approve these changes. Submit changes in a manner similar to that described in Plan and Process Approval.
After construction is completed, the facility must be tested to be sure it can meet all treatment requirements. These trials should test the ability of the treatment chambers to heat a full (maximum) load of fruit to according the treatment guidelines. Any problems or deficiencies found in the facility must be corrected and the preliminary tests must be re-run until all treatment requirements are met. After the facility representative is satisfied that the treatment system is running properly and can fully meet treatment requirements, they must submit results of the test to Preclearance and Offshore Programs or the local APHIS office for review.

Facilities will be provided with specific requirements as part of the plan approval letter. General requirements for test result submission are as follows:

- Amount, type, and size of fruit in load and in each crate
- A diagram of chamber that shows location of each permanent sensor
- Time and temperature data from the test run(s)

After POP reviews the results from the preliminary performance test, they will issue an approval or rejection letter. If approval is granted, the facility representative can then schedule an official certification test.

**Official Certification Testing**

The official certification test has two main components:

1. Calibrating the portable and permanent sensors
2. Thermal mapping (cold spot mapping)

These steps are discussed below in detail. Complete a certification test for each combination of fruit species, chamber load configuration, and, in some cases, fruit size class.

**Calibrating the Sensors**

If the facility is outside the United States, it is the responsibility of the exporter to provide sensors for the certification procedure. Temperature sensors can be either permanent or portable.

---

**NOTICE**

Use only sensors approved by USDA-APHIS-PPQ-S&T-CPHST-AQI. Refer to Appendix E for a list of approved sensors.

The number of portable and permanent sensors is determined by the APHIS certifying official. The APHIS official has the option to increase the number of sensors required.
Calibrate temperature sensors in a swirling hot water bath with a factory calibrated certified reference mercury, non-mercury, or digital thermometer with 0.1 °C (0.2 °F) graduations as a standard. The temperature of the swirling hot water bath must consistently read the treatment temperature on the certified reference thermometer. Place temperature sensors into the hot water bath and keep them there until the certified reference thermometer reads the treatment temperature for 10 consecutive minutes. After the temperature stabilizes, remove the sensors and read the data. Do not use any sensor that deviates by more than ±0.3 °C (0.5 °F) from the treatment temperature. Record the greatest deviation for each sensor as the correction factor for that sensor. Any sensor that cannot be calibrated or repaired may not be used.

Thermal Mapping

Thermal mapping determines the placement of sensors in the chamber. Because the sensors will be placed in the coldest areas of the chamber, this process is also referred to as “cold spot mapping” or “cold spot testing”. The sensors are placed throughout the chamber and the treatment is conducted. The sensors that took the longest time to record treatment temperature represent colder areas of the chamber. The thermal mapping procedure is as follows:

1. Based on basic thermodynamics and data from the preliminary performance test, develop hypotheses about which regions of the chamber are most likely to have cold spots. This will be based primarily on the direction of the air flow in the chamber. Chambers in which air flows in a single vertical direction will generally have cold regions in portions of the load that come into contact with the heated air last. For example, if the chamber delivers hot air from the bottom, the top of the load is likely to take longer to heat up because the fruit at the bottom absorbs heat first. In chambers where the air flow changes direction or the air delivery is horizontal, it may be more difficult to form these types of hypotheses.

2. The fruits selected for the test must be similar in size, ripeness, and variety. Sort the fruit and select a subset totaling the number of sensors plus 20 percent. The difference between the heaviest and lightest fruit must not be more than 5 percent or higher (at the discretion of the certifying official) of the heaviest fruit’s weight.

3. Place one sensor in each of the largest fruit collected. Place the most sensitive portion of the sensor in the area of the fruit pulp most resistant to temperature change, usually the center of the fruit or close to the pit.

Refer to Appendix E for a list of approved digital thermometers.
4. Based on the hypotheses formed in #1 above, place the majority of the sensors in the areas thought to be cold regions. In order to verify the hypothesis, place a portion of the sensors in the areas thought to be warmer. If no hypotheses were formed in #1 above, sensors must be placed in a systematic pattern that can provide a complete thermal map of the entire load.

**NOTICE**

Each chamber may require a different number of sensors depending on factors such as the chamber size, chamber dimensions, air flow patterns, and size and species of the fruit. Typically, a chamber approximately the size of a standard 40 ft. shipping container will require about 60 sensors.

5. Create a map of the chamber that shows the relative horizontal and vertical location of each sensor.


7. Remove the sensors and read their data.

8. Determine the amount of time each sensor took to reach treatment temperature. The sensors which required the longest time to reach treatment temperature indicate cold spots.

**NOTICE**

All sensors must reach treatment temperature.

9. Create a map of the cold spots based on the map created in step #5 and the analysis completed in step #8.

10. Repeat this process for each load/volume configuration to ensure that correct and consistent cold spots are found. Results from the two consecutive tests must be similar.

11. Based on the conclusion of two consecutive tests, create a map showing the location of each permanent temperature sensor for each load/volume configuration.

**Important**

If thermal mapping shows that difference in the time required to reach treatment temperature between any two sensors is greater than 2 hours, the chamber will **not** be certified.

A facility cannot perform a commercial treatment between recertification tests.

---

**Conducting a Test Treatment**

Conduct a test treatment in order to verify that the chamber is capable of meeting treatment requirements and for any of the following situations:

- A new facility is approved
The heating system is changed
The recording system is changed

Test treatments are only required for the maximum load/volume configuration that the facility will be certified for and may be done in conjunction with the thermal mapping. The procedure for conducting a test treatment is as follows:

1. Place sensors in areas of the load that are thought to be cold spots (based on thermal mapping data).
2. Conduct the treatment.
3. During treatment, inspect the outside of the chamber to ensure it is free of leaks, is operating smoothly, and generally is in good working order.
4. After treatment is completed, review the temperature logs. All sensors must have reached the treatment temperature.
5. After a successful test treatment, continue to Certification section.

Certification

Upon successful completion of the facility certification test (as indicated by completion of the APHIS Form 482), the commercial treatments can begin.

A certification test is required once a year, usually at the beginning of the shipping season, if a new heating or recording system is approved, or whenever the system has a malfunction, breakdown, or other failure (excluding malfunction of temperature sensors.)

Verification of Sensor Calibration

Verify the integrity of the temperature sensors daily using the process described in Calibrating the Sensors on page 6-7-4.

Calibration can also occur whenever any part of the permanent temperature recording system fails or is replaced, or at the discretion of the APHIS inspector.

Documentation

All tests performed during certification must be documented by the APHIS official. A copy of the signed APHIS Form 482, copies of all thermal maps, description of load size limitations, description of any other special limitations placed on the treatment, and any other pertinent addenda or appendices, must be sent to USDA-APHIS-PPQ-S&T-CPHST-AQI for final approval.
Contact Information

**USDA-APHIS-PPQ-S&T-CPHST-AQI**

1730 Varsity Drive, Suite 300  
Raleigh, NC 27606

Tel: 919-855-7450  
Fax: 919-855-7493

**Preclearance and Offshore Programs**

Director, Preclearance and Offshore Programs  
USDA, APHIS, PPQ, POP  
4700 River Road, 4th Floor  
Riverdale, MD 20737

Tel: 301-851-2281
Introduction

Certification of irradiation facilities ensures that each facility’s equipment and personnel are able to safely, accurately, and consistently administer the required minimum absorbed dose (MAD) to all components of the commodity. This chapter describes the process and requirements for certification of facilities that irradiate agricultural products for import into or movement within the United States.

Facilities, exporters, and others interested in the administrative and operational processes for establishing irradiation programs, applying for permits, and signing compliance agreements can find more information on this USDA APHIS PPQ web site.

PPQ officials reviewing plan approval applications or conducting certification and recertification activities must follow the guidelines in this chapter. If a PPQ official finds that a deviation from these guidelines is necessary, or if a facility requests a deviation, the PPQ official will direct the facility to develop...
a detailed proposal outlining the need for the deviation. The proposal will be forwarded to USDA APHIS PPQ S&T CPHST AQI for review. Following review, CPHST will make a recommendation to the Treatment Cross Functional Working Group (TCFWG) for a decision. The TCFWG will make the final decision on the proposal and the operational unit will communicate the decision to the facility. The process of reviewing a proposal may take as long as 60 days.

Pre-Certification Requirements

Prior to starting any certification work, facilities located in the United States should contact USDA APHIS PPQ Field Operations to discuss the certification process and requirements. This discussion will help facilitate the certification process and processes associated with the establishment of an operational program.

Facilities located in countries other than the United States should contact the National Plant Protection Organization (NPPO) in their country to request information and certification to PPQ via official channels. Foreign facilities should not contact PPQ without first consulting with their NPPO.

Plan Approval Application

The first step in the certification process is a review of the “Plan Approval Application for Irradiation Facilities”. Contact USDA APHIS PPQ Field Operations for the Application. The Application collects information about the facility, including radiation source type and strength, standard operating procedures, facility diagram, and other information that helps PPQ understand how the facility operates.

Facilities located in the United States should send the completed Application to PPQ Field Operations. Facilities located in countries other than the United States must submit their Applications through their NPPO, which will then
forward the Application to USDA APHIS International Services (IS). The Application will then be forwarded to PPQ Phytosanitary Issues Management (PIM), and Preclearance and Offshore Programs (POP) (Figure 6-8-1).

![Figure 6-8-1 Flow Diagram for Plan Approval Application for Irradiation Facilities in Countries Other Than the United States](image)

The CPHST review may take as long as 60 days. Facilities are encouraged to submit their Applications well in advance of the desired certification date. Following review, CPHST will communicate the results of the review through the appropriate operational unit, including Field Operations and POP. The results may be approval of the Application or a request for additional information or clarification.

Once the Application is approved by CPHST, an onsite certification inspection can be scheduled. The appropriate operational unit will work with the facility to schedule a date for the certification inspection. CPHST will provide a copy of the Application, along with any notes or relevant information to the certifying official. This information will help prepare the certifying official.

Certification Requirements

Certification will include a review of the following:

- Dosimetry system
- Phytosanitary safeguards
- Standard operating procedures and documentation
- The facility structure
Treatment and certification records

Other processes, procedures, equipment or infrastructure that may affect treatment or safeguarding

Prior to conducting the certification activities, the certifying official must:

- Carefully review the Plan Approval Application to gain a full understanding of the processes, procedures, and systems used at the facility
- Develop an agenda with the facility to ensure that the official is able to observe or examine all the necessary minimum processes, procedures, and/or systems required for certification
- Familiarize themselves with the American Society for Testing and Materials (ASTM) standards that apply to the facility. See “ASTM Standards” on page-6-8-13.
- Review the standards for selection and calibration of dosimetry systems, estimating uncertainty, processing standards, and the standards specific to the routine dosimetry system

**Certification by the National Nuclear Regulatory Authority**

For facilities using radioactive isotopes, certification by the National Nuclear Regulatory Authority (NNRA) of the country in which the facility is located is one of the most important things to verify during certification. This certification is important because it indicates that the facility meets national and international standards for safety, security, and monitoring. In the United States, some States have agreements with the U.S. Nuclear Regulatory Commission (NRC) that allow agencies in those states to issue the certifications. Certifying officials who certify facilities must verify that the certificate issued by the NNRA is current.

**Approved Source**

Three sources of radiation are approved by APHIS for phytosanitary treatments:

- Electrons generated from machine sources up to 10 MeV (eBeam)
- Radioactive isotopes (gamma rays from cobalt-60)
- X-rays (up to 5 MeV)

The certifying official must verify that the facility is using one of these sources by examining the facility’s records and/or verifying that standard operating procedures (SOPs) are in place that ensure delivery of radiation at the appropriate energy level.
Dosimetry System

The routine dosimetry system is critical for accurate and precise measurement of dose. Measurements of dose may not provide assurance that the proper treatment was delivered if the dosimetry system is not properly configured, calibrated, operated by qualified individuals, and precise in the appropriate dose range. The certifying official must ensure that the dosimetry system, and the management and operation of that system, meet the requirements in this chapter.

The facility’s routine dosimetry system must follow guidance in ISO/ASTM standard 51261 “Standard Guide for Selection and Calibration of Dosimetry Systems for Radiation Processing” and other ASTM standards that specifically address the routine dosimetry system in use. Facility staff should be well-versed in the applicable standards and have copies on hand for reference. See “ASTM Standards” on page-6-8-13.

Absorbed Dose Range

The facility’s routine dosimetry system must be accurate and precise in the dose range required for PPQ treatments. When selecting a routine dosimetry system, facilities must follow guidance from dosimetry system-specific ASTM standards to determine which systems meet PPQ’s dose range requirements. For example, ISO/ASTM 51310 “Standard Practice for Use of a Radiochromic Optical Waveguide Dosimetry System” provides guidance that “The absorbed dose range is from 1 to 10,000 Gy for photons.”. Because this range includes the PPQ irradiation treatments, this is an acceptable dosimetry system. See “ASTM Standards” on page-6-8-13.

Calibration

Calibration of the routine dosimetry system is critical to measuring absorbed dose during routine treatments. Descriptions of calibration techniques and procedures can be found in ISO/ASTM standard 51261 “Standard Guide for Selection and Calibration of Dosimetry Systems for Radiation Processing”. Facilities must follow guidance in the procedures and techniques described in these standards or in equivalent standards recognized by the APHIS Administrator. The certifying official should review calibration procedures and documentation with the facility staff to verify that the routine dosimetry system has been calibrated using guidance from and adherence to the applicable ASTM standards.

All routine dosimetry system calibration must be traceable to the U.S National Institute of Standards and Technology (NIST). Facilities must keep records that show traceability of calibration to NIST, including certificates of calibration from NIST.

Uncertainty Estimates

Facilities must develop estimates of measurement uncertainty associated with routine dosimetry systems. Uncertainty parameters describe variability in measurement estimates and measurement correction factors can be calculated from these estimates. Each facility must follow guidance in ISO/ASTM 51707
“Standard Guide for Estimating Uncertainties in Dosimetry for Radiation Processing”. Certifying officials should review uncertainty estimates and related correction values with facility staff and verify that procedures used to develop the estimates and correction values follow guidance in the relevant ASTM standards. See “ASTM Standards” on page-6-8-13.

**Influence Factors**

Dosimetry systems can be influenced by factors that introduce error into estimates of absorbed dose. The influencing factors may include heat, humidity, or light, and the magnitude of the effects of these factors vary between dosimetry systems. Influencing factors are described in ASTM standards for specific dosimetry systems, such as ISO/ASTM 51310 “Standard Practice for Use of a Radiochromic Optical Waveguide Dosimetry System”. Facilities must follow guidance in these standards when developing procedures to mitigate the effect of influence factors on dose estimates. Certifying officials should verify that facilities are aware of the influencing factors with the potential to affect their dosimetry systems and have taken steps to minimize these effects and/or account for the effect in measurement estimates.

**Dosimetry Procedures**

The facility dosimetry staff should demonstrate important dosimetry procedures to the certifying official. These procedures should include, but are not limited to:

- Archiving dosimeters
- Calculating estimates of absorbed dose and applying correction factors
- Preparing and reading dosimeters
- Storage and handling of dosimeters
- Tracking dosimeters
- Verification of calibration

The certifying official should verify that these procedures match those in the facility’s SOPs and follow the guidance in the applicable ASTM standards.

**Standard Operating Procedures**

Irradiation facilities must have SOPs that fully describe processes related to treatment of APHIS regulated articles. Additionally, these SOPs must include documentation of important data and events. The SOPs and documentation are critical for ensuring that well designed processes are executed and that records show that the processes were followed. The certifying official should carefully examine the SOPs and documentation to ensure that they are being implemented. Additionally, the facility should demonstrate to the certifying official the procedures related to:

- Analyzing routine dosimeters and reporting results
Certifying Facilities
Certifying Irradiation Treatment Facilities
Certification Requirements

- Certification of treatment, releasing articles for shipping, loading articles into conveyances
- Creating configurations and placing routine dosimeters on configurations prior to treatment
- Emergency shutdown and natural disaster preparedness
- Inspection of conveyances
- Managing pest detections and disposal or destruction of infested and/or untreated articles (information on disposal and destruction for facilities in the United States can be found in the Manual for Agricultural Clearance)
- Maps of agricultural production areas within a four-square mile area (for U.S. facilities in AL, AZ, CA, FL, GA, KY, LA, MS, NV, NC, SC, TN, TX, VA)
- Pest trapping, monitoring, and control
- Post-treatment handling of articles and collection of routine dosimeters
- Receiving articles and preparing them for treatment
- Safeguarding or protecting articles from potential pest infestation pre- and post-treatment
- Verifying article, package condition, and package weights and labeling
- Other procedures the PPQ official deems appropriate

Change Control
All facilities **must** maintain a change control system for managing changes to SOPs and documentation. The change control system should be designed to capture information about changes to the SOPs and documentation. This system should collect information about:

- Details about the change to the SOP or document
- The person, or people, who authorized the change to the SOP or document
- The reason the change was made to the SOP or document
- When the SOP or document was changed

Additionally, the change control system **must** include processes for ensuring that old SOPs and documents are retired or no longer available for use.

The certifying official **must** review this system with the facility staff to ensure that the change control system is properly implemented.
PPQ has program specific data storage requirements that all facilities must meet. All facilities must store the following general records:

- Configuration and dose mapping records for each commodity that is treated
- Dosimetry system calibration records
- Ionizing energy source
- Operational Workplan(s) for the commodities treated at the facility
- PPQ Form 482, Certificate of Approval
- PPQ Treatment Schedule(s)
- PPQ Compliance Agreement
- Record(s) of training and credentials of facility employees
- Written agreements with participating packing houses (for facilities located outside the United States only)

Additionally, each facility must have a system for collecting and storing information related to each treatment. The following information must be stored for at least one year:

- Date of irradiation treatment
- Dosimetry data for each PPQ treatment
- Evidence of compliance with the prescribed treatment
- Irradiation processor’s certificate of treatment
- Lot number (except for interstate movement)
- Name and quantity of article treated
- Packinghouse code (PHC) assigned by the NPPO of the exporting country to the packinghouse where the articles were packed (except for interstate movement)
- Prescribed treatment
- Production unit code (PUC) assigned by the NPPO of the exporting country to the area where the articles were produced (except for interstate movement)
- Treatment identification number (TIN)

**Staff Training**

All facility personnel with treatment-related responsibilities must have received training in applicable standards, PPQ treatment requirements, applicable operational workplans, and facility SOPs and documentation systems. Training should be documented and available for review by the
inspecting official. Additionally, the inspecting official should evaluate the knowledge of facility staff by requesting that they demonstrate operations, as described in the Standard Operating Procedures section.

**Infrastructure**

Facilities may be designed and built to meet the needs of the operator and must meet international safety and security requirements. However, there are several PPQ specific requirements that must be met:

- **Inspection area**
  - The facility must have an area for inspection of articles and packages. Facilities located in the United States must have scales for verification of box and load weights. Facilities located outside the United States must be equipped with cutting boards, knives, magnifying glass, and scales for use by PPQ officials.

- **Internet connection**
  - The facility must have a high speed Internet connection that allows uninterrupted connection to the Irradiation Reporting and Accountability Database (IRADS).

- **Physical barrier between treated and untreated articles**
  - The facility must have a sturdy physical barrier that separates the areas where untreated and treated articles are present. The barrier may have a door for personnel or equipment to pass through. However, this door must remain closed when not in use.

- **PPQ workspace**
  - The facility must set aside an area for the PPQ official to work. This area should include a desk, chair, and access to high speed Internet.

The certifying official must verify that the infrastructure is in place and functional.

**Safeguarding**

Facilities must have phytosanitary safeguards in place to prevent pest infestation and movement of pests. Safeguarding requirements may vary depending on the location of the facility, the proximity of host crops, and the risk of pests associated with commodities treated at the facility. PPQ operational staff will develop safeguarding requirements for each facility based on the unique circumstances at each facility. However, safeguarding requirements frequently include measures such as:

- **Air curtains**
- **Cold storage areas**
Certifying Facilities  Certifying Irradiation Treatment Facilities
Certification Requirements

◆ Double doors
◆ Screens on windows
◆ Sealed cracks or holes that insects might move through

**Process Configurations**
During the certification activity, each facility must test at least one process configuration. This test must be observed by the certifying official. This initial test helps ensure that the facility fully understands the PPQ process configuration, testing, and approval process, and can successfully conduct the testing. Additionally, the configuration test also serves to provide evidence that the facility can deliver a dose in the required range.

Contact [USDA APHIS PPQ Field Operations](https://www.aphis.usda.gov/aphis/ourfocus/animalandplanthealth/sanitationandqualitycontrol/irradiation) for more information on process configurations.

**Facility Compliance Agreement**
Each PPQ certified facility must have a compliance agreement (or equivalent) in place prior to certification. There are three standard compliance agreements, one each for:

◆ Facilities in the United States that treat articles imported from foreign countries
◆ Facilities in the United States that treat articles for interstate movement
◆ Facilities located outside the United States

These standard compliance agreements may be modified to include information specific to a facility or specific risks associated with the articles that may be treated at the facility. Operational managers must review and approve modifications to the compliance agreements.

**NOTICE** Compliance agreements will be reviewed annually by PPQ.

**Important**
The compliance agreement between PPQ and the irradiation facility is different from the compliance agreement between PPQ and importers. Refer to the [USDA APHIS PPQ Irradiation web site](https://www.aphis.usda.gov/aphis/ourfocus/animalandplanthealth/sanitationandqualitycontrol/irradiation) for more information on compliance agreements with importers.
PPQ Form 482 Certificate of Approval
When the certification activity is complete and the certifying official is satisfied that all requirements are met, the certifying official will issue a PPQ Form 482 Certificate of Approval. This form is the official certificate, and once the facility receives the Form 482 it may begin routine treatments, provided it has a current compliance agreement.

The certifying official should send electronic copies of the PPQ 482 to USDA APHIS PPQ S&T CPHST AQI and USDA APHIS PPQ Field Operations.

Recertification
Periodic certification of irradiation facilities is not required. However, facilities will be recertified under the following conditions:

- Changes to operations or infrastructure
  - Examples include but are not limited to altering the manner in which articles are exposed to the source or changing dosimetry systems
- Change to the source
  - Examples include but are not limited to changes to the equipment that delivers radiation, changing the cobalt configuration, or increasing or reducing source strength not due to natural decay
- Management change
  - Change in management that results in new processes or procedures that change operations at the facility
- Problems with the facility
  - Examples include but are not limited to the inability to accurately measure dose or the failure or inability to follow SOPs or document processes

Facilities that are unsure if they require recertification should contact the appropriate operational unit.

Certified facilities must provide at least 90 days’ notice prior to making changes to the radiation source or changes to operations or infrastructure. Notice of change in management or problems at a certified facility must be made within 14 days. All information related to changes in source, occurrence of problems, change in management, and/or changes to operations or infrastructure should be detailed and specific, and clearly describe the situation and the steps the facility is proposing to address any issues.
Facilities located in the United States should send recertification notifications to **USDA APHIS PPQ Field Operations**. Facilities located in other countries must submit their recertification notifications through their NPPO, which will in turn forward it to APHIS IS. The information will then be forwarded to PIM and POP.

In some cases, recertification will not require an onsite recertification inspection. Operational staff will review requests for recertification and decide whether an onsite or remote recertification is appropriate.

**Adding Cobalt 60**

One of the most common reasons for recertification is the addition of new cobalt 60 to increase total source strength. When cobalt 60 is added to an irradiator, the facility must characterize the dose distribution of the new source configuration. Facilities must follow the source characterization as described in ISO/ASTM standard 51702 "Standard Practice for Dosimetry in a Gamma Irradiation Facility for Radiation Processing". Generally, the goal of this characterization will be to describe the dose distribution of the new source and its affects, if any, on the dose delivered to articles during treatment.

Facilities should send the written results of the source characterization to PPQ operational units when the characterization is complete. These results should include the following:

- A detailed and specific narrative that describes the characterization process that was followed
- Analysis of the characterization data along with a detailed and specific explanation of the analysis
- Proposed course of action, including proposed actions for changing existing process configurations
- The data from the characterization study

PPQ will review the characterization information and determine if the facility’s proposed course of action is appropriate and if the facility can be recertified.

---

**Audits**

Onsite audits of facilities may be performed from time to time by PPQ. These audits may cover a wide range of processes, procedures, and documentation at a facility. Facilities should be prepared to demonstrate operational procedures and have records available for review by the PPQ auditor. Audits will be conducted when operational units determine that they are necessary.
Electronic audits may also be performed by PPQ. These electronic audits will generally utilize data from the IRADS system to look for anomalies or indications that treatments are not being applied correctly.

Contacts

**ASTM Standards**
Copies of the ISO/ASTM methods may be examined at the USDA APHIS PPQ Headquarters Library located at 4700 River Road, Riverdale, MD, 20737. Copies of ISO/ASTM Standard Methods may also be obtained from the American Society for Testing and Materials, 100 Barr Harbor Dr., West Conshohocken, PA 19428-2959.

**USDA APHIS International Services (IS)**
A list of International Service offices is located on this web site.

**USDA APHIS PPQ S&T CPHST AQI**
Nichole Levang-Brilz
email: Nichole.M.Levang-Brilz@aphis.usda.gov

**USDA APHIS PPQ Field Operations**
Laura Jeffers
email: Laura.A.Jeffers@aphis.usda.gov
Introduction

*Agrilus planipennis* Fairmaire (Coleoptera: Buprestidae), commonly known as the Emerald Ash Borer (EAB), is a wood-boring insect that infests firewood. This destructive beetle attacks all North American species of Ash trees and has been detected in many states across the United States and Canada. For more information on the pest and a map of current quarantine areas, visit the [USDA Emerald Ash Borer web site](https://www.ars.usda.gov/engagement/eab/).  

The European Gypsy moth (*Lymantria dispar* L.) feeds on over 500 species of trees and shrubs. Potentially, all temperate hardwood growing areas of North America are at risk from attack by the gypsy moth. Despite all attempts to prevent its movement, the gypsy moth has been quite successful in increasing its range along the leading edge of the quarantine area. For more information on the pest and a map of current quarantine areas, visit the [USDA Gypsy Moth web site](https://www.ars.usda.gov/engagement/gypsy-moth/).  

Heat treatment is an approved treatment for these two common wood pests. The treatment must occur in a certified heat treatment facility. The purpose of this chapter is to provide guidelines for the certification of a heat treatment facility.  

Heat treatment facilities must be certified by a qualified PPQ official. For brevity, “certification” and “re-certification” will both be referred to as “certification” in this chapter.
Certification tests must be carried out prior to treatment to allow movement of wood from the current quarantine areas, or whenever a malfunction or alteration in the system warrants a certification test.

Certification will be granted on the basis of the ability of the chamber to meet treatment requirements, extent and condition of phytosanitary safeguards, and safety conditions.

Facilities should be aware that certification may not be the only condition under which firewood for shipment can be moved from quarantine areas. In addition to certification, there are other requirements that must be satisfied prior to treatment:

- An operational workplan
- A compliance agreement
- Appropriate federal, state or local permits

Treatment facility managers should contact their local PPQ office and/or local state departments of agriculture for state-specific requirements.

Plan and Process Approval

Prior to the start of the certification process for a new or existing facility, a detailed plan of the facility's physical characteristics and a written, step by step, description of all the processes related to treatment must be approved by USDA-APHIS. Plans and process descriptions must be submitted through the local PPQ office.

At a minimum, plans must include a description of all processes related to the heat treatment of firewood. These descriptions should reference diagrams with numbers where appropriate. Submit the following information as diagrams and/or written descriptions:

- Areas designated for:
  - Arrival and storage of untreated firewood
  - Loading of untreated and treated firewood
  - Storage of untreated and treated firewood
- Crates, bins, racks etc. used to hold firewood during treatment, including total volume and projected capacity
- Physical location of facility
- Post-treatment cooling system
Post-treatment packaging
Pre-treatment sorting and grading areas
Systems to ensure phytosanitary security of the treated wood
Treatment chamber including heating system, arrangement within the chamber, and air flow

The process of reviewing the plans and process descriptions may take as long as sixty days and subsequent requests for additional information may further extend this time. Facilities should take this time constraint into account when developing a project timeline. Facilities will receive a letter granting plan approval or describing plan deficiencies. Plan approvals expire one year from the approval date if the facility has not been certified.

**Official Certification Testing**

Following plan approval, facilities seeking certification must be tested to ensure they can meet all treatment requirements. If deviations from the plans are necessary, PPQ must approve these changes prior to testing (changes should be submitted in a manner similar to that described in “Plan and Process Approval”).

The official certification test has three main components: (i) calibrating the temperature sensors, (ii) thermal mapping (cold spot mapping), and (iii) conducting an actual test treatment. These steps are discussed below in detail. A certification test must be completed for each chamber load configuration.

**Calibrating the Temperature Sensors**

Only temperature sensors approved by USDA-APHIS may be used. Contact the PPQ personnel listed in [Contact Information on page 6-9-6](#).

Calibrate all temperature sensors prior to facility certification tests and a minimum of once annually thereafter. In addition, if a permanent temperature recording system is used, the system must be recalibrated when any part or portion of the system is repaired or replaced. Calibrations must be performed by the temperature sensor manufacturer or by manufacturer trained technicians. All temperature sensors must read within +/-0.5 °C (0.9 °F) of the treatment temperature.
**Thermal Mapping**

Thermal mapping determines the placement of permanent temperature sensors in the chamber. Because the permanent temperature sensors will be placed in the coldest areas of the chamber, this process is also referred to as cold spot mapping or cold spot testing. The process of thermal mapping is relatively simple; portable temperature sensors are placed throughout the chamber and the treatment is conducted. The sensors that took the longest time to record treatment temperature represent colder areas of the chamber.

---

**Important**

Each facility may require a different number of portable sensors depending on factors such as the chamber size, chamber dimensions, and air flow patterns. A facility that is less than or equal to 10,000 ft³ will require about 20 sensors for thorough temperature mapping. Contact the PPQ personnel listed at the end of this chapter for help in determining the number of sensors required for a facility larger than 10,000 ft³.

---

The thermal mapping procedure is as follows:

1. Drill holes a minimum of 4 inches deep into the ends of the largest pieces of wood. The diameter of the hole should be equivalent to the outer diameter of the sensor.
2. Place the sensors in the wood and in various locations throughout the entire chamber.
3. Create a diagram of the chamber that shows the relative horizontal and vertical location of each temperature sensor.
5. Remove the temperature sensors and analyze the temperature data.
6. Determine the amount of time each temperature sensor took to reach the treatment temperature. The temperature sensors that required the longest time to reach treatment temperatures indicate cold spots.
7. Create a map of the cold spots based on the map created in step #3.
8. Repeat this process for each load and volume configuration to ensure that correct and consistent cold spots are found.
9. Based on the thermal maps created in step #7, create a map to indicate where temperature sensors should be placed for each load and volume configuration during daily operational treatments.
Conducting a Test Treatment
A test treatment must be performed to verify that the chamber is capable of meeting treatment requirements. Test treatments are only required for the maximum load/volume configuration that the facility will be certified for and may be done in conjunction with the thermal mapping described above. The procedure for conducting a test treatment is as follows:

1. Place permanent temperature sensors in areas of the load that are thought to be cold spots (based on thermal mapping data).
2. Conduct the treatment.
3. After treatment is completed, review the temperature data from the temperature sensors. All temperature sensors must have reached the treatment temperature.

These trials should test the ability of the treatment chambers to heat a full (maximum) load of wood according to the treatment guidelines. Any problems or deficiencies found in the facility or with the treatment must be corrected and the tests run again until all treatment requirements are met. After the facility representative is satisfied the treatment system is running properly and can fully meet treatment requirements, test results must be submitted to USDA-APHIS for review.

The process of reviewing results from preliminary performance tests may take as long as 30 days. After USDA-APHIS-PPQ reviews the results from the preliminary performance test, a letter will be issued either approving or rejecting the results. Once the facility is approved, treatment and shipment may begin.

Frequency of Certification and Temperature Sensor Calibration
A certification test is required once a year, and/or whenever the system has a malfunction, breakdown, or other failure that requires modifications that alter the manner in which the system functions. This excludes the replacement of a faulty temperature sensor.

All temperature sensors must be calibrated at the discretion of the PPQ official, annually, or whenever any part of the temperature recording system fails or is replaced. Use the process described in the “Calibrating the Permanent Temperature Sensors” section of this chapter.
Documentation

All tests performed during certification must be documented by the PPQ official. A copy of the signed APHIS Form 482, copies of all thermal maps, description of load size limitations, description of any other special limitations placed on the treatment, and any other pertinent addenda or appendices, must be sent to USDA-APHIS-PPQ for final approval.

Contact Information

USDA-APHIS-PPQ
Federal Program Manager, Philip Bell
920 Main Campus Dr. Ste 200
Raleigh, NC 27606-5210
Phone: 919 855-7300
Philip.D.Bell@aphis.usda.gov

USDA-APHIS-PPQ
National Program Coordinator, Paul Chaloux
4700 River Road, Unit 137
Riverdale, MD 20737
Phone: 301-851-2064
Paul.Chaloux@aphis.usda.gov

USDA-APHIS-PPQ
Mitch Dykstra
2200 Garden Drive, Suite 200A
Seven Fields, PA 16046
Phone: 724-776-1270
Hazard Communication Standard

Safety Data Sheets

Contents

Overview 7-1-1
OSHA Requirements 7-1-1

Overview

Safety data sheets (SDS) provide information about hazardous chemicals that are used in the workplace. This information is necessary to safely handle hazardous chemicals.

OSHA Requirements

The Occupational Safety and Health Administration (OSHA) requires that the hazards of all chemicals produced or imported be evaluated, and information concerning chemical hazards be communicated to employers and employees by means of a comprehensive hazard communication program. A hazard communication program should include, but not be limited to, the following:

◆ Developing and maintaining a written hazard communication program for the workplace, including lists of hazardous chemicals present at the workplace
◆ Developing and implementing employee training programs regarding hazards of chemicals and protective measures
◆ Labeling of containers of chemicals in the workplace, as well as containers of chemicals being shipped to other workplaces
◆ Preparation and distribution of SDS to employees and downstream employers

Employers who do not produce or import chemicals need only focus on those parts of 29CFR 1910.1200 that deal with establishing a workplace program and communicating information to their workers. Refer to the OSHA Hazard Communication Standard for a general guide for employers to help determine the compliance obligations under the regulation. The Hazard Communication Standard includes the following topics:
◆ Becoming Familiar With the Rule
◆ Identify Responsible Staff
◆ Identify Hazardous Chemicals in the Workplace
◆ Preparing and Implementing a Hazard Communication Program
  ❖ Labels and Other Forms of Warning
  ❖ Safety Data Sheets (SDS’s)
  ❖ Employee Information and Training
  ❖ Other Requirements
◆ Checklist for Compliance
◆ Further Assistance
Emergency Aid and Safety

Guidelines for Managing Pesticide Spills

Contents

Guidelines for Managing Pesticide Spills 7-2-1
Introduction 7-2-2
Emergency Spill Procedures 7-2-3
Identify Contacts and Telephone Numbers 7-2-3
Evaluate the Situation (Take care of people first!!) 7-2-3
Safety and First Aid 7-2-4
Crash Notification 7-2-5
Contamination Control 7-2-5
Notification 7-2-6
Site Security 7-2-7
Cleanup Techniques 7-2-8
Decontamination 7-2-9
Post-Spill Procedures 7-2-10
Disposal of Contaminated Material 7-2-10
Environmental Monitoring 7-2-10
Reporting 7-2-10
Planning for Pesticide Spills 7-2-11
State Hazardous Waste Management Agencies 7-2-12
Accident or Spill Emergency Kit 7-2-17
Safety 7-2-17
Cleanup 7-2-18

Introduction

This document provides instructions for dealing with pesticide spills during program operations. “Pesticide spill” refers to any unplanned spill or leakage into the environment that occurs during storage, use, transport, or disposal of pesticide. Examples include aircraft and surface vehicular crashes, jettisoning pesticide cargoes from the air, and leaks or other equipment failures. After a pesticide spill, the responsible program person should evaluate the situation and begin appropriate corrective measures. (Use Figure 7-2-2 to identify your responsible program contact.)
The Officer-in-Charge (OIC), Contracting Officer’s Representative (COR), or other responsible program official should prepare a site-specific plan based on the generic plan, **Emergency Spill Procedures**. (Refer to **Figure 7-2-1** for an abbreviated plan. Make a copy of this figure, and keep it for your pocket reference.) Prepare the plan before program operations begin by filling in the names, telephone numbers, and other required information. Specific objectives of each plan include:

- Protecting people working in the spill area.
- Preventing or minimizing the risk of further pesticide exposure to people, animals, and the environment.
- Cleanup of the area and disposal or detoxification of residual material.
- Notifying Federal, State, and local government officials of the magnitude and details of the pesticide spill.
- Evaluation of the potential impact to the environment based on chemical residues found in environmental components.

---

**Responsible Program Contact (Name)**

(Work telephone number)

(Home telephone number)

**IF A PESTICIDE SPILLS TAKE THE FOLLOWING STEPS:**

1. **Evaluate.** (Take care of people first!!!)
2. **Safety and First Aid.** The most immediate concern is for the health and well-being of persons in and around the area.
3. **Call 911** for fire/rescue squad to obtain medical assistance for injured or contaminated persons.
4. **Contamination Control.** Consult pesticide label & MSDS for appropriate protective clothing and hazards (or CHEMTREC Emergency Hotline (800) 424-9300).

---

**Emergency Spill Procedures**

Use this section as your guide to prepare a site-specific plan for pesticide spills. (Please, complete the blanks for your specific program.) The following is a summary of factors you must consider when a pesticide spill occurs (details follow this summary):

- Identify Contacts and Telephone Numbers
Emergency Aid and Safety Guidelines for Managing Pesticide Spills

Emergency Spill Procedures

- Evaluate the Situation
- Safety and First Aid
- Crash Notification
- Contamination Control
- Notification
- Site Security
- Cleanup Techniques
- Decontamination

Identify Contacts and Telephone Numbers
You must know who to contact and where to call if a pesticide spill occurs. Figure 7-2-2 identifies preliminary information that you will need in case of an emergency. Fill in the blanks for your site-specific plan.

<table>
<thead>
<tr>
<th>(Program name)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Responsible Program Contact (Name)</td>
</tr>
<tr>
<td>(Work telephone number)</td>
</tr>
<tr>
<td>(Home telephone number)</td>
</tr>
<tr>
<td>Alternative Program Contact (Name)</td>
</tr>
<tr>
<td>(Work telephone number)</td>
</tr>
<tr>
<td>(Home telephone number)</td>
</tr>
</tbody>
</table>

Figure 7-2-2  Emergency Contacts for Pesticide Spills

Evaluate the Situation (Take care of people first!!!)

1. Injury/pesticide exposure. Refer to Safety and First Aid.
2. Vehicle or aircraft crash. Refer to Crash Notification.
3. Spill containment. Refer to Contamination Control.
**Safety and First Aid**

The most immediate concern is for the health and well-being of persons in and around the area.

1. Call 911 for fire/rescue squad to obtain medical assistance for injured or contaminated persons.
2. Evacuate the immediate area, if necessary get upwind.
3. Remove injured people from the area. (Do not move a seriously injured person unless absolutely essential because of the risk of further injury.)
4. Consult the pesticide label and/or MSDS for appropriate protective equipment and hazards.
5. Administer first aid as necessary. See the pesticide’s MSDS or contact the nearest poison control center. **Figure 7-2-3** identifies information that you will need in case of an emergency. Fill in the blanks for your site-specific plan.

```
(Center Name)

(Telephone)

Figure 7-2-3 Poison Control Center
```

6. Remove contaminated clothing and wash affected area with soap and water. If eyes are contaminated, flush with clean water.
7. If individuals experience pesticide poisoning symptoms (blurred vision, trembling, nausea, etc.) then transport them to the nearest medical emergency facility. **Figure 7-2-4** identifies information that you will need in case of an emergency. Fill in the blanks for your site-specific plan.

```

(Address)

(How to get there)

Figure 7-2-4 Medical Emergency Facility
```
8. Eliminate sources of ignition (e.g., pilot lights, electric motors, gasoline engines, or smoking) to prevent the threat of fire or explosion from flammable vapors.

**Crash Notification**

1. If the spill involved a vehicle or aircraft crash, contact the local police (911) as soon as possible.

2. If the spill involved an aircraft crash, notify the nearest Federal Aviation Administration (FAA) office. **Figure 7-2-5** identifies information that you will need in case of an emergency. Fill in the blank for your site-specific plan.

![Figure 7-2-5](Tel 1) Federal Aviation Administration (FAA) Office

**Contamination Control**

1. Consult the pesticide label and/or MSDS for appropriate protective clothing and hazards (or call the CHEMTREC Emergency Hotline at (800) 424-9300).

2. Try to contain the spilled pesticide at the original site, and prevent it from entering streams, rivers, ponds, storm drains, wells, and water systems as follows:

   A. If possible, reposition the pesticide container to stop further leakage.

   B. Prevent the spill from spreading by trenching or encircling the area with a dike of sand, sand snakes, absorbent material, soil or rags.

   C. If a liquid formulation spills, cover it with absorbent material; however, use absorbent sparingly, since it also becomes hazardous waste. Use no more than necessary.

   D. If a dry formulation spills, securely cover it with polyethylene or plastic tarpaulin to prevent tracking or airborne spreading of dust.
Notification

1. Notify by telephone state officials and the PPQ regional office. Headquarters management will be notified through normal channels.

2. Contact the local Community-Right-To-Know or Emergency Planning Coordinator (often the Fire Marshall). Figure 7-2-6 identifies information that you will need in case of an emergency. Fill in the blanks for your site-specific plan.

   (Name)
   (Telephone number)

   Figure 7-2-6 Community-Right-To-Know or Emergency Planning Coordinator (Fire Marshall)

3. Call the CHEMTREC Emergency Hotline at (800) 424-9300.

4. Notify by telephone the National Monitoring and Residue Analysis Laboratory (NMRAL) in Gulfport, Mississippi, Area Code (601) 863-8124 or (601) 863-1813. NMRAL will provide any supplies needed for sampling environmental components.

5. If the spill involves a large area (4 hectares (10 acres) or more) or you judge that it could affect a large area through runoff or other movement, notify the State Fish and Game Department or equivalent through appropriate channels. Figure 7-2-7 identifies information that you will need in case of an emergency. Fill in the blank for your site-specific plan.

   (Telephone number)

   Figure 7-2-7 Fish and Game Department

6. If animal poisoning may occur, notify the Regional Veterinary Services (RVS) Office. Figure 7-2-8 identifies information that you will need in case of an emergency. Fill in the blank for your site-specific plan.

   (Telephone number)

   Figure 7-2-8 Regional Veterinary Services (VS) Office
7. If the spilled product is a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) classified hazardous substance or a Superfund Amendments and Reauthorization Act of 1986 (SARA) Title III classified extremely hazardous substance, spills of active ingredient exceeding the reportable quantities may be reportable (see Appendix 8 for information on determining whether to report).

8. If you are unsure as to reporting under CERCLA or SARA look at the product’s MSDS or call the National Response Center (800) 424-8802 for CERCLA, and for SARA call (800) 535-0202.

9. Notify your Regional Safety and Health Coordinator. Figure 7-2-9 identifies information that you will need in case of an emergency. Fill in the blank for your site-specific plan.

(Telephone number)

Figure 7-2-9 Regional Safety and Health Coordinator

Site Security
Secure the spill site from unauthorized entry by roping off the area and posting warning signs. If necessary, request assistance from local police. Figure 7-2-10 identifies information that you will need in case of an emergency. Fill in the blank for your site-specific plan.

(Telephone number)

Figure 7-2-10 Local Police
Cleanup Techniques

The following are general techniques. You should consult local hazardous waste officials, the pesticide’s label, or its MSDS to determine specific cleanup and disposal techniques. (Refer to State Hazardous Waste Management Agencies for a list of local hazardous waste officials.) Figure 7-2-11 identifies information that you will need in case of an emergency. Fill in the blanks for your site-specific plan.

![Figure 7-2-11](local-hazardous-waste-official)

Adequate cleanup of spilled pesticides is essential to minimize health or environmental hazards. When cleaning pesticide spills, NEVER WORK ALONE. Be sure to ventilate the area and use appropriate protective equipment. Clean up dry spills (dusts, wettable powders, granular formulations) as follows:

- Immediately cover powders, dusts, or granular materials with polyethylene or plastic tarpaulin to prevent them from becoming airborne. If outside, weight the tarp ends, especially the end facing into the wind. Begin cleanup operations by rolling up the tarp while simultaneously sweeping up the spilled pesticide using a broom and shovel or dust pan. Avoid brisk movements to keep the dry pesticide from becoming airborne. When practical, lightly sprinkle the material with water to minimize dust. Always use an approved dust mask or respirator when working with dry pesticide materials.

- Collect the pesticide and place it in heavy-duty plastic bags. Secure and label the bags, properly identifying the pesticide and possible hazards. Set the bags aside in a secured area for disposal.

- Clean up liquid spills by placing an appropriate absorbent material (floor-sweeping compound, sawdust, sand, etc.) over the spilled pesticide. Work the absorbent into the spill using a broom or other tool to force the absorbent material into contact with the pesticide. Collect all spent absorbent material and place into a properly labeled metal drum for disposal.

Depending upon the pesticide, the size of the spill, and local conditions, you may need to remove the top 1-inch layer of contaminated soil with a shovel and dispose of it.
**Decontamination**

As soon as practical, decontaminate crashed aircraft, wrecked vehicles, and pavements. See the pesticide’s MSDS or label for specific instructions. For aircraft, coordinate with investigating officials and FAA authorities. For automobile wrecks, coordinate with appropriate law enforcement agencies or investigative bodies.

Chlorine bleach, caustic soda (lye, sodium hydroxide) detergents, or burnt or hydrated lime effectively decontaminate most spill areas (see attached MSDS sheets for precautions when using these substances).

Spread decontaminates thinly and evenly over the spill area. Then, lightly sprinkle the area with water to activate the decontaminate. Repeat the cleanup procedures until all the spilled pesticide is removed.

Clean all equipment used for spill cleanup with detergent and appropriate decontaminates. Collect all used decontaminates and rinse water and place them in labeled metal drums. Place clothing and gloves that cannot be decontaminated in the drums for proper disposal.

It may also be necessary to completely remove and dispose of contaminated porous materials.

If pesticides have leaked or spilled on the soil, removal of the visibly contaminated soil (top 1-inch) may be required using a shovel. In such cases, place the contaminated soil in metal drums for disposal. Chemical analysis of monitoring samples may govern removal of additional soil.
Post-Spill Procedures

Disposal of Contaminated Material
You may contact the pesticide’s manufacturers for specific instructions regarding their product. Also contact the State or Federal EPA office with jurisdiction over the pesticide spill location about disposal, and consult with the U.S. Department of Transportation (DOT) prior to shipping/transporting across state lines. Shipping by licensed transporters may be required.

In general, place contaminated materials in sealed leak-proof metal disposal drums. Label all drums properly and dispose of in an approved hazardous waste disposal facility (incinerator, landfill site, etc.) under current EPA or State permit. The pesticide’s labeling and MSDS contain specific information concerning disposal.

Environmental Monitoring
After cleanup and disposal, if the pesticide spilled into the environment, collect environmental monitoring samples. see M390.1403, Collecting Environmental Monitoring Samples for specific instructions. Contact the Region and request an Environmental Monitoring Coordinator if you need help with sample collection.

Reporting
Report information regarding pesticide spills in accordance with the program’s specific monitoring plan, and as required by state and federal law. In general, reports should include:

1. Detailed map with the site of the pesticide spill clearly marked.
2. Information on location, time, spill area, terrain, pesticide spilled, how spill occurred, and how managed.
3. Any other information the writer deems pertinent to the pesticide spill.

Upon completion of the chemical analyses NMRAL will report its findings to Technical and Scientific Services (TSS). TSS will include the spill residue data in its programmatic environmental monitoring report and distribute as appropriate.
Planning for Pesticide Spills

Pesticides vary in toxicity as described in the pesticide’s labeling and MSDS. Actions taken following an accidental spill will depend upon the pesticide toxicity involved. Always consult the labeling and MSDS for your program’s pesticides when planning for spills. Check the telephone book for the telephone number of the local poison control center and enter it on your plan.

The Environmental Protection Agency (EPA) under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA); Resource Conservation and Recovery Act (RCRA); and CERCLA or Superfund assigned the primary responsibility for enforcing safe pesticide use and disposal to most States. States may therefore acquire primary responsibility for determining pesticide spill, cleanup, and disposal procedures.

Not all States will perform or react to pesticide spills in the same way. Therefore the Port Director or COR should assist with cleanup, sample collection, sample analysis, securing affected area, etc. The Port Director or COR must monitor such activities to assure PPQ that the responsible parties take proper actions during and after a spill. Keep in mind that legal actions as a result of a pesticide spill may place liability on the cooperating Federal Agency.

Program Managers should inform the PPQ Assistant Regional Director’s office of procedures to follow when pesticide spills occur within their jurisdictions so they may support field operations when needed. The Port Director, COR, or Senior Staff Officer for any given PPQ operation, is responsible for implementing pesticide spill procedures. These officers must be familiar with these guidelines and should make contingency plans for such pesticide spills in advance of field operations.

Useful information for completing your spill plan is found in the appendices to these guidelines. Copies of the MSDS (obtainable from the manufacturer) for your program’s pesticides should be included in your spill plan.
State Hazardous Waste Management Agencies

When a pesticide spill occurs, you should consult local hazardous waste officials, the pesticide’s label, and its MSDS to determine specific cleanup and disposal techniques. The following is a list of State Hazardous Waste Management Agencies:

**ALABAMA**
Land Division
Alabama Department of Environmental Management
P.O. Box 301463
Montgomery, AL 36130-1463
(334) 279-3050
Email: landmail@adem.state.al.us
http://www.adem.state.al.us/LandDivision/LandDivisionPP.htm

**ALASKA**
Division of Environmental Health
Pesticide Control
Alaska Department of Environmental Conservation
1700 E. Bogard Avenue
Building B, Suite 202
Wasilla, AK 99654
(907) 376-1870
(800) 478-2577 (toll free in-state)
http://www.dec.alaska.gov/eh/pest/factsheets.htm

**AMERICAN SAMOA**
No Listing Available

**ARKANSAS**
Hazardous Waste Division
Arkansas Department of Environmental Quality
5301 Northshore Drive
North Little Rock, AR 72118-5317
(501) 682-0565
http://www.adep.state.ar.us/hazardwaste/

**CALIFORNIA**
Department of Toxic Substances Control
1001 I Street
Sacramento, CA 95814-2828 or
P.O. Box 806
Sacramento, CA 95812-0806
(916) 255-3618 (if calling from outside CA)
(800) 728-6942 (if calling from within CA)
http://www.dtsc.ca.gov/

**COLORADO**
Hazardous Materials and Waste Management Division
Colorado Department of Public Health and Environment
HMWMD-B2
4300 Cherry Creek Drive South
Denver, Colorado 80246-1530
(303) 692-3300
(888) 569-1831
Emergency Response: (877) 518-5608
Email: comments.hmwmd@state.co.us
http://www.cdphe.state.co.us/hm/

**CONNECTICUT**
Hazardous Material Management Unit
Department of Environmental Protection
79 Elm Street
Hartford, CT 06106-5127
(860) 424-3000
http://www.ct.gov/dep/site/default.asp
Emergency Aid and Safety  Guidelines for Managing Pesticide Spills
State Hazardous Waste Management Agencies

DELWARE
Division of Air and Waste Management
Department of Natural Resources and Environmental Control
89 Kings Highway
Dover, DE 19901
(302) 739-9403
http://www.awm.delaware.gov/Pages/default.aspx

DISTRICT OF COLUMBIA
Hazardous Materials Division
District Department of the Environment
51 N Street, NE
Washington, DC 20002
(202) 535-2600
Email: ddoe@dc.gov
http://ddoe.dc.gov/service/hazardous-wast

FLORIDA
Division of Waste Management
Department of Environmental Protection
2600 Blair Stone Road, MS 4500
Tallahassee, FL 32399-2400
(850) 245-8705
http://www.dep.state.fl.us/waste/Default.htm

GEORGIA
Environmental Protection Division
Georgia Department of Natural Resources
2 Martin Luther King Jr. Drive
Suite 1152, East Tower
Atlanta, GA 30334
(404) 656-4863
(800) 241-4113
http://www.gaepd.org/

GUAM
Air and Land Programs Division
Guam Environmental Protection Agency
17-3304 Mariner Avenue
Tiyan, Guam 96913
1 - (671) 475-1658 or 1659
http://www.gepa.guam.gov/

HAWAII
Solid and Hazardous Waste Branch
Hawaii Department of Health
919 Ala Moana Boulevard, #212
Honolulu, HI 96814
(808) 586-4226
http://hawaii.gov/health/environmental/waste/index.html

IDAHO
Waste Management and Remediation
Department of Environmental Quality
1410 North Hilton
Boise, ID 83706
(208) 373-0502
http://www.deq.idaho.gov/
waste-mgmt-remediation.aspx

ILLINOIS
Bureau of Land
Illinois Environmental Protection Agency
1021 North Grand Avenue East
P. O. Box 19276
Springfield, IL 62794-9276
(217) 782-3397
https://www2.illinois.gov/sites/agr/Pesticides/Pages/default.aspx

INDIANA
Indiana Department of Environmental Management
Indiana Government Center North
100 N. Senate Avenue
Indianapolis, IN 46204
(317) 232-8603
(800) 451-6027
http://www.in.gov/idem/5217.htm

IOWA
Air Quality and Solid Waste Protection
Department of Natural Resources
Henry A. Wallace Bldg.
502 East 9th Street
Des Moines, IA 50319-0034
(515) 281-5918 (customer service)
(505) 281-8694 (24-hour number only for environmental spills)
Email: webmaster@dnr.iowa.gov
http://www.iowadnr.gov/index.html

KANSAS
Bureau of Waste Management
Department of Health and Environment
1000 SW Jackson, Suite 320
Topeka, KS 66612-1366
(785) 296-1500
Email: info@kdheks.gov
http://www.kdheks.gov/index.html

KENTUCKY
Division of Waste Management
Department of Environmental Protection
200 Fair Oaks Lane
Frankfort, KY 40601
(502) 564-6716
Email: waste@ky.gov
http://www.waste.ky.gov/
LOUISIANA
Louisiana Department of Environmental Quality
602 N. Fifth Street
Baton Rouge, LA 70802
(666) 896-LDEQ (5337)
Email: webmaster-deq@la.gov
http://deq.louisiana.gov/resources/category/hazardous-waste

MAINE
Bureau of Remediation and Waste Management
Department of Environmental Protection
17 State House Station
Augusta, ME 04333-0017
(207) 287-7688
Spills, Toll Free: (800) 452-4664
http://www.maine.gov/dep/rwm/index.htm

MARYLAND
Land Management Administration
Maryland Department of the Environment
1800 Washington Boulevard
Baltimore, MD 21230
(410) 537-3000
Emergency Toll Free (866) 633-4686
Email: webmaster@mde.state.md.us
http://www.mde.state.md.us/

MICHIGAN
Department of Environmental Quality
525 W. Allegan
Constitution Hall, 4th Floor, North
P.O. Box 30242
Lansing, MI 48909-7742
(517) 335-6010
Emergency Response:
(800) 292-4707 (within Michigan)
(517) 373-7660 (outside Michigan)
http://www.michigan.gov/deq/0,1607,7-135-3312---,00.html

MISSISSIPPI
Office of Pollution Control
Environmental Enforcement & Compliance Division
Department of Environmental Quality
515 East Amite Street
P.O. Box 2261
Jackson, MS 39225
(601) 961-5068
http://www.deq.state.ms.us/MDEQ.nsf/page/Main_Home?OpenDocument

MONTANA
Hazardous Waste Program
Department of Environmental Quality
Lee Metcalf Building
1520 E. Sixth Avenue
P.O. Box 200901
Helena, MT 59620-0901
(406) 444-2544
http://deq.mt.gov/Land/hazwaste

MASSACHUSETTS
Bureau of Waste Prevention
Department of Environmental Protection
One Winter Street
Boston, MA 02108
(617) 292-5500
http://www.mass.gov/dep/recycle/hazwaste.htm

MICHIGAN
Minnesota Pollution Control Agency
520 Lafayette Road
St. Paul, MN 55155-4194
(651) 296-6300
(800) 657-3864
24-hour Emergency Response:
(651) 649-5451
(800) 422-0798
http://www.pca.state.mn.us/index.php/waste/index.html

MISSOURI
Hazardous Waste Program
Division of Environmental Quality
Missouri Department of Natural Resources
P.O. Box 176
Jefferson City, MO 65102
(573) 751-3176
(800) 361-4827
Email: hazwaste@dnr.mo.gov
http://www.dnr.mo.gov/env/hwp/index.html

NEBRASKA
Department of Environmental Quality
1200 "N" Street, Suite 400
P.O. Box 98922
Lincoln, NE 68509
(402) 471-2186
Email: MoreInfo@NDEQ.state.NE.US
http://www.deq.state.ne.us/
### NEVADA
Bureau of Waste Management  
Division of Environmental Protection  
901 South Stewart Street  
Suite 4001  
Carson City, NV 89701-5249  
(775) 687-4670  

### NEW HAMPSHIRE
Waste Management Division  
Department of Environmental Services  
29 Hazen Drive  
P.O. Box 95  
Concord, NH 03302-0095  
(603) 271-3503  
Hazardous Materials Emergency Numbers:  
(603) 271-3899 (M-F 8:00 am - 4:00 pm)  
(800) 346-4009 (evenings and weekends)  

### NEW JERSEY
Chemical & Pollution Control/Waste Management  
Department of Environmental Conservation  
401 East State Street  
P.O. Box 414  
Trenton, NJ 08625  
(609) 633-1418  
Environmental Emergency: 1-877-WARNDEP  
(1-877-927-6337)  
[http://www.state.nj.us/dep/dshw/](http://www.state.nj.us/dep/dshw/)

### NEW MEXICO
Hazardous Waste Bureau  
New Mexico Environment Division  
2905 Rodeo Park Drive East, Building 1  
Santa Fe, NM 87505-6303  
(505) 476-6000  
[http://www.nmenv.state.nm.us/HWB/](http://www.nmenv.state.nm.us/HWB/)

### NEW YORK
Division of Hazardous Substance Regulation  
Department of Environmental Conservation  
625 Broadway  
Albany, NY 12233-0001  
(518) 402-8013  
DEC 24-hour Spill Hotline (800) 457-7362  
[http://www.dec.ny.gov/chemical/292.html](http://www.dec.ny.gov/chemical/292.html)

### NORTH CAROLINA
Division of Waste Management  
Department of Environment and Natural Resources  
1646 Mail Service Center  
Raleigh, NC 27699-1646  
(919) 508-8400  

### NORTH DAKOTA
Division of Waste Management  
Department of Health  
908 East Divide Avenue, 3rd Floor  
Bismarck, ND 58501-5166  
(701) 328-5166  

### OHIO
Division of Hazardous Waste Management  
Ohio Environmental Protection Agency  
50 West Town Street, Suite 700  
P.O. Box 1049  
Columbus, Ohio 43215  
(614) 644-2917  
Emergency Response Hotline (800) 282-9378  

### OKLAHOMA
Land Protection Division  
Department of Environmental Quality  
P.O. Box 1677  
Oklahoma City, OK 73101-1677  
(405) 702-5100  
[http://www.deq.state.ok.us/LPDnew/hwindex.html](http://www.deq.state.ok.us/LPDnew/hwindex.html)

### NORTHERN MARIANA ISLANDS, COMMONWEALTH OF
No listing available.
OREGON
Land Quality/Hazardous Waste Management
Department of Environmental Quality
811 Sixth Avenue
Portland, OR 97204-1390
(503) 229-5696
Oregon Emergency Response System
Toll Free: (800) 452-0311
http://www.oregon.gov/deq/Hazards-and-Cleanup/hw/Pages/default.aspx

PUERTO RICO
Environmental Quality Board
P.O. Box 11488
Santurce, PR 00910-1488
(809) 725-0439
— or —
U.S. EPA Region II
290 Broadway
New York, NY 10007
(212) 637-3660
Emergency Response: (787)-729-6826
http://www.epa.gov/epahome/violations.htm

SOUTH CAROLINA
Land and Waste Management
Department of Health and Environmental Control
2600 Bull Street
Columbia, South Carolina 29201
(803) 898-3432
Emergency Response: (888) 481-0125
http://www.scdhec.gov/environment/lwm/

TENNESSEE
Division of Solid and Hazardous Waste Management
Department of Environment and Conservation
5th Floor, L&C Tower
Nashville, TN 37243
(615) 532-0780
http://tennessee.gov/environment/swm/hazardous/

UTAH
Division of Solid and Hazardous Waste
Department of Environmental Quality
P.O. Box 144880
Salt Lake City, UT 84114-4880
(801) 538-6170
http://www.hazardouswaste.utah.gov/

Pennsylvania
Division of Hazardous Waste Management
Pennsylvania Department of Environmental Protection
Rachel Carson State Office Building
400 Market Street
Harrisburg, PA 17101
(717) 787-2814
http://www.depweb.state.pa.us/landrecwaste/cwp/view.aspx?a=1216&Q=442095&landrecwasteNav=/

RHODE ISLAND
Office of Waste Management
Bureau of Environmental Protection
Department of Environmental Management
235 Promenade Street
Providence, RI 02908-5767
(401) 222-2797
http://www.dem.ri.gov/programs/wastemanagement/

SOUTH DAKOTA
Division of Environmental Regulation
Department of Environment and Natural Resources
523 East Capitol
Joe Foss Building
Pierre, SD 57501
(605) 773-3151
http://denr.sd.gov/

TEXAS
Hazardous and Solid Waste Division
Texas Commission on Environmental Quality
P.O. Box 13087
Austin, TX 78711
(512) 463-7760
Spill Reporting (24-hr): (800) 832-8224
Email: ac@tceq.state.tx.us
https://www.tceq.texas.gov/permitting/waste_permits/ihw_permits/ihw.html

VERMONT
Waste Management Division
Department of Environmental Conservation
103 South Main Street, West Office Building
Waterbury, VT 05671-0404
(802) 241-3888
Emergency: (800) 641-5005
http://www.anr.state.vt.us/dec/wmd.htm
Accident or Spill Emergency Kit

The Port Director, COR, or their designee should have available a fully supplied pesticide emergency spill cleanup/decontamination kit with instructions for its use. The kit will have the label designation “For Use in Handling and Cleanup of Accident Pesticide Spills Only.”

Responsible officials should use their discretion as to what items will be stored in vehicles for immediate use. The following items should be immediately available for responding to a pesticide spill:

Safety

◆ First aid kit—bus and truck kit, (GSA #6545-00-664-5312, or equivalent)
◆ Fire extinguisher, 5-lb. size for class A, B, C fires

Accident or Spill Emergency Kit

The Port Director, COR, or their designee should have available a fully supplied pesticide emergency spill cleanup/decontamination kit with instructions for its use. The kit will have the label designation “For Use in Handling and Cleanup of Accident Pesticide Spills Only.”

Responsible officials should use their discretion as to what items will be stored in vehicles for immediate use. The following items should be immediately available for responding to a pesticide spill:

Safety

◆ First aid kit—bus and truck kit, (GSA #6545-00-664-5312, or equivalent)
◆ Fire extinguisher, 5-lb. size for class A, B, C fires
***Cleanup***

- One shovel, square-point, “D” handle (GSA 5120-00-224-9326, or equivalent)
- Twenty-five large, heavy-duty plastic bags with ties (GSA 8105-00-848-9631, or equivalent)
- Two pair, unlined vinyl rubber boots
- Four pair, disposable coveralls
- One 5-gallon water container
- Four pair, unlined vinyl rubber gloves
- Two approved respirators with approved pesticide canisters (Self-contained breathing apparatus must also be available in operations where methyl bromide is utilized.)
- One broom and dust pan
- One pint bottle of liquid detergent
- Two scrub brushes (GSA 7920-00-068-7903 or equivalent)
- One plastic cover or tarpaulin (to cover dry spills) (GSA 8135-00-529-6487, or equivalent)
- Twenty-five pound bag, absorbent material (GSA 7930-00-269-1272), or sweeping compound, sawdust, “kitty litter”, or other absorbent materials
- One large metal or heavy duty plastic garbage can with removable cover for storing contaminated materials for later disposal

![Important](image)

**Use this can to store the spill kit materials during transport.**

- Several sand snakes should be kept in storage areas

Obtain many of these items through the GSA Federal Supply System or from a local hardware store.
Contents

Thermal Conductivity Gas Analyzers  8-1-2
  Instrument Description  8-1-2
  Instrument Standardization  8-1-5
  Operation Procedures  8-1-6
  Maintenance  8-1-8
Infrared Spectroscopy Gas Monitoring Device  8-1-10
  General Operation  8-1-11
  Calibration and Service  8-1-13
Respiratory Protection  8-1-14
Detector Kits or Gas Samples  8-1-14
  Principles of Operations  8-1-14
Volatilizer  8-1-16
Air Velocity Measuring Instruments  8-1-18
  Anemometer  8-1-18
  Air Curtain Velocity  8-1-18
Auxiliary Pump  8-1-19
Manometers  8-1-21
  Open-Arm Manometer  8-1-21
  Digital Manometer  8-1-23
  Electronic Manometer  8-1-23
  Magnehelic® Pressure Gage  8-1-24
MityVac® Hand-held Vacuum Pump  8-1-25
  Usage  8-1-25
Phosphine Detector  8-1-25
  PortaSens Phosphine Detector  8-1-25
Photo Ionization Detector  8-1-26
Certified Precision Thermometers: Calibration Guidelines  8-1-27
Water Trap  8-1-28
Dupont™ Tyvec® Air Cargo Covers  8-1-30
Electrochemical Gas Sensor and Pyrolyzer  8-1-32
Fans — Introduction and Aeration  8-1-33
Thermal Conductivity Gas Analyzers

The thermal conductivity gas analyzer (T/C) is a portable instrument specifically designed to determine the concentration of gases under a tarpaulin or within a chamber during a fumigation. These fumigation gases include methyl bromide (MB) and sulfuryl fluoride (SF).

Instrument Description

Currently, there is one company that manufactures USDA-approved T/C instruments used during a PPQ-monitored fumigation. The Fumiscope® (Figure 8-1-1) Models D, 4.0, 4.2, and 5.1, are manufactured by Key Chemical and Equipment Co., Inc. on page E-1-31.

The Fumiscope® is lightweight, portable, and completely contained in a compact metal case. It contains a thermal conductivity cell, scale, gas pump, range switch, and gas flow meter. A gas drying tube is also included. For large enclosures, an auxiliary pump may be needed.

**Figure 8-1-1  Fumiscope® Models D, 4.0, and 5.1**

**Inlet**

The inlet tube connector is the gas inlet for the instrument. The sampling lines are 1/4" inner diameter (I.D.) and are connected to the inlet through the drying tube.

**Flow Rate Meter**

The flow rate meter indicates the gas flow rate in “simulated cubic feet per hour (SCFH).” Note: The flow rate should always be read at the middle of the ball.

**Flow Rate Adjustment**

The flow rate adjustment dial controls the air or gas flow rate by adjusting the pump. After connecting to the gas sampling line, adjust the flow rate upward until it reads exactly 1.0 SCFH.
Scale or Digital Display

The scale or digital display indicates the concentration of the fumigant in ounces per 1,000 cubic feet (milligrams per liter or grams per cubic meter). Record the gas concentration reading only after this meter stabilizes, which may take a minute or more (depending on the length of the tubing and whether an auxiliary pump is being used). Digital Fumiscope® models can indicate a range from 0 to 2999 ounces per 1,000 cubic feet.

Zero Adjustment Knobs

The zero adjustment knob is used to adjust the display to zero after the instrument has warmed up for at least 20 minutes. Set the Fumiscope to zero prior to taking a reading and after each reading.

The Model 5.1, has two knobs used to zero the display. The "Recenter Zero" red knob acts as a coarse zero adjustment and the "Zero Adjust" knob acts as a fine zero adjustment. (See Figure 8-1-1) Adjust the red "Recenter Zero" knob first to bring the display as close to zero as possible. Then adjust the "Zero Adjust" knob to set the unit on zero.

Figure 8-1-2  Fumiscope® Model 5.1

Line Switches

Line switches control the electrical supply to the pump and scale.

Fumigant Selector Switch

The fumigant selector switch changes the display to register either methyl bromide or sulfuryl fluoride (Vikane®).
**Exhaust Outlet**

Always connect an exhaust line to the exhaust outlet to carry gas away from the instrument and operator. When using the T/C unit in confined or poorly ventilated areas, recirculate the exhaust gas back to the fumigation space or exhaust it to the outside.

**Drying Tube**

Use drying tubes (filter tube) with a prepared chemical for removing certain contaminant gases or vapors that interfere with correct fumigant concentration readings. The tubes will contain a desiccant such as Drierite® (granules of anhydrous calcium sulfate), or Ascarite® (sodium hydroxide). Both are available from scientific supply houses. **Never mix Drierite® and Ascarite® in the same tube.**

When a drying tube is used, place a thin layer of glass wool or aquarium filter wool at the bottom and top of the tube to prevent small particles from sifting into the T/C unit. Using absorbent cotton or similar materials is not recommended. Cotton tends to pick up moisture and to become matted, and once matted, the cotton may restrict normal air flow, thus, adversely affecting the T/C unit’s operation.

Mount the drying tube vertically so the gas mixture moves through the drying material and does not pass over the top. The gas mixture will pass over the top of the drying tube when the tube is mounted horizontally (lengthwise).

**Drierite®**

Always use anhydrous calcium sulfate (Drierite®) to remove moisture from the gas sample. Insert the drying tubes in the gas sampling line just before the inlet connection. Drierite® should be fresh and frequently changed to ensure correct readings. Drierite®, blue in color when dry, turns pink when moisture is absorbed. Replace the Drierite® when most of it has turned pink. In extremely high moisture conditions, two Drierite® tubes can be connected in tandem. Close drying tube openings when not in use.

**Ascarite®**

T/C gas analyzers are sensitive to a number of gases other than MB. For example, CO₂ may be troublesome when fumigating fruit where kerosene heaters are placed under the tarpaulin to raise pulp temperatures, or with plant material packed in peat moss or subsoil. Correct MB gas concentration readings may be obtained if a CO₂ absorbent is used in the gas sampling line before the air-gas mixture enters the T/C unit. A CO₂ absorbent that can be
used is Ascarite®. Observe the poison warning labels on the containers when using Ascarite®. **Tubes containing Ascarite® should be clearly labeled,** “Warning—Avoid contact with skin, eyes, and clothing.”

During a fumigation of living plant products, such as plants, plant material, logs, wood and wood products, use tubes containing Ascarite® to remove carbon dioxide from gas samples. Used Ascarite® should be discarded per label instructions. Connect the Ascarite® tube between the Drierite® tube and the sample inlet. **Never mix Drierite® and Ascarite® in the same tube.** Replace Ascarite® when the granules begin to aggregate or become moist.

Because a chemical reaction will occur, *never* use Ascarite® when taking readings of SF.

**Instrument Standardization**

Instrument standardization is the first and basic operation. In order to standardize the instrument, do the following:

1. Connect the instrument to an electrical outlet with proper voltage and set the pump and meter switches to “on”; if inoperable, check fuse (replacements—Little Fuse or Buss #3AG 1/2 Amp.—should be kept on hand).

2. Attach the drying tube to the inlet port.
   A. Give the instrument a tightness test.
   B. A tightness test can be accomplished by placing a finger over the inlet of the drying tube; if the tubing and connections are tight, the flow ball in the flow meter should then fall to zero.

3. Warm up the instrument for 20 to 30 minutes.

   **Important**
   The manufacturer recommends that the analyzer be kept at the same temperature as the fumigated site. It may take up to two hours for the analyzer to acclimate if moved from extreme temperatures.

4. Adjust the gas flow rate to 1.0 SCFH by adjusting the flow rate knob.
   A. If the flow rate knob is turned counterclockwise too far, the pump will emit noises and cease to operate properly.
   B. When properly adjusted, the flow ball should float at the center mark, or slightly below it, on the calibrated glass cylinder.
   C. The pump now draws dry, fresh air through the T/C cell; the air enters via the inlet on the face of the instrument, passes through the cell, and leaves through the exhaust outlet.

5. Turn the zero adjustment knob to obtain a zero reading on the meter.
A. To obtain a stable zero reading, several additional adjustments during the first few minutes may be necessary.

If using Model 5.1, adjust the "Recenter Zero" red knob first, then adjust the "Zero Adjust" knob to zero.

Standardization is now complete and readings can be made of fumigant-air mixture drawn through the unit. At this point, it may be necessary to replace the desiccant.

The difference in the thermal conductivity of the fumigant-air mixture as compared with fresh air is measured electrically and indicated on the meter as concentration readings in ounces of gas per 1,000 cubic feet. T/C units used in PPQ must be calibrated for MB and/or SF by the manufacturer or an approved outside contractor prior to use. When fumigations are under even a small vacuum, readings will not be accurate.

**Operation Procedures**

Because of the variety of fumigation situations, some adjustments may be necessary to meet specific needs. Nevertheless, this outline should be helpful in establishing correct operational procedures.

The proper use of the T/C unit is discussed under two headings:

- Selecting operational site
- Measuring gas concentrations

**Selecting Operational Site**

The T/C unit should be at least 30 feet upwind from the fumigation site to allow the operator to function without the fear of accidental exposure to gas and to allow for easy exit in an emergency. It should be close enough to the fumigation site to avoid using unreasonable lengths of sampling lines, to allow for constant surveillance of the fumigation during testing, and to avoid interference with other activities in the area. Avoid excessive wiring length. When T/C unit readings in multiple locations are necessary, see that each location is the best available.

The T/C unit should be supported on a sturdy, level surface, outside the traffic pattern, and protected from wind, rain, excessive cold, and, in hot weather, sun. In some cases, temporary shelter such as a tarpaulin cover may be adequate. The gas concentration readings indicated by the T/C unit may be inaccurate unless the unit is placed in an area that is approximately the same temperature as the gas mixture in the enclosure being fumigated. If the temperature of the gas mixture within the fumigated enclosure is approximately equal to that of the ambient air outside the enclosure, the gas concentration readings indicated by the T/C unit’s meter will be generally more accurate. If there are great differences between the two temperatures, water vapor may condense inside
the gas sampling leads. Such condensation, if desiccant is saturated, can result in a lower than normal T/C meter reading, thus leading to the unnecessary addition of fumigant to compensate for the apparent shortage. Therefore, if vapor condensation appears inside the gas sampling leads, purge the line and move the T/C unit to a new location where the ambient temperature approximates that of the enclosure.

Most T/C units operate on 110 to 120 volts alternating current (AC). T/C units operating on 210 to 220 volts AC on direct current (DC) are available for overseas or other assignments as necessary. A converter is required to use DC. Keep extension wiring and gas sampling line length to a practical minimum and raise extension wiring above floor level when feasible.

As a protection for the cell and the pump of T/C units, **use a drying tube filled with Drierite® at all times.**

When taking gas concentration readings, first warm up the unit for at least 20 to 30 minutes depending on ambient temperatures. Then turn on the pump and adjust the gas flow meter to a 1.0 SCFH flow. Turn the zero adjustment knob to obtain a zero reading on the meter. If using Model 5.1, adjust the "Recenter Zero" red knob first, then adjust the "Zero Adjust" knob to zero.

The unit is now ready to measure gas samples drawn through labeled gas sampling lines from the area being treated. The meter will indicate gas concentrations in ounces per 1,000 cubic feet (grams per cubic meter).

![Important]

If monitoring lines are stored outside, water may accumulate in the leads after heavy rainfall.

If you observe water or suspect that there may be water in the sampling lines, install a water trap. **See “Water Trap” on page-8-1-28** for details on obtaining and using water traps.

Connect the gas sampling line to the Drierite tube using 1/4 inch ID polyethylene tubing. Allow sufficient time to draw a true sample. With 150 to 200 feet of 1/4 inch ID tubing and a temperature of 70 °F, a sufficient amount of time will be approximately 7 minutes. Stations equipped with small, auxiliary pumps can draw a sample through the same length of tubing in 12 to 15 seconds.

Wait until the analyzer reaches the maximum reading (at least thirty seconds) and does **not** move for thirty seconds. Ensure the flow meter still reads 1.0 SCFH. This is the gas reading. Record this reading on the PPQ Form 429.
Disconnect the sampling line and allow the pump to draw uncontaminated air through the T/C cell. The instrument should return to zero, however it may be necessary to re-zero the analyzer. Again, ensure that the flow meter reads 1.0 SCFH. **Always re-zero the analyzer before taking the next reading.**

After taking the final reading at the end of the fumigation, thoroughly purge the unit by disconnecting it from the gas sampling line and allowing the pump to draw fresh air through the instrument for several minutes.

**Maintenance**

If it is to function properly, the T/C unit requires the same attention as any other equipment. While the instrument is designed specifically for field use, the components, particularly the meter, may be damaged easily. To maintain an instrument capable of accurate gas concentration readings, careful handling is essential. If repairs are needed and are extensive, or the parts are not readily available, there will be a delay in returning the instrument. Should the need for a substitute T/C unit occur, the port should be prepared to obtain one from another source.

**Repair and Calibration**

Under normal service, the T/C unit will hold its calibration for a considerable length of time. To ensure all units are providing accurate gas concentration readings, recalibrate T/C units at least annually; calibrate more often if use is frequent.

Send the instrument by insured delivery service (ie. Federal Express, United Parcel Service, U.S. postal priority mail) to one of the contractors listed below. To prevent damage, the unit must be well-packed and shipped in a durable, tamper-proof box.

Prepare a memorandum to accompany each instrument explaining the need for sending the unit. Ensure all instruments are shipped with a proper return address, name of a contact person, and telephone number. The T/C unit will be calibrated for MB only, unless the PPQ office requests calibration for SF. **Notify the contractor if Ascarite® will be utilized during the readings, as the T/C must be calibrated using this type of absorbent.** All port locations will be responsible for payments to contractors.

Use one of the following contractors for repair and calibration:

Key Chemical and Equipment Co. (BPA# 45-6395-3-2872)
13195 49th St. North
Unit A
Clearwater, FL 33762
tel (727) 572-1159
tax (727) 572-4595
http://www.fumiscope.com/

Cardinal Professional Products (BPA# 45-6395-3-2871)
2675 W. Woodland Drive
Anaheim, CA 92801-2628
tel (714) 761-3292
tax (714) 761-2095
www.cardinalproproducts.com
Infrared Spectroscopy Gas Monitoring Device

Infrared spectroscopy is an accurate and efficient method for measuring methyl bromide gas concentrations. There is one unit currently approved for use by PPQ. The MB-ContainIR™ is manufactured by Spectros Instruments Inc., Hopedale, MA, and will be referred to in this document as the "Spectros." The Spectros is light-weight (9 pounds; 4 kg) and battery operated.

The Spectros uses a technology known as "non-dispersive infrared technology" (NDIR.) NDIR is based on Beer's Law (also known as Lambert-Beer Law or Beer-Lambert-Bouguer Law) that relates the absorption of light to the properties of the material through which the light is traveling. The Spectros is not affected by other volatile organic compounds such as carbon dioxide, eliminating the need for Ascarite™. Other benefits of the unit include:

- Audible and visible programmable alarm
- Battery powered and portable
- Measuring range for methyl bromide 0-240 oz./1000 ft³ (g/m³)
  - Sensitivity 0.16 oz./1000 ft³ (g/m³)
  - Accuracy 0.08 oz./1000 ft³ (g/m³)
- Operating temperature 32 °F - 122 °F (0 °C - 50 °C)
- Variable temperature compensation

The information and guidelines in this chapter are based on the Spectros Inc. Operation and Maintenance Guide. Contact Spectros for more detailed operating instructions or technical assistance.
Important points to remember:

- Install a water trap and particulate filter in-line between the fumigation site and the monitoring unit. See “Respiratory Protection” on page-8-1-14.
- This monitor is not and should not be used as a worker safety clearance device.
- This monitor is not set up to evaluate, test, or determine readings for other approved fumigants that PPQ uses, such as phosphine or sulfuryl fluoride.
- Do not operate the monitor in the presence of flammable liquids, vapors, or aerosols.
- Do not use soap and water to clean the monitor; use a dry cloth to clean the monitor.
- Maintain proper care and storage of the monitor when not in use.
- Use only batteries supplied by the factory.
- Operate the monitor at all times in a horizontal position. Operating the monitor in a vertical position may cause inaccurate measurements.
- Never operate this unit at or above 6,562 feet. (2,000 meters.)
- The monitor must be maintained free of moisture or other contaminants.
- Always place supplied filter on the gas sample line between the monitor and the sampling line.
- Always ensure that the direction of flow is correct for the supplied filter before using the monitor.
- Cap the ends of the gas sample lines to prevent the possibility of mists, aerosol, oil, water, dust, or other contaminants being drawn into the monitor.
- The maximum length of the gas sample line is 1000 feet.
- The monitor does not require Drierite if the measuring range is greater than 2 oz./1000 ft³.
- Return the monitor to the manufacturer for calibration every 6 months.

General Operation

Prior to taking gas concentration readings, follow the guidelines in Chapter 2-4 Methyl Bromide Tarpaulin Fumigation, Conducting a Fumigation, to ensure proper installation of gas sampling lines and circulation fans.

If not using direct current, ensure that the battery for the Spectros is fully charged before the fumigation begins. When using the Spectros in battery mode, press the "test" button and observe the number of LEDs that light up.

- Four green LEDs on the battery indicate that the unit is fully charged and monitoring can begin. A fully charged battery pack will power the monitor for 8-10 hours.
A red flashing LED on the battery indicates a low battery. Recharge the battery per manufacturer instructions before using for gas monitoring. Charging time is 3-4 hours for a fully discharged battery pack.

**Water Trap**
Install a water trap and particulate filter in-line between the fumigation site and the monitor in order to keep water from damaging the monitor. See “Water Trap” on page-8-1-28 for more information.

**Gas Sample Line**
Using 1/4-inch flex tubing, connect the gas sample line to the monitor by pushing the tubing onto the gas sample port on the front of the monitor. The gas sample line can be up to 50 feet in length and should be free of kinks or obstructions. If the gas sample line is longer than 300 feet, the instrument will display "FAULT" on the display screen. Ensure that the end of the line is positioned to prevent moisture or water intake, or utilize the filter element.

**Purge Air Line**
Connect the purge air line to the monitor by pushing the tubing onto the purge air port on the left side of the monitor. The purge line can be up to 100 feet maximum in length and should be in an area of fresh air. Ensure that the end of the line is positioned to prevent moisture or water intake, or utilize the filter element.

**Exhaust Line**
Connect the exhaust line to the monitor by pushing the tubing onto the exhaust port’s barbed fitting. The exhaust line can be up to 50 feet in length and should terminate outside the building. Ensure that the end of the tube is positioned to prevent moisture or water intake.

**Measuring Gas Concentration**
To turn on the monitor lift the shield in front of the handle and press the red power ON/OFF toggle switch. Allow the monitor to warm up for 15 minutes.

The WARM UP screen is displayed and the ON light (green) will blink. After 15 minutes the ON light will stop blinking and glows steady.

The data display screen will show:

ZONETEMP - enter temperature of the area being monitored in °C. The zone is the area where the monitor is being operated, rather than the temperature of the commodity undergoing fumigation

The factory default temperature setting is 25 °C.

If the monitor is turned off at any time during operation, the monitor will run through an entire 15 minute WARM UP cycle, regardless of how long the monitor has been running.

After the warm up period, the Data Display Screen will read either MEASURE or PURGE in the upper left corner of the screen.
MEASURE indicates the monitor is actively measuring gas. The measurement is shown in the lower section of the screen. The monitor measures up to 240 g/m³ with a sensitivity of 0.16 g/m³.

The measurement (reading) should stabilize (stop) before recording the reading. This may take one or more purge cycles depending on the length of the gas sample line.

The measurement cycle will run for 4 minutes before the purge cycle begins. When the display shows "PURGE", the monitor is resetting it’s infrared detector to baseline. The PURGE cycle runs for 10 seconds.

A zero reading indicates the concentration measured is below the lower limit of detection of 0.77 g/m³ (200 ppm approximately).

If kinks or obstructions occur in the line, the monitor may not function properly.

Check for crimped sampling lines. Make sure nothing is restricting the flow of either the inlet sample air, purge air, or the exhaust (return sample line).

**Calibration and Service**

Return the Spectros to the manufacturer every 6 months for a calibration check and service. Contact Spectros to obtain a Service Request Form and Return Materials Authorization Number (RMA). Ship the unit using an insured carrier.

**Contact Information**

**Spectros**

Spectros Instruments, Inc.
17D Airport Road
Hopedale, MA 01747
Phone: 508-478-1648
FAX: 508-478-1652
Website: www.spectrosinstruments.com
Email: info@spectrosinstruments.com

**CPHST-AQI-Raleigh**

USDA-APHIS-PPQ-S&T-CPHST-AQI
1730 Varsity Drive
Suite 300
Raleigh, NC 27606
Phone: 919-855-7450
FAX: 919-855-7493
Email: cphst.tqau@aphis.usda.gov
Respiratory Protection

Fumigation or other treatments conducted under the monitored conditions stated in this manual and other program manuals, are safe operations. The Occupational Safety and Health Administration (OSHA) has ruled that employees with possible exposure to pesticides (including fumigants) must be provided adequate respiratory protection from such exposure. Refer to Appendix G for detailed respiratory protection information. USDA employees may also refer to Chapter 11 in the APHIS Safety and Health Manual on the APHIS myportal web site for additional respiratory information.

Detector Kits or Gas Samples

Although thermal conductivity (T/C) units such as the Gow-Mac® and the Fumiscope® are used to measure concentrations of MB and SF in ounces per 1,000 cubic feet (milligrams per liter), concentrations of phosphine and some other fumigants cannot be measured with a T/C unit. However, they may be measured with detector tubes. Residual gas concentrations during commodities or enclosures aeration can also be determined for most fumigants with detector tubes.

Principles of Operations

Special pumps are used to draw a measured sample (usually 100 milliliters) of an air-gas mixture. The sample is drawn through 1 or 2 detector tubes where a chemical reaction with the tube reagent takes place, creating a stain. The length of the stain is proportional to the concentration of the gas. Measure the length of the stain by using a calibrated chart or by simply reading the number from a scale printed on the glass tube.

Gas detector tubes are manufactured with a constant reagent weight with corrections for variations in the diameter of each tube. Detailed operational instructions accompany the equipment.

The detector tubes are specific for each fumigant and are usually available from several manufacturers. However, it is advisable to use the pump supplied by the manufacturer of the tube used. In an emergency, detector tubes available under the trade names Auer, Draeger, Gastec, Kitagawa, and Mine Safety Appliances can be used with pumps manufactured by any of these companies provided they draw 100 milliliters. Because of the different diameters of the tubes sold by each manufacturer, adapters may be necessary. The Kitagawa pump uses a removable, stainless-steel micro-orifice to reduce the rate of air flow through many of its detector tubes. This provides greater accuracy in the chemical reaction within the tube. Remove the orifice when using tubes manufactured by other companies.
To increase shelf life, store tubes under refrigeration. Before each day’s use, test pumps as provided by instructions with each kit and make repairs as necessary. Keep spare parts and operational instructions with each kit for use as needed.

When many samples must be drawn to a common point during a large fumigation, an auxiliary pump can be used. If only one sample lead is involved, it may be necessary to pull the fumigant through the line by pumping several times. A used tube can be inserted in the pump to determine when the fumigant has reached the pump.
Methyl bromide must pass through a volatilizer (vaporizer) to ensure adequate conversion of liquid MB to gaseous MB. The volatilized fumigant should be introduced into or near to the air flow of the gas introduction fan. When 5 pounds or less of MB are used, a simple volatilizer can be made with a 25-foot coil of 3/8 inch O.D. (outer diameter) coiled copper tubing immersed in a container of hot water.

When amounts greater than 5 pounds are to be used, the copper tubing used in the volatilizer must consist of a minimum of 50 feet of 1/2 inch O.D. coiled copper tubing immersed in a container of hot water.

The volatilizer should be made of semihard copper tubing. It is important that gas be introduced and discharged as shown by arrows. If applied in reverse order, it may move so rapidly that some liquid will pass into the chamber.

Figure 8-1-4  Methyl Bromide Volatilizer Coil
The water in all sizes of volatilizers must be heated to temperatures of 200 °F or above with a minimum of 150 °F during the gas introduction process. A calibrated thermometer must be inserted into the water to determine the water temperature. The thermometer must be calibrated once per year by an approved calibration company. Written documentation of calibration must be present at the time of fumigation.

The line that runs from the from MB cylinder to the copper tubing in the volatilizer must be a 3000 PSI hydraulic high pressure hose with a 3/8 inch diameter ID (inner diameter) or larger. The line that exits the volatizer and runs into the enclosure must be a 350 PSI tubing with a 1/2 inch diameter ID or greater.

Figure 8-1-5  Tubing Specifications

The fumigant should be introduced through the tubing at the rate of 3 to 4 pounds of gas per minute. The gas introduction tube should feel hot to the touch as a good measure of satisfactory vaporization.
Air Velocity Measuring Instruments

**Anemometer**

Anemometers (wind meters) are used for measuring the air velocity of circulation fans and air curtains. Wind meters must be approved by the USDA-APHIS-PPQ-S&T-CPHST-AQI. Submit specifications of unapproved wind meters to CPHST-AQI for approval. Refer to *Air Velocity Measuring (Anemometer)* on page E-1-12 for a list of approved models.

**Fan Velocity**

The cubic feet per minute (cfm) of a fan can be measured by placing the anemometer 12 inches from the face of the fan to be tested. Take a minimum of three readings; one from the center and the others from points toward the outside of the fan. Average the readings. If an anemometer is used, each measurement should be for 1 minute, thereby giving the result in feet per minute. If a wind speed indicator is used, the reading in miles per hour should be converted to feet per minute by multiplying the miles per hour by 5,280 and dividing by 60.

Area of the fan is calculated by first measuring the radius (R)—distance from the center of the fan to the end of a blade. Formula for area is $\pi R^2$ where $\pi$ is equivalent to 3.14. The final answer should be given in cfm. Therefore, if the radius of the blade is given in inches and not feet, the factor $\frac{1}{144}$ must be multiplied in to convert square inches to square feet. The full formula would be: Feet per minute $\times R^2 \ (\text{in inches}) \times 3.14 \times \frac{1}{144} = \text{cfm}$.

**EXAMPLE:** If average air movement is 1,600 feet for 1 minute from a fan having a 7 inch radius (14 inch diameter), the calculations are as follows:

$$1,600 \times 7^2 \times 3.14 \times \frac{1}{144} = 1,700 \text{ cfm} \ (\text{approximate})$$

**Air Curtain Velocity**

The velocity of air curtains is also measured with an anemometer. Anemometers used in this capacity must meet the following specifications:

- Hand held
- Digital
- +/- 3 percent accuracy
Auxiliary Pump

During large-enclosure fumigations, it is necessary to take numerous gas concentration readings from various locations throughout the enclosure. Thus, some sample leads may be over 200 feet long. Pump the fumigant to the sampling point before making an accurate concentration reading using an auxiliary pump. If the inspector must rely on the pump provided with the gas sampler or T/C unit to pull the fumigant, a great deal of time will be needed between readings.

Because it pumps the fumigant from many areas and keeps a constant pull, the auxiliary pump will reduce sampling time to only the reading time.

Constructing a unit is relatively simple. Petcocks capable of accepting sample leads are tapped and soldered to a short length of pipe. This pipe is connected to the suction side of the pump. The pipe acts as a manifold. Opening or closing the petcocks allows the gas samples to be drawn as required. Connect an exhaust line of sufficient length to the pump to ensure the fumigant is removed from the sample area.

It is important that all soldering be done in such a manner as to provide gastight construction of the petcocks. The pump should be of sufficient size to pull one cubic foot per minute through all of the leads on the manifold. Therefore, the more leads, the higher the required capacity of the pump. Mount the whole unit on a board large enough to keep vibration to a minimum. Keep the unit weight down to allow easy transport.
Disconnect each sampling line from the auxiliary pump in turn, and close the petcock. Attach the line to the T/C unit or gas detector. Obtain a reading and reconnect the line to the auxiliary pump and open the petcock.

Figure 8-1-6  Auxiliary Pump
Manometers

Manometers are devices that can be used to measure pressure during a pressure-leakage test in a fumigation chamber. Pressure is defined as a force per unit area. Refer to Manometer (used in chamber pressure leakage test) on page E-1-36 for a list of commercial suppliers of manometers. Contact CPHST-AQI Raleigh1 for approval of manometers not listed in Appendix E. Select a model that encompasses the pressure range needed for pressure-leakage testing and that displays the results in the required units of measurement. Consult the operation manual of the specific manometer for complete information on operation and maintenance.

Manometers offer a selection of pressure units, such as inches of water (inch WC), pounds per square inch (PSI), bar (g), mbar (mb), pascal (Pa), kilopascal (kPa), ounce square in (ozin²), inches of mercury (in Hg), millimeters of mercury (mmHg), foot water (ft. H2O), centimeters of water (cmH2), and kilograms centimeters squared (kgcm²).

Open-Arm Manometer2

The most accurate way to measure low air pressure is to balance a column of liquid of known weight against it and measure the height of the liquid column so balanced. The units of measure commonly used are inches of mercury (in. Hg), using mercury as the fluid and inches of water (in. w.c.), using water or oil as the fluid.

1 USDA-APHIS-PPQ-S&T-CPHST-AQI Raleigh, 1730 Varsity Drive, Suite 300, Raleigh, NC 27606; 919 855 7450
2 The information included in this section has been extracted from the following web site http://www.dwyer-inst.com/Products/ManometerIntroduction.cfm.
An open-arm manometer is typically a U-shaped tube partially filled with liquid. The tube may be of glass or transparent plastic tubing. A ruler calibrated in millimeter (mm) divisions or carefully measured lines on a background is used to measure the difference in level of the liquid in the two arms (or the level in one arm).

![Figure 8-1-7](image) Example of Pressure Measurement in an Open-arm Manometer

As displayed by the middle picture in Figure 8-1-7, when positive pressure is applied to one arm, the liquid is forced down in that arm and up in the other. The difference in height, "h," which is the sum of the readings above and below zero, indicates the pressure.

The picture of the manometer on the right in Figure 8-1-7 shows that when a vacuum is applied to one arm, the liquid rises in that arm and falls in the other. The difference in height, "h," which is the sum of the readings above and below zero, indicates the amount of vacuum.

No manometer can be read more accurately than the accuracy with which the specific gravity of the liquid inside the manometer is known. The liquid must also have good "wetting" characteristics and be capable of forming a consistent, well shaped meniscus in the indicating tube to facilitate accurate, repeatable readings.

The liquid used also affects the operating range of the manometer. Mercury being 13.6 times the weight of water will move 1/13.6th the distance water will move in response to a given pressure. Red gage oil, having a specific gravity of 0.826, which is lighter than water, will move about 1.2 times farther than water in response to a given pressure. This, obviously, expands the scale for easier, more precise reading.
Manometers for use with water are furnished with a fluorescent green concentrate which when added to water serves as a setting agent and a dye to improve the consistency and visibility of the meniscus for easier more accurate readability. Because of increased accuracy and consistency, CPHST-AQI recommends the use of red gage oil manometers.

**Digital Manometer**

The operating instructions for digital manometers differ depending on the manufacturer and/or model, but all have the following **basic** functions:

- Use fresh, new batteries before testing begins. Replace as needed.
- Turn the power on.
- Re-zero the manometer immediately before use.
- Connect the positive port to the tubing of the component and vent to the opposite port to the atmosphere to measure single positive pressure.
- Connect the lower positive pressure to the negative port and the higher positive pressure to the plus port to measure differential positive pressure. The manometer calculates the difference.
- Add positive pressure to the chamber. When the manometer reaches teh highest pressure, begin recording time. Stop time when the low pressure is reached. Record the low and high pressures.

**Electronic Manometer**

When a fumigant is volatilized in a chamber at atmospheric pressure, a positive pressure is created, which may then be continuously reduced by leakage of the air-fumigant mixture. PPQ-approved chambers must be sufficiently tight to retain the fumigant during the exposure period. A manometer is used during the pressure leakage test for NAP chamber certification and the vacuum leakage test for vacuum chamber certification. (See “Pressure-Leakage Test for NAP Fumigation Chambers” on page-6-3-9 and Certification Standards on page 6-2-4 for detailed descriptions of the certification processes.) Use the following example for the most accurate way to determine the pressure measurement from a manometer.

**EXAMPLE:** Referencing **Figure 8-1-8,** the left arm of the open-arm manometer measures 8 mm below zero. The right arm measures 7 above zero. The sum of the two measurements equals 15 mm. Therefore, in this example, 15 mm is the actual reading.
Magnehelic® Pressure Gage

Magnehelic® Pressure Gages can be used instead of U-Tube or digital manometers. The most common gages have units in “inches of water”, Pascals, or PSI units. The most common unit is “inches of water”.

The operating instructions for Magnehelic® Pressure Gages differ depending on the manufacturer and/or model, but all have the following basic functions:

- Select an operating location that is free from excessive vibration and ambient temperature below 140 F. Avoid direct sunlight. Sensing lines have no length restrictions. Do not restrict the lines.
- Calibrate the gage with the diaphragm in a vertical position. To ensure maximum accuracy, mount the diaphragm in a vertical position during operation.
- Zero the gage after installation using the external zero adjust screw.
- Connect tubing from the source of the pressure to either of the two high-pressure pots. Plug the port not used. Vent one or both low-pressure pots to the atmosphere.
- Calibrate once per year if it is used less than 10 times per year.
- Calibrate every four months if it is used at least 10 times per year.

MityVac® Hand-held Vacuum Pump

Detect detect blocked monitoring leads by using a MityVac® hand-held vacuum pump (for supplier, see *Air Pump, Auxiliary on page E-1-10*).

**Usage**

1. Prior to introducing fumigant, connect the MityVac® hand-held vacuum pump to a monitoring lead.

2. Squeeze the handle on the MityVac® Unit; if the lead is blocked, a vacuum will be indicated on the vacuum gauge of the MityVac® unit (squeeze the handle 2 or 3 times for monitoring leads longer than 25 feet; the MityVac® hand-held pump has the capacity to attain and hold 25 inches of Hg vacuum and a minimum of 7 psi pressure).

3. Disconnect the MityVac® hand-held pump from the monitoring lead, and repeat this procedure for each monitoring lead (connect monitoring leads to the gas analyzer prior to fumigant introduction).

Phosphine Detector

**PortaSens Phosphine Detector**

**Description**

Historically, measuring phosphine has been done using detector tubes specific for phosphine (see *Detector Kits or Gas Samples on page 8-1-14*). The high cost associated with these tubes has been a deterrent for many ports.

A more accurate, portable unit has been recommended for use during phosphine fumigations. The Series B16 PortaSens is a portable, battery-operated instrument for measuring various gas concentrations in ambient air. The instrument can be ordered specifically for phosphine in the 0 to 1,000 ppm range. Ranges from 0 to 1 ppm are available also, along with other configurations. The PortaSens is a complete measuring instrument containing an electrochemical sensor, sampling pump, flow cell assembly, microprocessor electronics, and a two-line, backlit LCD display. The unit is powered by a rechargeable NiCad battery located in the handle, with the charger connection located at the bottom of the handle.

**Operation**

The PortaSens needs to be calibrated by USDA-APHIS-PPQ-S&T-CPHST-AQI before use. After calibration, the instrument is ready to use directly out of the box. Simply remove the instrument from the storage case and press and release the button (instrument switch) on the front of the handle. The LCD display on the front will immediately be activated and the internal pump will begin to pull sample into the flow cell.
The unit comes with a flexible extension wand that screws into the standard inlet fitting. Connect the extension wand and a length of flexible tubing that will reach safely from the item(s) being fumigated to the PortaSens.

Response Time
Response time will vary depending on the gas concentration and ambient temperature. The LCD readout will stabilize when maximum concentration is reached. Readings will be more timely when the monitoring leads are purged using the MityVac® hand-held vacuum pump (refer to MityVac® Hand-held Vacuum Pump on page 8-1-25).

Alarm Function
The PortaSens contains both visual and audible gas concentration alarm functions that are preset at the factory. Refer to B16 PortaSens Operation and Maintenance Manual for specific instructions. For instruments in the 0 to 1,000 ppm range, the alarm has been disabled to allow for more efficient use.

Battery Power Supply
The instrument is powered by a rechargeable NiCad battery. With a fully charged battery, the unit will continuously operate for 12 hours at 20 °C. Battery capacity will drop with decreasing temperature. Should the battery become weak during operation, the lower line of the LCD display will indicate “LOW BATT.” An audible beeper will begin to sound. At this point, there will be 1 hour of operating time left. When the voltage reaches a level where reliable measurements are no longer possible, the unit will turn itself off. If emergency use is anticipated, it is good practice to leave the instrument on charge at all times.

Flow Verification
Verify proper flow before using the PortaSens for leak detection. When the unit is turned on, a pump continuously delivers an air sample to the flow cell. In normal operation, the flow rate is approximately 300 cc/min. In order to allow quick verification of proper flow, a flowmeter is included in the PortaSens kit. Turn the instrument on and connect the sampling wand. Place the tip of the sampling wand into the tubing adapter attached to the flowmeter. Hold the flowmeter in the vertical position and verify that the flow rate is above 150 cc/min.

Power Down
In order to turn the unit off, press and hold the switch for approximately three seconds, until the “POWER DOWN” message appears on the display and then release.

Photo Ionization Detector
The Photo Ionization Detector (PID) is a portable vapor and gas detector that detects a variety of organic compounds. For methyl bromide, the PID has been used both as a leak detector to locate fumigant leakage around chambers, application equipment, temporary enclosures, and as a safety device around fumigation sites.
**Principles of Operations**

The PID is used to indicate the presence and approximate concentration of methyl bromide or other volatile organic compounds (VOCs) present. This is accomplished by photo ionization that occurs when an atom or molecule absorbs light of sufficient energy to cause an electron to leave and create a positive ion. Because PIDs measure all VOCs, careful attention must be paid to the presence of other VOCs in the air. Other VOCs include but are not limited to cigarette smoke, perfume, soap, and exhaust fumes from vehicles.

**Description**

All PIDs have the same basic construction, differing only in detail by the various manufacturers. Each has an ultraviolet lamp that emits photons that are absorbed by the compound in an ionization chamber. Electrodes collect the ions that are produced. The current that is generated provides a measure of the concentration.

**Calibration**

PIDs are typically calibrated using isobutylene, a stable gas with a slightly pungent odor. This gas is easy to handle and can be stored at high pressure, allowing calibration bottles to be used for calibrations many times. The PID manufacturer supplies a reference manual that describes calibration procedures and provides a list of correction factors.

For a partial list of manufacturers refer to *Reference Guide to Commercial Suppliers of Treatment and Related Safety Equipment* on page E-1-1.

---

**Certified Precision Thermometers: Calibration Guidelines**

Before a thermometer can be used as a calibration standard, it must meet the following requirements from an approved facilities. All calibration facilities must be approved by USDA-APHIS-PPQ-S&T-AQI, 1730 Varsity Drive, Suite 300, Raleigh, NC 27606 USA.

A list of current approved facilities can be accessed in *Thermometers, Certified Precision, Approved Calibration Companies* on page E-1-69.

- Accuracy must be 0.1 °C or less for Centigrade thermometer or 0.1 °F or less for Fahrenheit thermometer.
- Thermometer must be calibrated against standards that are approved by National Institute of Standards and Technology (NIST).
The calibration certificate issued by calibration facility lists one to five calibration points, tabulated corrections for each calibration point, serial and test identification number of the NIST standard, and explanatory notes defining the conditions under which the test results were made.

The thermometer must be calibrated annually or as designated by CPHST-AQI. Thermometers with expired calibration certificates cannot be used in quarantine treatments.

ASTM thermometers must have 5 or more calibration points. Non-ASTM (precision thermometers must have calibration points at the treatment temperature.

Water Trap

When there is a large difference in temperature between the fumigation and monitoring locations, water vapor may condense inside the gas monitoring leads. Additionally, if monitoring leads are stored outside, water may accumulate in the leads after heavy rainfall. If water is observed or suspected in the monitoring leads, use forced air to remove water from the leads. If water is observed in the water trap, remove the water from the trap and use forced air to remove water from the leads.

Install a water trap in-line between the fumigation site and the monitor in order to keep water from damaging the monitor. If using an infrared spectroscopy analyzer to monitor gas concentrations, also install a particulate filter. A particulate filter is not needed if monitoring gas concentrations with a T/C. Refer to Figure 8-1-9 on page-8-1-29 for an example of a water trap.

Contact your Regional Treatment Program Manager to obtain information about acquiring a water trap.
Figure 8-1-9  Example of a water trap
**Dupont™ Tyvec® Air Cargo Covers**

Tyvek® air cargo covers containing the label and Dupont™ hologram shown in *Figure 8-1-10* through *Figure 8-1-12* are approved as pallet covers during methyl bromide fumigations. Since these covers are permeable to methyl bromide, they do **not** need to be cut or removed prior to fumigation. They may be cut or removed as needed to take commodity temperatures. However, these covers should be taped or replaced on the pallet as quickly as possible following any cutting or removal. This cover is **not** approved for use with any other fumigant besides methyl bromide.

![PMC Size Cover](image)

Source: Photograph courtesy of E.I. du Pont de Nemours and Company

*Figure 8-1-10  Tyvek® Cover*
UK/USA Size Cover

Figure 8-1-11  Tyvek® Cover with Safety Label (outlined in red and magnified in Figure 8-1-12)

Source: Photograph courtesy of E.I. du Pont de Nemours and Company

Figure 8-1-12  SKU Safety Label with Hologram

Source: Photograph courtesy of E.I. du Pont de Nemours and Company
Electrochemical Gas Sensor and Pyrolyzer

Pyrolyzer technology combined with a renewable electrochemical sensor cell provides sensitive and specific methyl bromide monitoring. Currently, there is one unit approved for use during PPQ fumigations. The Air Check Advantage methyl bromide monitor is manufactured by PureAire Monitoring Systems, Inc.4

The Air Check system may be permanently installed in a fumigation facility and can continuously and remotely sample over distances of up to 100 feet. The system has the following features:

- Accuracy: ±10% or reading
- Dimensions: 10" W x 7.0" H x 7.0" D
- Operating Temperatures: -4 to 122 °F (-20 to +50 °C)
- Power requirements: 24 VDC 2.0 amp
- Repeatability: ±10% of full scale
- Response time: within 60 seconds
- Sensor range: 0-10 ppm (other ranges are available)
- Sensor type: renewable electrochemical cell that is field rechargeable
- User selectable alarms
- Weight: 10 pounds (4.5 kg)

Initial Startup

Refer to the Air Check Advantage Manual for more detailed operating instructions.

Allow at least a 2 hour warm up period. The sensor’s zero will stabilize during this warm up period.

![Important]

The monitor is designed for continuous 24/7 operation. Do not power down unless the monitor will be stored for a long period of time.

If, after the 2 hour warm up period, the LED display is reading a positive PPM, then adjust the LED display to zero.

---

Connect a gas sampling tube to the monitor and begin gas sampling readings. The MB gas is drawn through a pyrolyzer where it is heated and converted into bromine that is detected by the electrochemical sensor.

**Maintenance and Calibration**

Ensure that the fumigator replaces the electrochemical cell every 6 months and replaces the pyrolyzer and O-rings when damaged. Ensure that the fumigator calibrates the sensor every 3 months under continuous MB exposure or every 6 months under normal use.

---

**Fans — Introduction and Aeration**

When fumigating with methyl bromide, fans **must** be operational during gas introduction and for at least 30 minutes after the gas has been introduced. Fans are also required for aeration. Do **not** use plastic fans.

Fans must be:

- Constructed of steel
- Capable of circulating the equivalent cubic feet per minute (cfm) of the total volume of the enclosure, but a minimum of 2,500 cfm
- Minimum of 18 inches in diameter

Require the fumigator to turn on all fans before gas introduction to ensure they are functioning properly. Refer to **Figure 8-1-13** for an example of an approved fan.

![Example of an Approved Fan](image-url)
Equipment
Fans — Introduction and Aeration
Acronyms, Abbreviations, and Terms

a.i. active ingredient
APHIS Animal and Plant Health Inspection Service
CA Controlled Atmosphere
CERCLA Comprehensive Environmental Response, Compensation, and Liability Act
CHEMTREC 24-hour emergency telephone service for spills
COR Contracting Officer’s Representative
DOT U.S. Department of Transportation
EPA Environmental Protection Agency
External A pest that normally inhabits the outside or outer part of its host.
    Feeder Contrast with hitchhiker and internal feeder.
FAA Federal Aviation Administration
FIFRA Federal Insecticide, Fungicide, and Rodenticide Act
FOH Federal Occupational Health
g grams
Hitchhiker A pest transported by chance and not found inhabiting its host.
    Contrast with external feeder.
IDLH Immediately Dangerous to Life or Health
Internal A pest that normally inhabits the inside or inner part of its host.
    Feeder Contrast with external feeder.
kg kilogram
m meter
MB methyl bromide
MCL medical clearance letter
MED minimum effective dose
mg milligram
mg/kg milligrams per kilogram
mg/L milligrams per liter
mmHg millimeters of mercury; a measure of pressure
NAP normal atmospheric pressure
NIOSH National Institute for Occupational Safety and Health
OIC Officer-in-Charge
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMMP</td>
<td>Occupational Medical Monitoring Program</td>
</tr>
<tr>
<td>OSHA</td>
<td>U.S. Occupational Safety and Health Administration</td>
</tr>
<tr>
<td>PH</td>
<td>phosphine</td>
</tr>
<tr>
<td>PEL</td>
<td>permissible exposure limit</td>
</tr>
<tr>
<td>PLHCP</td>
<td>physician or other licensed health care professional</td>
</tr>
<tr>
<td>ppb</td>
<td>parts per billion</td>
</tr>
<tr>
<td>ppm</td>
<td>parts per million</td>
</tr>
<tr>
<td>PPQ</td>
<td>Plant Protection and Quarantine</td>
</tr>
<tr>
<td>SDS</td>
<td>safety data sheet</td>
</tr>
<tr>
<td>SHEP</td>
<td>Safety and Health Environmental Programs</td>
</tr>
<tr>
<td>STEL</td>
<td>short-term exposure limit</td>
</tr>
<tr>
<td>TLV</td>
<td>threshold limit value</td>
</tr>
<tr>
<td>TWA</td>
<td>time-weighted average</td>
</tr>
<tr>
<td>ug</td>
<td>microgram</td>
</tr>
<tr>
<td>ug/cu.</td>
<td>micrograms per cubic meter</td>
</tr>
<tr>
<td>ug/L</td>
<td>micrograms per liter</td>
</tr>
<tr>
<td>USDA</td>
<td>United States Department of Agriculture</td>
</tr>
</tbody>
</table>
Appendix A

Forms

Contents

APHIS Form 2061 (Residue Sample for Food or Feed Product)  A-2
APHIS Form 205-R, Instructions and Worksheet for Calibrating Portable Temperature Sensors  A-3
APHIS Form 206-R, Test of the Accuracy of the Permanent RTD Sensors Installed in Hot Water Tanks  A-4
APHIS Form 208, Performance Test for Mango Hot Water Immersion Tank  A-6
Calibration of Temperature Probes (Cold Treatment)  A-7
Location of Temperature Sensors in Containerized Cargo (Cold Treatment)  A-8
PPQ Form 429, Fumigation Record  A-9
PPQ Form 519, Compliance Agreement  A-13
PPQ Form 523, Emergency Action Notification  A-16
PPQ Form 449-R, Temperature Recording Calibration Report  A-27
PPQ Form 203, Foreign Site Certificate of Inspection and/or Treatment  A-29
PPQ Form 556, Intransit Cold Treatment Clearance Report  A-32
Worksite Specific Respiratory Protection Plan—Template  A-33

This Appendix contains example forms and instructions for completing the forms you may need when conducting or monitoring a fumigation.
The APHIS Form 2061 has been removed from this manual. Contact the Manuals Unit to obtain a copy and instructions for use.
### INSTRUCTIONS AND WORKSHEET FOR CALIBRATING PORTABLE TEMPERATURE SENSORS

**INSTRUCTIONS**

These instructions are for calibrating the portable temperature sensors that will be used in performance tests of hot water tanks.

(A) Assign each portable sensor a number. Write sensor numbers on pieces of duct tape or tags and attach them near the "dry" end of each sensor.

(B) Submerge the "wet" end of the sensors into a circulating hot water bath in a temperature range of 115°F to 120°F (46.1°C to 48.9°C), in close proximity to the bulb of a submersible certified glass mercury thermometer. Both must be submerged to the same depth. The mercury thermometer (with a maximum reading of 150°C) shall be used as the standard against which the portable sensors are to be compared.

(C) Record the temperatures obtained from each portable sensor and the mercury thermometer, in succession. Compute the difference in the two temperatures, if any, and record this also.

(D) If the temperature shown by the portable sensor falls within five-tenths of a degree (F) or ± 0.3°C of the true temperature shown on the certified mercury thermometer, then this sensor is considered to be within the tolerance, and may be used in the performance test. Any sensors reading outside of this range do not meet APHIS standards for accuracy, and should not be used. Recommend that they be destroyed.

<table>
<thead>
<tr>
<th>SENSOR NO.</th>
<th>溫度 (℃)</th>
<th>温度 (°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RETURN COMPLETED FORM TO THE METHODS DEVELOPMENT CENTER THAT WILL ISSUE A CERTIFICATE.

APHIS FORM 205-R
(MAR 93)

Figure A-1  APHIS Form 205-R, Instructions and Worksheet for Calibrating Portable Temperature Sensors
APHIS Form 206-R, Test of the Accuracy of the Permanent RTD Sensors Installed in Hot Water Tanks

Figure A-2 APHIS Form 206-R, Test of the Accuracy of the Permanent RTD Sensors Installed in Hot Water Tanks
Figure A-3  APHIS Form 207-R, Sensor Location Diagram Fruit Weights and Pulp Temperatures
**APHIS Form 208, Performance Test for Mango Hot Water Immersion Tank**

### PERFORMANCE TEST FOR MANGO HOT WATER IMMERSION TANK

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. TEST NO.</td>
<td></td>
</tr>
<tr>
<td>2. TEST NO.</td>
<td></td>
</tr>
</tbody>
</table>

#### PERFORMANCE TEST FOR MANGO HOT WATER IMMERSION TANK

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. NAME OF FACILITY</td>
<td>2. LOCATION</td>
</tr>
<tr>
<td>3. NAME OF FACILITY MANAGER (Type or print)</td>
<td></td>
</tr>
<tr>
<td>4. TELEPHONE NUMBER</td>
<td>5. PAY NUMBER</td>
</tr>
<tr>
<td>6. FRUIT VARIETY</td>
<td>7. STAGE OF RIPENESS</td>
</tr>
</tbody>
</table>

#### TEMPERATURES AT START OF TEST

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8. THERMOSTATIC SET POINT</td>
<td>9. WATER IN THE TANK</td>
<td>10. FRUIT PULP (Average)</td>
<td>11. AMBIENT AIR</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

#### SIGNATURE OF INSPECTOR

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12. NOTES</td>
<td></td>
</tr>
</tbody>
</table>

### TABLE

<table>
<thead>
<tr>
<th>BASKET NO.</th>
<th>TANK NO.</th>
<th>TEST NO.</th>
</tr>
</thead>
</table>

*Results taken at specific times (minutes) before calibration adjustment (± engr.). Use 1 or 2 pulp samples per tank. Indicate pulp samples with an asterisk (*)|

<table>
<thead>
<tr>
<th>PORTABLE MONITOR</th>
<th>CALIBRATION</th>
<th>0-1</th>
<th>1-2</th>
<th>3-4</th>
<th>3-4</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Type or print)</td>
<td>(± engr.)*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TIME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEMP.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TIME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEMP.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TIME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TEMP.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**APHIS FORM 208 (OCT 86)** (Previous edition is obsolete)
Calibration of Temperature Probes (Cold Treatment)

Figure A-4 Calibration of Temperature Probes (Cold Treatment)
Location of Temperature Sensors in Containerized Cargo (Cold Treatment)

Figure A-5  Location of Temperature Sensors in Containerized Cargo (Cold Treatment)
**PPQ Form 429, Fumigation Record**

The PPQ Form 429 is to be used as a station record for all treatments conducted in approved chambers or in temporary enclosures (tarpaulin, in containers, truck vans, railroad cars, ships, warehouses, or other enclosures). Treatments conducted under temporary enclosures require minimum gas concentration readings be reported. CPHST-AQI tracks MB fumigant usage in an electronic 429 database. Contact CPHST-AQI for username and password.

![Figure A-6 Example of PPQ Form 429, Fumigation Record (Front)](image)
### Appendix A Forms

**PPQ Form 429, Fumigation Record**

---

<table>
<thead>
<tr>
<th><strong>TAUPELIN FUMIGATION</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>NOTE:</strong> In preparation for the fumigation and prior to site selection the officer should have determined (1) the immediate pest risk associated with the infested commodity, (2) the temperature requirements for the fumigation, and (3) the permeability of the packaging.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>CHECKLIST OF MATERIALS AND PROCEDURES</strong> (Consider each of the listed items when performing a fumigation.)</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>MATERIALS</strong></td>
</tr>
<tr>
<td>Tarpsauln</td>
</tr>
<tr>
<td>Sand Sacks</td>
</tr>
<tr>
<td>Water Sacks</td>
</tr>
<tr>
<td>Linseed Sand</td>
</tr>
<tr>
<td>Blotup / Padding</td>
</tr>
<tr>
<td>Masking Tape</td>
</tr>
<tr>
<td>Possible &amp; Spray Equipment</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>PROCEDURES (SECTION III TREATMENT MANUAL)</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>PREPARATION</strong></td>
</tr>
<tr>
<td>1. SITE SELECTION</td>
</tr>
<tr>
<td>Vestibule Area</td>
</tr>
<tr>
<td>Shredded Area</td>
</tr>
<tr>
<td>Immobile Surface</td>
</tr>
<tr>
<td>Non-work Area</td>
</tr>
<tr>
<td>Proximity to Electrical Source</td>
</tr>
<tr>
<td>Proximity to Commodity</td>
</tr>
<tr>
<td>2. ARRANGEMENT OF COMMODITY &amp; EQUIPMENT</td>
</tr>
<tr>
<td>Stack Size Limitation</td>
</tr>
<tr>
<td>Air Space, Below and Between Load</td>
</tr>
<tr>
<td>Placement of Tarps, Supports</td>
</tr>
<tr>
<td>Placement of Padding</td>
</tr>
<tr>
<td>Placement of Fans</td>
</tr>
<tr>
<td>Placement of Gas Introduction</td>
</tr>
<tr>
<td>Limit</td>
</tr>
<tr>
<td>Placement of Sampling Lines</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

---

Figure A-7 Example of PPQ Form 429, Fumigation Record (Back)
<table>
<thead>
<tr>
<th>Block</th>
<th>Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fill in.</td>
</tr>
<tr>
<td>2</td>
<td>Fill in scientific name(s) of pest or simply “precautionary” when fumigation is mandatory as a condition of entry or movement. Include station interception number(s) if fumigation is based on pest findings.</td>
</tr>
<tr>
<td>3-20</td>
<td>Fill in. In completing Block 12, if the commodity is a fruit or vegetable, enter the common name. The common name is more descriptive. If available, include the variety. By using common names and names of varieties, tolerances to the fumigant can be better predicted.</td>
</tr>
<tr>
<td>21</td>
<td>Fill in fumigant (for example, MB, CB, PH, EO, or SF), schedule number, dosage rate, and exposure period (4 lbs/1,000 ft³ for 12 hours).</td>
</tr>
<tr>
<td>22</td>
<td>Fill in beginning temperatures in space under enclosure (a) and commodity temperature (b). Specify Centigrade or Fahrenheit.</td>
</tr>
<tr>
<td>23</td>
<td>Fill in type of thermal conductivity unit used (Fumiscope® or Gow-Mac®) and the serial number of the conductivity unit.</td>
</tr>
<tr>
<td>24</td>
<td>Fill in chamber, tarpaulin, structure, or type of carrier such as truck van, railroad car, or ship. If a container was used, indicate if covered by tarpaulin. Fill in type of tarpaulin used—single or multiple-use and the thickness (4 mil or 6 mil).</td>
</tr>
<tr>
<td>25</td>
<td>If treatment is conducted outside, fill in the weather conditions.</td>
</tr>
<tr>
<td>26</td>
<td>Fill in.</td>
</tr>
<tr>
<td>27</td>
<td>If commodity is treated under APHIS Section 18 Exemption, check “yes.” If commodity is treated at label dosage or less, check “no.”</td>
</tr>
<tr>
<td>28-30</td>
<td>Fill in.</td>
</tr>
<tr>
<td>31</td>
<td>If food or feed, check “yes.” If nonfood/nonfeed, check “no.”</td>
</tr>
<tr>
<td>32</td>
<td>Record time gas introduction started (a) and finished (b). Treatment does not start until gas is completely introduced in the chamber or enclosure.</td>
</tr>
<tr>
<td>33</td>
<td>When the fumigant dosage is calculated by weight, fill in the dosage to the nearest quarter pound. If liquid measures are needed, convert from weight to volume by using the conversion table in Appendix D.</td>
</tr>
<tr>
<td>34</td>
<td>If additional gas is required, note under Remarks (Block 40) and show calculations (Block 41).</td>
</tr>
<tr>
<td>35</td>
<td>Check appropriate box. Sample number refers to Block 7 on APHIS Form 2061 (Residue Sample for Food or Feed Product).</td>
</tr>
<tr>
<td>36</td>
<td>Record the date and time you take concentration readings. Treatment schedules specify when to take concentration readings.</td>
</tr>
<tr>
<td>37</td>
<td>Fumigants such as methyl bromide may be read and recorded directly from the gas analyzer. However, readings for fumigants such as sulfuryl fluoride must be corrected to get the true concentration reading. Each gas analyzer used for fumigants other than methyl bromide is calibrated with a correction factor. The factor is multiplied times the dial reading, to give the actual concentration. Record phosphine gas concentrations as ppm as determined by detector tubes or APHIS-approved detection device. Specify where the gas sampling line was placed: space or commodity. Use at least three lines. Use additional lines as needed.</td>
</tr>
<tr>
<td>38</td>
<td>Fill in.</td>
</tr>
<tr>
<td>39</td>
<td>Fill in time as well as the reading. Refer to the section in the manual that is tabbed “Aeration” for guidelines.</td>
</tr>
</tbody>
</table>
Distribution

Give the original and one copy to your supervisor for review. The supervisor should keep the original for port files and send one copy to:

USDA-APHIS-PPQ-S&T-CPHST-AQI
1730 Varsity Drive, Suite 300
Raleigh, NC 27606
## PPQ Form 519, Compliance Agreement

According to the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. The valid OMB control number for this information collection is 0275-0054. The time required to complete this information collection is estimated to average 1.25 hours per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.

<table>
<thead>
<tr>
<th>1. NAME AND MAILING ADDRESS OF PERSON OR FIRM</th>
<th>2. LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. REGULATED ARTICLE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. APPLICABLE FEDERAL QUARANTINE(S) OR REGULATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. I/We agree to the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. SIGNATURE</th>
<th>7. TITLE</th>
<th>6. DATE SIGNED</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The affixing of the signatures below will validate this agreement which shall remain in effect until cancelled, but may be revised as necessary or revoked for noncompliance.

<table>
<thead>
<tr>
<th>8. AGREEMENT NO.</th>
<th>9. DATE OF AGREEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. PPQ OFFICIAL (Name and Title)</th>
<th>12. ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SIGNATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. STATE AGENCY OFFICIAL (Name and Title)</th>
<th>16. ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. SIGNATURE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

PPQ FORM 519
(FEB 2002)

Figure A-8 Example of PPQ Form 519, Compliance Agreement
Purpose
The PPQ Form 519 is a form that provides a signed, written agreement with fumigators to indicate their understanding of methods, conditions, and procedures necessary for compliance with regulations.

The PPQ Form 519 is also available electronically.

Instructions
Many PPQ ports maintain Compliance Agreements with commercial pesticide applicators. PPQ may maintain compliance agreements, however if they cancel an agreement, PPQ should not ban an exterminator from doing business, or applying regulatory treatments. PPQ may however, discontinue certification of a particular treatment that did not meet the required time, temperature, and concentration levels indicated in the treatment schedule. Similarly, PPQ may not want to begin monitoring a fumigation if the tarp appears inadequate and excessive leakage may lead to a safety problem.

Review compliance agreements at least annually, but preferably twice a year. Amend compliance agreements as appropriate.

If the establishment fails to abide by the conditions of the agreement, then the Port Director may cancel that agreement orally or in writing.

If you make an oral cancellation, confirm it in writing as soon as possible. The establishment has 10 days to appeal the cancellation. Appeals must be made to the Deputy Administrator.

Table A-1 Instructions for Completing PPQ Form 519, Compliance Agreement

<table>
<thead>
<tr>
<th>Block</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,8,9, 10-12</td>
<td>Fill in.</td>
</tr>
<tr>
<td>2</td>
<td>Fill in the location of the specific property(s) for which the agreement is signed.</td>
</tr>
<tr>
<td>3</td>
<td>Fill in the specific regulated articles to which the agreement applies.</td>
</tr>
<tr>
<td>4</td>
<td>Fill in the titles, parts, and subparts.</td>
</tr>
<tr>
<td>5</td>
<td>Outline stipulations which apply to the fumigator for each quarantine or regulation affecting the fumigator. Make clear to the fumigator that stipulations in the compliance agreement do not preclude compliance with other sections of the quarantine or regulations. If space in Block 6 is inadequate for listing the stipulations, then write “see Attached Sheets.”</td>
</tr>
<tr>
<td>6</td>
<td>Have a responsible official of the fumigator’s sign.</td>
</tr>
<tr>
<td>9</td>
<td>Assign a compliance agreement number.</td>
</tr>
<tr>
<td>13</td>
<td>Have the PPQ Port Director sign.</td>
</tr>
<tr>
<td>14-16</td>
<td>Complete only when State is involved in cooperating with enforcing Federal quarantines.</td>
</tr>
</tbody>
</table>
### Distribution

| If: Compliance agreement affects one work unit | Then: GIVE original to the fumigator, and KEEP a copy for port files in the area where the fumigator is located |
| Compliance agreement affects more than one work unit | GIVE original to the fumigator, and GIVE copies to all work units affected by the compliance agreement, and KEEP a copy for port files in the area where the fumigator is located |
PPQ Form 523, Emergency Action Notification

According to the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. The valid OMB control number for this information collection is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.

EMERGENCY ACTION NOTIFICATION

1. PPQ LOCATION

2. DATE ISSUED

3. NAME AND QUANTITY OF ARTICLE(S)

4. LOCATION OF ARTICLES

5. DESTINATION OF ARTICLES

6. SHIPPER

7. NAME OF CARRIER

8. SHIPMENT ID NO.(S)

9. OWNER/CONSIGNEE OF ARTICLES

10. PORT OF LADING

11. DATE OF ARRIVAL

12. ID OF PEST(S), NOXIOUS WEEDS, OR ARTICLE(S)

12a. PEST ID NO.

12b. DATE INTERCEPTED

13. COUNTRY OF ORIGIN

14. GROWER NO.

15. FOREIGN CERTIFICATE NO.

15a. PLACE ISSUED

15b. DATE

16. ACTION REQUIRED

- TREATMENT:

- RE-EXPORTATION:

- DESTRUCTION:

- OTHER:

17. AFTER RECEIPT OF THIS NOTIFICATION COMPLETE SPECIFIED ACTION WITHIN (Specify No. Hours or No. Days):

18. SIGNATURE OF OFFICER:

AKNOWLEDGMENT OF RECEIPT OF EMERGENCY ACTION NOTIFICATION

19. REVOCATION OF NOTIFICATION

Signature and Title: __________________________ Date and Time: ____________

Action Taken: __________________________

Signature of Officer: __________________________ Date: ____________

PPQ FORM 523 (JULY 2002) Previous editions are obsolete.

Figure A-9 Example of PPQ Form 523, Emergency Action Notification
Purpose

The Emergency Action Notification (EAN) is a document that serves purposes for APHIS regulations. When an emergency action must be taken on a shipment, this form allows Customs and Border Protection - Agriculture Inspection (CBPAI) and/or Plant Protection and Quarantine (PPQ) to communicate the need for a specific action on a shipment to the interested parties. The EAN specifies to the broker, shipper, market owner, or other stakeholder the reason(s) why the shipment is being refused and basic explanation(s) as to what action is necessary.

The document also serves other critical needs. Use of the EAN information assists in determining risks and identifying trends. Through data compilation and analysis PPQ will use the information to update regulations, inform trade partners of areas of concern in foreign countries, and help with domestic emergencies. Targeting is another use for the information. CBPAI will be better able to determine which shipments may need closer inspection.

An EAN must be issued from the National AQAS EAN Database every time an emergency action is ordered for an agricultural purpose in the cargo or express courier environment. Agricultural purposes would be those that relate back to a violation of a regulation within the 7 CFR or 9 CFR chapters.

EANs may not be issued as a hand written document, typed on a manual typewriter, from any local database, or any means of issuance other than the National AQAS system.¹

Issue an EAN when:

- The Agriculture Specialist finds an actionable pest, potential quarantine pest, a contaminant, or prohibited product
- The Agriculture Specialist needs to record a commercial seizure
- The shipment lacks proper documentation
- The shipment contains non-compliant WPM
- The shipment is in the express courier environment (i.e. FedEx, UPS, DHL, etc.).

¹ The only acceptable reason for issuing an EAN from a source other than the AQAS National EAN Database is if the AQAS system is not in operation. In this instance, the EAN issued in another format must be entered into the AQAS National EAN Database within 24 hours.
Do not issue an EAN for the following reasons:

- Condition of Entry/Precautionary Treatments - An EAN is not to be issued for a shipment requiring treatment as a condition of entry.

- Holding a Shipment - An EAN is only for taking immediate action. Do not use an EAN as a hold or supplemental hold for a shipment for any other reason than immediate treatment.

- Quality Issues - An EAN is not to be issued for the quality of a shipment. If the shipment does not pose a pest risk do not write an EAN.

- No inspection - An EAN is only to be issued if a shipment has been inspected (either a physical inspection of the goods or a paperwork inspection when that is the requirement) and an agricultural problem has been found. Do not write an EAN in lieu of inspection.

- Mail - Do not issue an EAN for any USPS mail. A Mail Interception Notification (PPQ 287) must be used for these shipments.

- Selected Animal Products - EANs are not to be issued on shipments of live animals or live animal commodities that are regulated by Veterinary Services. Refer to the Animal Product Manual for instructions on these products.

- Other Agencies’ regulations - EANs are not to be issued for a violation of other agencies regulations. The only regulations that may be cited on an EAN are chapters 7 CFR and 9 CFR.

**Instructions**

The instructions in **Table A-2** are for initiating an EAN. The electronic version of PPQ Form 523 which is located in the National Agricultural Quarantine Activity System (AQAS) at https://aqas.aphis.usda.gov is the only method by which an Emergency Action Notification may be initiated. Emergency Action Notifications MAY NOT be issued in any other format. Fields marked with an asterisk (*) are mandatory fields.

<table>
<thead>
<tr>
<th>Block Number</th>
<th>Field Name</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Issuing Port</td>
<td>Select the port in which the EAN is being issued. Please note that some users will have multiple locations. If the user is assigned to multiple locations, be sure to select the correct location. If the user is not assigned to a port to which he/she requires access, contact the help desk.</td>
</tr>
<tr>
<td>2</td>
<td>Date Issued</td>
<td>Enter the date that the EAN was issued.</td>
</tr>
</tbody>
</table>
Table A-2  Instructions for Initiating an EAN (continued)

<table>
<thead>
<tr>
<th>Block Number</th>
<th>Field Name</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Name and</td>
<td>Article Category*</td>
<td>This block is to determine the commodity of the shipment. Only one commodity is</td>
</tr>
<tr>
<td>Quantity of</td>
<td>Article Name*</td>
<td>allowed to be listed per EAN. Do not list pallets, crates, dunnage, etc. as the Name</td>
</tr>
<tr>
<td>Manifested</td>
<td></td>
<td>of Article unless they are the actual commodity being shipped.</td>
</tr>
<tr>
<td>Article</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Article Category*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Animal Products</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Animal Classification*</td>
<td>The classification selected will determine the drop down list for the classification category in the next field. See the Animal Products Manual (APM) contents page for further clarification.</td>
</tr>
<tr>
<td></td>
<td>Classification Category*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Classification Subcategory*</td>
<td>This information can be found in shipment documentation. * The drop down lists in this category have come directly from the Animal Product Manual. If you need assistance with this menu, see the APM.</td>
</tr>
<tr>
<td></td>
<td>Plant Products</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Miscellaneous Products</td>
<td>This category is for all products that do not fit into either Animal Products or Plant products as defined above. Select the category that best fits the commodity. If there is not a category that fits your item please contact the help desk, National Coordinator, or Regional Coordinators before continuing. If the user selects miscellaneous, a description of the article must be entered. The description should be as accurate as the information available. For example, brake pads, bolt screws, linen fabric, stuffed toys, etc. If the product is agricultural but processed, the user must give an exact description of the article. For example, wooden birdhouses with grass roofs, dried whole apricots, wood carvings with bark edging, etc.</td>
</tr>
<tr>
<td></td>
<td>Animal Name</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Quantity*</td>
<td>Enter the numerical quantity of the shipment. When determining the article quantity, use the most specific number. For example, kilograms is a better selection than box count when dealing with most produce or meat products, but square meter is a better selection for veneer. <em>Boxes/Crates</em> may not be used if another option is available.</td>
</tr>
<tr>
<td></td>
<td>Unit of Measure*</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>APHIS Permit Number</td>
<td>If the shipment has any kind of APHIS permit, enter the number here.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wood Packing Material*</td>
<td>Check the appropriate boxes. If the user selects none or non-compliant only one box may be selected, but if the wood is non-compliant the user may chose both non-compliant for timber pest and no markings. If wood is not marked with an acceptable symbol, then it is considered unmarked.</td>
</tr>
</tbody>
</table>
### Table A-2 Instructions for Initiating an EAN (continued)

<table>
<thead>
<tr>
<th>Block Number</th>
<th>Field Name</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Location of Articles*</td>
<td>The location of articles is the place where the shipment is located when it is inspected. For example, US Air Warehouse, 123 Airplane Way, Butte, MT 12345. Each port will have a local drop down list so that users will <strong>not</strong> have to type addresses that have already been added to the system. If using the drop down list, ensure that the correct location has been selected. If the location that the user needs to select is <strong>not</strong> on the default list, it may be added by port users and supervisors by selecting &quot;Set Defaults&quot;. All locations must contain the name of the facility, the physical address, city, state, and zip code.</td>
</tr>
<tr>
<td>5 Delivery Address of Articles</td>
<td>Name*</td>
<td>Enter the name of the company/individual accepting the goods as destination of the articles (delivery address). Do <strong>not</strong> use the broker as destination. Do <strong>not</strong> automatically assume that the consignee address and delivery address is the same. Address where the articles will be delivered* Enter the address where the goods are intended to be delivered including street address, city, state (within the US), country, and zip/postal code. If the shipment has multiple destinations, the officer should include the destination to which the majority of the shipment is being delivered. If the shipments will be distributed evenly then choose the location to which the product could potentially cause the greatest risk. When determining the address to select the officer should use his/her best judgment. Additional delivery addresses should be entered into the “Comments” field on page 4 of the data entry screens. Questions regarding this should be directed to the officer’s first line supervisor.</td>
</tr>
<tr>
<td>6 Shipper</td>
<td>Name*</td>
<td>Enter the name of the shipper. Address of Shipper* Enter the address of the shipper including street address, city, and country. Enter state/province and postal code if known. <strong>This must be a foreign address.</strong></td>
</tr>
<tr>
<td>7 Name of Carrier</td>
<td>Name*</td>
<td>Enter the name of the carrier company. For example, Northwest Airlines, M/V Panama, Canadian Pacific, Yellow Freight. On the land borders independent trucks frequently cross. If the truck is independent use the name of the owner of the tractor. Do <strong>not</strong> enter vehicle numbers in this field. <strong>Do not enter abbreviations for the name of carrier including airline codes.</strong> Flight/Voyage/Trip Number* Enter the appropriate number based on pathway. For trucks use the trailer license number.</td>
</tr>
</tbody>
</table>
Table A-2 Instructions for Initiating an EAN (continued)

<table>
<thead>
<tr>
<th>Block Number</th>
<th>Field Name</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Consignmen</td>
<td>Airway Bill, Bill of Lading,</td>
<td>Enter the bill of lading number. If the cargo is border cargo and does <strong>not</strong> have a bill number, use the PAPS code. <strong>This is a mandatory field. Every shipment will have this number at the time that shipment is presented for inspection.</strong></td>
</tr>
<tr>
<td>t Identification Numbers</td>
<td>PAPS Code*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tariff Number*</td>
<td>Enter the 10 character tariff number as provided in ACS or ATS. This is indicated in ATS as the HTS number. <strong>Do not</strong> add any punctuation, numbers only. If the user cannot find the tariff number in ATS or ACS then use this link to look up the number: <a href="http://dataweb.usitc.gov/scripts/tariff_current.asp">http://dataweb.usitc.gov/scripts/tariff_current.asp</a></td>
</tr>
</tbody>
</table>
|              | Customs Entry Number*           | **Enter the Customs Entry Number. **Do **not** add any punctuation, numbers only. **
|              |                                 |  
|              |                                 | **If the entry has **not** yet been filed at the time of inspection, enter "**Not Yet Filed**"**  
|              |                                 | **If the shipment is of low value (under $2000 as of 09/2006) it is considered informal and no entry number will ever be processed, enter "Informal"**  
|              |                                 | **Do not enter N/A or Not Available. If the user doesn't have an entry number other than listed above, describe why.** |
|              | Container Number                | Enter the complete container number. This is usually a 4-letter code followed by 5 or 6 numbers. Include the check digit. |
|              | ISPM Markings                   | Enter the complete information from the ISPM Marking (IPPC wood marking). If the officer finds a pest in **marked** wood, this is a required field. |
|              | Other Identifying Number        | This field is available to include another number that there is either **not** a field for or can be used for a number collected for port policy. Examples include invoice number, shipment number, etc. **If the pathway is air cargo, the House Airway Bill must be entered here.** |
|              | Other Identifying Number        | If the user enters an "Other Identifying Number" then this field must be completed. The entry should clearly identify what the “Other Identifying Number” is. **Do not** use abbreviations in the description other than HAWB for "House Airway Bill.” |
| 9 Consignee  | Name*                           | Enter the name of the Consignee. This will be a company name most of the time. If the shipment owner is an individual, enter the name of the individual. **The Consignee is the owner of the shipment. The broker is usually **not** the consignee.** |
| of Articles  |                                 |                                                                              |
|              | Address of Consignee*           | Enter the street address of the consignee. Street address, city, and country must be entered. Enter the state/province and postal code if known. |
|              | Phone and Fax Numbers           | Enter the phone and fax numbers of consignee if known                        |
| 10 Port of  | City*                           | Enter the foreign city where the shipment was last loaded onto a vessel, plane, railcar, or vehicle. |
| Lading       |                                 |                                                                              |
|              | Country*                        | Enter the foreign country where the shipment was last loaded onto a vessel, plane, railcar, or vehicle. |
| 11 Date of  |                                 | Enter the date that the shipment entered the port.                          |
| Arrival*     |                                 |                                                                              |
### Table A-2 Instructions for Initiating an EAN (continued)

<table>
<thead>
<tr>
<th>Block Number</th>
<th>Field Name</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Reason for EAN*</td>
<td>Select the reason(s) that the EAN is being issued. The following is a guideline to help determine the reason.</td>
</tr>
<tr>
<td></td>
<td><strong>Pest</strong></td>
<td>If a pest or disease is found on, in, or with a shipment. Do <strong>not</strong> to enter a tentative ID. A national AQAS Pest ID number will be required.</td>
</tr>
<tr>
<td></td>
<td><strong>FRSMP Pest</strong></td>
<td>Identified pest is restricted under FRSMP Program.</td>
</tr>
<tr>
<td></td>
<td><strong>Lacks Documentation or Certification</strong></td>
<td>Shipment is missing documentation or the documentation is <strong>not</strong> acceptable. Documents may include but are <strong>not</strong> limited to health certificates, FSIS paperwork, permits, phytosanitary certificates, etc.</td>
</tr>
<tr>
<td></td>
<td><strong>Contaminant- Seed</strong></td>
<td>Shipment is found to have seed or seed heads that are contaminants, but <strong>not</strong> part of the manifested commodity. A national AQAS Pest ID number is required.</td>
</tr>
<tr>
<td></td>
<td><strong>Contaminant-Other</strong></td>
<td>Shipment is found to have any contaminant that does <strong>not</strong> need to be sent to an identifier. Examples include blood, soil, manure, etc.</td>
</tr>
<tr>
<td></td>
<td><strong>Lacking ISPM15 Marking</strong></td>
<td>Shipment was found to have unmarked or improperly marked WPM.</td>
</tr>
<tr>
<td></td>
<td><strong>Prohibited Animal Product</strong></td>
<td>Shipment was found to be prohibited by a 9 CFR.</td>
</tr>
<tr>
<td></td>
<td><strong>Prohibited Product</strong></td>
<td>Shipment was found to be prohibited by 7 CFR regulation.</td>
</tr>
<tr>
<td>12a</td>
<td>Pest ID Number*</td>
<td>Enter the Pest ID number generated by the Pest ID system. This number must be provided by the identifier or an APHIS employee acting on behalf of an identifier. If pest or seed contaminant is selected as the reason for the EAN then the user will have to enter the 17 digit Pest ID number. If the user does <strong>not</strong> have the Pest ID number the EAN may be saved and printed, however the EAN cannot be closed in the system until this information has been added. The system will <strong>not</strong> accept local pest ID numbers in any form.</td>
</tr>
<tr>
<td>12b</td>
<td>Date Intercepted*</td>
<td>Enter the date that the reason for writing the EAN was found. This date must match the date that is entered on the Pest ID record (309A).</td>
</tr>
<tr>
<td>13</td>
<td>Country of Origin</td>
<td>Enter country of origin. The country of origin is <strong>not</strong> necessarily the country from which it is being shipped. The country of origin is the location where the commodity was grown, manufactured, or produced. For example, a shipment of handicrafts might be shipped from Canada, but were made in China. China is the country of origin. Canada is the country of lading.</td>
</tr>
<tr>
<td>14</td>
<td>Grower/Facility Number</td>
<td>Enter the number of the foreign facility in which the product was processed or the foreign grower number. This number is frequently found on the invoice. It may also be available in ATS.</td>
</tr>
<tr>
<td>15</td>
<td>Foreign Sanitary Certificate Status*</td>
<td>Select the status of the certificate. If a certificate is <strong>not</strong> required continue to Block 16.</td>
</tr>
<tr>
<td>15a</td>
<td>Foreign Sanitary Certificate Number</td>
<td>Enter the certificate number.</td>
</tr>
<tr>
<td>15b</td>
<td>Place Issued</td>
<td>Enter City/Country where the certificate was issued. This will be a foreign address.</td>
</tr>
<tr>
<td></td>
<td>Date Issued</td>
<td>Enter the date on which the certificate was issued.</td>
</tr>
</tbody>
</table>
### Table A-2 Instructions for Initiating an EAN (continued)

<table>
<thead>
<tr>
<th>Block Number</th>
<th>Field Name</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contact Number</td>
<td>Phone Number*</td>
<td>Enter the phone number at which the user issuing the EAN can be reached.</td>
</tr>
<tr>
<td>16</td>
<td>Treatment Schedule</td>
<td>Using the drop down menu, <strong>if treatment is available,</strong> select the appropriate treatment schedule. The treatment schedule <strong>MUST</strong> be provided by a PPQ Identifier or PPQ Employee acting on behalf of an Identifier. CBP AI should <strong>not</strong> select a treatment schedule that has <strong>not</strong> been approved by a PPQ Identifier or PPQ Employee acting on behalf of an Identifier.</td>
</tr>
<tr>
<td></td>
<td>Explanation Text*</td>
<td>Select the explanation text that best matches the scenario for this EAN. This explanation tells the acceptor of the EAN two things: 1) what the problem is and 2) how to correct the situation. <strong>This is where the options are given. DO NOT use the “check boxes” printed on the form.</strong> The identifier will verify Federally Recognized State Managed Phytosanitary (FRSMP) Program status and/or FRSMP options. If the pest is a FRSMP Program pest, then movement may be restricted.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>If the pest is:</th>
<th>And the commodity is:</th>
<th>Then:</th>
</tr>
</thead>
</table>
| A FRSMP Program pest    | Arriving in a FRSMP Program State for that pest | Use one of the following options:  
**: Treat  
**: Export  
**: Destroy  
**: Other  
If "Other" is selected, then follow requirements to "Re-direct and Avoid" the FRSMP Program State |
|                         | Arriving in other than a FRSMP Program State for that pest | Use option "Other" and notify the broker/importer of movement restriction to "Avoid" FRSMP Program States.                                                                                               |
|                         | Not as above                         | No FRSMP action is required.                                                                                                                                                                              |

**Phyto-Fumigation Disclaimer**  
If fumigation is an option, the phyto disclaimer must be selected.
### Table A-2 Instructions for Initiating an EAN (continued)

<table>
<thead>
<tr>
<th>Block Number</th>
<th>Field Name</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 (cont.)</td>
<td>CFR Regulation*</td>
<td>Select the Code of Federal Regulations under which the shipment is being regulated. More than one CFR can be selected.</td>
</tr>
<tr>
<td></td>
<td>Seal Text</td>
<td>If the shipment must be transferred to another location under seal, select the text that is appropriate to scenario. If the shipment is being sent for treatment by PPQ the quantity of the shipment being transferred (preferably in box count) <strong>must</strong> be included.</td>
</tr>
<tr>
<td></td>
<td><strong>NOTE:</strong> If the PPQ Officer supervising the treatment does <strong>not</strong> know the quantity to be treated the shipment will <strong>not</strong> be treated until that information is provided from CBP.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comments</td>
<td>If the user has any additional comments to make, they should be recorded in the Comment field. Do <strong>not</strong> repeat information that has previously been provided. Do <strong>not</strong> enter any pest name in this location.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>It may be helpful on a local level to enter a local ID number or broker information here.</td>
</tr>
<tr>
<td></td>
<td><strong>NOTE:</strong> These comments will print on the paper EAN.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>After Receipt of Notification</td>
<td>The user should select the amount of time allowed before treatment begins. For example, if the shipment is to be re-exported then the user should select the amount of time before the shipment must be on the conveyance back to country of origin.</td>
</tr>
<tr>
<td>18</td>
<td>Name of Inspecting Officer</td>
<td>Enter the name of the officer that inspected the shipment. Do <strong>not</strong> enter the name of the data enterer unless it is the same individual.</td>
</tr>
<tr>
<td></td>
<td>Acknowledgment of Receipt of</td>
<td>Enter the first and last name of the person accepting the EAN. The user <strong>MUST</strong> have this person print their name next to the signature. The only acceptable entry in this field is the first and last name of the person accepting the EAN. Do <strong>not</strong> enter “On File.”</td>
</tr>
<tr>
<td></td>
<td>Notification</td>
<td>Enter the title of the person accepting and signing the EAN. Preferably enter name of their company as well. Example: Dispatcher, American Shipping</td>
</tr>
<tr>
<td></td>
<td>Date Signed</td>
<td>Enter the date the EAN was signed and accepted.</td>
</tr>
<tr>
<td>19</td>
<td>Reason for Revocation Action Taken*</td>
<td>Enter the reason that the EAN was written. <strong>This should match the data entered in block 12.</strong></td>
</tr>
</tbody>
</table>
### Table A-2 Instructions for Initiating an EAN (continued)

<table>
<thead>
<tr>
<th>Block Number</th>
<th>Field Name</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>19 (cont.)</td>
<td>Action Taken*</td>
<td>Enter the action that was actually taken. <strong>Do not enter an action unless that action was taken.</strong></td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the action was “Treatment,” select the treatment type.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If the action was “Other,” enter what action was taken in the “Additional Remarks” section. Be descriptive in the narrative. If FRSMP option “Avoid” was selected, then the additional comment should read “Broker/importer has been notified.”</td>
</tr>
<tr>
<td></td>
<td>Was the Article Mislabeled, Misrepresented, or Concealed?*</td>
<td>Select yes or no.</td>
</tr>
<tr>
<td></td>
<td>Form 518 Reference Number</td>
<td>If the above answer is yes, then a 518 number must be entered.</td>
</tr>
<tr>
<td></td>
<td>Additional Remarks</td>
<td>If the user has additional information that was <strong>not</strong> previously recorded, it should be entered here. This field is required if Action Taken-Treatment Type is equal to “Other.” This field will <strong>not</strong> print at any time. These are private comments visible only to system users.</td>
</tr>
<tr>
<td></td>
<td>Signature of Officer*</td>
<td>Enter the name of the officer that completed or monitored the treatment, received confirmation of destruction, or received confirmation of re-exportation. <strong>Do not</strong> enter the data entry clerk’s name unless it is the same officer as described above. This may be a different user than originally opened the EAN.</td>
</tr>
<tr>
<td></td>
<td>Date Action was Completed*</td>
<td>Enter the date that the final action was completed.</td>
</tr>
</tbody>
</table>

* Mandatory field
When an infested vessel is allowed to sail foreign without treatment, type the following statement in the “Comments” field on the EAN.

The requirements of the Emergency Action Notification are suspended upon condition that this vessel shall leave the territorial limits of the United States within [list number] of hours after receipt of this notice. This vessel shall not re-enter any port in the United States unless it has been treated in accordance with the notification and certified by the person who applied the treatment. If the certificate is not presented to the CBP officer when arriving at a port in the United States, or if the CBP officer for any other reason is not satisfied that the infestation has been eliminated, the notification shall immediately become effective and treatment required.

Distribution

Because PPQ Form 523 is now electronic, distribution as in the past, on every EAN, is unnecessary. The procedure has been that the signing party, who is responsible for the cargo, receives a hard copy of the notification. The hard copy is necessary to communicate to the consignee or shipper, and also gives the broker time to review the options and select one. The CBP contact number is listed as well.

Routinely sending the EAN to any other parties is not required. Sharing courtesy copies between PPQ and CBP should continue for local, regional or national projects. Ports may also keep their own hard copies.
# PPQ Form 449-R, Temperature Recording Calibration Report

Use the PPQ Form 449-R to document the calibration of temperature sensors for intransit cold treatment in vessels.

<table>
<thead>
<tr>
<th>TEMPERATURE RECORDING CALIBRATION REPORT</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(IN-TRANSIT COLD TREATMENT)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1. NAME OF VESSEL</th>
<th>Crown Emerald</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. PPQ DUTY STATION</td>
<td>Houston</td>
</tr>
<tr>
<td>3. DATE OF INSPECTION</td>
<td>8-5-2008</td>
</tr>
<tr>
<td>4. POINT OF INSPECTION</td>
<td>Bremerhaven, Germany</td>
</tr>
<tr>
<td>5. HULL NUMBER AND DOCKYARD</td>
<td>164 - Imabari</td>
</tr>
<tr>
<td>6. IMO NUMBER</td>
<td>9128037</td>
</tr>
<tr>
<td>7. FLAG (3-LETTER CODE)</td>
<td>PAN</td>
</tr>
<tr>
<td>8. SHIP’S OFFICER</td>
<td>ENS Smith</td>
</tr>
<tr>
<td>9. OWNER/OPERATOR</td>
<td>Wallem Management</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. RECORDING INSTRUMENT 1</th>
<th>Recorder(s) must match CPHST website – see instructions.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10a. MAKE</td>
<td>Mycom</td>
</tr>
<tr>
<td>10b. MODEL</td>
<td>Marcs</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. RECORDING INSTRUMENT 2</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>TEMPERATURE SENSORS</th>
<th>(If unsatisfactory, explain in item 17.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Satisfactory</td>
<td>Unsatisfactory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. LOCATIONS MATCH DIAGRAM</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13. LABELING OF SENSORS/BOXES</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. CABLE LENGTH</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. REACTION TIME</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. TEMPERATURE READINGS AT 0°C (32°F)</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>BULB NO.</th>
<th>TEST</th>
<th>BULB NO.</th>
<th>TEST</th>
<th>BULB NO.</th>
<th>TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>1A1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>1C3</td>
<td>0.0</td>
</tr>
<tr>
<td>1A2</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1C7</td>
<td>0.0</td>
</tr>
<tr>
<td>1A3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>1C8</td>
<td>0.1</td>
</tr>
<tr>
<td>1A4</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>1C9</td>
<td>0.1</td>
</tr>
<tr>
<td>1A5</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>1D1</td>
<td>0.1</td>
</tr>
<tr>
<td>1A6</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>1D2</td>
<td>0.1</td>
</tr>
<tr>
<td>1A7</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>1D3</td>
<td>0.1</td>
</tr>
<tr>
<td>1B1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>1D4</td>
<td>0.1</td>
</tr>
<tr>
<td>1B2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>1D5</td>
<td>-0.2</td>
</tr>
<tr>
<td>1B4</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>1D6</td>
<td>-0.1</td>
</tr>
<tr>
<td>1B5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2A1</td>
<td>0.2</td>
</tr>
<tr>
<td>1B6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>2A2</td>
<td>0.3</td>
</tr>
</tbody>
</table>

| 17. REMARKS (List names of all USDA officials participating in the calibration.) |
| D. Jones, S. Wood |

| 18. COMPANY NAME AND ADDRESS TO SEND CERTIFICATE OF APPROVAL | Wallem Ship Management |
| 19. COMPANY EMAIL | WSM@gmail.com |
| 20. COMPANY PHONE NUMBER | 800-879-4659 |
| 21. SIGNATURE OF LEAD INSPECTOR |  |
| 22. DATE | 5-August-2008 |

Figure A-10 Example of PPQ Form 449-R, Temperature Recording Calibration Report
### Instructions for Completing PPQ Form 449-R

<table>
<thead>
<tr>
<th>Block</th>
<th>Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Verify that the vessel name agrees with the name on the CPHST-AQI web site: <a href="https://treatments.cphst.org/vessels/">https://treatments.cphst.org/vessels/</a>.</td>
</tr>
<tr>
<td>2</td>
<td>PPQ officer’s duty station.</td>
</tr>
<tr>
<td>3</td>
<td>Date of Inspection</td>
</tr>
<tr>
<td>4</td>
<td>Place of Inspection</td>
</tr>
<tr>
<td>5</td>
<td>Verify that the hull number and dockyard agrees with the CPHST-AQI web site: <a href="https://treatments.cphst.org/vessels/">https://treatments.cphst.org/vessels/</a>.</td>
</tr>
<tr>
<td>6</td>
<td>The IMO number is a unique identification number for every vessel engaged in commerce and provides a complete history of the vessel. Verify that the IMO number agrees with the CPHST-AQI web site: <a href="https://treatments.cphst.org/vessels/">https://treatments.cphst.org/vessels/</a>. If this information is not on the CPHST-AQI web site, collect the number from the ship’s officer and record in this block.</td>
</tr>
<tr>
<td>7</td>
<td>Verify that the flag (country of registry) agrees with the 3-letter code on the CPHST-AQI web site: <a href="https://treatments.cphst.org/vessels/">https://treatments.cphst.org/vessels/</a>.</td>
</tr>
<tr>
<td>8</td>
<td>Name of Captain, Chief Engineer, Reefer Engineer, or First Officer</td>
</tr>
<tr>
<td>9</td>
<td>Name of the shipping line owner or agent. Verify with CPHST-AQI web site: <a href="https://treatments.cphst.org/vessels/">https://treatments.cphst.org/vessels/</a>.</td>
</tr>
<tr>
<td>10a, b</td>
<td>Verify the make and model agree with the information on the web site. If the information differs from that listed on the website, gather as much information as possible from the vessels crew regarding when (date) instrument was changed, and whether or not they have any documentation from CPHST-AQI approving the changes. Record this additional information in the remarks section.</td>
</tr>
<tr>
<td>11a, b</td>
<td>Multiple recorders may be used. Record the make and model.</td>
</tr>
<tr>
<td>12</td>
<td>Verify that the sensor and cable locations match the diagram on the CPHST-AQI web site.</td>
</tr>
<tr>
<td>13</td>
<td>Verify that the sensors and cables are labeled correctly and in accordance with the sensor diagram.</td>
</tr>
<tr>
<td>14</td>
<td>Confirm that air sensors are capable of reaching the floor and fruit sensors are capable of reaching all areas of the compartment from their location along the walls (each should reach past the center line of the compartment).</td>
</tr>
<tr>
<td>15</td>
<td>Do the sensors respond appropriately when hand-warmed?</td>
</tr>
<tr>
<td>16</td>
<td>TEST ALL AIR AND PULP SENSORS. If officer suspects a compartment to be a hanging deck, test any sensors located in the space and make a notation in this block and in the narrative.</td>
</tr>
<tr>
<td>17</td>
<td>Record names of all USDA officials participating in the inspection, indicating lead officer for the report. Include any other information deemed appropriate.</td>
</tr>
<tr>
<td>18</td>
<td>Include as much information as possible.</td>
</tr>
<tr>
<td>19</td>
<td>Company email.</td>
</tr>
<tr>
<td>20</td>
<td>Company phone number.</td>
</tr>
<tr>
<td>21</td>
<td>Signature of Lead Inspector.</td>
</tr>
<tr>
<td>22</td>
<td>Date the report is completed.</td>
</tr>
</tbody>
</table>
PPQ Form 203, Foreign Site Certificate of Inspection and/or Treatment

According to the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number. The valid OMB control numbers for this information collection are 0579-0190 and 0173. The time required to complete this information collection is estimated to average 0.5 hours per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Date Loaded</th>
<th>4. Foreign Port of Export</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Carrier Identification</th>
<th>6. U.S. Port of Entry</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. Shipper (Name and Address - Include Zip Code)</th>
<th>8. Consignee (Name and Address - Include Zip Code)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9. Commodity</th>
<th>10. No. Containers (Identify as box, sack, 1/2 Bruce box, flat, cardboard box, etc.)</th>
<th>11. Container Identification Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Location of Inspection and/or Treatment</th>
<th>13. Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This certifies that the shipment described above has been inspected and/or treated in accordance with agricultural requirements for entry into the United States.

<table>
<thead>
<tr>
<th>14. Signature of Plant Protection and Quarantine Officer</th>
<th>15. Date Issued</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PPQ Form 203
(JUL 2007)

Figure A-11  PPQ Form 203, Foreign Site Certificate of Inspection and/or Treatment
Purpose
PPQ Form 203 verifies that PPQ has precleared the commodity it accompanies (either through inspection or treatment) at the foreign site.

An electronic copy of this form is available in the APHIS forms library at the USDA APHIS PPQ Forms web site.

Instructions
The Agriculture Specialist at Port of Entry (POE) examines this form when a precleared commodity arrives at the port.

The APHIS officer completes this form at the foreign site where the commodity is inspected or treated. The form may either be handwritten in ink or typed. Use Table A-3 to decide what paperwork should be presented upon the arrival of a precleared commodity.

Table A-3 Determine Paperwork to Be Presented upon Arrival of a Precleared Commodity

<table>
<thead>
<tr>
<th>If arriving from: And by:</th>
<th>Then the exporter or the exporter’s agent must provide the following paperwork:</th>
</tr>
</thead>
</table>
| Australia, Japan, Korea, or the Republic of South Africa | ◆ Original (yellow or white) PPQ Form 203 for the commodity  
◆ Copy of the master PPQ Form 203 or original Phytosanitary Certificate, specifying the number of units shipped or remaining in cold storage from the master PPQ Form 203 |
| Chile Vessel | ◆ Original Chilean Phytosanitary Certificate  
◆ E-mail notification of the cargo on board and its status from the IS Region II office to the POE  
**NOTE:** No PPQ Form 203 will accompany the commodity |
| Air | ◆ Original (yellow or white) PPQ Form 203 for the commodity  
◆ Original Chilean Phytosanitary Certificate |
| India or Thailand | ◆ Original (yellow or white) PPQ Form 203 for the commodity  
◆ Original Indian or Thailand Phytosanitary Certificate |
| New Zealand | ◆ Original (yellow or white) PPQ Form 203 for the commodity, or a copy of the master 203  
◆ Original New Zealand Ministry of Agriculture forms specifying the number of units shipped or remaining in cold storage from the master PPQ Form 203, Final Balances-Balance Sheet for USA-Passed Product in Coolstore and Details of Loading Certificate |
| Other than a country listed in the cells above | ◆ Original (yellow or white) PPQ Form 203 for the commodity |
Verify that any seals listed on the form are still intact. Also, confirm that the information and conditions described on the form agree with the cargo manifest, invoice, or other CBP entry documents. Contact QPAS at 301/851-2312 if any of the following occurs:

- PPQ Form 203 is missing
- Seals are broken
- Information on the PPQ Form 203 does not match the entry documents

Refer to the Fruits and Vegetables Import Requirement database (FAVIR) for the commodity being shipped. The commodity may be undergoing in-transit cold treatment. If it is, you need to ensure that the commodity meets the time and temperature requirements.

**Important**

**Instructions for Issuing Officer**

The APHIS Issuing Officer will complete PPQ Form 203, as follows:

1. Type the form or write in ink.
2. Number the certificate using the numbering system assigned by the Area Office with responsibility for the program.
3. If the commodity was treated, mark the form with the plant’s approved stamp.
4. Fill in the remaining, self-explanatory information.

**Distribution**

The APHIS Issuing Officer will distribute PPQ Form 203 using **Table A-4** as a guide.

**Table A-4  Distribution of PPQ Form 203, Foreign Site Certificate of Inspection and/or Treatment**

<table>
<thead>
<tr>
<th>If:</th>
<th>Then:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original and first copy</td>
<td>GIVE to the exporter (the original must be presented at the first POE)</td>
</tr>
<tr>
<td>Copy</td>
<td>SEND to the Area Office, IS, with responsibility for the program</td>
</tr>
<tr>
<td>Copy</td>
<td>RETAIN by the certifying APHIS officer</td>
</tr>
<tr>
<td>Copy (through the office of cooperator)¹</td>
<td>FAX a copy to the U.S. Port of Arrival</td>
</tr>
<tr>
<td>Copy</td>
<td>ATTACH to trip report</td>
</tr>
</tbody>
</table>

¹ This does not apply to all programs. Check the technical packet or with the IS Field Office in Charge.
### PPQ Form 556, Intransit Cold Treatment Clearance Report

**U.S. Department of Agriculture**
Animal and Plant Health Inspection Service
Fruit and Vegetable Inspection Service

**IN TRANSIT COLD TREATMENT CLEARANCE REPORT**

**INSTRUCTIONS** Refer to PPQ Treatment Manual Sec. III part 10 and CFR 319.56-28.

<table>
<thead>
<tr>
<th>Commodity</th>
<th>No. Cases</th>
<th>Commodity</th>
<th>No. Cases</th>
<th>Commodity</th>
<th>No. Cases</th>
<th>Commodity</th>
<th>No. Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apples</td>
<td>50</td>
<td>Oranges</td>
<td>20</td>
<td>Peaches</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**INSTRUMENT EXAMINATION**

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Instrument no.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Instrument locked?</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>13</td>
<td>Printing interval</td>
<td>14</td>
<td>(in hrs)</td>
</tr>
<tr>
<td>14</td>
<td>Current speed</td>
<td>20</td>
<td>(in mph)</td>
</tr>
<tr>
<td>15</td>
<td>Actual length of record</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

**IDENTITY COMPARTMENTS**

<table>
<thead>
<tr>
<th>Commodity</th>
<th>No. Cases</th>
<th>Commodity</th>
<th>No. Cases</th>
<th>Commodity</th>
<th>No. Cases</th>
<th>Commodity</th>
<th>No. Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apples</td>
<td>50</td>
<td>Oranges</td>
<td>20</td>
<td>Peaches</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**TEMPERATURE RECORD**

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Date</th>
<th>Time</th>
<th>Date</th>
<th>Time</th>
<th>Date</th>
<th>Time</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
</table>

**TREATMENT COMPARTMENTS**

<table>
<thead>
<tr>
<th>Commodity</th>
<th>No. Cases</th>
<th>Commodity</th>
<th>No. Cases</th>
<th>Commodity</th>
<th>No. Cases</th>
<th>Commodity</th>
<th>No. Cases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apples</td>
<td>50</td>
<td>Oranges</td>
<td>20</td>
<td>Peaches</td>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**RECORDED TEMPERATURES**

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>Date</th>
<th>Time</th>
<th>Date</th>
<th>Time</th>
<th>Date</th>
<th>Time</th>
<th>Date</th>
<th>Time</th>
</tr>
</thead>
</table>

**CARGO STORAGE SATISFACTORY**

---

Figure A-12  PPQ Form 556, In Transit Cold Treatment Clearance Report
Worksite Specific Respiratory Protection Plan—Template

A worksite specific respiratory protection plan is mandatory. Refer to Figure A-13 through Figure A-20 for a generic template or go to the S&H Sharepoint site for other worksite plans. Contact your FO Safety Manager for a site specific plan.

MANDATORY WORKSITE SPECIFIC RESPIRATORY PROTECTION PLAN
TEMPLATE

APHIS / PPQ FIELD OPERATIONS
RESPIRATORY PROTECTION PROGRAM

COMPLIANCE WITH THIS PUBLICATION IS MANDATORY

This operation instruction (OI) contains information and guidance for proper respirator selection, use, care and maintenance. Template meets OSHA 29 CFR 190.134 Respiratory Protection requirements to establish worksite specific plan.

DIRECTIONS:
1.1. Review Policy
1.2. Input your Program management position in accordance with identified font in black.
1.3. May edit or add specific procedures with approval of PPQ FO Safety and Health.

DOCUMENT APPROVAL:
1.4. Approval by Local Manager with signature/date
1.5. Approval by State Plant Health Director with signature/date
1.6. Approval by PPQ FO Safety Manager with signature/date

RECORDKEEPING:
1.7. Approved/signed copy (PDF file) of original must be sent to PPQ FO Safety Health Office.
1.8. Copy will be kept on Site, readily available for review.


Figure A-13 Worksite Specific Respiratory Protection Plan—Template (page 1 of 8)
This operation instruction (OI) contains information and guidance for proper respirator selection, use, care and maintenance.

REFERENCES:
29 CFR 1910.134, Respiratory Protection
USDA APHIS Safety and Health Manual, Chap 11

GENERAL:
The use of respiratory protection should be a last resort. Substituting less hazardous materials or processes, eliminating hazards through engineering changes or controls, isolating hazardous operations, or providing administrative controls shall be considered before the decision is made to protect workers with respirators.

No personnel may wear a respirator unless required or recommended by Site Supervisor in conjunction with advice from Safety and Occupational Health Manager/Specialist.

CATEGORIES OF RESPIRATOR USAGE: Site Supervisor shall identify the location and use of all respirators worn by employees.

<table>
<thead>
<tr>
<th>Operation/Process</th>
<th>Type of Respiration</th>
<th>Cartridge</th>
<th>Change out Frequency</th>
<th>Category of Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fumigation Process Methyl Bromide</td>
<td>Full Face (SCBA)</td>
<td>n/a</td>
<td>n/a</td>
<td>Required</td>
</tr>
<tr>
<td>Methyl Bromide Readings &gt; 5ppm</td>
<td>n/a</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fumigation Process Methyl bromide Reading &gt;1-&lt; 4 ppm</td>
<td>APR (Half Face)</td>
<td>Organic Vapor/Acid Gas/P100 cartridges</td>
<td>Change immediately after each use or if air is restricted when breathing</td>
<td>Required</td>
</tr>
<tr>
<td></td>
<td>or APR (Full Face)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Medical Clearance: Medical evaluation and clearance is required before performing tasks requiring use of respirators in order to determine an employee is physically able to do the work and utilize the equipment medically (ref. APHIS Safety and Health Manual, Chap 11, Sec 11.3.4, Para F) or (new ref. APHIS Safety and Health Manual, Chap 7, Section 9, Dec. 2010). The evaluation must be performed by a physician or
licensed health care professional. Final evaluation approval shall be determined by an authorized APHIS medical provider. The respirator user’s medical status should be reviewed every year or as certifying physician determines. The medical evaluation should include, as a minimum, an evaluation to identify pulmonary and cardiovascular impairment.

Training: All personnel will receive initial respiratory protection training prior to wearing a respirator. Periodic training will be accomplished by a work place supervisor annually. Documentation of the initial and annual training will be documented on SF form 182 or equivalent. A copy of the training plan is located in attachment 2.

Fit-Testing: After instruction, a quantitative fit-testing will be conducted. Contact Candace Robl for assistance at (941) 359-3281. Fit Test documentation will be recorded and maintained by Site Supervisor. Employees are only allowed to wear respirators for which they have been fit tested/trained. A respirator fit-test shall be carried out for each wearer of a tight-fitting respirator at least once every 12 months. A new fit test will be accomplished when a worker experiences a change in physical condition that could affect respirator fit (e.g., weight change of more than 20 pounds, facial scarring, dental changes cosmetic surgery, disfigurement, … etc.).

Program Compliance:
Site Supervisor: Supervisors will be familiar with the training/fit-testing status of all respirator wearers. SF form 182 or computerized equivalent and 429 data base shall be used to record and track the date of the most current certification. Supervisors will ensure personnel on the respirator protection program wear the correct respiratory protection for which they have been fit-tested and trained prior to utilization.

Individuals: Individuals provided respiratory protection will use it according to the instructions and training received. Report to their supervisor any change in medical status, which may impact their ability to safely wear respiratory protection. Inspect, clean, and maintain any respiratory protection device issued to them for their individual use. Wear only respiratory protection (mfg, make, model and size) for which they have received fit-testing and training, and only for the tasks specified.

User Seal Check Procedures:
Workers who use tight-fitting respirators will perform positive and negative pressure checks to ensure adequate seal is achieved each time the respirator is put on.

Positive Pressure Check: Close off exhalation valve and exhale gently into the face piece. The face fit is considered satisfactory if a slight positive pressure can be built up inside the face piece without any evidence of outward leakage at all the seal. For most respirators this method of leak testing requires the wearer to first remove the exhalation valve cover before closing off the exhalation valve and then carefully replacing it after the test.

Negative Pressure Check: Close off inlet opening of the canister or cartridge(s) by covering with palm of the hand(s) or by replacing the filter seal(s), inhale gently so that the face piece collapses slightly, and hold breath for ten seconds. The design of the inlet opening of some cartridges cannot be effectively covered with the palm of the hand; in those circumstances, covering the inlet opening of the cartridge with a thin latex or nitrile glove can perform this test. If face piece remains in its slightly collapsed condition and no inward leakage of air is detected, tightness of the respirator is considered satisfactory.

Respirator Sealing Problems:
A head covering which passes between the sealing surface of a tight-fitting respirator face piece and the wearer’s face shall not be used.
Wearing of protective equipment used by the wearer shall not interfere with seal of the respirator. Personnel who are not clean-shaven or on a shaving waiver will not be permitted to wear a tight fitting respirator. If personnel are on a shaving waiver they are disqualified from the tight fitting respirator program until they can shave again.

**Vision:**
When a respirator user must wear corrective lenses, the wearer must use protective spectacles, goggles, face shields or other eye and face protective devices such that the item shall be fitted to provide good vision and shall be worn in such a manner as not to interfere with the proper seal of the respirator.

Spectacles with straps or temple bars that pass through the sealing surface of either negative or positive pressure, tight-fitting, full-face piece respirators shall not be used.

Contact lenses will not be worn with respirators in a fuel systems repair area.

If an individual who must wear corrective lenses uses spectacle inserts with a full-face piece respirator, then the government will purchase the spectacle inserts for the respirator, using a prescription provided by the user.

**Care, Inspection, and Maintenance of Respirators:**

**General Discussion:** Each individual issued a respirator is responsible for its primary maintenance and care. **Supplied Air shall be of high purity and tested according to 29 CFR 1910.134(i)(1)(ii) . Copy of results of breathing air shall be received form vendor and kept by supervisor or designated Respiratory Program Manager.**

**Care:**

**Cleaning and sanitizing:** Respirators issued to an individual shall be cleaned and sanitized at the end of each day in which the respirator is used. Each respirator shall be cleaned and sanitized with MSA Cleaner Sanitizer II before and after each use. (See Attachment 1)

**Storage:** Respirators shall be stored in a manner that will protect them against chemical agents and physical agents such as vibration, shock, sunlight, heat, extreme cold, excessive moisture, or damaging chemicals. Respirators shall be stored to prevent distortion of rubber or other elastomeric parts. Respirators shall not be stored in such places as lockers and toolboxes unless they are protected from contamination, distortion, and damage.

**Inspection:** The user shall inspect the respirator immediately before each use to ensure it is in proper working condition. After cleaning and sanitizing, each respirator shall be inspected to determine if it is in proper working condition, needs replacement of parts, needs repairs, or should be discarded. Air supplied respirators will be inspected each month. Respirators, which do not meet applicable inspection criteria, shall be immediately removed from service. Respirator inspection shall include a check for tightness of connections; for the condition of the respiratory inlet covering, head harness, valves, connecting tubes, harness assemblies, hoses, filters, cartridges and for the proper functioning of regulators, alarms, and other warning systems. Each rubber or other elastomeric part shall be inspected for pliability and signs of deterioration. The breathing air system shall be inspected to ensure it is fully charged prior to use according to the manufacturer’s instructions.

**Maintenance:**

Only personnel trained in proper respirator maintenance and assembly shall do replacement of parts or repairs.

---

**Figure A-16 Worksite Specific Respiratory Protection Plan—Template (page 4 of 8)**
Replacement parts shall be used only as designated for specific respirators.

**Respiratory Documentation and Respirator Recordkeeping:**
Site Supervisor establish and retain written information regarding medical evaluation, fit testing, respirator training. Itemized PPE maintenance/care/cleaning and appropriate respirator cartridge/filter change-out schedule shall be documented and retained. The documentation shall include User/respirator model/cartridge type/change-out date/cleaning date/initials shall be readily available. The respirator itself shall have a change-out date incorporated on the outside of each cartridge/filter which matches the latest documentation entry.

**Print Name / signature**

**POSITION or RESPONSIBLE SUPERVISOR**

**Attachments:**

1. Respirator Cleaning Procedures
2. Respiratory Protection Shop Specific Training
3. Voluntary use of Respirator—Where Respirators are Not Required

**Approved/Disapproved**

Signature Date

**Local Director/Manager**

Signature Date

**State Plant Health Director**

Signature Date

**Safety and Health Office**

Signature Date

---

Figure A-17  Worksite Specific Respiratory Protection Plan—Template (page 5 of 8)
Attachment 1

RESPIRATOR CLEANING PROCEDURES

The following procedure is recommended for cleaning and disinfecting respirators:

1. Remove any filters, cartridges, canisters, or communication devices.
2. Wash face piece and breathing tube in a cleaner-disinfectant solution. Use a soft brush to facilitate dirt removal.
3. Use MSA Cleaner Sanitizer II for proper sanitizing of respirators.
4. Rinse completely in clean, warm, water, which is less than or equal to 120 degrees F.
5. Air-dry in a clean area.
6. Clean other respirator parts as recommended by the manufacturer.
7. Inspect valves, head straps, and other parts; replace defective parts with new ones.
8. Insert new filters, cartridges, or canisters periodically as specified by the manufacturer; make sure seal is tight.
9. Place in plastic bag or other closed container for storage.
10. Document cleaning date, respirator model and user for recordkeeping.

Figure A-18 Worksite Specific Respiratory Protection Plan—Template (page 6 of 8)
Attachment 2
SHOP SPECIFIC TRAINING LESSON PLAN

Respirator Requirement (Type and number of RP must be the same. Change to update for local work unit)

This work center has a requirement for the use of XX different respirators.

List required respirators.

Why is a respirator required?

IAW USDA, PPQ Treatment Manual dated 1 Mar 2006 respirators are required when using various fumigants during the following processes: Installing the exhaust system, opening the tarpaulin for aeration, removing the tarpaulin if measured levels of fumigant are above 5 ppm and any time during the aeration process when a risk of exposure to concentration above 5 ppm exists. This includes any time the concentration is unknown.

Confined space incinerator inspection maintenance, cleaning and inspection of propagated material shall require respirator use from possible unknown residual chemical exposure.

What are the potential acute and chronic health effects of exposure to the following material(s)?:

Headache, fatigue, skin irritation, loss of appetite, experience shortness of breath, dizziness, unconsciousness, central nervous system depression, fever and death.

Weight of Respirators:

List weight of required respirators

List Duration of Use

List Frequency of Use

List Expected Physical Work Effort

List Additional Required PPE

List Temperature/Humidity Extremes

Administrative Controls

Figure A-19 Worksite Specific Respiratory Protection Plan—Template (page 7 of 8)
Attachment 3

Voluntary use of Respirator—Where Respirators are Not Required

APHIS may provide respirators at the request of employees if the Agency determines the respirator will not in itself create a hazard. APHIS has determined disposable respirators will not be used when performing PPQ plant inspection and incinerator duties. Disposable respirators do not protect against possible contamination of pesticides. Disposable respirators will only protect against particulates at a given efficiency rate and size. At a minimum, half face and or full face APR respirators with combination VOC/HEPA cartridge shall be used when suspect possible unknown contaminants.
Appendix B

Coast Guard Regulations

This Appendix contains information reprinted from 46CFR, October 1, 2011

Title 46—Shipping
Chapter 1—Coast Guard, Dept. of Transportation

Part 147A—Interim Regulations For Shipboard Fumigation

MINIMUM REQUIREMENTS

General

Sec. 147A.1 Purpose.
Sec. 147A.3 Applicability.
Sec. 147A.5 General requirement.
Sec. 147A.6 Right of Appeal.
Sec. 147A.9 Persons in charge of fumigation and the vessel; designation.
Sec. 147A.10 Notice to Captain of the Port.

Before Fumigation

Sec. 147A.11 Person in charge of fumigation; before fumigation.
Sec. 147A.13 Person in charge of the vessel; before fumigation.

During Fumigation

Sec. 147A.21 Person in charge of fumigation; during fumigation.
Sec. 147A.23 Person in charge of vessel; during fumigation.
Sec. 147A.25 Entry.

After Ventilation

Sec. 147A.31 Removal of fumigation material and warning signs.

SPECIAL REQUIREMENTS FOR FLAMMABLE FUMIGANTS

Sec. 147A.41 Person in charge of fumigation; flammable fumigants.
Sec. 147A.43 Other sources of ignition; flammable fumigants.

Source: CGD 74-144, 39 FR 32998, Sept. 13, 1974, unless otherwise noted.
**General**

**Sec. 147A.1 Purpose.**
The purpose of this part is to prescribe the requirements for shipboard fumigation that are critical for the health and safety of the crew and any other person who is on board a vessel during fumigation. These are interim rules pending further study and promulgation of comprehensive regulations on shipboard fumigation.

**Sec. 147A.3 Applicability.**
This part prescribes the rules for shipboard fumigation on vessels to which 49 CFR parts 171-179 apply under 49 CFR 176.5.

**Sec. 147A.5 General requirement.**
No person may cause or authorize shipboard fumigation contrary to the rules in this part.

**Sec. 147A.6 Right of Appeal.**
Any person directly affected by a decision or action taken under this part, by or on behalf of the Coast Guard, may appeal therefrom in accordance with subpart 1.03 of this chapter.

**Sec. 147A.7 Definitions.**
As used in this part:

(a) Qualified person means a person who has experience with the particular fumigant or knowledge of its properties and is familiar with fumigant detection equipment and procedures, or an applicator who is certified by the Environmental Protection Agency if his certification covers the fumigant that is used.

(b) Fumigant means a substance or mixture of substances that is a gas or is rapidly or progressively transformed to the gaseous state though some nongaseous or particulate matter may remain in the space that is fumigated.

(c) Fumigation means the application of a fumigant on board a vessel to a specific treatment space.

**Sec. 147A.9 Persons in charge of fumigation and the vessel; designation.**
(a) The person, including any individual, firm, association, partnership, or corporation, that is conducting a fumigation operation shall designate a person in charge of fumigation for each operation.
(b) The operator of each vessel shall designate a person in charge of the vessel for each fumigation operation.

Sec. 147A.10 Notice to Captain of the Port.
Unless otherwise authorized by the Captain of the Port, at least 24 hours before fumigation the operator of the vessel shall notify the Coast Guard Captain of the Port, for the area where the vessel is to be fumigated, of the time and place of the fumigation, and the name of the vessel that is to be fumigated.

Before Fumigation

Sec. 147A.11 Person in charge of fumigation; before fumigation.
(a) The person in charge of fumigation shall notify the person in charge of the vessel of:

(1) The space that is to be fumigated;
(2) The name, address, and emergency telephone number of the fumigation company;
(3) The dates and times of fumigation;
(4) The characteristics of the fumigant;
(5) The spaces that are determined to be safe for occupancy paragraph (b)(1)(i) of this section;
(6) The maximum allowable concentration of fumigant in spaces, if any, that are determined to be safe for occupancy under paragraph (b)(1)(i) of this section;
(7) The symptoms of exposure to the fumigant; and
(8) Emergency first aid treatment for exposure to the fumigant.

(b) The person in charge of fumigation shall ensure that:

(1) A marine chemist or other qualified person who has knowledge of and experience in shipboard fumigation evaluates the vessel's construction and configuration and determines:

   (i) Which spaces, if any, are safe for occupancy during fumigation; and
   (ii) The intervals that inspections must be made under Sec. 147A.21(a)(1);
(2) No persons or domestic animals are in the space that is to be fumigated or the spaces that are designated as unsafe for occupancy under paragraph (b)(1)(i) of this section;

(3) There is proper and secure sealing to confine the fumigant to the space that is to be fumigated, including blanking off and sealing any ventilation ducts and smoke detectors;

(4) The personal protection and fumigation detection equipment for the fumigant that is to be used is on board the vessel;

(5) Warning signs are:

   (i) Posted upon all gangplanks, ladders, and other points of access to the vessel;

   (ii) Posted on all entrances to the spaces that are designated as unsafe for occupancy under paragraph (b)(1)(i) of this section; and

   (iii) In accordance with 49 CFR 173.9(c) or section 8.10 of the General Introduction of the International Maritime Dangerous Goods Code. The word “unit” on the warning sign may be replaced with “vessel,” “barge,” “hold,” or “space,” as appropriate.

(6) Watchmen are stationed at all entrances to:

   (i) Spaces that are not determined to be safe for occupancy under paragraph (b)(1)(i) of this section; or

   (ii) The vessel, if no spaces are determined to be safe for occupancy under paragraph (b)(1)(i) of this section.

**Sec. 147A.13 Person in charge of the vessel; before fumigation.**

(a) After notice under Sec. 147A.11 (a)(5), the person in charge of the vessel shall notify the crew and all other persons on board the vessel who are not participating in the fumigation of the spaces that are determined to be safe for occupancy under Sec. 147A.11(b)(1)(i).

(b) If no spaces are determined to be safe for occupancy under Sec. 147A.11 (b)(1)(i), the person in charge of the vessel shall ensure that the crew and all persons who are not participating in the fumigation leave the vessel and remain away during fumigation.
During Fumigation

Sec. 147A.21 Person in charge of fumigation; during fumigation.
(a) Until ventilation begins, or until the vessel leaves port, the person in charge of fumigation shall ensure that a qualified person inspects the vessel as follows:

(1) He must use detection equipment for the fumigant that is used to ensure that the fumigant is confined to:

   (i) The space that is fumigated, if partial occupancy is allowed under Sec. 147A.11(b)(1)(i); or

   (ii) The vessel, if no space is determined to be safe for occupancy under Sec. 147A.11(b)(1)(i).

(2) He must make inspections at the intervals that are determined to be necessary by the marine chemist or qualified person under Sec. 147A.11(b)(1)(ii).

(b) If leakage occurs, the person in charge of fumigation shall:

   (1) Notify the person in charge of the vessel that there is leakage;

   (2) Ensure that all necessary measures are taken for the health and safety of any person; and

   (3) Notify the person in charge of the vessel when there is no danger to the health and safety of any person.

(c) After the exposure period, if the vessel is in port, the person in charge of fumigation shall ensure that fumigators or other qualified persons ventilate the space that is fumigated as follows:

   (1) Hatch covers and vent seals must be removed, other routes of access to the atmosphere must be opened, and if necessary, mechanical ventilation must be used.

   (2) Personal protection equipment that is appropriate for the fumigant that is used must be worn.

(d) If ventilation is completed before the vessel leaves port, the person in charge of fumigation shall:
(1) Ensure that a qualified person, who is wearing the personal protection equipment for the fumigant that is used if remote detection equipment is not used, tests the space that is fumigated and determines if there is any danger to the health and safety of any person, including a danger from fumigant that may be retained in bagged, baled, or other absorbent cargo;

(2) Notify the person in charge of the vessel of this determination; and

(3) If it is determined that there is a danger:

   (i) Ensure that all measures are taken that are necessary for the health and safety of all persons; and

   (ii) Notify the person in charge of the vessel when there is no danger to the health and safety of any person.

Sec. 147A.23 Person in charge of vessel; during fumigation.

(a) The person in charge of the vessel shall ensure that the crew and all other persons on board the vessel who are not participating in the fumigation restrict their movement during fumigation to the spaces that are determined to be safe for occupancy under Sec. 147A.11(b)(1)(i).

(b) The person in charge of the vessel shall ensure that the crew and all other persons who are not participating in the fumigation follow any instructions of the person in charge of fumigation that are issued under Sec. 147A.21(b)(2) or (d)(3)(i) and that the vessel does not leave port if he is notified under:

   (1) Section 147A.21(b)(1) that there is leakage, unless the person in charge of fumigation notifies him under Sec. 147A.21(b)(3) of this subpart that there is no danger; or

   (2) Section 147A.21(d)(2) that there is a danger after ventilation, unless the person in charge of the fumigation notifies him under Sec. 147A.21(d)(3)(ii) that there is no danger.

(c) If fumigation is not completed before the vessel leaves port, the person in charge of the vessel shall ensure that personal protection and fumigant detection equipment for the fumigant that is used is on board the vessel.

(d) If the vessel leaves port before fumigation is completed, the person in charge of the vessel shall ensure that a qualified person makes periodic inspections until ventilation is completed and this person shall use detection equipment for the fumigant that is used to determine if:

   (1) There is leakage of fumigant; or

   (2) There is a concentration of fumigant that is a danger to the health and safety of any person.
(e) If the qualified person determines under paragraph (d) of this section that there is leakage or a concentration of fumigant that is a danger to the health and safety of any person, the person in charge of the vessel shall take all measures that are, in his discretion, necessary to ensure health and safety of all persons who are on board the vessel. If the danger is due to leakage, he shall also ensure that qualified persons immediately ventilate in accordance with paragraphs (c)(1) and (2) of Sec. 147A.21.

(f) If the vessel leaves port during the exposure period, the person in charge of the vessel shall ensure that the space that is fumigated is ventilated by qualified persons after the exposure period in accordance with paragraphs (c)(1) and (2) of Sec. 147A.21.

(g) If ventilation is completed after the vessel leaves port, the person in charge of the vessel shall ensure that a qualified person, who is wearing the personal protection equipment for the fumigant that is used if remote detection equipment is not used, tests the space that is fumigated to determine if there is a danger to the health and safety of any person, including a danger from fumigant that may be retained in bagged, baled, or other absorbent cargo. If the qualified person determines that there is a danger, the person in charge of the vessel shall take all measures that are, in his discretion, necessary to ensure the health and safety of all persons who are on board the vessel.

Sec. 147A.25 Entry.

(a) No person may enter the spaces that immediately adjoin the space that is fumigated during fumigation unless entry is for emergency purposes or the space is tested and declared safe for human occupancy by a marine chemist or other qualified person and is inspected under Sec. 147A.21(a)(2) or Sec. 147A.23(d).

(b) If entry is made for emergency purposes:

(1) No person may enter the space that is fumigated or any adjoining spaces during fumigation unless he wears the personal protection equipment for the fumigant that is in use;

(2) No person may enter the space that is fumigated unless the entry is made by a two person team; and

(3) No person may enter the space that is fumigated unless he wears a lifeline and safety harness and each life-line is tended by a person who is outside the space and who is wearing the personal protection equipment for the fumigant that is in use.
After Ventilation

Sec. 147A.31 Removal of fumigation material and warning signs.
After ventilation is completed and a marine chemist or other qualified person determines that there is no danger to the health and safety of any person under Sec. 147A.21(d) or Sec. 147A.23(g), the person in charge of fumigation, or, if the vessel has left port, the person in charge of the vessel, shall ensure that all warning signs are removed and fumigation containers and materials are removed and disposed of in accordance with the manufacturer’s recommendations.

Special Requirements for Flammable Fumigants

Sec. 147A.41 Person in charge of fumigation; flammable fumigants.
(a) The person in charge of fumigation shall ensure that:

(1) Before the space that is to be fumigated is sealed, it is thoroughly cleaned, and all refuse, oily waste, and other combustible material is removed;

(2) Before fumigation, all fire fighting equipment, including sprinklers and fire pumps, is in operating condition; and

(3) Before and during fumigation, electrical circuits that are in the space that is fumigated are de-energized.

(b) [Reserved]

Sec. 147A.43 Other sources of ignition; flammable fumigants.
While the space that is fumigated is being sealed or during fumigation, no person may use matches, smoking materials, fires, open flames, or any other source of ignition in any spaces that are not determined to be safe for occupancy under Sec. 147A.11(b)(1)(i).
### Appendix C

**Conversion Tables**

<table>
<thead>
<tr>
<th>To convert from:</th>
<th>To:</th>
<th>Multiply by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acres (a)</td>
<td>Hectares (ha)</td>
<td>0.4047</td>
</tr>
<tr>
<td>Acres (a)</td>
<td>Square meters (m²)</td>
<td>4.0470</td>
</tr>
<tr>
<td>Celsius</td>
<td>Fahrenheit</td>
<td>9/5 (then add 32)</td>
</tr>
<tr>
<td>Centimeters, cu. (cm³)</td>
<td>Cubic inches (in³)</td>
<td>0.061</td>
</tr>
<tr>
<td>Centimeters, sq. (cm²)</td>
<td>Square inches (in²)</td>
<td>0.155</td>
</tr>
<tr>
<td>Centimeters (cm)</td>
<td>Inches (in)</td>
<td>0.3937</td>
</tr>
<tr>
<td>Fahrenheit</td>
<td>Celsius</td>
<td>First, subtract 32, then multiply by 5/9</td>
</tr>
<tr>
<td>Feet, cubic (ft³)</td>
<td>Liters (L)</td>
<td>28.32</td>
</tr>
<tr>
<td>Feet, cubic (ft³)</td>
<td>Cubic meters (m³)</td>
<td>0.0283</td>
</tr>
<tr>
<td>Feet, square (ft²)</td>
<td>Square meters (m²)</td>
<td>0.0929</td>
</tr>
<tr>
<td>Feet, square (ft²)</td>
<td>Sq. centimeters (cm²)</td>
<td>929.0</td>
</tr>
<tr>
<td>Feet (ft)</td>
<td>Centimeters (cm)</td>
<td>30.48</td>
</tr>
<tr>
<td>Feet (ft)</td>
<td>Meters (m)</td>
<td>0.3048</td>
</tr>
<tr>
<td>Gallons (gal)</td>
<td>Liters (L)</td>
<td>3.785</td>
</tr>
<tr>
<td>Grams (g)</td>
<td>Ounces (oz)</td>
<td>0.0353</td>
</tr>
<tr>
<td>Hectares (ha)</td>
<td>Acres (a)</td>
<td>2.471</td>
</tr>
<tr>
<td>Inches (in)</td>
<td>Centimeters (cm)</td>
<td>2.54</td>
</tr>
<tr>
<td>Inches, square (in²)</td>
<td>Sq. centimeters (cm²)</td>
<td>6.4516</td>
</tr>
<tr>
<td>Inches, cubic (in³)</td>
<td>Cu. centimeters (cm³)</td>
<td>16.387</td>
</tr>
<tr>
<td>Kilograms (kg)</td>
<td>Pounds (lb)</td>
<td>2.205</td>
</tr>
<tr>
<td>Kilograms (kg)</td>
<td>Ounces (oz)</td>
<td>35.27</td>
</tr>
<tr>
<td>Kilometers, sq. (km²)</td>
<td>Square miles (mi²)</td>
<td>0.3861</td>
</tr>
<tr>
<td>Kilometers, sq. (km²)</td>
<td>Acres (a)</td>
<td>247.1</td>
</tr>
<tr>
<td>Kilometers (km)</td>
<td>Miles (mi)</td>
<td>0.6214</td>
</tr>
<tr>
<td>Liters (L)</td>
<td>Gallons (gal)</td>
<td>0.2642</td>
</tr>
<tr>
<td>Liters (L)</td>
<td>Quarts (qt)</td>
<td>1.0567</td>
</tr>
<tr>
<td>Meters, cubic (m³)</td>
<td>Cubic feet (ft³)</td>
<td>35.314</td>
</tr>
<tr>
<td>Meters, cubic (m³)</td>
<td>Cubic yards (yd³)</td>
<td>1.308</td>
</tr>
<tr>
<td>Meters (m)</td>
<td>Feet (ft)</td>
<td>3.281</td>
</tr>
<tr>
<td>Meters (m)</td>
<td>Yards (yd)</td>
<td>1.0936</td>
</tr>
<tr>
<td>Meters, sq. (m²)</td>
<td>Square inches (in²)</td>
<td>1550.00</td>
</tr>
<tr>
<td>Meters (m)</td>
<td>Inches (in)</td>
<td>39.37</td>
</tr>
<tr>
<td>Meters, sq. (m²)</td>
<td>Square feet (ft²)</td>
<td>10.764</td>
</tr>
</tbody>
</table>
## Table C-1 Conversion Tables

<table>
<thead>
<tr>
<th>To convert from:</th>
<th>To:</th>
<th>Multiply by:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles, square (mi²)</td>
<td>Hectares (ha)</td>
<td>258.99</td>
</tr>
<tr>
<td>Miles, square (mi²)</td>
<td>Sq. kilometers (km²)</td>
<td>2.5899</td>
</tr>
<tr>
<td>Miles, statute (mi)</td>
<td>Meters (m)</td>
<td>1,609.347</td>
</tr>
<tr>
<td>Miles, statute (mi)</td>
<td>Kilometers (km)</td>
<td>1.609</td>
</tr>
<tr>
<td>Milliliters (ml)</td>
<td>Liquid ounces (lq oz)</td>
<td>0.0338</td>
</tr>
<tr>
<td>Nautical miles</td>
<td>Meters (m)</td>
<td>1,852.00</td>
</tr>
<tr>
<td>Ounces, fluid (fl oz)</td>
<td>Milliliters (ml)</td>
<td>29.57</td>
</tr>
<tr>
<td>Ounces (oz)</td>
<td>Kilograms (kg)</td>
<td>0.0284</td>
</tr>
<tr>
<td>Ounces (oz)</td>
<td>Grams (g)</td>
<td>28.35</td>
</tr>
<tr>
<td>Pounds (lb)</td>
<td>Kilograms (kg)</td>
<td>0.4536</td>
</tr>
<tr>
<td>Pounds (lb)</td>
<td>Grams (g)</td>
<td>453.6</td>
</tr>
<tr>
<td>Quarts (qt)</td>
<td>Liters (L)</td>
<td>0.9464</td>
</tr>
<tr>
<td>Tons, short (2000 lb)</td>
<td>Metric tons (t)</td>
<td>0.9072</td>
</tr>
<tr>
<td>Tons, Metric (t)</td>
<td>Tons, short</td>
<td>1.102</td>
</tr>
<tr>
<td>Yards, cubic (yd³)</td>
<td>Liters (L)</td>
<td>764.6</td>
</tr>
<tr>
<td>Yards, cubic (yd³)</td>
<td>Cubic meters (m³)</td>
<td>0.765</td>
</tr>
<tr>
<td>Yards (yd)</td>
<td>Meters (m)</td>
<td>0.9144</td>
</tr>
<tr>
<td>Yards (yd)</td>
<td>Centimeters (cm)</td>
<td>91.44</td>
</tr>
</tbody>
</table>

### Miscellaneous:

- Pounds per acre (lb/a) × 1.1206 = kg/ha
- Ounces (liquid) per acre × 73.14 = ml/ha
- Gallons per acre (gal/a) × 9.3527 = liters per hectare (L/ha)
- Pressure per square inch (PSI) × 0.145038 = pounds per square inch (PSI)
- Inches mercury × 3.38 = kilopascals (kPa)
- Kilogram per hectare (kg/ha) × 0.8924 = pounds per acre
- Milliliters per hectare × 0.01367 = ounces (lq.) per acre
- Liters per hectare (L/ha) × 0.1069 = gallons per acre
- Kilopascals (kPa) × 0.29586 = inches mercury
- Grams per liter × 0.008345 = pounds per gallon
- Kilopascals (kPa) × 0.145038 = pounds per square inch (PSI)
- Pounds per cubic foot = 0.0160 grams per cubic meter
Appendix D

Approved Treatment Facilities and Conveyances

Refer to Table D-1 for hyperlinks to lists of USDA APHIS PPQ approved quarantine treatment facilities, vessels, and containers.

These lists are updated semi-annually. If you have any questions regarding the status of a treatment facility, contact your local PPQ office. If you have any questions regarding the status of a self-refrigerated container or vessel, contact:

CPHST-AQI at (919) 855-7450 or fax (919) 855-7493

Table D-1 Hyperlinks to Lists of Approved Treatment Facilities, Vessels, and Containers

<table>
<thead>
<tr>
<th>Type</th>
<th>Hyperlink</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maritime containers and vessels</td>
<td><a href="https://treatments.cphst.org/vessels/">https://treatments.cphst.org/vessels/</a></td>
</tr>
</tbody>
</table>
Appendix E

Reference Guide to Commercial Suppliers of Treatment and Related Safety Equipment

Introduction

This list is not intended to be all inclusive and is intended to be a reference guide solely for the convenience of potential users, particularly PPQ plant inspection stations. No endorsement is intended of the particular items listed, and no discrimination is intended toward those products or companies that may not be listed.

Products

Aeration Duct, Flexible E-9
  Biesterfeld U.S. Inc. E-9
  Fumigation Service & Supply, Inc. E-9
Aerosol Insecticides E-9
  Gilmore Marketing and Development, Inc. E-9
  Otis Laboratory E-9
  Southern Agricultural Insecticides, Inc. E-10
Air Pump, Auxiliary E-10
  Barnant E-10
  Cole-Parmer E-10
  McMaster-Carr Supply Co. E-10
Air-Purifying Respirator E-12
Air Velocity Measuring (Anemometer) E-12
  Extech Instruments® E-12
  NK Nielson-Kellerman E-12
  Trutech Tools E-13
  TSI, Inc. Alnor Products E-13
Aluminum Phosphide E-13
  Degesch America, Inc. E-13
  Fumigation Service & Supply, Inc. E-13
  Gilmore Marketing and Development, Inc. E-14
  Helena Chemical Co. E-14
  ICD Group Metals, LLC E-14
  INCHEMA, Inc. E-14
  Loveland Products, Inc. E-14
  Pest Fog, Inc. E-14
  Pestcon Systems, Inc. E-15
  United Suppliers, Inc. E-15
<table>
<thead>
<tr>
<th>Product</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applicator (Dispenser) for Methyl Bromide</td>
<td>E-15</td>
</tr>
<tr>
<td>Pest Fog, Inc. E-15</td>
<td></td>
</tr>
<tr>
<td>Vuscamante North E-15</td>
<td></td>
</tr>
<tr>
<td>Ascarite II</td>
<td>E-16</td>
</tr>
<tr>
<td>Sigma-Aldrich Chemical Company, Inc. E-16</td>
<td></td>
</tr>
<tr>
<td>Fisher Scientific E-16</td>
<td></td>
</tr>
<tr>
<td>Thomas Scientific E-16</td>
<td></td>
</tr>
<tr>
<td>Balances, Portable (for weighing individual fruit)</td>
<td>E-16</td>
</tr>
<tr>
<td>Ohaus Corporation E-16</td>
<td></td>
</tr>
<tr>
<td>Batch Systems (complete installations, hot water immersion treatments)</td>
<td>E-17</td>
</tr>
<tr>
<td>Agri Machinery and Parts, Inc. E-17</td>
<td></td>
</tr>
<tr>
<td>Agroindustrias Integradas, S.A. de C.V. E-17</td>
<td></td>
</tr>
<tr>
<td>Calderas Astro, S.A. de C.V. E-17</td>
<td></td>
</tr>
<tr>
<td>Construcciones Pyrsa E-17</td>
<td></td>
</tr>
<tr>
<td>Consultecnia E-17</td>
<td></td>
</tr>
<tr>
<td>Dica de Mexico, S.A. E-18</td>
<td></td>
</tr>
<tr>
<td>Diseños y Maquinaria Jer, S.A. de C.V. (“Jersa”) E-18</td>
<td></td>
</tr>
<tr>
<td>Equipos Agroindustriales de Occidente, S.A. de C.V. E-18</td>
<td></td>
</tr>
<tr>
<td>Frutico International E-18</td>
<td></td>
</tr>
<tr>
<td>Guiar Industrial, S.A. de C.V. E-18</td>
<td></td>
</tr>
<tr>
<td>Industria de Maquinas Agricolas GB Ltda. E-18</td>
<td></td>
</tr>
<tr>
<td>Industrial Equipment &amp; Engineering Co. E-19</td>
<td></td>
</tr>
<tr>
<td>NOJOXTEN S.A. de C.V. E-19</td>
<td></td>
</tr>
<tr>
<td>Produce Sorters International E-19</td>
<td></td>
</tr>
<tr>
<td>Proyect Asesoria Industrial E-19</td>
<td></td>
</tr>
<tr>
<td>Pyrsa de Celaya E-19</td>
<td></td>
</tr>
<tr>
<td>Silsa, S.A. de C.V. E-19</td>
<td></td>
</tr>
<tr>
<td>William B. Cresse, Inc. E-20</td>
<td></td>
</tr>
<tr>
<td>Blower</td>
<td>E-20</td>
</tr>
<tr>
<td>W. W. Grainger, Inc. E-20</td>
<td></td>
</tr>
<tr>
<td>William W. Meyer &amp; Sons, Inc. E-20</td>
<td></td>
</tr>
<tr>
<td>Bubble Fumigation System</td>
<td>E-20</td>
</tr>
<tr>
<td>B&amp;G Equipment Company</td>
<td>E-20</td>
</tr>
<tr>
<td>Power Plastics</td>
<td>E-21</td>
</tr>
<tr>
<td>Cascade Air Tank Recharging System (for SCBA)</td>
<td>E-21</td>
</tr>
<tr>
<td>Mine Safety Appliance Co. (MSA)</td>
<td>E-21</td>
</tr>
<tr>
<td>Mine Safety Appliance Co. (MSA)</td>
<td>E-21</td>
</tr>
<tr>
<td>Chain Hoist (Electronic) (For hot water immersion treatments)</td>
<td>E-21</td>
</tr>
<tr>
<td>Chemonics</td>
<td></td>
</tr>
<tr>
<td>Columbus McKinnon Corp. E-21</td>
<td></td>
</tr>
<tr>
<td>Consultants (For hot water immersion treatments)</td>
<td>E-22</td>
</tr>
<tr>
<td>C.C. Coutinho Consulting</td>
<td></td>
</tr>
<tr>
<td>USDA-APHIS-PPQ-S&amp;T-CPHST-AQI</td>
<td>E-22</td>
</tr>
<tr>
<td>Consultecnia</td>
<td>E-22</td>
</tr>
</tbody>
</table>
Dica de Mexico, S.A. E-22
Frutico International E-22
GEC Instruments E-23
Nojoxten E-23
North Bay Produce, Inc. E-23
Societe d’Entretien & d’Installation (SODEIN) E-23
Curtains (air, safeguarding) E-23
W.W. Granger, Inc. E-23
Digital Thermister Instrument (hand-held for hot water immersion treatments) and Portable Sensors (used in Performance Test) E-24
Advanced Industrial Services, Inc. (AIS) E-24
Allied Electronics E-24
Contech E-24
Cooper Instrument Corp. E-24
Oakton Instruments E-25
Measurement Specialties E-25
Drierite® (anhydrous calcium sulfate) E-26
Sigma-Aldrich Chemical Company, Inc. E-26
Fisher Scientific E-26
W. A. Hammond Drierite Co. (Manufacturer) E-26
Electrochemical Gas Sensor and Pyrolyzer E-26
PureAir Monitoring Systems, Inc. E-26
Exhaust Duct (Tube), Flexible E-27
Gaskets, Inc. E-27
Super Vacuum Manufacturing Company, Inc. E-27
Fans E-27
Pest Fog, Inc. E-27
Super Vacuum Manufacturing Company, Inc. E-28
Fruit Crates (Plastic for hot water immersion treatments) E-28
Fruit Sizing Equipment (Automatic) E-28
Hortagro International, b.v. E-28
Kerian Machines, Inc. E-28
Fumigators, Commercial E-29
Fungicides E-29
Chemitura Corporation E-29
Crystal Chemical Inter-America E-29
Drexel Chemical Co. E-29
Syngenta E-29
Cytec Industries, Inc. E-30
FMC Agricultural Products E-30
Arkema, Inc. E-30
Rohm and Haas E-30
Bayer CropScience LP E-30
Cytec Industries, Inc. E-31
Gas Analyzers E-31
Analytical Technology, Inc. E-31
EB&S Solutions E-31
Interscan Corporation E-31
Key Chemical and Equipment Co., Inc. E-31
Neal Systems, Inc. E-32
Pest Fog, Inc. E-32
Rae Systems E-32
Spectros Instruments, Inc. E-32
Gas Detector Tube (colorimetric) and Apparatus E-32
APHIS/NOAA Centralized Warehouse E-32
Draeger Safety, Inc. E-33
Lab Safety Supply E-33
Matheson TriGas E-33
Pest Fog, Inc. E-33
Protech Safety Equipment E-33
Sensidyne, LP E-34
SKC, Inc. E-34
Union Carbide Corp, Linde Div. E-34
Gas Drying Tube (for Drierite®) E-34
Wilmad-LabGlass E-34
Germicides/Disinfectants E-34
Georgia-Pacific Corp. E-34
Halide Gas Leak Detector (removed) E-35
Incinerators E-35
Whitton Technology, Inc. E-35
Magnesium Phosphide E-35
Degesch America, Inc. E-35
Fumigation Service & Supply, Inc. E-35
Helena Chemical Co. E-35
Manometer (used in chamber pressure leakage test) E-36
Manometer (used in chamber pressure leakage test) E-36
Amazon E-36
Cole-Parmer E-36
Davis Calibration E-36
Dwyer Instruments, Inc. E-36
E&E Process Instrumentation E-36
Extech E-37
Fisher Scientific E-37
Instrumart E-37
LabX E-37
Meriam Process Technologies E-37
MSC Industrial Supply E-37
OMEGA Engineering, Inc. E-38
TruTech Tools E-38
W.W. Granger, Inc. E-38
Zellweger Analytics E-38
Metam-sodium E-38
Amvac Chemical Corp. E-38
Methyl Bromide E-39
Biesterfeld U.S., Inc. E-39
Biesterfeld U.S., Inc. E-39
Chemtura Corp. E-39
Degesch America, Inc. E-39
Fumigation Service & Supply, Inc. E-39
Helena Chemical Co. E-40
ICD Metals Group, LLC E-40
ICL Industrial Products (formerly Ameribrom, Inc.) E-40
Pest Fog, Inc. E-40
Pestcon Systems, Inc. E-40
Southern Agricultural Insecticides Inc. E-40
Moisture Meter (for wood) E-41
Delmhorst Instrument Company E-41
Lignomat USA Ltd. E-41
Newsletters and Trade Journals E-41
Fumigants and Pheromones E-41
Pest Control Technology E-41
Pest Management Professional E-42
Photo Ionization Detector E-42
Mine Safety and Appliance E-42
Rae Systems E-42
Safety Equipment E-42
United States Plastic Corporation E-42
Scale (portable platform type) E-43
Arlington Scale Co., Inc. E-43
Atlantic Scale Co., Inc. E-43
Eastern Scale of NJ E-43
Phifer Incorporated E-43
Sealing Tape E-43
Degesch America, Inc. E-43
Fumigation Service & Supply, Inc. E-44
Self-Contained Breathing Apparatus (SCBA) E-44
Mine Safety and Appliance E-44
Smoking Candle E-44
Superior Signal Co., Inc. E-44
Snakes (sand snakes, watersnakes) E-45
Fumigation Service & Supply, Inc. E-45
Pest Fog, Inc. E-45
Soil Fumigants E-45
Buckman Laboratories International Inc. E-45
Cytec Industries, Inc. E-45
OR-CAL, Inc. E-46
Syngenta E-46
Spill Recovery Materials E-46
   Ansul E-46
   Fumigation Service & Supply, Inc. E-46
   New Pig Corp. E-47
   WYK Sorbents, LLC E-47
Steam Boilers (For hot water immersion treatment) E-47
   Fulton Boiler Works, Inc. E-47
Steam Generators E-47
   Sioux Corporation E-47
Steam Sterilizers/Autoclaves E-48
   Environmental Tectonics Corporation E-48
Sulfuryl Fluoride (Vikane) E-48
   Dow AgroSciences LLC E-48
   Pest Fog, Inc. E-48
   Southern Agricultural Insecticides Inc. E-48
Tarpaulins E-48
   Elastec/American Marine E-49
   Dupont™ Protection Technologies E-49
   Poly-Flex, Inc. E-49
   Raven Industries E-49
   Reef Industries, Inc. (Griffolyn Division) E-49
Temperature Recorders (Portable Type) for Cold Treatment in Self-regulated Containers E-50
   Controlyne, Inc. E-50
   DeltaTRAK, Inc. E-50
   GE Sensing (formerly Kaye Instruments) E-50
   International Reactor Corporation E-50
   Metrosونics, Inc. E-51
   Remonsys Limited E-51
   Sensitech, Inc. E-51
   Wescor Environmental E-51
Temperature Recorders (Built-in Type) for Cold Treatment in Self-Regulated Containers E-52
   Carrier Transicold Division E-52
   Daikin Industries Ltd. E-52
   Klinge Corporation E-52
   Matrix Dynamics E-52
   Mitsubishi Heavy Industries E-53
   Thermo King Corporation E-53
Temperature Recorders (Portable Type) for Cold Treatment in Warehouses E-53
   Computer Aided Solutions E-53
   Evidencia LLP E-53
Fluke Electronics Corporation E-54
Inteligistics, Inc. E-54
MicroDAQ.com LTD E-54

Temperature Recorders for Hot Water Immersion Treatment E-54
Agri Machinery and Parts, Inc. E-54
Conex Technologies E-54
Contech E-55

Electro Scientific Industries, Inc. E-55
Enterprise S.A. de C.V. E-55
Equips Industriales Guadalajara E-55
Eurotherm Chessell E-55
Guiar Industrial, S.A. de C.V. E-56
Honeywell International, Inc. E-56

Instrumentacion y Control Industrial E-56
Laboratorios Jael E-56
Nanmac Corporation E-56
National Instruments E-57

Neuberger Messinstrumente Gmbh E-57
NOJOXTEN S.A. de C.V. E-57
Santa Margarita E-57
Process Technologies, Inc. E-57

Telecontrol Y Sistemas Automaticos Sac E-57
Vacuum Research Corp. E-58
William B. Cresse, Inc. E-58

Temperature Recorders and Sensors—High Temperature (Niger Seed) E-58

Madge Tech Inc. E-58
Omega Engineering, Inc. E-58

Mesa Laboratories Inc. E-59

Thermocouple Wire E-59

Omega Engineering, Inc. E-59

Thermometers E-59
Cole-Parmer E-59
Contech E-60

Cooper Atkins E-60
Davis Instruments E-60

Oakton Instruments E-60
Omega Engineering, Inc. E-61
Thermo Electric Company, Inc. E-61

Thermometers, Glass-Mercury, Certified Precision E-61
DC Scientific Glass E-62
Fisher Scientific E-62

VWR E-63

Thermometers, Glass Non-Mercury, Certified Precision E-63
Cole-Parmer E-64

Thermometers with Sensors, Digital, Certified Precision E-64
Contech E-65
EUTECH Instruments E-66
Fluke Corporation E-67
OpticsPlanet, Inc. E-67
Tech Instrumentation, Inc. E-68
Thermco Products, Inc. E-69
Thermoprobe, Inc. E-69
ThermoWorks E-69
Thermometers, Certified Precision, Approved Calibration Companies E-69
DC Scientific Glass E-70
Barnstead International E-70
Fluke Corporation E-70
ICL Calibration Laboratories, Inc. E-70
INNOCAL E-70
Instrumentation Technical Services E-71
Measurement Assurance Technology E-71
Phoenix Calibration DR E-71
Thermoprobe, Inc. E-71
VWR E-71
Thermometers, Recorders, and Sensors—General Use E-72
CAS Datalogger E-72
Cole-Parmer E-72
Contech E-72
GEC Instruments E-72
MadgeTech, Inc. E-73
Mesa Laboratories, Inc. E-73
Nanmac Corporation E-73
National Instruments E-73
Nordic Sensors Industrial, Inc. (NSI) E-73
Omega Engineering Inc. E-74
Tubing, Gas-Sampling E-74
Cole-Parmer E-74
Consolidated Plastics Co. Inc. E-74
Fisher Scientific E-74
Pest Fog, Inc. E-74
Thomas Scientific E-75
Vacuum Pump E-75
Neward Enterprises, Inc. E-75
Sargent Welch E-75
Vapam E-76
Volatilizer E-76
Degesch America, Inc. E-76
Pest Fog, Inc. E-76
Vacudyne, Inc. E-76
Warning Signs and Placards E-76
Aeration Duct, Flexible
(specify diameter and length)

**Biesterfeld U.S. Inc.**
200 Madison Avenue
New York, NY 10016
Phone: (212) 689-6610 (resmethrin)

**Fumigation Service & Supply, Inc.**
16950 Westfield Park Road
Westfield, IN 46074
Phone: (800) 992-1991 or (317) 896-9300
FAX: (317) 867-5757
email: info@fumigationzone.com
www.fumigationzone.com

Aerosol Insecticides

**Gilmore Marketing and Development, Inc.**
152 Collins Street
Memphis, TN 38112
Phone: (901) 323-5870
Fax: (901) 454-0295
www.gmdinc.com
(resmethrin)

**Otis Laboratory**
USDA/APHIS/PPQ/CPHST
1398 W. Truck Road
Buzzards Bay, MA 02542
Phone: (508) 563-9303
Fax: (508) 564-4398
(10% d-phenothrin)
Southern Agricultural Insecticides, Inc.
P.O. Box 218
Palmetto, FL 34220
Phone: (941) 722-3285
Fax: (941) 723-2974
(resmethrin)
www.southernag.com

Air Pump, Auxiliary

Barnant
(Sold as Thermo Scientific brand)
28W092 Commercial Avenue
Barrington, IL 60010
Phone: (847) 381-7050
Fax: (847) 381-7053
www.thermo.com

Cole-Parmer
625 East Bunker Court
Vernon Hills, IL 60061
Phone: (800) 323-4340
Fax: (847) 247-2929
Email: info@coleparmer.com
www.colepalmer.com
(“Air Cadet” Vacuum/Pressure Pump; Single-J7530-40; Dual J7530-60)

McMaster-Carr Supply Co.
P.O. Box 740100
Atlanta, GA 30374-0100
Phone: (404) 346-7000
Fax: (404) 349-9091
Email: atlsales@mcmaster.com
www.mcmaster.com
(Hand-held MityVac® vacuum/pressure pump, zinc alloy, cat. no. 9963K12)
Air-Purifying Respirator*
(gas masks with cartridge for organic vapors)

**Thermo Scientific**
81 Wyman Street
Waltham, MA 02454
Phone: (none listed)
Fax: (781) 622-1207
www.thermo.com
Air-Purifying Respirator

Air purifying respirators are available from many different companies, including but not limited to Mine Safety Appliances (MSA), ULine, Northern Safety and Industrial, Grainger, etc.

APHIS-approved air purifying respirators are:

- MSA Advantage (half face) 420 and (full face) 1000
- 3M (half face) 6100, 6200, 6300 and (full face) 6700, 6800, 6900
- North (half face) 7700 and (full face) 76008AS, 76008A
- Survivair/Sperian (half face) 250000, 260000, 270000

APHIS-approved cartridges:
Contact a PPQ Field Operations Safety and Health Manager for approved organic vapor/acid gas N95 P100 cartridges (970-494-7560 or 919-855-7308).

Air Velocity Measuring (Anemometer)

**Extech Instruments®**
9 Townsend West
Nashua, NH 03063
Phone: 877-439-8324
Fax: 603-324-7864


(Mini Thermo-Anemometer model #45118, Mini Thermo-Anemometer with humidity model #45158)

**NK Nielson-Kellerman**
21 Creek Circle
Boothwyn, PA 19061
USA
Phone: 610-447 1555
Fax: 610 447 1577
Email: info@nkhome.com
(Kestrel® Pocket Wind Meters (all models))

**Trutech Tools**
515 Turkey Foot Lake Road
Akron, OH 44319
USA
Phone: 1-888-224-3437
Fax: 866-694-8655
Email: info@trutechtools.com
http://www.trutechtools.com/
testo417?gclid=CPqD3u7z1rQCFcefo4AodkJA8Aaw
(Testo 417 Large Vane Anemometer)

**TSI, Inc. Alnor Products**
500 Cardigan Road
Shoreview, MN 55126
Phone: 651-490-2811
Toll Free: 1-800-874-2811
Fax: 651-490-3824
Email: answers@tsi.com
(Velometer Jr.®)

---

**Aluminum Phosphide**

**Degesch America, Inc.**
P.O. Box 116
Weyers Cave, VA 24486
Phone: (800) 330-2525 or (540) 234-9281
Fax: (540) 234-8225
www.degeschamerica.com

**Fumigation Service & Supply, Inc.**
16950 Westfield Park Road
Westfield, IN 46074
Phone: (800) 992-1991 or (317) 896-9300
FAX: (317) 867-5757
Email: info@fumigationzone.com
www.fumigationzone.com
Gilmore Marketing and Development, Inc.
152 Collins Street
Memphis, TN 38112
Phone: 901-323-5870
Fax: 901-454-0295

Helena Chemical Co.
225 Schilling Blvd., Suite 300
Collierville, TN 38017
Phone: (901) 761-0050
www.helenachemical.com

ICD Group Metals, LLC
600 Madison Avenue
New York, NY 10022-1615
Phone: (212) 644-1500
Fax: (212) 644-1480
Email: info@icdmetals.com
www.icdmetals.com

INCHEMA, Inc.
180 Old Tappan Road, Building 6
Old Tappan, NJ 07675
Phone: (201) 768-1770
Fax: (201) 768-2290
Email: inchema201@inchema-usa.com
www.inchema-usa.com

Loveland Products, Inc.
7251 W. 4th Street
Greeley, CO 80634
Phone: 970-356-4400
www.lovelandproducts.com/

Pest Fog, Inc.
1424 Bonita
P.O. Box 3703
Corpus Christi, TX 78463
Phone: (361) 884-8214
Fax: (361) 884-5903
Email: info@pestfog.com
www.pestfog.com
Pestcon Systems, Inc.
1808 Firestone Parkway
Wilson, NC 27893-7991
Phone: (800) 548-2778
Fax: (252) 243-1832
Email: info@pestcon.com
www.pestcon.com

United Suppliers, Inc.
Box 538
30473 260th St.
Eldora, IA 50627
Phone: (800) 782-5123 or (641) 858-2341
Fax: (641) 858-5493
www.unitedsuppliers.com
Applicator (Dispenser) for Methyl Bromide
(sight gauges calibrated in ml, grams, or pounds)

Applicator (Dispenser) for Methyl Bromide

Pest Fog, Inc.
P.O. Box 3703
1424 Bonita
Corpus Christi, TX 78463
Phone: (361) 884-8214
Fax: (361) 884-5903
Email: info@pestfog.com
www.pestfogsales.com

Vuscamante North
(Attn.: Sr. Maurilio Plata)
307 Montemorelos
Neuvo Leon, Mexico
Phone: 82-63-33-58
Ascarite II

(Granules of sodium hydroxide-coated silica used to remove carbon dioxide from gas samples)

**Sigma-Aldrich Chemical Company, Inc.**
6000 North Teutonia Avenue
Milwaukee, WI 53209
Phone: (800) 771-6737 or (414) 438-3850
Fax: (800) 962-9591
www.sigmaaldrich.com

**Fisher Scientific**
2000 Park Lane Drive
Pittsburgh, PA 15275
Phone: (800) 766-7000
Fax: (800) 926-1166
www.fishersci.com

**Thomas Scientific**
P.O. Box 99
99 High Hill Road at I 295
Swedesboro, NJ 08085-0099
Phone: (800) 345-2100 or (800) 345-2000
Fax: (800) 345-5232 or (856) 467-3087
Email: value@thomassci.com
www.thomassci.com

Balances, Portable (for weighing individual fruit)

**Ohaus Corporation**
19A Chapin Road
P.O. Box 2033
Pine Brook, NJ 07058
Phone: (973) 377-9000
Fax: (973) 593-0359
Email: cs@ohaus.com
www.ohaus.com
(Portable balance for weighing individual fruits, Model LS 2000)
Appendix E  Reference Guide to Commercial Suppliers of Treatment and Related Safety Equipment

Batch Systems (complete installations, hot water immersion treatments)

Agri Machinery and Parts, Inc.
3489 All American Boulevard
Orlando, FL 32810
Phone: (407) 299-1592
Fax: (407) 299-1489
Email: Gillian Dobes (owner) at gdobes@ouramp.com
(2-tank system with 4 baskets each, with Honeywell strip chart recorder)

Agroindustrias Integradas, S.A. de C.V.
Calle Cernicalo, No. 590
Col. Mor, S.H.C.P. 44490
Guadalajara, Jalisco
Mexico
Phone: (52) 810-7422
Fax: (52) 810-7422

Calderas Astro, S.A. de C.V.
Jose Herrera, No. 607-B
C.P. 36350
San Francisco del Rincon
Guanajuato, Guan.
Mexico
Phone: (474) 31274
Fax: (474) 32698

Construcciones Pyrsa
Depto. de Ingenieria
Anil No. 100
Col. Los Pinos
Celaya, Guanajuato
Mexico
Phone: 91-461-20946

Consultecnia
3a Calle 28-70, Zona 1
Quetzaltenango
Apartado Postal 537-1
Guatemala
Phone: (502) 02-781-496
Dica de Mexico, S.A.
Corretera - Navolato, km 8
Culiacan, Sinaloa
Mexico
Phone: (52) 4-32-23

Diseños y Maquinaria Jer, S.A. de C.V. (“Jersa”)
Emiliano Zapata, No. 51-A
Cuatitlan Izcalli
Estado do Mexico, C.P. 54710
Mexico
Phone: (52) 5-873-84-09 or 77
Phone: (52) 5-873-85-22
Fax: (52) 5-871-20-02

Equipos Agroindustriales de Occidente, S.A. de C. V.
Avenida Washington, No. 1370
Guadalajara, Jalisco
Mexico
Phone: (52) 11-04-66
Fax: (52) 11-44-67

Frutico International
P.O. Box 35-A
Avenida Vallarta 2095
Culiacan, Sinaloa
Mexico
Phone: (52) 671-490-30 or (52) 671-490-80

Guiar Industrial, S.A. de C.V.
Rayon No 989
Colonia Moderna, Sector Juarez
Guadalajara, C.P. 44190, Jalisco
Mexico
Phone: (91-36) 10-10-06 or (91-36) 10-19-49
Fax: (91-36) 10-19-52
(“System Model No. 63-89”)

Industria de Maquinas Agricolas GB Ltda.
Via Anhanguera, Km 150
Limeira / Sao Paulo
Brazil CEP 13480-970-Cx. Pt. 385
Phone: (55-19) 451-1811
Fax: (55-19) 451-5854
Industrial Equipment & Engineering Co.
(I.E.& E.)
2045 Sprint Blvd.
Apopka, FL 32703
Phone: (407) 293-9212

NOJOXTEN S.A. de C.V.
Eduardo Velazquez
Av Santa Margarit Razoa #283
Santa Margarita
Zapopan, Jal. CP 45140
Phone (office): (33) 3833-1999
Phone (cell): (33) 3115-9429
Email: eduardo.velazquez@nojoxtn.com.mx
(NOJOXTEN-BR Automation Studio V3.09 IEC 61131-3-ST)

Produce Sorters International
7403 West Sunnyview Avenue
Visalia, CA 93291
Phone: (559) 651-7840
Fax: (559) 651-7845

Proyect Asesoria Industrial
Av. Los Diplomaticos 1318
San Salvador, El Salvador
or
8a Avenida 33-10, Zona 11
Guatemala, Guat.
Phone: (503) 701731/707217
Phone: (503) 701749/802221
Fax: (503) 701731/259145
Fax: (502-2) 767439

Pyrsa de Celaya
Calle Violeta No. 1204
Colonia Las Flores
Celaya, Guanajuato, Mexico
Phone: (52-4) 61-270-72

Silsa, S.A. de C.V.
Avenida Acueducto
597 Planta Alta
Colonia Tecoman
07330 Mexico 14, D.F.
Mexico
Fax: (52) 754-32-27
**Blower**

(Used in pressure leakage test; may also be used to evacuate a fumigation chamber)

**W. W. Grainger, Inc.**
Branch offices in various cities.
www.grainger.com

**William W. Meyer & Sons, Inc.**
1700 Franklin Blvd.
Libertyville, IL 60048-4407
Phone: (847) 918-0111
Fax: (847) 918-8183
www.wmwmeyer.com

---

**Bubble Fumigation System**

Inflatable tarpaulin

**B&G Equipment Company**
135 Region South Drive
Jackson, GA 30233
Phone: (800) 544-8811
Fax: (678) 677-5633
www.bgequip.com
Power Plastics
Station Road
Thirsk, N. Yorkshire Y07 1PZ
England
Phone: 01845-525503
Fax: 0845-525483
Email: info@powerplastics.co.uk
www.powerplastics.co.uk

Cascade Air Tank Recharging System (for SCBA)

Mine Safety Appliance Co. (MSA)
P.O. Box 426
600 Penn Center Boulevard
Pittsburgh, PA 15230
www.msanorthamerica.com/overview.html

Chain Hoist (Electronic) (For hot water immersion treatments)

Chemonics
1717 H Street, NW
Washington, DC 20006
Phone: (202) 955-3300
Fax: (202) 955-3400
Email: info@chemonics.com
www.chemonics.com
(Post-harvest advice; international consulting)

Columbus McKinnon Corp.
Industrial Products Division
140 John James Audubon Parkway
Amherst, NY 14228
Phone: (716) 689-5400
Fax: (716) 689-5644
Email: sales@cmworks.com
www.cmworks.com
(Lodestar electronic chain hoist, capacity to 3 tons)
Consultants (For hot water immersion treatments)

C.C. Coutinho Consulting
Av. Princess Leopoldina, 238
Ap. 101 D
Graca - Ed Olga Pontes
Cep 40150-080 Salvador, Bahia
Brazil
Phone: (55-81) 99-98-42-84
Fax: (55-81) 8-62-29-93
Email: cosam@uol.com.br

USDA-APHIS-PPQ-S&T-CPHST-AQI
1730 Varsity Drive, Suite 300
Raleigh, NC 27606
Phone: (919) 855-7450
Fax: (919) 513-1995
(APHIS technical contact; approval of plans and drawings)

Consultecnia
3a Calle 28-70, Zona 1
Quetzaltenango
Apartado Postal 537-1
Guatemala
Phone: (502) 02-781-496

Dica de Mexico, S.A.
Carretera a Navolato, Km 8
Culiacan, Sinaloa
Mexico
Phone: (52) 4-32-23

Frutico International
P.O. Box 35-A
Avenida Vallarta 2095
Culiacan, Sinaloa
Mexico
Phone: (52) 671-490-30
Phone: (52) 671-490-80
GEC Instruments
5530 NW 97th Street
Gainesville, FL 32653
Phone: (352) 373-7955
Email: info@gecinstruments.com
www.gecinstruments.com
(Engineering consulting)

Nojoxten
Sta. Martha No.276-A Col. Sta.
Margarita C.P.45140
Zapopan, Jalisco, Mexico
Phone (33)3833-1999
Fax (33)3633-9380
www.nojoxten.com.mx

North Bay Produce, Inc.
10a Calle 1-4, Zona 9
Guatemala, Guat.
Phone: (502-2) 342-295 or 6
Fax: (502-2) 344-974
Email: marketing@northbayproduce.com
www.northbayproduce.com
(Legal and technical advice)

Societe d’Entretien & d’Installation (SODEIN)
Route de Carrefour #83
(P.O. Box 995)
Port-au-Prince, Haiti
(Installation of temperature recording equipment, especially the
Chessel 346)

Curtains (air, safeguarding)

W.W. Granger, Inc.
Branch offices in many cities.
www.grainger.com
Digital Thermister Instrument (hand-held for hot water immersion treatments) and Portable Sensors (used in Performance Test)

**Advanced Industrial Services, Inc. (AIS)**
3250 Susquehanna Trail
York, PA 17406
Phone: (717) 764-9811; 800-544-5080
Fax: (717) 764-3144
Email: info@ais-york.com
www.ais-york.com
(YIS 400 series thermister sensors)

**Allied Electronics**
15721 NW 60th Avenue
Miami Lakes, FL 33014
Phone: (305) 558-2511
Fax: (305) 558-1130
(Instruments include Cooper Instrument Corp’s Model TM99A, and thermistor sensors with submersible 10 or 20 ft. cord, Catalog No. 2010.)

**Contech**
Rafael G. De Avila Aceves
Miguel Galindo 2033, J. del Country
Guadalajara, Jalisco, Mexico, C.P. 44210
Phone: 52-33-3126-0101 or 3853-1293
Email: rdeavilaa@gmail.com
Term 2252 thermometer; sensors SP20758-1 (see Measurement Specialties) and adapter Part #364-A for Oakton Acorn Temp 4) and sensors with YSI 400 series sensors (see Advanced Industrial Services, Inc. (AIS))

**Cooper Instrument Corp.**
33 Reeds Gap Road
Middlefield, CT 06455
Phone: (860) 347-2256
Fax: (860) 347-5135
www.cooperinstrument.com
(Note: This company manufactures the Cooper instruments sold by Allied Electronics, but does not sell directly to retail customers.)
**Oakton Instruments**
P.O. Box 5136  
Vernon Hills, IL 60061  
Phone: (888) 462-5866  
Fax: (847) 247-2984  
Email: info@4oakton.com  
http://www.4oakton.com  

Acorn® Temp 4, 5, 6 meter: use thermistor probe or Pt 100 RTD temperature sensors. Suggested general purpose probes are:

- Oakton air probe #WD-08491-08  
- Oakton penetration probe # WD-08491-16  
- Oakton general purpose probe 10, 50, or 100 feet #WD-08491-02, #WD-08491-04, #WD-08491-03  
- Oakton Acorn® Temp 5 #EW-35626-10

Oakton products can be purchased at numerous distributors such as Cole-Parmer, Davis Instruments, etc.

Recommended temperature sensors for Acorn® Temp 4, 5, and 6 are from **Measurement Specialties**.

**Measurement Specialties**
2670 Indian Ripple Road  
Dayton, OH 45440  
Phone: 937-490-4470  
FAX: 937-427-1640  
Email: phyllis.henry@meas-spec.com  
http://www.meas-spec.com  

Sensor Model SP20758-1, long term immersion sensor with 4-meter cable for use with Acorn® Temp 4, 5, and 6. Use Switchcraft adapter Part #364-A to connect sensor to Acorn® Temp 4, 5, and 6. Two conductor adapters from 3.5mm to phone jack mono to 6.35 phone jack mono.

**Switchcraft, Inc.**
555 N. Elston Ave.  
Chicago, IL 60630  
Phone: 773-792-2700  
Fax: 773-792-2129  
Email: sales@switchcraft.com
Adapter Part #364-A (to connect SP20758-1 to the Acorn® Temp 4)

**Drierite® (anhydrous calcium sulfate)**

**Sigma-Aldrich Chemical Company, Inc.**
6000 North Teutonia Avenue
Milwaukee, WI 53209
Phone: (800) 771-6737 or (414) 438-3850
Fax: (800) 962-9591
[www.sigmaaldrich.com](http://www.sigmaaldrich.com)

**Fisher Scientific**
2000 Park Lane Drive
Pittsburgh, PA 15275
Phone: (800) 766-7000
Fax: (800) 926-1166
[www.fishersci.com](http://www.fishersci.com)

**W. A. Hammond Drierite Co. (Manufacturer)**
138 Dayton Avenue
Xenia, OH 45385
Phone: (937) 376-2927
Fax: (937) 376-1977
Email: drierite@aol.com
[www.drierite.com](http://www.drierite.com)

**Electrochemical Gas Sensor and Pyrolyzer**

**PureAir Monitoring Systems, Inc.**
557 Capital Drive
Lake Zürich, IL 60047
Phone: 888-788-8050
[www.pureairemonitoring.com](http://www.pureairemonitoring.com)
Air Check Advantage methyl bromide monitor

**Exhaust Duct (Tube), Flexible**

Stock sizes available in diameters of 12, 16, and 24 inches. Available in 10 and 20 feet lengths, which may be attached by a ring coupling.

**Gaskets, Inc.**
301 W. Highway 16
Rio, WI 53960
Phone: (800) 558-1833 or (920) 992-3137
Fax: (920) 992-3124
Email: info@gasketsinc.com
www.gasketsinc.com

**Super Vacuum Manufacturing Company, Inc.**
P.O. Box 87
Loveland, CO 80539-0087
Phone: (800) 525-5224
Fax: (970) 667-4296
Email: info@supervac.com
www.supervac.com

**Fans**

**Pest Fog, Inc.**
1424 Bonita
P.O. Box 3703
Corpus Christi, TX 78463
Phone: (361) 884-8214
Fax: (361) 884-5903
Email: info@pestfog.com
www.pestfog.com
(18-inch fumigation fan)
Super Vacuum Manufacturing Company, Inc.
P.O. Box 87
Loveland, CO 80539-0087
Phone: (800) 525-5224
Fax: (970) 667-4296
Email: info@supervac.com
www.supervac.com
For use in a chamber or under tarpaulin, or during exhaust. Specify blade size, horsepower, and CFM.

Fruit Crates (Plastic for hot water immersion treatments)
No listings

Fruit Sizing Equipment (Automatic)

Hortagro International, b.v.
P.O. Box: 4050
8901 EB Leeuwarden
Holland
Phone: 31-58-21-23-795
Fax: 31-58-21-25-344
www.hortagro.nl
(Mechanical weight sizer with conveyor belt)

Kerian Machines, Inc.
1709 Highway 81 South
P.O. Box 311
Grafton, ND 58237
Phone: (701) 352-0480
Fax: (701) 352-3776
Email: sales@kerianmachines.com
www.kerianmachines.com
(Roller type of sizing equipment)
Fumigators, Commercial

See listings in local telephone directories (yellow pages) under the heading “Pest Control Services.”

Fungicides

(Bordeaux Mixture (hydrated lime + copper sulfate)

Chemtura Corporation
199 Benson Road
Middlebury, CT 06749
Phone: (203) 573-2000
www.chemtura.com
(Product name: Nutra-Spray Captan)

Crystal Chemical Inter-America
6800 SW. 40th Street, Suite 499
Miami, FL 33155-3708
Phone: (305) 971-4753
(Product name: Captanex)

Drexel Chemical Co.
P.O. Box 13327
Memphis, TN 38113-0327
Phone: (901) 774-4370
Fax: (901) 774-4666
Email: mstewart@drexchem.com
www.drexchem.com
(Product name: Drexel Captan)

Syngenta
1800 Concord Pike
P.O. Box 8353
Wilmington, DE 19803
Phone: (800) 759-4500 or (302) 425-2000
www.syngenta-us.com
(Ferbam)

**Cytec Industries, Inc.**
5 Garrett Mountain Plaza  
West Patterson, NJ 07424  
Phone: (800) 652-6013 or (973) 357-3100  
Email: custinfo@cytec.com  
www.cytec.com  
(Product names: Carbamate WDG, Ferbam 76 WDG, Ferbam, Granuflo)

**FMC Agricultural Products**
Chemical Group  
1735 Market Street  
Philadelphia, PA 19103  
Phone: (800) 845-0187 or (215) 299-6000  
Fax: (215) 299-5998  
www.fmccrop.com  
(Product Name: Carbamate. Mancozeb)

**Arkema, Inc.**
2000 Market Street  
Philadelphia, PA 19103-3222  
Phone: (215) 419-7000  
www.arkema-inc.com  
(Product name: Penncozeb 80 WP)

**Rohm and Haas**
100 Independence Mall West  
Philadelphia, PA 19106  
Phone: (877) 288-5881  
www.rohmhaas.com  
(Product name; Dithane, Thiram)

**Bayer CropScience LP**
P.O. Box 12014  
2 T.W. Alexander Drive  
Research Triangle Park, NC 27709  
Phone: (919) 549-2000  
Fax: (919)949-3959  
www.bayercropscience.com  
(Product Names: Cuprothex Super Mix)
**Cytec Industries, Inc.**  
5 Garrett Mountain Plaza  
West Patterson, NJ 07424  
Phone: (800) 652-6013 or (973) 357-3100  
Email: custinfo@cytec.com  
www.cytec.com  
(Product Names: Tech TMTD, Thianosan, THiLor, Thipel, Thiram, Granuflo, Thiram 65, Thiram 75-WDG, Zineb)

---

**Gas Analyzers**

**Analytical Technology, Inc.**  
6 Iron Bridge Drive  
Collegeville, PA 19426  
Phone: (800) 959-0299 or (610) 917-0991  
Fax: (610) 917-0992  
Email: sales@analyticaltechnology.com  
www.analyticaltechnology.com  
(Porta-Sens Phosphine Detector)

**EB&S Solutions**  
6587 66th Avenue North  
Pinellas, Park, FL 33781  
Phone: 727-224-5072  
Email: sean@emorybrantleyandsons.com

**Interscan Corporation**  
P.O. Box 2496  
Chatsworth, CA 91313  
Phone: (800) 458-6153 or (818) 882-2331  
Fax: (818) 341-0642  
Email: info@gasdetection.com  
www.gasdetection.com  
(Interscan Model GF 1900 pyrolysis unit, sensitive to SF at 0–50 ppm.)

**Key Chemical and Equipment Co., Inc.**  
13195 49th Street North, Unit A  
Clearwater, FL 33762  
Phone: (727) 572-1159  
Fax: (727) 572-4595  
www.fumiscope.com  
(Fumiscope, Models D, 4.0, 4.2, and 5.12)
Appendix E  Reference Guide to Commercial Suppliers of Treatment and Related Safety Equipment
Gas Detector Tube (colorimetric) and Apparatus

Neal Systems, Inc.
122 Terry Drive
Newtown, PA 18940
Phone: (215) 968-7577
Fax: (215) 968-6480
Email: sales@nealsystems.com
www.nealsystems.com
(Porta-Sens Phosphine Detector)

Pest Fog, Inc.
1424 Bonita
P.O. Box 3703
Corpus Christi, TX 78463
Phone: (361) 884-8214
Fax: (361) 884-5903
Email: info@pestfog.com
www.pestfog.com

Rae Systems
3775 North First Street
San Jose, CA 95134
408-952-8200
http://www.raesystems.com/products
MiniRae 3000

Spectros Instruments, Inc.
17D Airport Road
Hopedale, MA 01747
Phone: (508) 478-1648
Fax: (508) 590-0262
www.spectrosinstruments.com
(methyl bromide monitor MB-Contain IR; sulfuryl fluoride monitor SF-Contain IR)

Gas Detector Tube (colorimetric) and Apparatus

APHIS/NOAA Centralized Warehouse
(Must order by Fedstrip procedure)
FTS: 758-6222 (Draeger tubes)
Draeger Safety, Inc.
101 Technology Drive
Pittsburgh, PA 15275-1057
Phone: (800) 858-1737 or (412) 787-8383
Fax: (412) 787-2207
Email: prodinfo@draeger.com
www.draeger.com/en-us_us/Home
(Draeger tubes in the ranges 0.2-8.0 ppm (product # 8103391) and 0.5-30.0 ppm (product # 8101671))

Lab Safety Supply
P.O. Box 1368
Janesville, WI 53547-1368
Phone: (800) 356-0783
Fax: (800) 543-9910
www.labsafety.com
(Draeger tubes)

Matheson TriGas
603 Heron Drive
Bridgeport, NJ 08014
Phone: (201) 933-2401
Fax: (856) 467-3415
www.mathesongas.com
(Matheson-Kitagawa tubes in the range 0.5-10 ppm (product # 8014-187sc))

Pest Fog, Inc.
1424 Bonita
P.O. Box 3703
Corpus Christi, TX 78463
Phone: (361) 884-8214
Fax: (361) 884-5903
Email: info@pestfog.com
www.pestfog.com

Protech Safety Equipment
37 East 21st Street
P.O. Box 455
Linden, NJ 07036
Phone: (908) 862-1550
Fax: (908) 862-4436
(Draeger tubes)
Sensidyne, LP  
16333 Bay Vista Drive  
Clearwater, FL 33760  
Phone: (800) 451-9444 or (727) 530-3602  
Fax: (727) 539-0550  
Email: info@sensidyne.com  
www.sensidyne.com  
(Sensidyne/Gastec tubes in the range of 0.1-20 ppm (product # 157SD))

SKC, Inc.  
863 Valley View Road  
Eighty Four, PA 15330  
Phone: (800) 752-8472 or (724) 941-9701  
Fax: (724) 941-1369  
Email: skcinc@skcinc.com  
www.skcinc.com

Union Carbide Corp, Linde Div.  
National Specialty Gases Office  
40 Veronica Avenue  
Somerset, NJ 08873-3498  
Phone: (732) 937-4900  
(Sensidyne/Gastec tubes and apparatus)

Gas Drying Tube (for Drierite®)

Wilmad-LabGlass  
1172 NW Boulevard  
Vineland, NJ 08360  
Phone: (800) 220-5171 or (856) 691-3200  
Fax: (856) 691-6206  
www.wilmad-labglass.com  
((glass tube) – Catalog # 301-7501)

Germicides/Disinfectants

Georgia-Pacific Corp.  
300 W. Laurel Street  
Bellingham, WA 98225  
Phone: (360) 733-4410  
Fax: (206) 676-7247  
www.gp.com
Halide Gas Leak Detector (removed)

Incinerators

Whitton Technology, Inc.
Air Burners Products Div.
4390 Cargo Way
Palm City, FL 34990
Phone: (561) 220-7303
Fax: (561) 220-7302
Email: info@airburners.com
www.airburners.com
(Air Curtain Incinerators)

Magnesium Phosphide

Degesch America, Inc.
P.O. Box 116
Weyers Cave, VA 24486
Phone: (800) 330-2525 or (540) 234-9281
Fax: (540) 234-8225
www.degeschamerica.com

Fumigation Service & Supply, Inc.
16950 Westfield Park Road
Westfield, IN 46074
Phone: (800) 992-1991 or (317) 896-9300
Fax: (317) 867-5757
Email: info@fumigationzone.com
www.fumigationzone.com

Helena Chemical Co.
225 Schilling Blvd., Suite 300
Collierville, TN 38017
Phone: (901) 761-0050
www.helenachemical.com
Manometer (used in chamber pressure leakage test)

Select the device based on pressure range and suitability.

**Amazon**
Digital, Magnehelic, U-tube)
www.amazon.com

**Cole-Parmer**
625 East Bunker Court
Vernon Hills, IL 60061
Phone: (800) 323-4340
Fax: (847) 247-2929
Email: info@coleparmer.com
www.coleparmer.com
(Digital, Magnehelic, U-tube)

**Davis Calibration**
1946 Greenspring Drive, Suite A
Timonium, MD 21093
Phone: (410) 842-1000
Fax: (410) 842-1003
Email: tthompson@daviscalibration.com
(Digital, U-tube)

**Dwyer Instruments, Inc.**
102 Indiana Highway 212
Michigan City, IN 46360
Phone: (800) 872-9141 or (219) 879-8000
Fax: (219) 872-9057
www.dwyer-inst.com
(Digital, Magnehelic, U-tube)

**E&E Process Instrumentation**
4-40 North Rivermede Road
Concord, ON L4K 2H3
Phone: (905) 669-4857
www.eeprocess.com
Email: info@eeprocess.com
(Digital, Magnehelic, U-tube)
Appendix E  Reference Guide to Commercial Suppliers of Treatment and Related Safety Equipment

Manometer (used in chamber pressure leakage test)

**Extech**
9 Townsend West  
Nashua, NH 03063  
Phone: (877) 239-8324  
Fax: (603) 324-7804  
[www.extech.com/display/](http://www.extech.com/display/)  
Email: sales@extech.com  
(Digital, Magnehelic)

**Fisher Scientific**
2000 Park Lane Drive  
Pittsburgh, PA 15275  
Phone: (800) 766-7000  
Fax: (800) 926-1166  
[www.fishersci.com](http://www.fishersci.com)  
(Digital, Magnehelic, U-tube)

**Instrumart**
35 Green Mountain Drive  
S Burlington, VT 05403  
Phone: (800) 884-4967  
[www.instrumart.com/brands/](http://www.instrumart.com/brands/)  
Email: sales@instrumart.com  
(Digital, Magnehelic)

**LabX**
[www.labx.com](http://www.labx.com)  
(Digital, used)

**Meriam Process Technologies**
10920 Madison Avenue  
Cleveland, OH 44102  
Phone: (216) 281-1100  
Fax: (216) 281-0228  
[www.meriam.com](http://www.meriam.com)  
Email: sales@meriam.com

**MSC Industrial Supply**
75 Maxess Road  
Melville, NY 11747-3151  
Phone: (800) 645-7270  
Fax: (800) 255-5067  
Email: MSCMWtechteam@mscdirect.com  
(Digital)
OMEGA Engineering, Inc.
800 Connecticut Avenue
Suite 5N01
Norwalk, CT 06854
Phone: (888) 826-6342 or (203) 359-1660
Fax: (203) 359-7700
www.omega.com
Email: pressure@omega.com
(Digital)

TruTech Tools
Phone: (888) 224-3437
www.trutechtools.com
(Digital)

W.W. Granger, Inc.
Branch offices in many cities.
www.grainger.com

Zellweger Analytics
Neotronics Sieger Solomat Division
4331 Thurmond Tanner Road
P.O. Box 2100
Flowery Branch, GA 30542
Phone: (770) 967-2196
Fax: (770) 967-1854
www.zelana.com
Model No. 530 (0–19.99 inches of water)

Metam-sodium

Amvac Chemical Corp.
4100 East Washington Blvd.
Los Angeles, CA 90023
Phone: (888) 462-6822 or (323) 264-3910
Fax: (323) 728-7863
www.american-vanguard.com
Methyl Bromide

Biesterfeld U.S., Inc.
200 Madison Avenue
New York, NY 10016
Phone: (212) 689-6610
(resmethrin)

Chemtura Corp.
1801 Hwy. 52 W.
West Lafayette, IN 47906
Phone: (800) 428-7947 or (765) 497-6100
www.chemtura.com

Table E-1 Cylinder Tare, Net, and Gross Weights

<table>
<thead>
<tr>
<th>Net Weight Product Description:</th>
<th>Cylinder Tare Weight (lbs.):</th>
<th>Cylinder Net Weight (lbs.):</th>
<th>Cylinder Gross Weight (lbs.):</th>
<th>Comments:</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 lbs-short</td>
<td>25</td>
<td>50</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td>50 lbs-tall</td>
<td>30</td>
<td>50</td>
<td>80</td>
<td>Used for Meth-O-Gas Q only</td>
</tr>
<tr>
<td>100 lbs</td>
<td>35</td>
<td>100</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>175 lbs</td>
<td>50</td>
<td>175</td>
<td>225</td>
<td></td>
</tr>
<tr>
<td>200 lbs</td>
<td>50</td>
<td>200</td>
<td>250</td>
<td></td>
</tr>
<tr>
<td>1500 lbs</td>
<td>350</td>
<td>1500</td>
<td>1850</td>
<td></td>
</tr>
</tbody>
</table>

Degesch America, Inc.
Houston Division
P.O. Box 451036
Houston, TX 77245
Phone: (713) 433-4777
Fax: (713) 433-0877
www.degeschamerica.com

Fumigation Service & Supply, Inc.
16950 Westfield Park Road
Westfield, IN 46074
Phone: (800) 992-1991 or (317) 896-9300
Fax: (317) 867-5757
Email: info@fumigationzone.com
www.fumigationzone.com
Helena Chemical Co.
225 Schilling Blvd., Suite 300
Collierville, TN 38017
Phone: (901) 761-0050
www.helenachemical.com

ICD Metals Group, LLC
600 Madison Avenue
New York, NY 10022
Phone: (212) 644-1500
Fax: (212) 644-1480
Email: info@icdmetals.com
www.icdmetals.com

ICL Industrial Products (formerly Ameribrom, Inc.)
622 Emerson Road, Suite 500
St. Louis, MO 63141
Phone: (877) 661-4272
Fax: (314) 983-7610
http://icl-ip.com/

Pest Fog, Inc.
1424 Bonita
P.O. Box 3703
Corpus Christi, TX 78463
Phone: (361) 884-8214
Fax: (361) 884-5903
Email: info@pestfog.com
www.pestfog.com

Pestcon Systems, Inc.
1808 Firestone Parkway
Wilson, NC 27893-7991
Phone: (800) 548-2778
Fax: (252) 243-1832
Email: info@pestcon.com
www.pestcon.com

Southern Agricultural Insecticides Inc.
P.O. Box 218
Palmetto, FL 34220
Phone: (941) 722-3285
Fax: (941) 723-2974
Email: sales@southernag.com
www.southernag.com
Moisture Meter (for wood)

**Delmhorst Instrument Company**
51 Indian Lane East
Towaco, NJ 07082
Phone: (877)-DELMHORST or (973) 334-2557
Fax: (973) 334-2657
Email: info@delmhorst.com
www.delmhorst.com
Order: Moisture Meter G30
Electrode 26ES
Type 496 pin
Above comes as package in carrying case.

**Lignomat USA Ltd.**
14345 NE Morris Court
Portland, OR 97230
Phone: (800) 227-2105
Email: sales@lignomat.com
www.lignomat.com

Newsletters and Trade Journals

(Containing articles on fumigation)

**Fumigants and Pheromones**
(Free newsletter)
Fumigation Service & Supply, Inc.
16950 Westfield Park Road
Westfield, IN 46074-9374
Phone: (317) 896-9300
Email: insectslimited@aol.com
www.fumigationzone.com
www.insectslimited.com

**Pest Control Technology**
(Monthly for professional pest control operators)
4020 Kinross Lakes Parkway, Suite 201
Richfield, OH 44286
Phone: (800) 456-0707
Fax: (330) 659-0823
www.pctonline.com
Photo Ionization Detector

Mine Safety and Appliance
MSA World Headquarters
Customer Service Center
P.O. Box 426
Pittsburgh, PA 15230
1-800-MSA-2222
http://www.msanorthamerica.com/
Sirius Multigas Detector

Rae Systems
3775 North First Street
San Jose, CA 95134
408-952-8200
http://www.raesystems.com/products

Safety Equipment

United States Plastic Corporation
1390 Neubrecht Road
Lima, OH 45801-3196
Phone: (800) 809-4217
Fax: (800) 854-5498
Email: usp@usplastic.com
www.usplastic.com
(Safety guards for belt and chain drives; fan guards; fire extinguishers; safety equipment in general)
Scale (portable platform type)

(For weighing gas cylinders) (in addition to the following, see also Yellow Pages)

Arlington Scale Co., Inc.
38 Davey Street
Bloomfield, NJ 07003
Phone: (978) 748-8000
Fax: (978) 748-8035
www.arlingtonscale.com

Atlantic Scale Co., Inc.
136 Washington Avenue
Nutley, NJ 07110
Phone: (973) 661-7090
Fax: (973) 661-3651
www.atlanticscale.com
(See Web site for other locations in Hicksville, NY and Yonkers, NY)

Eastern Scale of NJ
1053 Pennsylvania Avenue
Linden, NJ 07036-2240
Phone: (732) 381-8007

Phifer Incorporated
P.O. Box 1700
Tuscaloosa, AL 35403-1700
Phone: (205) 345-2120
Fax: (205) 759-4450
Email: info@phifer.com
www.phifer.com
(Fiberglass insect screening of various mesh sizes and colors)

Sealing Tape

Degesch America, Inc.
Houston Division
P.O. Box 451036
Houston, TX 77245
Phone: (713) 433-4777
Fax: (713) 433-0877
www.degeschamericabi.com
Fumigation Service & Supply, Inc.
16950 Westfield Park Road
Westfield, IN 46074
Phone: (800) 992-1991 or (317) 896-9300
FAX: (317) 867-5757
Email: info@fumigationzone.com
www.fumigationzone.com
(ARMAK sealing tape)

Self-Contained Breathing Apparatus (SCBA)

Mine Safety and Appliance
MSA World Headquarters
Customer Service Center
P.O. Box 426
Pittsburgh, PA 15230
1-800-MSA-2222
http://www.msanorthamerica.com/
MSA AirHawk Ultra Elite

USDA employees monitoring fumigations must order model ATO#A-A2LB33A00F11AA1.
The letter "F" is the size of the face mask. "F" is medium, "G" is large, and "E" is small.
Spectacle kits: center support part #493581 or sidewire part #804638

Smoking Candle

(Used in pressure leakage test. Candles of various sizes.)
Purchase only candles that emit white smoke. If candles that emit colored smoke are used, their residue will stain the interior walls of the fumigation chamber, skin, and clothing. Store candles in a dry cool place.

Superior Signal Co., Inc.
P.O. Box 96
Spotswood, NJ 08884
Phone: (800) 345-8378 or (732) 251-0800
Fax: (732) 251-9442
www.superiorsignal.com
Snakes (sand snakes, watersnakes)

**Fumigation Service & Supply, Inc.**  
16950 Westfield Park Road  
Westfield, IN 46074  
Phone: (800) 992-1991 or (317) 896-9300  
FAX: (317) 867-5757  
Email: info@fumigationzone.com  
www.fumigationzone.com

**Pest Fog, Inc.**  
1424 Bonita  
P.O. Box 3703  
Corpus Christi, TX 78463  
Phone: (361) 884-8214  
Fax: (361) 884-5903  
Email: info@pestfog.com  
www.pestfog.com

Soil Fumigants

(Metam-sodium, Vapam, etc.)

**Buckman Laboratories International Inc.**  
1256 North McLean Boulevard  
Memphis, TN 38108-1241  
Phone: (901) 278-0330  
Fax: (901) 276-5343  
Email: knetix@buckman.com  
Product name: Busan 1020

**Cytec Industries, Inc.**  
5 Garrett Mountain Plaza  
West Patterson, NJ 07424  
Phone: (800) 652-6013 or (973) 357-3100  
Email: custinfo@cytec.com  
www.cytec.com  
Products: Metam 32.7, Metam 42, Ucetam
OR-CAL, Inc.
29454 Meadowview Road
Junction City, OR 97448
Phone: (800) 237-2367 or (541) 689-4413
Fax: (541) 689-5026
Email: orcal@orcalinc.com
www.orcalinc.com
(Product name: Sectagon)

Syngenta
1800 Concord Pike
P.O. Box 8353
Wilmington, DE 19803
Phone: (800) 759-4500 or (302) 425-2000
www.syngenta-us.com
(Product name: Vapam)

Spill Recovery Materials

(Products to absorb spills of hazardous materials)

Ansul
One Stanton Street
Marinette, WI 54143
Phone: (715) 735-7411
Fax: (800) 543-9822
www.ansul.com
(Product: Spill-X)

Fumigation Service & Supply, Inc.
16950 Westfield Park Road
Westfield, IN 46074
Phone: (800) 992-1991 or (317) 896-9300
FAX: (317) 867-5757
Email: info@fumigationzone.com
www.fumigationzone.com
Appendix E  Reference Guide to Commercial Suppliers of Treatment and Related Safety Equipment
Steam Boilers (For hot water immersion treatment)

**New Pig Corp.**
One Pork Avenue
P.O. Box 304
Tipton, PA 16684-0304
Phone: (800) 468-4647
Fax: (800) 621-7447
Email: hothogs@newpig.com
www.newpig.com

**WYK Sorbents, LLC**
11721 Lackland Road
St. Louis, MO 63146
Phone: (800) 248-7007
Email: wyks@wyksorbents.com
www.wyksorbents.com
(Product: absorbant pillows and socks) (Free samples available)

---

**Steam Boilers (For hot water immersion treatment)**

**Fulton Boiler Works, Inc.**
3981 Port Street
Pulaski, NY 13142
Phone: (315) 298-5121
Fax: (315) 298-6390
www.fulton.com
(Oil-fired, gas-fired, or combination)

---

**Steam Generators**

**Sioux Corporation**
One Sioux Plaza
Beresford, SD 57004
Phone: (888) 763-8833 or (605) 763-3333
Fax: (605) 763-3334
Email: email@sioux.com
www.sioux.com
Steam Sterilizers/Autoclaves

Environmental Tectonics Corporation
125 James Way
Southhampton, PA 18966
Phone: (215) 355-9100
www.etcusa.com

Sulfuryl Fluoride (Vikane)

Dow AgroSciences LLC
9330 Zionsville Road
Indianapolis, IN 46268
Phone: (800) 992-5994 or (317) 337-3000
www.dowagro.com

Pest Fog, Inc.
1424 Bonita
P.O. Box 3703
Corpus Christi, TX 78463
Phone: (361) 884-8214
Fax: (361) 884-5903
Email: info@pestfog.com
www.pestfog.com

Southern Agricultural Insecticides Inc.
P.O. Box 218
7400 Bayshore Road
Palmetto, FL 34221
Phone: (941) 722-3285
Fax: (941) 723-2974
Email: sales@southernag.com
www.southernag.com

Tarpaulins

Tarpaulins for fumigation are made by many companies. Consult the Yellow Pages.
Elastec/American Marine
1309 West Main
Carmi, IL 62821
Phone: (618) 382-2525
Fax: (618) 382-3610
also located at:
401 Shearer Blvd
Cocoa, FL 32922
Phone: (321) 636-5783
Email: elastec@elastec.com
www.elastec.com

Dupont™ Protection Technologies
Phone: 1-888-476-6827
Tyvek® Air Cargo Covers
www.aircargocovers.dupont.com

Poly-Flex, Inc.
2000 West Marshall Drive
Grand Prairie, TX 75051
Phone: (888) 765-9359
Fax: (972) 337-8269
www.poly-flex.com

Raven Industries
P.O. Box 5107
Sioux Falls, SD 57117-5107
Phone: (605) 336-2750
Email: raveninfo@ravenind.com
www.ravenind.com

Reef Industries, Inc. (Griffolyn Division)
9209 Almeda Genoa
Houston, TX 77075
Phone: (800) 231-6074 or (713) 507-4250
Fax: (713) 507-4295
Email: ri@reefindustries.com
http://www.reefindustries.com/division.php?div=1
(Inflatable tarpaulin: see “Bubble Fumigation System”)
Temperature Recorders (Portable Type) for Cold Treatment in Self-regulated Containers

Controlyne, Inc.
14 Highpoint
Cedar Grove, NJ 07009
Phone: (800) 766-5737 or (973) 819-7816
Fax: (973) 857-3014
Email: m.degan@verizon.net
(ACR SmartReader 8 Logger)

DeltaTRAK, Inc.
P.O. Box 398
Pleasanton, CA 94566
Phone: (800) 962-6776 or (925) 249-2250
Fax: (925) 249-2251
Email: salesinfo@deltatrak.com
www.deltatrak.com
(DeltaTrak T-8, DeltaTrak CDX-100, CDX-300, CDX-22000)

GE Sensing (formerly Kaye Instruments)
1100 Technology Park Drive
Billerica, MA 01821
Phone: (978) 437-1000
Fax: (978) 437-1021
Email: sensing@ge.com
www.kayeinstruments.com
(Model DR-2B Digistrip II)

International Reactor Corporation
521 Kiser Street
Dayton, OH 45404-1641
Phone: (937) 224-4444
Fax: (937) 224-4434
Email: sales@irc-reactors.com
www.ifs-frp.com/irc-web
(Grant Squirrel Meter/Logger), Squirrel 2020 series with thermistors or PT100 sensors)
Metrosonics, Inc.
1060 Corporate Center Drive
Oconomowoc, WI 53066
Phone: (800) 245-0779 or (262) 567-9157
Fax (262) 567-4047
Email: quest.mail@mmm.com
www.metrosonics.com
(DocuTemp 714A)

Remonsys Limited
The Stables, Church Hanborough
Witney, Oxfordshire OX29 8AB
United Kingdom
Phone and Fax: +44 (0)1993 886996
Email: info@remonsys.com
www.remonsys.com
(Autolog Time/Temperature Monitor, AUTOLOG 2000 Data Logger,
Multilog2)

Sensitech, Inc.
800 Cummings Center, Suite 258X
Beverly, MA 01915-6197
Phone: (800) 843-8367 or (978) 927-7033
Fax: (978) 921-2112
www.sensitech.com
(Data Mentor, RTM 2000 CTU)

Wescor Environmental
P. O. Box 361
Logan, UT 84323-0361
Phone: (435) 752-6011 ext. 1310
Fax: (435) 753-6756
Email: enviro@wescor.com
www.wescor.com
(Datapod)
Temperature Recorders (Built-in Type) for Cold Treatment in Self-Regulated Containers

Carrier Transicold Division
Carrier Corporation
United Technologies
P. O. Box 4808, Carrier Parkway
Syracuse, NY 13221-4808
Phone: (800) 227-7437
Fax: (315) 432-6620
(Micro Link 2 DataCorder, Micro Link 2i Controller/DataCorder, Micro Link 3 DataCorder, 69NT40-541, 69NT40-551, and 69NT20-551)

Daikin Industries Ltd.
Umeda Center Building, 2-4-12 Nakazaki-Nishi, Kita-ku, Osaka, 530-8323, Japan
Phone: 81-6-6373-4312
Fax: 81-6-6373-4380
www.daikin.com
(Decos III Microproc. Temp Controller, Decos III A, Decos III B, Decos III C, and Decos IIIID)

Klinge Corporation
4075 E. Market Street
York, PA 17402
Phone: (717) 840-4500
Fax: (717) 840-4501
Email: info@klingecorp.com
www.klingecorp.com
(TermLogger II)

Matrix Dynamics
501 Doylestown Road
Lansdale, PA 19446
Phone: (215) 393-9780
Fax: (215) 393-9783
(Road Warrior 1, HACCP Warrior)
Mitsubishi Heavy Industries
3-1, Asahi, Nishi-biwajima-cho, kiyosu,
Aichi Prefecture, 452-8561, Japan
Phone: 81-52-503-9200
Fax: 81-52-503-3533
www.mhi.co.jp
(MMCCIII & MMCC IIIA, MMCC IIIA-47B)

Thermo King Corporation
314 West 90th Street
Minneapolis, MN 55420
Phone: (888) 887-2202 or (952) 887-2200
Fax: (952) 887-2615
www.thermoking.com
(Thermoguard PA Microprocessor Temperature Controller, MP-D Microprocessor Controller, Thermoguard PA+ Microprocessor Controllers)
(MP-2000, MP-3000)

Temperature Recorders (Portable Type) for Cold Treatment in Warehouses

Computer Aided Solutions
8437 Mayfield Rd., Unit 104
Chesterland, OH 44026
Phone: (440)729-2570
Email: sales@dataloggerinc.com
https://www.dataloggerinc.com/contact/
(RTR-505-Pt Wireless Data Logger, Sensors: thermistor, Pt 100)

Evidencia LLP
505 Tennessee St., Ste. 502
Memphis, Tennessee 38103
Phone: (901)529-9163
Fax: (901)529-9197
www.evidencia.biz
(ThermAssureRF, ThermProbeRF)

**Fluke Electronics Corporation**
14150 SW Karl Braun Dr.
Bldg. 50-209
Beaverton, OR 97077
Phone: 800-555-6658
Email: sales@comarkusa.com
http://www.comarkusa.com/comark_wireless_monitoring.tpl
(Comark RF500, RF500A/USA, and RF500AP/USA Wireless Temperature Monitoring System)

**Inteligistics, Inc.**
210 William Pitt Way, A11
Pittsburgh, PA 15238
Phone: (412) 826-0379
Email: prmandava@inteligistics.com
(TES-31 (wireless recorder), USP14966 (sensor))

**MicroDAQ.com LTD**
879 Maple Street
Contoocook, NH 03229
Phone: (603)746-5524
www.microdaq.com/contact-microdaq
(RTR 505-Pt Wireless Data Logger; Sensors: thermistor Pt100)

---

**Temperature Recorders for Hot Water Immersion Treatment**

**Agri Machinery and Parts, Inc.**
3489 All American Boulevard
Orlando, FL 32810
Phone: (407) 299-1592
Fax: (407) 299-1489
Email: Gilian Dobes, Sales - gdoes@ouramp.com
(Honeywell strip chart recorders)

**Conax Technologies**
2300 Walden Avenue
Buffalo, NY 14225
Phone: (800) 223-2389 or (716) 684-4500
Fax: (716) 684-7433
Email: conax@conaxtechnologies.com
www.conaxtechnologies.com
**Contech**  
Rafael G. De Avila Aceves  
Miguel Galindo 2033, J. del Country  
Guadalajara, Jalisco, Mexico, C.P. 44210  
Phone: 52-33-3126-0101 or 3853-1293  
Email: rdeavilaa@gmail.com  
(Contech data logger)

**Electro Scientific Industries, Inc.**  
13900 Science Park Drive  
Portland, OR 97229  
Phone: (503) 641-4141  
[www.elcsci.com](http://www.elcsci.com)  
(Dekabox Delade Resister instrument, Model No. DB62, which may be used in the calibration of RTD sensors)

**Enterprise S.A. de C.V.**  
Rodriguez Saro 424  
Colonia del Valle  
03100 Mexico D.F.  
Mexico  
Phone: (905) 534-6028  
Fax: (905) 524-6426  
(Honeywell and Molytek 2702 temperature recorders)

**Equipos Industriales Guadalajara**  
Aguador No. 3959-A  
Int. 5 Fracc. La Calma  
C.P. 45070, Zapopan, Jalisco  
Mexico  
Phone: (52-3) 634-52-64  
Fax: (52-3) 632-35-20  
(Honeywell instruments)

**Eurotherm Chessell**  
44621 Guilford Drive  
Ashburn, VA 20147  
Phone: (703) 724-3000  
[www.eurotherm.com/chessell](http://www.eurotherm.com/chessell)  
(Chessell strip-unit recorder, Model 346)
Guiar Industrial, S.A. de C.V.
Rayon No. 989
Colonia Moderna
Sector Juarez
Guadalajara, C.P. 44190, Jalisco
Mexico
Phone: (91-36) 10-10-06
Phone: (91-36) 10-19-49
Fax: (91-36) 10-10-52
(Honeywell instruments)

Honeywell International, Inc.
101 Columbia Road
Morristown, NJ 07962
Phone: (800) 328-5111 or (973) 455-2000
Fax: (973) 455-4807
www51.honeywell.com/honeywell
(Honeywell instruments)

Instrumentacion y Control Industrial
Santa Martha No. 269
Zapopan, Jalisco
Mexico
Phone/Fax: (52-3) 636-5145
(National and Honeywell Instruments)

Laboratorios Jael
Automation Division
Calle 2 Norte #7
Parque Industriala Francisco I. Madero
Puerto Chiapas, Tapachula, Chiapas
Mexico
Phone: (962) 620-4147 or (962) 620-4146
Fax: (962) 620-4148
Email: fjsanchez@labjael.com
www.labjael.com
(HyThsoft v 2)

Nanmac Corporation
9-11 Mayhew Street
Framingham, MA 01702-2400
Phone: (800) 786-4669
Fax: (508) 879-5450
www.nanmac.com
(Nanmac data logger, Model H30-1)
Appendix E  Reference Guide to Commercial Suppliers of Treatment and Related Safety Equipment
Temperature Recorders for Hot Water Immersion Treatment

National Instruments
11500 N. Mopac Expressway
Austin, TX 78759-3504
Phone: (800) 531-5066
Fax: (512) 68-8411
www.ni.com
(National Instruments)

Neuberger Messinstrumente GmbH
Steinerstr 16, D-8000
Munchen, Germany
Phone: (089) 72402-0
(Neuberger strip chart recorder P1Y)

NOJOXTEN S.A. de C.V.
Eduardo Velazquez
Av Santa Margarit Razoa #283
Santa Margarita
Zapopan, Jal. CP 45140
Phone (office): (33) 3833-1999
Phone (cell): (33) 3115-9429
Email: eduardo.velazquez@nojoxtn.com.mx
(NOJOXTEN-BR Automation Studio V3.09 IEC 61131-3-ST)

NZ Automacao Ltda-ME
R. Areal
99 - Bom Retiro 01125-020
Sao Paulo SP
Phone: 0 xx 11 223-6596
Email: nz@ig.com.br
www.nzautomacao.com.br

Process Technologies, Inc.
154 Whitaker Road
Tampa, FL 33549
Phone: (800) 889-5699 or (813) 949-9553
Fax: (877) 569-0775 or (813) 949-8108
Email: info@process-technologies.com
www.process-technologies.com

Telecontrol Y Sistemas Automaticos Sac
Tacna 230 La Arena
Piura, Peru
Phone: 51 73 37 3004; 51 73 968 158 208
Email: tsa.sac@gmail.com
Vacuum Research Corp.
2419 Smallman Street
Pittsburgh, PA 15222
Phone: (800) 426-9340 or (412) 261-7630
Fax: (412) 261-7220
Email: VRC@vacuumresearch.com
www.vacuumresearchcorp.com
(Molytek temperature recorder, Model 2702)

William B. Cresse, Inc.
117 Commerce Avenue
Lake Placid, FL 33852
Phone: (305) 633-0977
Fax: (863) 465-0016
Email: cressecan@aol.com
www.equip2go.com
(Honeywell strip chart recorder, Temperature Sensors (RTD, 100 ohm))

Temperature Recorders and Sensors—High Temperature (Niger Seed)

Madge Tech Inc.
879 Maple Street
Contoocook, NH 03229 or
P.O. Box 50
Warner, NH 03278
Phone: 603-456-2011
Fax: 603-456-2012
Email: infor@madgetech.com
http://www.madgetech.com
(Model HiTemp 140)

Omega Engineering, Inc.
P.O. Box 4047
One Omega Drive
Stamford, CT 06907-0047
Phone: (800) 848-4286 or (203) 359-1660
Fax: (203) 359-7700
Email: info@omega.com
www.omega.com
(Model-OM-CP-HiTemp140)
Mesa Laboratories Inc.
Data Trace Division
12100 West 6th Avenue
Lakewood, CO 80228
Phone: 303-987-8000
Fax: 303-987-8989
Email: datatracetechnical@mesalabs.com
www.mesalabs.com
(Model Data Trace Hi Temp Micropack III)

Thermocouple Wire

Omega Engineering, Inc.
P.O. Box 4047
One Omega Drive
Stamford, CT 06907-0047
Phone: (800) 848-4286 or (203) 359-1660
Fax: (203) 359-7700
Email: info@omega.com
www.omega.com
(Type “T” thermocouple wire, Catalog No. PR-T-24)

Thermometers

Cole-Parmer
625 East Bunker Court
Vernon Hills, IL 60061
Phone: (800) 323-4340
Fax: (847) 247-2929
Email: info@coleparmer.com
www.coleparmer.com
(Digital thermometers, hand-held; EW-90080-09 Scientific Thermistor Thermometer with USB)
Appendix E  Reference Guide to Commercial Suppliers of Treatment and Related Safety Equipment

Thermometers

**Contech**
Rafael G. De Avila Aceves
Miguel Galindo 2033, J. del Country
Guadalajara, Jalisco, Mexico, C.P. 44210
Phone: 52-33-3126-0101 or 3853-1293
Email: rdeavilaa@gmail.com
(Term 2252 thermometer; sensors SP20758-1 (see Measurement Specialties) and adapter Part #364-A for Oakton Acorn Temp 4) and sensors with YSI 400 series sensors (see Advanced Industrial Services, Inc. (AIS))

**Cooper Atkins**
33 Reeds Gap Road
Middlefield, CT 06455-0450
Phone: (860) 347-2256
Fax: (860) 347-5135
www.cooper-atkins.com
(Electro-Therm hand-held digital thermometer. Instrument model Tm-99a (Electro Therm), general purpose air/surface probes, 12 feet in length, cat #20-10, puncture probe #1075 (no longer comes with offset adjustment to change the temperature to true temperature with the aid of a reference thermometer))

**Davis Instruments**
625 Bunker Court
Vernon Hills, IL 60061-1844
Phone: 800-358-1844
Fax: 800-433-9971
Email: info@Davis.com
www.davis.com/home.aspx

**Oakton Instruments**
P.O. Box 5136
Vernon Hills, IL 60061
Phone: (888) 462-5866
Fax: (847) 247-2984
Email: info@4oakton.com
http://www.4oakton.com/
Central and South America
Phone: 847-327-5062
Fax: 847-549-1700
Appendix E  Reference Guide to Commercial Suppliers of Treatment and Related Safety Equipment
Thermometers, Glass-Mercury, Certified Precision

(Acron® Temp 4 Meter (use 400 series thermistor probe; suggested general purpose probes are: Oakton air probe #WD-08491-08; Oakton penetration probe # WD-08491-16; Oakton general purpose probe 10, 50, or 100 feet #WD-08491-02, #WD-08491-04, #WD-08491-03; Oakton Acron Temp 5 #EW-35626-10))

Oakton products can be purchased at numerous distributors such as Cole-Parmer, Davis Instruments, etc.

**Omega Engineering, Inc.**
P.O. Box 4047
One Omega Drive
Stamford, CT 06907-0047
Phone: (800) 848-4286 or (203) 359-1660
Fax: (203) 359-7700
Email: info@omega.com
www.omega.com

**Thermo Electric Company, Inc.**
60-A Commerce Way
Totowa, NJ 07512
Phone: (800) 766-4020 or (201) 843-5800
Fax: (201) 843-4568
Email: info@te-direct.com
www.te-direct.com
(Micromite indicator/calibrator, Model 3115-1-T-0-1-0-0, Probe for Micromite; Model T-18-G-304-0-36-4M1)

---

**Thermometers, Glass-Mercury, Certified Precision**

These thermometers are used as calibration standards in cold treatment, hot water dip treatment and hot air treatment.

Thermometers from other sources may be considered as long as they meet the specifications outlined in Chapter 8: Certified Precision Thermometers: Calibration Guidelines.

Request approval for thermometers from:

USDA-APHIS-PPQ-S&T-CPHST-AQI
1730 Varsity Drive, Suite 300
Raleigh, NC 27606
DC Scientific Glass
P.O. Box 1099
Pasadena, MD 21123
Physical Location: 510 McCormick Drive, Suite D
Hanover, Maryland 21076
Phone: (800) 379-8493 or (410) 863-1700
Fax: (410) 863-1704
Email: sales@dcglass.com
www.dcglass.com

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Type:</th>
<th>Range:</th>
<th>Scale Division:</th>
<th>Calibration Points:</th>
<th>Length (mm):</th>
<th>Immersion:</th>
</tr>
</thead>
<tbody>
<tr>
<td>210-624</td>
<td>Extreme Precision</td>
<td>30 to 124 °F</td>
<td>0.1 °F</td>
<td>Minimum of one at the treatment temperature</td>
<td>610</td>
<td>Total</td>
</tr>
<tr>
<td>210-626</td>
<td>Extreme Precision</td>
<td>30 to 124 °F</td>
<td>0.1 °F</td>
<td>Minimum of one at the treatment temperature</td>
<td>610</td>
<td>3 inches</td>
</tr>
<tr>
<td>10064F-C</td>
<td>ASTM</td>
<td>77 to 131 °F</td>
<td>0.2 °F</td>
<td>5 calibration points (32, 80, 05, 115, 130 °F)</td>
<td>379</td>
<td>Total</td>
</tr>
<tr>
<td>10064C-C</td>
<td>ASTM</td>
<td>25 to 55 °C</td>
<td>0.1 °C</td>
<td>5 calibration points (0, 25, 35, 45, 55 °C)</td>
<td>379</td>
<td>Total</td>
</tr>
<tr>
<td>67C-100MM-C</td>
<td>ASTM</td>
<td>95 to 155 °C</td>
<td>0.2 °C</td>
<td>5 calibration points (0, 100, 110, 130, 150 °C)</td>
<td>379</td>
<td>100 mm</td>
</tr>
</tbody>
</table>

Figure E-1  DC Scientific Glass - Approved Thermometers

Fisher Scientific
2000 Park Lane Drive
Pittsburgh, PA 15275
Phone: (800) 766- 7000
Fax: (800) 926-1166
www.fishersci.com
Thermometers, Glass Non-Mercury, Certified Precision

These thermometers are used as a calibration standard in cold treatment, hot water dip treatment and hot air treatment.

Thermometers from other sources may be considered as long as they meet the specifications outlined in *Certified Precision Thermometers: Calibration Guidelines on page 8-1-27.*

Request approval for thermometers from:

### Appendix E
Reference Guide to Commercial Suppliers of Treatment and Related Safety Equipment
Thermometers, Glass Non-Mercury, Certified Precision

<table>
<thead>
<tr>
<th>Catalog Number:</th>
<th>Type:</th>
<th>Range:</th>
<th>Scale Division:</th>
<th>Calibration Points:</th>
<th>Length (mm):</th>
<th>Immersion:</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-142C</td>
<td>ASTM Mercury</td>
<td>77 to 131 °F</td>
<td>0.2 °F</td>
<td>5 calibration points (32, 80, 95, 115, 130 °F)</td>
<td>379</td>
<td>Total</td>
</tr>
<tr>
<td>15-140C</td>
<td>ASTM Mercury</td>
<td>25 to 55 °C</td>
<td>0.1 °C</td>
<td>5 calibration points (0, 25, 35, 45, 55 °C)</td>
<td>379</td>
<td>Total</td>
</tr>
<tr>
<td>15-169-120</td>
<td>ASTM Mercury</td>
<td>95 to 155 °C</td>
<td>0.2 °C</td>
<td>5 calibration points (0, 100, 110, 130, 150 °C)</td>
<td>379</td>
<td>Total</td>
</tr>
</tbody>
</table>

**Figure E-2  Fisher Scientific - Approved Thermometers**

VWR
1310 Goshen Parkway
West Chester, PA 19380
Phone: (800) 932-5000
www.VWR.com

<table>
<thead>
<tr>
<th>Catalog Number:</th>
<th>Type:</th>
<th>Range:</th>
<th>Scale Division:</th>
<th>Calibration Points:</th>
<th>Length (mm):</th>
<th>Immersion:</th>
</tr>
</thead>
<tbody>
<tr>
<td>61099-068</td>
<td>ASTM Mercury</td>
<td>77 to 131 °F</td>
<td>0.2 °F</td>
<td>5 calibration points (32, 80, 95, 115, 130 °F)</td>
<td>379</td>
<td>Total</td>
</tr>
<tr>
<td>15-61099-057</td>
<td>ASTM Mercury</td>
<td>25 to 55 °C</td>
<td>0.1 °C</td>
<td>5 calibration points (0, 25, 35, 45, 55 °C)</td>
<td>379</td>
<td>Total</td>
</tr>
</tbody>
</table>

**Figure E-3  VWR - Approved Thermometers**
USDA-APHIS-PPQ-S&T-CPHST-AQI  
1730 Varsity Drive, Suite 300  
Raleigh, NC 27606

**Cole-Parmer**  
625 East Bunker Court  
Veron Hills, IL 60061  
Phone: (800) 323-4340  
Fax: (847) 247-2929  
Email: info@coleparmer.com  
www.coleparmer.com

<table>
<thead>
<tr>
<th>Catalog Number</th>
<th>Type:</th>
<th>Range:</th>
<th>Scale Division:</th>
<th>Calibration Points:</th>
<th>Length (mm):</th>
<th>Immersion:</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-08007-15</td>
<td>Thermo Scientific ERTCO®</td>
<td>77 to 131 °F</td>
<td>0.2 °F</td>
<td>5 calibration points (32, 80, 95, 115, 130 °F)</td>
<td>379</td>
<td>Total</td>
</tr>
<tr>
<td>K-08007-14</td>
<td>Thermo Scientific ERTCO®</td>
<td>25 to 55 °C</td>
<td>0.1 °C</td>
<td>5 calibration points (0, 25, 35, 45, 55 °C)</td>
<td>379</td>
<td>Total</td>
</tr>
<tr>
<td>EW-08007-20</td>
<td>Thermo Scientific ERTCO®</td>
<td>95 to 155 °C</td>
<td>0.2 °C</td>
<td>5 calibration points (0, 100, 110, 130, 150 °C)</td>
<td>379</td>
<td>100 mm</td>
</tr>
</tbody>
</table>

**Figure E-4**  
Cole Parmer - Approved Thermometers

**Thermometers with Sensors, Digital, Certified Precision**

These thermometers are used as a calibration standard and can be substituted for mercury and non-mercury thermometers in cold treatment, hot water dip treatment and hot air treatment.

Thermometers from other sources may be considered as long as they meet the specifications outlined in *Certified Precision Thermometers: Calibration Guidelines on page 8-1-27.*
Request approval for thermometers from:

USDA-APHIS-PPQ-S&T-CPHST-AQI
1730 Varsity Drive, Suite 300
Raleigh, NC 27606

Contech
Rafael G. De Avila Aceves
Miguel Galindo 2033, J. del Country
Guadalajara, Jalisco, Mexico, C.P. 44210
Phone: 52-33-3126-0101 or 3853-1293
Email: rdeavilaa@gmail.com
(Term 2252 thermometer; sensors SP20758-1 (see Measurement Specialties) and adapter Part #364-A for Oakton Acorn Temp 4) and sensors with YSI 400 series sensors (see Advanced Industrial Services, Inc. (AIS))
EUTECH Instruments
For Africa, Asia, Middle East and Pacific Rim:
Eutech Instruments Pte Ltd
Blk 55, Ayer Rajah Crescent, #04-16/24, Singapore 139949
Phone: (65) 6778-6876
Fax: (65) 6773-0836
Email: eutech@thermofisher.com
www.eutechinst.com

For Europe:
Eutech Instruments Europe B.V.
P.O. Box 254, 3860 AG Nijkerk
The Netherlands
Phone: (31) 033-2463887
Fax: (31) 033-2460832
Email: info@eutech.nl
www.eutech.nl/

For North and South America:
OAKTON Instruments
P.O. Box 5136, Vernon Hills, IL 60061
Phone: (888) 4OAKTON (888)-462-5866
Fax: (847) 247-2984
Email: info@4oakton.com
www.4oakton.com

Central and South America
Phone: 847-327-5062
Fax: 847-549-1700

(Acorn® Temp 4 Meter (use 400 series thermistor probe; suggested general purpose probes are: Oakton air probe #WD-08491-08; Oakton penetration probe # WD-08491-16; Oakton general purpose probe 10, 50, or 100 feet #WD-08491-02, #WD-08491-04, #WD-08491-03; Oakton Acron Temp 5 #EW-35626-10))
Oakton products can be purchased at numerous distributors such as Cole-Parmer, Davis Instruments, etc.

Cole-Parmer
625 East Bunker Court
Vernon Hills, IL60061
Phone: (800) 323-4340
Fax: (847) 247-2929
Email: info@coleparmer.com
www.coleparmer.com
For China:
Thermo Fisher Scientific
Builsing 6, No. 27 Xin Jinqiao Rd.
Shanghai 21206, China
Phone: (86) 021 6865 4588
Fax: (86) 021 6445 7909
Email: candy.tian@thermofisher.com

For India:
Thermo Fisher Scientific
102, 104 Delphi 'C' wing
Hiranandani Business Park
Powai, Mumbai - 400 076
Phone: 022-6742 94 94 (Board No.)
Fax: 022-6742 94 95
Email: prasanna.pandit@thermofisher.com
www.eutechninst.com

Catalog # 60010-85: Digital thermometer with range -330 to 2210 °F or -201 to 1210 °C; Resolution 0.1 °C/°F at 100.0 to 999.9 °C/°F; Accuracy +/- 0.1 °C/°F at 100 to 999.9 °C/°F; various probe lengths; Request NIST traceable calibration with 5 temperature points or more and a certificate.

Fluke Corporation
6920 Seaway Blvd.
Everett, WA 98206, USA
Phone: (425)347-6100
Fax: (425)446-5166
www.fluke.com

Model Name 1551A -9 to 20: 1551A EX Thermometer, Fixed RTD, -50C to 160C (-58F to 320F), choice of sensor length can be 9, 12 and 20 inches; Accuracy +/- 0.05C; Includes NVLAP- accredited report of calibration;, NIST traceable, User's guide on CD-ROM, 3 AAA batteries

Model Name 1552A -9 to 20: 1552A EX Thermometer, Fixed RTD, -80 C to 300 C (-112F to 572F), Sensor length 12 inches; Accuracy +/- 0.05C; Includes NVLAP- accredited report of calibration;, NIST traceable, User's guide on CD-ROM, 3 AAA batteries

OpticsPlanet, Inc.
Phone: (800) 504-5897 or (847) 513-6201
Fax: (847) 919-3003
Email: sales@opticsplanet.com
www.opticsplanet.net/
Catalog # C1-LB-4000: Control Company Digital Data Logger Thermometer with Probe 4000/61220-601; Accuracy +/-0.05 °C; Request NIST calibration and certificate with 5 or more temperature points in treatment range.

Palmer Wahl
234 Old Weaverville Road
Asheville, NC 28804-1228
Phone: 800 421 2853; 828 658 3131
Fax: 828 658 0728
Email: info@palmerwahl.com
www.palmerwahl.com

Model DST600 series: Precision handheld reference thermometer: Range; -50 to 500 °F; Accuracy +/-0.1°F/ °C over 1 year period; w/certificate of calibration. Request NIST calibration and certificate with temperature points in treatment range; choice of temperature sensors.

Tech Instrumentation, Inc.
160 W. Kiowa Avenue
P.O. Box 2029
Elizabeth, CO 80107
Phone: (800) 390-0004 or (303) 841-7567
Fax: (303) 840-8568
Email: sales@techinstrument.com
www.techinstrument.com

Catalog #TL-1W: Digital thermometer with range -44 to 600 °F and -43 to 315 °C; Resolution 0.01 degrees; Accuracy +/-0.1 F below 300 °F; Various stem lengths; 4 point NIST traceable calibration included;1 year warranty.
Appendix E  Reference Guide to Commercial Suppliers of Treatment and Related Safety Equipment
Thermometers, Certified Precision, Approved Calibration Companies

Thermco Products, Inc.
10 Millpond Drive, Unit #2
Lafayette, NJ 07848
Phone: (973) 300-9100
Fax: (973) 255-1000
Email: info@thermcoproductsinc.com
www.thermcoproductsinc.com

Catalog #ACCD650P: High Precision Digital Pt100 Platinum Thermometer;
Range- Pt100: -200 °C to +850 °C; Accuracy- Pt 100 +/- 0.03 from -50 °C to +
199.99 °C; with Certificate of calibration. Request NIST calibration and
certificate with 5 or more temperature points in treatment range; ACCD1019
High Precision Probe Pt100 Platinum 12" (405mm)

Thermoprobe, Inc.
112A Jetport Drive
Pearl, MS 39208
Phone:(601) 939-1831
Fax: (601) 355-1831
Email: ronnie@thermoprobe.net
www.thermoprobe.net

Catalog #TL-1W: Digital thermometer with range -44 to 600 °F and -43 to
315 °C; Resolution 0.01 degrees; Accuracy -/+0.1 F below 300 °F; Various
stem lengths; 4 point NIST traceable calibration included;1 year warranty.

ThermoWorks
165 N. 1330 W., #A1
Orem, UT 84057
Phone: (801) 756-7705
Fax: (801) 756-8948
Email: info@thermoworks.com
www.thermoworks.com

Model P600 series; Precision handheld reference thermometer: Range; -328 F
to 842 F; Accuracy 0.05 F from -148 to 302 F: w/Certificate of calibration.
Request NIST calibration and certificate with temperature points in treatment
range; choice of temperature sensors.

Thermometers, Certified Precision, Approved Calibration Companies

Conduct thermometer calibration by USDA-approved calibration companies.
Follow the procedures for calibration summarized in Chapter 8, Certified
Precision Thermometers: Calibration Guidelines.
DC Scientific Glass
P.O. Box 1099
Pasadena, MD 21123
Physical Location: 510 McCormick Drive, Suite D
Hanover, MD 21076
Phone: (800) 379-8493 or (410) 863-1700
Fax: (410) 863-1704
Email: sales@dcglass.com
www.dcglass.com

Barnstead International
(sold as Thermo Scientific brand)
2555 Kerper Blvd.
P.O. Box 797
Dubuque, IA 52001
Phone: (563) 556-2241
Fax: (563) 556-0695
www.thermofisher.com

Fluke Corporation
6920 Seaway Blvd.
Everett, WA 98206, USA
Phone: (425)347-6100
Fax: (425)446-5166
www.fluke.com

ICL Calibration Laboratories, Inc.
1501 Decker Avenue, Suite 118
Stuart, FL 34994
Phone: (800) 713-6647 or (772) 286-7710
Fax: (772) 286-8737
Email: sales@iclcalibration.com
www.icllabs.com
(Calendar, repair and adjustment of the Thermoprobe TL-1-W)

INNOCAL
625 East Bunker Court M/S 14
Vernon Hills, IL 60061-1844
Phone: (866) 466-6225
Fax: (847) 247-2984
Email: info@innocalsolutions.com
www.innocalsolutions.com
Instrumentation Technical Services
20 Hagerty Blvd., Suite 1
West Chester, PA 19382
Phone: (610) 436-9703
Fax: (610) 436-9097
Email: general@calservice.net
www.calservice.net

Measurement Assurance Technology
2109 Luna Road, Suite 240
Carrollton, TX 75006
Phone: (877) 871-TEST or (972) 241-2165
Fax: (972) 241-2167
Email: sales@mattestusa.com
www.mattestusa.com

Phoenix Calibration DR
Parque Industrial de Zona Franca Excel Boca Chica
Los Tanquecitos, Boca Chica
Santo Domingo, RD
Phone: (809) 563-0457
Fax: (809) 540-2320
Email: dweil@phoenixcalibrationdr.com
www.phoenixcalibrationdr.com

Thermoprobe, Inc.
112A Jetport Drive
Pearl, MS 39208
Phone: (601) 939-1831
Fax: (601) 355-1831
Email: ronnie@thermoprobe.net
www.thermoprobe.net
(Calibration, repair and adjustment of the Thermoprobe TL-1-W)

VWR
1310 Goshen Parkway
West Chester, PA 19380
Phone: (800) 932-5000
www.VWR.com
Thermometers, Recorders, and Sensors—General Use

**CAS Datalogger**
12628 Chillicothe Road
Chesterland, OH 44026
Phone: 800-956-4437
Email: sales@dataloggerinc.com
www.dataloggerinc.com
(dataTaker DT-85, Delphin Expert Logger Models 100, 200, 300)

**Cole-Parmer**
625 East Bunker Court
Vernon Hills, IL 60061
Phone: (800) 323-4340
Fax: (847) 247-2929
Email: info@coleparmer.com
www.coleparmer.com

**Contech**
Rafael G. De Avila Aceves
Miguel Galindo 2033, J. del Country
Guadalajara, Jalisco, Mexico, C.P. 44210
Phone: 52-33-3126-0101 or 3853-1293
Email: rdeavilaa@gmail.com
(Term 2252 thermometer; sensors SP20758-1 (see Measurement Specialties) and adapter Part #364-A for Oakton Acorn Temp 4) and sensors with YSI 400 series sensors (see Advanced Industrial Services, Inc. (AIS))

**GEC Instruments**
5530 NW 97th Street
Gainesville, FL 32653
Phone: (352) 373-7955
Email: info@gecinstruments.com
www.gecinstruments.com
(Model S16TC Type T Thermocouple, Model S4TC Type T Thermocouple)
MadgeTech, Inc.
879 Maple Street
Contoocook, NH 03229 or
P.O. Box 50
Warner, NH 03278
Phone: (603) 456-2011
Fax: (603) 456-2012
Email: info@madgetech.com
www.madgetech.com
(Model: HITEMP 150A)

Mesa Laboratories, Inc.
Data Trace Division
12100 West 6th Avenue
Lakewood, CO 80228
Phone: (800) 525-1215 or (303) 987-8000
Fax: (303) 987-8989
Email: Technical Support and Service: datatracetechnical@mesalabs.com
datatraceservice@mesalabs.com
www.mesalabs.com
(Models: Data Tracers, STO, LTO, and Micropack III)

Nanmac Corporation
9-11 Mayhew Street
Framingham, MA 01702-2400
Phone: (800) 786-4669
Fax: (508) 879-5450
www.nanmac.com

National Instruments
11500 N. Mopac Expressway
Austin, TX 78759-3504
Phone: (800) 531-5066
Fax: (512) 68-8411
www.ni.com

Nordic Sensors Industrial, Inc. (NSI)
6860 Louis-Sicard
Montreal, Quebec
Canada H1P 1T7
Phone: (888) 667-3421
Fax: (888) 867-9986
Email: info@nordicsensors.com
www.nordicsensors.com
**Omega Engineering Inc.**
P.O. Box 4047  
One Omega Drive  
Stamford, CT 06907-0047  
Phone: (800) 848-4286 or (203) 359-1660  
Fax: (203) 359-7700  
Email: info@omega.com  
www.omega.com

**Tubing, Gas-Sampling**

(Polyethylene or polypropylene)

**Cole-Parmer**
625 East Bunker Court  
Vernon Hills, IL 60061  
Phone: (800) 323-4340  
Fax: (847) 247-2929  
Email: info@coleparmer.com  
www.coleparmer.com

**Consolidated Plastics Co. Inc.**
4700 Prosper Drive  
Stow, OH 44224  
Phone: (800) 362-1000  
Fax: (800) 858-5001  
www.consolidatedplastics.com

**Fisher Scientific**
2000 Park Lane Drive  
Pittsburgh, PA 15275  
Phone: (800) 766-7000  
Fax: (800) 926-1166  
www.fishersci.com

**Pest Fog, Inc.**
1424 Bonita  
P.O. Box 3703  
Corpus Christi, TX 78463  
Phone: (361) 884-8214  
Fax: (361) 884-5903  
Email: info@pestfog.com  
www.pestfog.com
Vacuum Pump

Air compressor for use with vacuum fumigation chambers.

Neward Enterprises, Inc.
Distributor: McMaster-Carr
P.O. Box 740100
Atlanta, GA 30374-0100
Phone: (404) 346-7000
Fax: (404) 349-9091
Email: atlsales@mcmaster.com
www.mcmaster.com
(MityVac® hand-held vacuum pump, cost: $69 (zinc-alloy pump #9963K12)

Sargent Welch
P.O. Box 4130
Buffalo, NY 14217
Phone: (800) 727-4368
Fax: (800) 676-2540
Email: customerservice@sargentwelch.com
www.sargentwelch.com
Appendix E  Reference Guide to Commercial Suppliers of Treatment and Related Safety Equipment

Vapam

(See Metam-sodium)

Volatilizer

(For volatilizing liquid methyl bromide into a fumigant gas)

Degesch America, Inc.
Houston Division
P.O. Box 451036
Houston, TX 77245
Phone: (713) 433-4777
Fax: (713) 433-0877
www.degeschamerica.com

Pest Fog, Inc.
1424 Bonita
P.O. Box 3703
Corpus Christi, TX 78463
Phone: (361) 884-8214
Fax: (361) 884-5903
Email: info@pestfog.com
www.pestfog.com

Vacudyne, Inc.
375 East Joe Orr Road
Chicago Heights, IL 60411
Phone: (800) 459-9591 or (708) 757-5200
www.vacudyne.com

Warning Signs and Placards

Carlton Industries, L.P.
P.O. Box 280
La Grange, TX 78945
Phone: (800) 231-5934 or (979) 242-5055
Fax: (979) 242-5058
Email: sales@carltonusa.com
www.carltonusa.com
Champion America
P.O. Box 3092
Stoney Creek, CT 06405
Phone: (877) 242-6709
Fax: (800) 336-3707
www.champion-america.com

Pest Fog, Inc.
1424 Bonita
P.O. Box 3703
Corpus Christi, TX 78463
Phone: (361) 884-8214
Fax: (361) 884-5903
Email: info@pestfog.com
www.pestfog.com
Appendix F

EPA Crop Groups

Contents

Crop Group 1: Root and Tuber F-2
Crop Group 2: Leaves of Root and Tuber Vegetables F-3
Crop Group 3: Bulb Vegetable (Allium spp.) F-4
Crop Group 4: Leafy Vegetables (except Brassica vegetables) F-5
Crop Group 5: Brassica (Cole) Leafy Vegetables F-6
Crop Group 6: Legume Vegetables (succulent or dried) F-6
Crop Group 7: Leaves of Legume Vegetables F-7
Crop Group 8: Fruiting Vegetables F-7
Crop Group 9: Cucurbit Vegetables F-8
Crop Group 10: Citrus Fruit F-9
Crop Group 11: Pome Fruit F-10
Crop Group 12: Stone Fruit F-11
Crop Group 13: Berries and Small Fruit F-12
Crop Group 14: Tree Nuts F-13
Crop Group 15: Cereal Grains F-14
Crop Group 16: Forage, Fodder, and Straw of Cereal Grains F-14
Crop Group 17: Grass Forage, Fodder, and Hay F-14
Crop Group 18: Nongrass Animal Feeds (Forage, Fodder, Straw, and Hay) F-15
Crop Group 19: Herbs and Spices F-16
Crop Group 20: Oilseed F-18
Crop Group 21: Edible Fungi F-19
Crop Group 22: Stalk, Stem, and Leaf Petiole Vegetables F-20
Crop Group 23: Tropical and Subtropical Fruit, Edible Peels F-21
Crop Group 24: Tropical and Subtropical Fruit, Inedible Peels F-24

Introduction

The EPA requires chemical tolerances for residue data on raw agricultural commodities intended for human or animal consumption.

This Appendix lists the individual commodities in each crop group and is intended as a quick reference for the reader. These tables are updated annually and may not reflect the current crop groups in CFR 40 180.41. Refer to the EPA Crop Group tables for the most recent information.
<table>
<thead>
<tr>
<th>Table F-1 Crop Group 1: Root and Tuber</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arracacha (<em>Arracacia xanthorrhiza</em>)</td>
</tr>
<tr>
<td>Arrowroot (<em>Maranta arundinacea</em>)</td>
</tr>
<tr>
<td>Artichoke, Chinese (<em>Stachys affinis</em>)</td>
</tr>
<tr>
<td>Artichoke, Jerusalem (<em>Helianthus tuberosus</em>)</td>
</tr>
<tr>
<td>Beet, garden (<em>Beta vulgaris</em>)</td>
</tr>
<tr>
<td>Beet, sugar (<em>Beta vulgaris</em>)</td>
</tr>
<tr>
<td>Burdock, edible (<em>Arctium lappa</em>)</td>
</tr>
<tr>
<td>Canna, edible (Queensland arrowroot) (<em>Canna indica</em>)</td>
</tr>
<tr>
<td>Carrot (<em>Daucus carota</em>)</td>
</tr>
<tr>
<td>Cassava, bitter and sweet (<em>Manihot esculenta</em>)</td>
</tr>
<tr>
<td>Celeriac (celery root) (<em>Apium graveolens var. rapaceum</em>)</td>
</tr>
<tr>
<td>Chayote (root) (<em>Sechium edule</em>)</td>
</tr>
<tr>
<td>Chervil, turnip-rooted (<em>Chaerophyllum bulbosum</em>)</td>
</tr>
<tr>
<td>Chicory (<em>Cichorium intybus</em>)</td>
</tr>
<tr>
<td>Chufa (<em>Cyperus esculentus</em>)</td>
</tr>
<tr>
<td>Dasheen (taro) (<em>Colocasia esculenta</em>)</td>
</tr>
<tr>
<td>Ginger (<em>Zingiber officinale</em>)</td>
</tr>
<tr>
<td>Ginseng (<em>Panax quinquefolius</em>)</td>
</tr>
<tr>
<td>Horseradish (<em>Armoracia rusticana</em>)</td>
</tr>
<tr>
<td>Leren (<em>Calathea allouia</em>)</td>
</tr>
<tr>
<td>Parsley, turnip-rooted (<em>Petroselinum crispum var. tuberosum</em>)</td>
</tr>
<tr>
<td>Parsnip (<em>Pastinaca sativa</em>)</td>
</tr>
<tr>
<td>Potato (<em>Solanum tuberosum</em>)</td>
</tr>
<tr>
<td>Radish (<em>Raphanus sativus</em>)</td>
</tr>
<tr>
<td>Radish, oriental (daikon) (<em>Raphanus sativus subvar. longipinnatus</em>)</td>
</tr>
<tr>
<td>Rutabaga (<em>Brassica campestris var. napobrassica</em>)</td>
</tr>
<tr>
<td>Salsify (oyster plant) (<em>Tragopogon porrifolius</em>)</td>
</tr>
<tr>
<td>Salsify, black (<em>Scorzonera hispanica</em>)</td>
</tr>
<tr>
<td>Salsify, Spanish (<em>Scolymus hispanicus</em>)</td>
</tr>
<tr>
<td>Skirret (<em>Sium sisarum</em>)</td>
</tr>
<tr>
<td>Sweet potato (<em>Ipomoea batatas</em>)</td>
</tr>
<tr>
<td>Tanier (cocoym) (<em>Xanthosoma sagittifolium</em>)</td>
</tr>
<tr>
<td>Turmeric (<em>Curcuma longa</em>)</td>
</tr>
<tr>
<td>Turnip (<em>Brassica rapa var. rapa</em>)</td>
</tr>
<tr>
<td>Yam bean (jicama, manioc pea) (<em>Pachyrhizus spp.</em>)</td>
</tr>
<tr>
<td>Yam, true (<em>Dioscorea spp.</em>)</td>
</tr>
<tr>
<td>Crop Group 2: Leaves of Root and Tuber Vegetables</td>
</tr>
<tr>
<td>-------------------------------------------------</td>
</tr>
<tr>
<td>Beet, garden (<em>Beta vulgaris</em>)</td>
</tr>
<tr>
<td>Beet, sugar (<em>Beta vulgaris</em>)</td>
</tr>
<tr>
<td>Burdock, edible (<em>Arctium lappa</em>)</td>
</tr>
<tr>
<td>Carrot (<em>Daucus carota</em>)</td>
</tr>
<tr>
<td>Cassava, bitter and sweet (<em>Manihot esculenta</em>)</td>
</tr>
<tr>
<td>Celeriac (celery root) (<em>Apium graveolens var. rapaceum</em>)</td>
</tr>
<tr>
<td>Chervil, turnip-rooted (<em>Chaerophyllum bulbosum</em>)</td>
</tr>
<tr>
<td>Chicory (<em>Cichorium intybus</em>)</td>
</tr>
<tr>
<td>Dasheen (taro) (<em>Colocasia esculenta</em>)</td>
</tr>
<tr>
<td>Parsnip (<em>Pastinaca sativa</em>)</td>
</tr>
<tr>
<td>Radish (<em>Raphanus sativus</em>)</td>
</tr>
<tr>
<td>Radish, oriental (daikon) (<em>Raphanus sativus subvar. longipinnatus</em>)</td>
</tr>
<tr>
<td>Rutabaga (<em>Brassica campestris var. napobrassica</em>)</td>
</tr>
<tr>
<td>Salsify, black (<em>Scorzonera hispanica</em>)</td>
</tr>
</tbody>
</table>
Table F-3 Crop Group 3: Bulb Vegetable (*Allium* spp.)

<table>
<thead>
<tr>
<th>Item</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garlic, bulb</td>
<td>(<em>Allium sativum</em>)</td>
</tr>
<tr>
<td>Garlic, great headed, (elephant)</td>
<td>(<em>Allium ampeloprasum var. ampeloprasum</em>)</td>
</tr>
<tr>
<td>Leek</td>
<td>(<em>Allium ampeloprasum</em>, <em>A. porrum</em>, <em>A. tricoccum</em>)</td>
</tr>
<tr>
<td>Onion, dry bulb and green</td>
<td>(<em>Allium cepa, A. fistulosum</em>)</td>
</tr>
<tr>
<td>Onion, Welsh</td>
<td>(<em>Allium fistulosum</em>)</td>
</tr>
<tr>
<td>Shallot</td>
<td>(<em>Allium cepa var. cepa</em>)</td>
</tr>
<tr>
<td>Chive, fresh leaves</td>
<td>(<em>Allium schoenoprasum</em> L.)</td>
</tr>
<tr>
<td>Chive, Chinese, fresh leaves</td>
<td>(<em>Allium tuberosum</em> Rottler ex Spreng)</td>
</tr>
<tr>
<td>Daylily, bulb</td>
<td>(<em>Hemerocallis fulva</em> (L.) var. <em>fulva</em>)</td>
</tr>
<tr>
<td>Elegans hosta</td>
<td>(<em>Hosta Sieboldiana</em> (Hook.) Engl)</td>
</tr>
<tr>
<td>Fritillaria, bulb</td>
<td>(<em>Fritillaria</em> L. <em>frtilary</em>)</td>
</tr>
<tr>
<td>Fritillaria, leaves</td>
<td>(<em>Fritillaria</em> L. <em>frtilary</em>)</td>
</tr>
<tr>
<td>Garlic, bulb, (<em>Allium sativum</em> L. var. sativum)</td>
<td>(A. sativum Common Garlic Group)</td>
</tr>
<tr>
<td>Garlic, great headed, bulb, (<em>Allium ampeloprasum</em> L. var. ampeloprasum)</td>
<td>(A. ampeloprasum Great Headed Garlic Group)</td>
</tr>
<tr>
<td>Garlic, Serpent, bulb</td>
<td>(<em>Allium sativum var. ophioscorodon or A. sativum Ophioscorodon Group</em>)</td>
</tr>
<tr>
<td>Kurrat</td>
<td>(<em>Allium kurrat</em> Schweinf. Ex. K. Krause or A. ampeloprasum Kurrat Group)</td>
</tr>
<tr>
<td>Lady's leek</td>
<td>(<em>Allium cernuum</em> Roth)</td>
</tr>
<tr>
<td>Leek, (syn: <em>A. ampeloprasum</em> L. var. <em>porrum</em> (L.) J. Gay)</td>
<td>(A.ampeloprasum Leek Group)</td>
</tr>
<tr>
<td>Leek, wild</td>
<td>(<em>Allium tricoccum</em> Aiton)</td>
</tr>
<tr>
<td>Lily, bulb</td>
<td>(<em>Lilium</em> spp. (<em>Lilium</em> Leichtlinii var. <em>maximowiczii, Lilium lancifolium</em>))</td>
</tr>
<tr>
<td>Onion, Beltsville bunching</td>
<td>(<em>Allium x proliferum</em> (Moench) Schrad.) (syn: <em>Allium fistulosum</em> L. x <em>A. cepa</em> L.)</td>
</tr>
<tr>
<td>Onion, bulb</td>
<td>(<em>Allium cepa</em> L. var. cepa)</td>
</tr>
<tr>
<td>Onion, Chinese, bulb</td>
<td>(<em>Allium chinense</em> G. Don.)</td>
</tr>
<tr>
<td>Onion, fresh</td>
<td>(<em>Allium fistulosum</em> L. var. <em>caespitosum</em> Makino)</td>
</tr>
<tr>
<td>Onion, green</td>
<td>(<em>Allium cepa</em> L. var. cepa)</td>
</tr>
<tr>
<td>Onion, macrostem</td>
<td>(<em>Allium macrostemon</em> Bunge)</td>
</tr>
<tr>
<td>Onion, pearl</td>
<td>(<em>Allium porrum var. sectivum or A. ampeloprasum</em> Pearl Onion Group)</td>
</tr>
<tr>
<td>Onion, potato, bulb</td>
<td>(<em>Allium cepa</em> L. var. <em>aggregatum</em> G. Don.)</td>
</tr>
<tr>
<td>Onion, tree, tops</td>
<td>(<em>Allium x proliferum</em> (Moench) Schrad. ex Willd.) (syn: <em>A. cepa var. proliferum</em> (Moench) Regel; <em>A. cepa</em> L. var. <em>bulbiferum</em> L.H. Bailey; <em>A. cepa</em> L. var. <em>viviparum</em> (Metz.) Alef.)</td>
</tr>
<tr>
<td>Onion, Welsh, tops</td>
<td>(<em>Allium fistulosum</em> L.)</td>
</tr>
<tr>
<td>Shallot, bulb</td>
<td>(*Allium cepa var. <em>aggregatum</em> G. Don.)</td>
</tr>
<tr>
<td>Shallot, fresh leaves</td>
<td>(*Allium cepa var. <em>aggregatum</em> G. Don.)</td>
</tr>
<tr>
<td>Cultivars, varieties, and/or hybrids of these.</td>
<td></td>
</tr>
</tbody>
</table>
Table F-4 Crop Group 4: Leafy Vegetables (except Brassica vegetables)

<table>
<thead>
<tr>
<th>Crop Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amaranth (leafy amaranth, Chinese spinach, tampala)</td>
<td><em>Amaranthus</em> spp.</td>
</tr>
<tr>
<td>Arugula (Roquette)</td>
<td><em>Eruca sativa</em></td>
</tr>
<tr>
<td>Cardoon</td>
<td><em>Cynara cardunculus</em></td>
</tr>
<tr>
<td>Celery (Apium graveolens var. dulce)</td>
<td></td>
</tr>
<tr>
<td>Celery, Chinese (Apium graveolens var. secalinum)</td>
<td></td>
</tr>
<tr>
<td>Celtuce (Lactuca sativa var. angustana)</td>
<td></td>
</tr>
<tr>
<td>Chervil (Anthriscus cerefolium)</td>
<td></td>
</tr>
<tr>
<td>Chrysanthemum, edible-leaved</td>
<td><em>Chrysanthemum coronarium</em> var. <em>coronarium</em></td>
</tr>
<tr>
<td>Chrysanthemum, garland</td>
<td><em>Chrysanthemum coronarium</em> var. <em>spatiosum</em></td>
</tr>
<tr>
<td>Corn salad (Valerianella locusta)</td>
<td></td>
</tr>
<tr>
<td>Cress, garden</td>
<td><em>Lepidium sativum</em></td>
</tr>
<tr>
<td>Cress, upland (yellow rocket, winter cress)</td>
<td><em>Barbarea vulgaris</em></td>
</tr>
<tr>
<td>Dandelion (Taraxacum officinale)</td>
<td></td>
</tr>
<tr>
<td>Dock (sorrel)</td>
<td><em>Rumex spp.</em></td>
</tr>
<tr>
<td>Endive (escarole)</td>
<td><em>Cichorium endivia</em></td>
</tr>
<tr>
<td>Fennel, Florence (finochio)</td>
<td><em>Foeniculum vulgare</em> Azoricum Group</td>
</tr>
<tr>
<td>Lettuce, head and leaf</td>
<td><em>Lactuca sativa</em></td>
</tr>
<tr>
<td>Orach (Atriplex hortensis)</td>
<td></td>
</tr>
<tr>
<td>Parsley (Petroselinum crispum)</td>
<td></td>
</tr>
<tr>
<td>Purslane, garden</td>
<td><em>Portulaca oleracea</em></td>
</tr>
<tr>
<td>Purslane, winter</td>
<td><em>Montia perfoliata</em></td>
</tr>
<tr>
<td>Radicchio (red chicory)</td>
<td><em>Cichorium intybus</em></td>
</tr>
<tr>
<td>Rhubarb (Rheum rhabarbarum)</td>
<td></td>
</tr>
<tr>
<td>Spinach</td>
<td><em>Spinacia oleracea</em></td>
</tr>
<tr>
<td>Spinach, New Zealand</td>
<td><em>Tetragonia tetragnoides, T. expansa</em></td>
</tr>
<tr>
<td>Spinach, vine (Malabar spinach, Indian spinach)</td>
<td><em>Basella alba</em></td>
</tr>
<tr>
<td>Swiss chard (Beta vulgaris var. cicla)</td>
<td></td>
</tr>
</tbody>
</table>
### Table F-5 Crop Group 5: *Brassica* (Cole) Leafy Vegetables

<table>
<thead>
<tr>
<th>Crop</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Broccoli</td>
<td><em>Brassica oleracea</em> var. <em>botrytis</em></td>
</tr>
<tr>
<td>Broccoli, Chinese (gai lon)</td>
<td><em>Brassica alboglabra</em></td>
</tr>
<tr>
<td>Broccoli raab (rapini)</td>
<td><em>Brassica campestris</em></td>
</tr>
<tr>
<td>Brussels sprouts</td>
<td><em>Brassica oleracea</em> var. <em>geminifera</em></td>
</tr>
<tr>
<td>Cabbage</td>
<td><em>Brassica oleracea</em></td>
</tr>
<tr>
<td>Cabbage, Chinese (bok choy)</td>
<td><em>Brassica chinensis</em></td>
</tr>
<tr>
<td>Cabbage, Chinese (napa)</td>
<td><em>Brassica pekinensis</em></td>
</tr>
<tr>
<td>Cabbage, Chinese mustard</td>
<td><em>Brassica campestris</em></td>
</tr>
<tr>
<td>Cauliflower</td>
<td><em>Brassica oleracea</em> var. <em>botrytis</em></td>
</tr>
<tr>
<td>Cavalo broccolo</td>
<td><em>Brassica oleracea</em> var. <em>botrytis</em></td>
</tr>
<tr>
<td>Collards</td>
<td><em>Brassica oleracea</em> var. <em>acephala</em></td>
</tr>
<tr>
<td>Kale</td>
<td><em>Brassica oleracea</em> var. <em>acephala</em></td>
</tr>
<tr>
<td>Kohlrabi</td>
<td><em>Brassica oleracea</em> var. <em>gongylodes</em></td>
</tr>
<tr>
<td>Mizuna</td>
<td><em>Brassica rapa</em> Japonica Group</td>
</tr>
<tr>
<td>Mustard greens</td>
<td><em>Brassica juncea</em></td>
</tr>
<tr>
<td>Mustard spinach</td>
<td><em>Brassica rapa</em> Perviridis Group</td>
</tr>
<tr>
<td>Rape greens</td>
<td><em>Brassica napus</em></td>
</tr>
</tbody>
</table>

### Table F-6 Crop Group 6: Legume Vegetables (succulent or dried)

<table>
<thead>
<tr>
<th>Crop</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bean (Lupinus spp.)</td>
<td>Includes grain lupin, sweet lupin, white lupin, and white sweet lupin</td>
</tr>
<tr>
<td>Bean (Phaseolus spp.)</td>
<td>Includes field bean, kidney bean, Lima bean, navy bean, pinto bean, runner bean, snap bean, tepary bean, wax bean</td>
</tr>
<tr>
<td>Bean (Vigna spp.)</td>
<td>Includes adzuki bean, asparagus bean, blackeyed pea, catjang, Chinese longbean, cowpea, Crowder pea, moth bean, mung bean, rice bean, southern pea, urd bean, yardlong bean</td>
</tr>
<tr>
<td>Broad bean (fava bean)</td>
<td><em>Vicia faba</em></td>
</tr>
<tr>
<td>Chickpea (garbanzo bean)</td>
<td><em>Cicer arietinum</em></td>
</tr>
<tr>
<td>Guar</td>
<td><em>Cyamopsis tetragonoloba</em></td>
</tr>
<tr>
<td>Jackbean</td>
<td><em>Canavalia ensiformis</em></td>
</tr>
<tr>
<td>Lablab bean (hyacinth bean)</td>
<td><em>Lablab purpureus</em></td>
</tr>
<tr>
<td>Lentil (Lens esculenta)</td>
<td></td>
</tr>
<tr>
<td>Pea (Pisum spp.)</td>
<td>Includes dwarf pea, edible-pod pea, En glish pea, field pea, garden pea, green pea, snow pea, sugar snap pea</td>
</tr>
<tr>
<td>Pigeon pea (Cajanus cajan)</td>
<td></td>
</tr>
<tr>
<td>Soybean</td>
<td><em>Glycine max</em></td>
</tr>
<tr>
<td>Soybean (immature seed)</td>
<td><em>Glycine max</em></td>
</tr>
<tr>
<td>Sword bean (Canavalia gladiata)</td>
<td></td>
</tr>
</tbody>
</table>
### Table F-7 Crop Group 7: Leaves of Legume Vegetables

Any cultivar of bean (*Phaseolus* spp.) and field pea (*Pisum* spp.), and soybean (*Glycine max*) Plant parts of any legume vegetable included in the legume vegetables that will be used as animal feed.

### Table F-8 Crop Group 8: Fruiting Vegetables

- African eggplant (*Solanum macrocarpon* L.)
- Bush tomato (*Solanum centrale* J.M. BlackCocona, *Solanum sessiliflorum* Dunal)
- Currant tomato (*Lycopersicon pinnellifolium*)
- Eggplant (*Solanum melongena* L.)
- Garden huckleberry (*Solanum scabrum* Mill)
- Goji berry (*Lycium barbarum*)
- Martynia (*Proboscidea louisianica* (Mill.) Thell)
- Naranjilla (*Solanum quitoense* Lam)
- Okra (*Abelmoschus esculentus* (L.) Moench)
- Pea eggplant (*Solanum torvum* Sw.)
- Pepino (*Solanum muricatum* Aiton)
- Pepper, bell (*Capsicum annuum* L. var. *annuum*, *Capsicum* spp.)
- Roselle (*Hibiscus sabdariffa* L.)
- Scarlet eggplant (*Solanum aethiopicum* L.)
- Sunberry (*Solanum retroflexum* Dunal)
- Tomatillo (*Physalis philadelphica* Lam)
- Tomato (*Solanum lycopersicum* L., *Solanum lycopersicum* L. var. *lycopersicum*)
- Tree tomato (*Solanum betaceum* Cav)
- Cultivars, varieties, and/or hybrids of these
Table F-9 Crop Group 9: Cucurbit Vegetables

<table>
<thead>
<tr>
<th>Crop Group</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chayote</td>
<td>(Sechium edule)</td>
</tr>
<tr>
<td>Chinese waxgourd</td>
<td>(Benincasa hispida)</td>
</tr>
<tr>
<td>Citron melon</td>
<td>(Citrullus lanatus var. citroides)</td>
</tr>
<tr>
<td>Cucumber</td>
<td>(Cucumis sativus)</td>
</tr>
<tr>
<td>Gherkin</td>
<td>(Cucumis anguria)</td>
</tr>
<tr>
<td>Gourd, edible</td>
<td>(Lagenaria spp.) (includes hyotan, cucuzza); (Luffa acutangula, L. cylindrica) (includes hechima, Chinese okra)</td>
</tr>
<tr>
<td>Momordica</td>
<td>spp. (includes balsam apple, balsam pear, bitter melon, Chinese cucumber)</td>
</tr>
<tr>
<td>Muskmelon</td>
<td>(hybrids and/or cultivars of Cucumis melo) (includes true cantaloupe, cantaloupe, casaba, crenshaw melon, golden pershaw melon, honeydew melon, honey balls, mango melon, Persian melon, pineapple melon, Santa Claus melon, and snake melon)</td>
</tr>
<tr>
<td>Pumpkin</td>
<td>(Cucurbita spp.)</td>
</tr>
<tr>
<td>Squash, summer</td>
<td>(Cucurbita pepo var. melopepo ) (includes crookneck squash, scallop squash, straightneck squash, vegetable marrow, zucchini)</td>
</tr>
<tr>
<td>Squash, winter</td>
<td>(Cucurbita maxima; C. moschata) (includes butternut squash, calabaza, hubbard squash); (C. mixta; C. pepo) (includes acorn squash, spaghetti squash)</td>
</tr>
<tr>
<td>Watermelon</td>
<td>(includes hybrids and/or varieties of Citrullus lanatus)</td>
</tr>
</tbody>
</table>
### Table F-10 Crop Group 10: Citrus Fruit

Australian desert lime (*Eremocitrus glauca* (Lindl.) Swingle)
Australian finger lime (*Microcitrus australasica* (F. Muell.) Swingle)
Australian round lime (*Microcitrus australis* (A. Cunn. Ex Mudie) Swingle)
Brown River finger lime (*Microcitrus papuana* Winters)
Calamondin (*Citrofortunella microcarpa* (Bunge) Wijnands)
Citron (*Citrus medica* L.)
Citrus hybrids (*Citrus* spp., *Eremocitrus* spp., *Fortunella* spp., *Microcitrus* spp., and *Poncirus* spp.)
Grapefruit (*Citrus paradisi* Macfad)
Japanese summer grapefruit (*Citrus natsudaidai* Hayata)
Kumquat (*Fortunella* spp.)
Lemon (*Citrus limon* (L.) Burm. f.)
Lime (*Citrus aurantiifolia* (Christm.) Swingle)
Mediterranean mandarin (*Citrus deliciosa* Ten)
Mount White lime (*Microcitrus garrowayae* (F.M. Bailey) Swingle)
New Guinea wild lime (*Microcitrus warburgiana* (F.M. Bailey) Tanaka)
Orange, sour (*Citrus aurantium* L.)
Orange, sweet (*Citrus sinensis* (L.) Osbeck)
Pummelo (*Citrus maxima* (Burm.) Merr)
Russell River lime (*Microcitrus inodora* (F.M. Bailey) Swingle)
Satsuma mandarin (*Citrus unshiu* Marcow)
Sweet lime (*Citrus limetta* Risso)
Tachibana orange (*Citrus tachibana* (Makino) Tanaka)
Tahiti lime (*Citrus latifolia* (Yu. Tanaka) Tanaka)
Tangelo (*Citrus x tangelo* J.W. Ingram & H.E. Moore)
Tangerine (Mandarin) (*Citrus reticulata* Blanco)
Tangor (*Citrus nobilis* Lour)
Trifoliate orange (*Poncirus trifoliata* (L.) Raf.)
Uniq fruit (*Citrus aurantium* Tangelo group)
Cultivars, varieties and/or hybrids of these
### Table F-11 Crop Group 11: Pome Fruit

<table>
<thead>
<tr>
<th>Crop Group</th>
<th>Scientific Name</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td><em>Malus domestica</em> Borkh.</td>
<td>Apple</td>
</tr>
<tr>
<td>Azarole</td>
<td><em>Crataegus azarolus</em> L.</td>
<td>Azarole</td>
</tr>
<tr>
<td>Crabapple</td>
<td><em>Malus sylvestris</em> (L.) Mill., <em>M. prunifolia</em> (Willd.) Borkh.</td>
<td>Crabapple</td>
</tr>
<tr>
<td>Loquat</td>
<td><em>Eriobotrya japonica</em> (Thunb.) Lindl.</td>
<td>Loquat</td>
</tr>
<tr>
<td>Medlar</td>
<td><em>Mespilus germanica</em> L.</td>
<td>Medlar</td>
</tr>
<tr>
<td>Pear</td>
<td><em>Pyrus communis</em> L.</td>
<td>Pear</td>
</tr>
<tr>
<td>Pear, Asian</td>
<td><em>Pyrus pyrifolia</em> (Burm. f.) Nakai var. <em>cula</em> (Makino) Nakai</td>
<td>Pear, Asian</td>
</tr>
<tr>
<td>Quince</td>
<td><em>Cyonidia oblonga</em> Mill.</td>
<td>Quince</td>
</tr>
<tr>
<td>Quince, Japanese</td>
<td><em>Chaenomeles japonica</em> (Thunb.) Lindl. ex Spach</td>
<td>Quince, Japanese</td>
</tr>
<tr>
<td>Tejocote</td>
<td><em>Crataegus mexicana</em> DC.</td>
<td>Tejocote</td>
</tr>
</tbody>
</table>

Cultivars, varieties and/or hybrids of these.
<table>
<thead>
<tr>
<th>Crop Group 12: Stone Fruit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apricot (<em>Prunus armeniaca</em>)</td>
</tr>
<tr>
<td>Apricot, Japanese (<em>Prunus mume</em>)</td>
</tr>
<tr>
<td>Capulin (<em>Prunus serotina</em>)</td>
</tr>
<tr>
<td>Cherry, black (<em>Prunus serotina</em>)</td>
</tr>
<tr>
<td>Cherry, Nanking (<em>Prunus tomentosa</em>)</td>
</tr>
<tr>
<td>Cherry, sweet (<em>Prunus avium</em>)</td>
</tr>
<tr>
<td>Cherry, tart (<em>Prunus cerasus</em>)</td>
</tr>
<tr>
<td>Jujube, Chinese (<em>Ziziphus jujuba</em>)</td>
</tr>
<tr>
<td>Nectarine (<em>Prunus persica</em>)</td>
</tr>
<tr>
<td>Peach (<em>Prunus persica</em>)</td>
</tr>
<tr>
<td>Plum (<em>Prunus domestica, Prunus spp.</em>)</td>
</tr>
<tr>
<td>Plum, American (<em>Prunus americana</em>)</td>
</tr>
<tr>
<td>Plum, beach (<em>Prunus maritima</em>)</td>
</tr>
<tr>
<td>Plum, Canada (<em>Prunus nigra</em>)</td>
</tr>
<tr>
<td>Plum, cherry (<em>Prunus cerasifera</em>)</td>
</tr>
<tr>
<td>Plum, Chickasaw (<em>Prunus angustifolia</em>)</td>
</tr>
<tr>
<td>Plum, Damson (<em>Prunus domestica spp. insititia</em>)</td>
</tr>
<tr>
<td>Plum, Japanese (<em>Prunus salicina</em>)</td>
</tr>
<tr>
<td>Plum, Klamath (<em>Prunus subcordata</em>)</td>
</tr>
<tr>
<td>Plum, prune (<em>Prunus domestica L. subsp. domestica</em>)</td>
</tr>
<tr>
<td>Plumcot (<em>Prunus hybr.</em>)</td>
</tr>
<tr>
<td>Sloe (<em>Prunus spinosa L.</em>)</td>
</tr>
<tr>
<td>Cultivars, varieties, and/or hybrids of these</td>
</tr>
</tbody>
</table>

Table F-12 Crop Group 12: Stone Fruit
Table F-13 Crop Group 13: Berries and Small Fruit

<table>
<thead>
<tr>
<th>Crop Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amur river grape (Vitis amurensis Rupr)</td>
</tr>
<tr>
<td>Aronia berry (Aronia spp.)</td>
</tr>
<tr>
<td>Bayberry (Myrica spp.)</td>
</tr>
<tr>
<td>Bearberry (Arctostaphylos uva-ursi)</td>
</tr>
<tr>
<td>Bilberry (Vaccinium myrtillus L.)</td>
</tr>
<tr>
<td>Blackberry (Rubus spp.) (including Andean blackberry, arctic blackberry, bingleberry, black satin berry, boisenberry, brombeere, California blackberry, Chesterberry, Cherokee blackberry, Cheyenne blackberry, common blackberry, coryberry, darrowberry, dewberry, Dirksen thornless berry, evergreen blackberry, Himalayaberry, hullberry, lavacaberry, loganberry, lowberry, Lucretiaberry, mammoth blackberry, marionberry, mora, mures deronce, nectarberry, Northern dewberry, olallieberry, Oregon evergreen berry, phenominalberry, rangeberry, ravenberry, rossberry, Shawnee blackberry, Southern dewberry, tayberry, youngberry, zarzamora, and cultivars, varieties and/or hybrids of these.)</td>
</tr>
<tr>
<td>Blueberry, highbush (Vaccinium spp.)</td>
</tr>
<tr>
<td>Blueberry, lowbush (Vaccinium angustifolium Aiton)</td>
</tr>
<tr>
<td>Buffalo currant (Ribes aureum Pursh)</td>
</tr>
<tr>
<td>Buffaloberry (Shepherdia argentea (Pursh) Nutt.)</td>
</tr>
<tr>
<td>Che (Cudrania tricuspidata Bur. Ex Lavallee)</td>
</tr>
<tr>
<td>Chilean guava (Myrtus ugni Mol.)</td>
</tr>
<tr>
<td>Chokecherry (Prunus virginiana L.)</td>
</tr>
<tr>
<td>Cloudberry (Rubus chamaemorus L.)</td>
</tr>
<tr>
<td>Cranberry (Vaccinium macrocarpon Aiton)</td>
</tr>
<tr>
<td>Currant, black (Ribes nigrum L..)</td>
</tr>
<tr>
<td>Currant, red (Ribes rubrum L.)</td>
</tr>
<tr>
<td>Elderberry (Sambucus spp.)</td>
</tr>
<tr>
<td>European barberry (Berberis vulgaris L.)</td>
</tr>
<tr>
<td>Gooseberry (Ribes spp.)</td>
</tr>
<tr>
<td>Grape (Vitis spp.)</td>
</tr>
<tr>
<td>Highbush cranberry (Viburnum opulus L. var. Americanum Aiton)</td>
</tr>
<tr>
<td>Honeysuckle, edible (Lonicera caerulea L. var. emphyllocalyx Nakai, Lonicera caerulea L var. edulis Turcz. ex herder)</td>
</tr>
<tr>
<td>Huckleberry (Gaylussacia spp.)</td>
</tr>
<tr>
<td>Jostaberry (Ribes x nidigrolaria Rud. Bauer and A. Bauer)</td>
</tr>
<tr>
<td>Juneberry (Saskatoon berry) (Amelanchier spp.)</td>
</tr>
<tr>
<td>Kiwifruit, fuzzy (Actinidia delicosa A. Chev.) (C.F. Liang and A.R. Fergusons, Actinida chinensis Planch.)</td>
</tr>
<tr>
<td>Kiwifruit, hardy (Actinidia arguta (Siebold and Zucc.) Planch. ex Miq)</td>
</tr>
</tbody>
</table>
Lingonberry (*Vaccinium vitis-idaea* L.)
Maypop (*Passiflora incarnata* L.)
Mountain pepper berries (*Tasmannia lanceolata* (Poir.) A.C.Sm.
Mulberry (*Morus* spp.)
Muntries (*Kunzea pomifera* F. Muell.)
Native currant (*Acrotriche depressa* R. BR.)
Partridgeberry (*Mitchella repens* L.)
Phalsa (*Grewia subinaequalis* DC.)
Pincherry (*Prunus pensylvanica* L.f.)
Raspberry, black and red (*Rubus* spp.)
Riberry (*Syzygium luehmannii*)
Salai (*Gaultheria shallon* Pursh.)
Schisandra berry (*Schisandra chinensis* (Turcz.) Baill.)
Sea buckthorn (*Hippophae rhamnoides* L.)
Serviceberry (*Sorbus* spp.)
Strawberry (*Fragaria x ananassa* Duchesne)
Wild raspberry (*Rubus muelleri* Lefevre ex P.J. Mull)
Cultivars, varieties, and/or hybrids of these.

**Table F-14 Crop Group 14: Tree Nuts**

Almond (*Prunus dulcis*)
Beech nut (*Fagus* spp.)
Brazil nut (*Bertholletia excelsa*)
Butternut (*Juglans cinerea*)
Cashew (*Anacardium occidentale*)
Chestnut (*Castanea* spp.)
Chinquapin (*Castanea pumila*)
Filbert (hazelnut) (*Corylus* spp.)
Hickory nut (*Carya* spp.)
Macadamia nut (bush nut) (*Macadamia* spp.)
Pecan (*Carya illinoensis*)
Walnut, black and English (Persian) (*Juglans* spp.)
Crop Group 16: Forage, Fodder, and Straw of Cereal Grains

The commodities included in Crop Group 16 are: forage, fodder, and straw of all commodities included in the group cereal grains group (corn, wheat and any other cereal grain crop).

Crop Group 17: Grass Forage, Fodder, and Hay

The commodities included in Crop Group 17 are: any grass, Gramineae family (either green or cured) except sugarcane and those included in the cereal grains group, that will be fed to or grazed by livestock, all pasture and range grasses and grasses grown for hay or silage.
### Table F-16 Crop Group 18: Nongrass Animal Feeds (Forage, Fodder, Straw, and Hay)

<table>
<thead>
<tr>
<th>Crop Type</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td><em>Medicago sativa</em> subsp. <em>sativa</em></td>
</tr>
<tr>
<td>Bean, velvet</td>
<td><em>Mucuna pruriens</em> var. <em>utilis</em></td>
</tr>
<tr>
<td>Clover</td>
<td><em>Trifolium</em> spp., <em>Melilotus</em> spp.</td>
</tr>
<tr>
<td>Kudzu</td>
<td><em>Pueraria lobata</em></td>
</tr>
<tr>
<td>Lespedeza</td>
<td><em>Lespedeza</em> spp.</td>
</tr>
<tr>
<td>Lupin</td>
<td><em>Lupinus</em> spp.</td>
</tr>
<tr>
<td>Sainfoin</td>
<td><em>Onobrychis viciifolia</em></td>
</tr>
<tr>
<td>Trefoil</td>
<td><em>Lotus</em> spp.</td>
</tr>
<tr>
<td>Vetch</td>
<td><em>Vicia</em> spp.</td>
</tr>
<tr>
<td>Vetch, crown</td>
<td><em>Coronilla varia</em></td>
</tr>
<tr>
<td>Vetch, milk</td>
<td><em>Astragalus</em> spp.</td>
</tr>
</tbody>
</table>
### Table F-17 Crop Group 19: Herbs and Spices

<table>
<thead>
<tr>
<th>Crop Group</th>
<th>Common Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angelica</td>
<td>Angelica archangelica</td>
</tr>
<tr>
<td>Anise</td>
<td>Anise seed (Pimpinella anisum)</td>
</tr>
<tr>
<td>Anise, star</td>
<td>Illicium verum</td>
</tr>
<tr>
<td>Annatto</td>
<td>(seed)</td>
</tr>
<tr>
<td>Balm (lemon balm)</td>
<td>Melissa officinalis</td>
</tr>
<tr>
<td>Basil</td>
<td>Ocimum basilicum</td>
</tr>
<tr>
<td>Borage</td>
<td>Borago officinalis</td>
</tr>
<tr>
<td>Burnet</td>
<td>Sanguisorba minor</td>
</tr>
<tr>
<td>Camomile</td>
<td>Anthemis nobilis</td>
</tr>
<tr>
<td>Caper buds</td>
<td>Capparis spinosa</td>
</tr>
<tr>
<td>Caraway</td>
<td>Carum carvi</td>
</tr>
<tr>
<td>Caraway, black</td>
<td>Nigella sativa</td>
</tr>
<tr>
<td>Cardamom</td>
<td>Elettaria cardamomum</td>
</tr>
<tr>
<td>Cassia bark</td>
<td>Cinnamomum aromaticum</td>
</tr>
<tr>
<td>Cassia buds</td>
<td>Cinnamomum aromaticum</td>
</tr>
<tr>
<td>Catnip</td>
<td>Nepeta cataria</td>
</tr>
<tr>
<td>Celery seed</td>
<td>Apicum graveolens</td>
</tr>
<tr>
<td>Chervil (dried)</td>
<td>Anthriscus cerefolium</td>
</tr>
<tr>
<td>Chive</td>
<td>Allium schoenoprasum</td>
</tr>
<tr>
<td>Chive, Chinese</td>
<td>Allium tuberosum</td>
</tr>
<tr>
<td>Cinnamon</td>
<td>Cinnamomum verum</td>
</tr>
<tr>
<td>Clary</td>
<td>Salvia sclarea</td>
</tr>
<tr>
<td>Clove buds</td>
<td>Eugenia caryophyllata</td>
</tr>
<tr>
<td>Coriander (cilantro or Chinese parsley)</td>
<td>(leaf) Coriandrum sativum</td>
</tr>
<tr>
<td>Costmary</td>
<td>Chrysanthemum balsamita</td>
</tr>
<tr>
<td>Culantro (leaf)</td>
<td>Eryngium foetidum</td>
</tr>
<tr>
<td>Culantro (seed)</td>
<td>Eryngium foetidum</td>
</tr>
<tr>
<td>Cumin</td>
<td>Cuminum cyminum</td>
</tr>
<tr>
<td>Curry (leaf)</td>
<td>Murraya koenigii</td>
</tr>
<tr>
<td>Dill (dillweed)</td>
<td>Anethum graveolens</td>
</tr>
<tr>
<td>Dill (seed)</td>
<td>Anethum graveolens</td>
</tr>
<tr>
<td>Fennel (common)</td>
<td>Foeniculum vulgare</td>
</tr>
<tr>
<td>Fennel, Florence (seed)</td>
<td>Foeniculum vulgare Azoricum Group</td>
</tr>
<tr>
<td>Fenugreek</td>
<td>Trigonella foenumgraecum</td>
</tr>
<tr>
<td>Grains of paradise</td>
<td>Aframomum melegueta</td>
</tr>
<tr>
<td>Crop</td>
<td>Scientific Name</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
</tr>
<tr>
<td>Horehound</td>
<td>Marrubium vulgare</td>
</tr>
<tr>
<td>Hyssop</td>
<td>Hyssopus officinalis</td>
</tr>
<tr>
<td>Juniper berry</td>
<td>Juniperus communis</td>
</tr>
<tr>
<td>Lavender</td>
<td>Lavandula officinalis</td>
</tr>
<tr>
<td>Lemongrass</td>
<td>Cymbopogon citratus</td>
</tr>
<tr>
<td>Lovage (leaf)</td>
<td>Levisticum officinale</td>
</tr>
<tr>
<td>Lovage (seed)</td>
<td>Levisticum officinale</td>
</tr>
<tr>
<td>Mace</td>
<td>Myristica fragrans</td>
</tr>
<tr>
<td>Marigold</td>
<td>Calendula officinalis</td>
</tr>
<tr>
<td>Marjoram (Origanum spp.)</td>
<td>(includes sweet or annual marjoram, wild marjoram or oregano, and pot marjoram)</td>
</tr>
<tr>
<td>Mustard (seed)</td>
<td>Brassica juncea, B. hirta, B. nigra</td>
</tr>
<tr>
<td>Nasturtium</td>
<td>Tropaeolum majus</td>
</tr>
<tr>
<td>Nutmeg</td>
<td>Myristica fragrans</td>
</tr>
<tr>
<td>Parsley (dried)</td>
<td>Petroselinum crispum</td>
</tr>
<tr>
<td>Pennyroyal</td>
<td>Mentha pulegium</td>
</tr>
<tr>
<td>Pepper, black</td>
<td>Piper nigrum</td>
</tr>
<tr>
<td>Pepper, white</td>
<td></td>
</tr>
<tr>
<td>Poppy (seed)</td>
<td>Papaver somniferum</td>
</tr>
<tr>
<td>Rosemary (Rosmarinus officinalis)</td>
<td></td>
</tr>
<tr>
<td>Rue (Ruta graveolens)</td>
<td></td>
</tr>
<tr>
<td>Saffron</td>
<td>Crocus sativus</td>
</tr>
<tr>
<td>Sage (Salvia officinalis)</td>
<td></td>
</tr>
<tr>
<td>Savory, summer and winter (Satureja spp.)</td>
<td></td>
</tr>
<tr>
<td>Sweet bay (bay leaf)</td>
<td>Laurus nobilis</td>
</tr>
<tr>
<td>Tansy (Tanacetum vulgare)</td>
<td></td>
</tr>
<tr>
<td>Tarragon (Artemisia dracunculus)</td>
<td></td>
</tr>
<tr>
<td>Thyme (Thymus spp.)</td>
<td></td>
</tr>
<tr>
<td>Vanilla</td>
<td>Vanilla planifolia</td>
</tr>
<tr>
<td>Wintergreen (Gaultheria procumbens)</td>
<td></td>
</tr>
<tr>
<td>Woodruff (Galium odorata)</td>
<td></td>
</tr>
<tr>
<td>Wormwood</td>
<td>Artemisia absinthium</td>
</tr>
</tbody>
</table>
Table F-18 Crop Group 20: Oilseed

<table>
<thead>
<tr>
<th>Crop</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Borage</td>
<td><em>Borago officinalis</em> L.</td>
</tr>
<tr>
<td>Calendula</td>
<td><em>Calendula officinalis</em> L.</td>
</tr>
<tr>
<td>Castor oil plant</td>
<td><em>Ricinus communis</em> L.</td>
</tr>
<tr>
<td>Chinese tallowtree, <em>Triadica sebifera</em></td>
<td>(L.) Small</td>
</tr>
<tr>
<td>Cottonseed</td>
<td><em>Gossypium hirsutum</em> L.; <em>Gossypium</em> spp.</td>
</tr>
<tr>
<td>Crambe</td>
<td><em>Crambe hispanica</em> L.; <em>C. abyssinica</em> Hochst. ex R.E. Fr.</td>
</tr>
<tr>
<td>Cuphea</td>
<td><em>Cuphea hyssopfolia</em> Kunth</td>
</tr>
<tr>
<td>Echium</td>
<td><em>Echium plantagineum</em> L.</td>
</tr>
<tr>
<td>Euphorbia</td>
<td><em>Euphorbia esula</em> L.</td>
</tr>
<tr>
<td>Evening primrose</td>
<td><em>Oenothera biennis</em> L.</td>
</tr>
<tr>
<td>Flax seed</td>
<td><em>Linum usitatissimum</em> L.</td>
</tr>
<tr>
<td>Gold of pleasure</td>
<td><em>Camelina sativa</em> (L.) Crantz</td>
</tr>
<tr>
<td>Hare's ear mustard</td>
<td><em>Conringia orientalis</em> (L.) Dumort</td>
</tr>
<tr>
<td>Jojoba</td>
<td><em>Simmondsia chinensis</em> (Link) C.K. Schneid.</td>
</tr>
<tr>
<td>Lesquerella</td>
<td><em>Lesquerella recurvata</em> (Engelm. ex A. Gray) S. Watson</td>
</tr>
<tr>
<td>Lunaria</td>
<td><em>Lunaria annua</em> L.</td>
</tr>
<tr>
<td>Meadowfoam</td>
<td><em>Limnanthes alba</em> Hartw. ex Benth.</td>
</tr>
<tr>
<td>Milkweed</td>
<td><em>Asclepias</em> spp.</td>
</tr>
<tr>
<td>Niger seed</td>
<td><em>Guizotia abyssinica</em> (L.f.) Cass.</td>
</tr>
<tr>
<td>Oil radish</td>
<td><em>Raphanus sativus</em> L. var. <em>oleiformis</em> Pers.</td>
</tr>
<tr>
<td>Poppy seed</td>
<td><em>Papaver somniferum</em> L. subsp. <em>Somniferum</em></td>
</tr>
<tr>
<td>Rapeseed</td>
<td><em>Brassica</em> spp.; <em>B. napus</em> L.</td>
</tr>
<tr>
<td>Rose hip</td>
<td><em>Rosa rubiginosa</em> L.</td>
</tr>
<tr>
<td>Safflower</td>
<td><em>Carthamus tinctorious</em> L.</td>
</tr>
<tr>
<td>Stokes aster</td>
<td><em>Stokesia laevis</em> (Hill) Greene</td>
</tr>
<tr>
<td>Sunflower</td>
<td><em>Helianthus annuus</em> L.</td>
</tr>
<tr>
<td>Sweet rocket</td>
<td><em>Hesperis matronalis</em> L.</td>
</tr>
<tr>
<td>Tallowwood</td>
<td><em>Ximenia americana</em> L.</td>
</tr>
<tr>
<td>Tea oil plant</td>
<td><em>Camellia oleifera</em> C. Abel</td>
</tr>
<tr>
<td>Vernonia</td>
<td><em>Vernonia galamensis</em> (Cass.) Less</td>
</tr>
<tr>
<td>Cultivars, varieties, and/or hybrids of these</td>
<td></td>
</tr>
</tbody>
</table>
### Table F-19 Crop Group 21: Edible Fungi

<table>
<thead>
<tr>
<th>Crop Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blewitt</td>
<td><em>Lepista nuda</em></td>
</tr>
<tr>
<td>Bunashimeji</td>
<td><em>Hypsizygus marmoreus</em></td>
</tr>
<tr>
<td>Chinese mushroom</td>
<td><em>Volvariella volvacea</em> (Bull.) Singer</td>
</tr>
<tr>
<td>Enoki</td>
<td><em>Flammulina velutipes</em> (Curt.) Singer</td>
</tr>
<tr>
<td>Hime-Matsutake</td>
<td><em>Agaricus blazei</em> Murill</td>
</tr>
<tr>
<td>Hirmeola</td>
<td><em>Auricularia auricular</em></td>
</tr>
<tr>
<td>Maitake</td>
<td><em>Grifola frondosa</em></td>
</tr>
<tr>
<td>Morel</td>
<td><em>Morchella</em> spp.</td>
</tr>
<tr>
<td>Nameko</td>
<td><em>Pholiota nameko</em></td>
</tr>
<tr>
<td>Net Bearing</td>
<td><em>Dictyophora</em></td>
</tr>
<tr>
<td>Oyster mushroom</td>
<td><em>Pleurotus</em> spp.</td>
</tr>
<tr>
<td>Pom Pom</td>
<td><em>Hericium erinaceus</em></td>
</tr>
<tr>
<td>Reishi mushroom</td>
<td><em>Ganoderma lucidum</em> (Leyss. Fr.) Karst.</td>
</tr>
<tr>
<td>Rodman's agaricus</td>
<td><em>Agaricus bitorquis</em> (Quel.) Saccardo</td>
</tr>
<tr>
<td>Shiitake mushroom</td>
<td><em>Lentinula edodes</em> (Berk.) Pegl.</td>
</tr>
<tr>
<td>Shimeji</td>
<td><em>Tricholoma conglobatum</em></td>
</tr>
<tr>
<td>Stropharia</td>
<td><em>Stropharia</em> spp.</td>
</tr>
<tr>
<td>Truffle</td>
<td><em>Tuber</em> spp.</td>
</tr>
<tr>
<td>White button mushroom</td>
<td><em>Agaricus bisporous</em> (Lange) Imbach</td>
</tr>
<tr>
<td>White Jelly Fungi</td>
<td><em>Tremella fuciformis</em></td>
</tr>
</tbody>
</table>
Table F-20 Crop Group 22: Stalk, Stem, and Leaf Petiole Vegetables

<table>
<thead>
<tr>
<th>Crop Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agave (Agave spp.)</td>
</tr>
<tr>
<td>Aloe vera (Aloe vera (L.) Burm.f.)</td>
</tr>
<tr>
<td>Asparagus (Asparagus officinalis L.)</td>
</tr>
<tr>
<td>Cardoon/Globe artichoke (Cynara cardunculus L.)</td>
</tr>
<tr>
<td>Celery (Apium graveolens var. dulce (Mill.) Pers.)</td>
</tr>
<tr>
<td>Celery, Chinese (Apium graveolens L. var. secalinum (Alef.) Mansf.)</td>
</tr>
<tr>
<td>Celtuce (Lactuca sativa var. angustana L.H. Bailey)</td>
</tr>
<tr>
<td>Fennel, Florence, fresh leaves and stalk (Foeniculum vulgare subsp. vulgare var. azoricum (Mill.) Thell.)</td>
</tr>
<tr>
<td>Fern, edible, fiddlehead</td>
</tr>
<tr>
<td>Fuki (Petasites japonicus (Siebold &amp; Zucc.) Maxim.)</td>
</tr>
<tr>
<td>Kale, sea (Crambe maritima L.)</td>
</tr>
<tr>
<td>Kohlrabi (Brassica oleracea L. var gongylodes L.)</td>
</tr>
<tr>
<td>Palm hearts (various species)</td>
</tr>
<tr>
<td>Prickly pear, pads (Opuntia ficus-indica (L.) Mill., Opuntia spp.)</td>
</tr>
<tr>
<td>Prickly pear, Texas, pads (Opuntia engelmannii Salm-Dyck ex Engelm. var. lindheimeri (Engelm.) B.D. Parfitt &amp; Pinkav)</td>
</tr>
<tr>
<td>Rhubarb (Rheum x rhabarbarum L.)</td>
</tr>
<tr>
<td>Udo (Aralia cordata Thunb.)</td>
</tr>
<tr>
<td>Zuiki (Colocasia gigantea (Blume) Hook. f.)</td>
</tr>
<tr>
<td>Cultivars, varieties, and hybrids of these commodities</td>
</tr>
</tbody>
</table>

Cultivars, varieties, and hybrids of these commodities.
### Table F-21 Crop Group 23: Tropical and Subtropical Fruit, Edible Peels

<table>
<thead>
<tr>
<th>Crop Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Açai (Euterpe oleracea Mart.)</td>
<td></td>
</tr>
<tr>
<td>Acerola (Malpighia emarginata DC.)</td>
<td></td>
</tr>
<tr>
<td>Achachairú (Garcinia gardneriana (Planch. &amp; Triana) Zappi)</td>
<td></td>
</tr>
<tr>
<td>African plum (Vitex doniana Sweet)</td>
<td></td>
</tr>
<tr>
<td>Agritos (Berberis trifoliolata Moric.)</td>
<td></td>
</tr>
<tr>
<td>Almondette (Buchanania lanzan Spreng.)</td>
<td></td>
</tr>
<tr>
<td>Ambarella (Spondias dulcis Sol. ex Parkinson)</td>
<td></td>
</tr>
<tr>
<td>Apak palm (Brahea dulcis (Kunth) Mart.)</td>
<td></td>
</tr>
<tr>
<td>Appleberry (Billardiera scandens Sm.)</td>
<td></td>
</tr>
<tr>
<td>Arazá (Eugenia stipitata McVaugh)</td>
<td></td>
</tr>
<tr>
<td>Arbutus berry (Arbutus unedo L.)</td>
<td></td>
</tr>
<tr>
<td>Babaco (Vasconcellea x heilbornii (V.M. Badillo) V.M. Badillo)</td>
<td></td>
</tr>
<tr>
<td>Bacaba palm (Oenocarpus bacaba Mart.)</td>
<td></td>
</tr>
<tr>
<td>Bacaba-de-leque (Oenocarpus distichus Mart.)</td>
<td></td>
</tr>
<tr>
<td>Bayberry, red (Morella rubra Lour.)</td>
<td></td>
</tr>
<tr>
<td>Bignay (Antidesma bunius (L.) Spreng.)</td>
<td></td>
</tr>
<tr>
<td>Bibimbí (Averrhoa bilimbi L.)</td>
<td></td>
</tr>
<tr>
<td>Borojó (Borojoa patinoi Cuatrec.)</td>
<td></td>
</tr>
<tr>
<td>Breadnut (Brosimum alicastrum Sw.)</td>
<td></td>
</tr>
<tr>
<td>Cabeluda (Plinia glomerata (O. Berg) Amshoff)</td>
<td></td>
</tr>
<tr>
<td>Cajou, fruit (Anacardium giganteum Hance ex Engl.)</td>
<td></td>
</tr>
<tr>
<td>Cambucá (Marlierea edulis Nied.)</td>
<td></td>
</tr>
<tr>
<td>Carandas-plum (Carissa edulis Vahl)</td>
<td></td>
</tr>
<tr>
<td>Carob (Ceratonia siliqua L.)</td>
<td></td>
</tr>
<tr>
<td>Cashew apple (Anacardium occidentale L.)</td>
<td></td>
</tr>
<tr>
<td>Ceylon iron wood (Manilkara hexandra (Roxb.) Dubard)</td>
<td></td>
</tr>
<tr>
<td>Ceylon olive (Elaeocarpus serratus L.)</td>
<td></td>
</tr>
<tr>
<td>Cherry-of-the-Rio-Grande (Eugenia aggregata (Vell.) Kiaersk.)</td>
<td></td>
</tr>
<tr>
<td>Chinese olive, black (Canarium tramdenum C.D. Dai &amp; Yakovlev)</td>
<td></td>
</tr>
<tr>
<td>Chinese olive, white (Canarium album (Lour.) Raeusch.)</td>
<td></td>
</tr>
<tr>
<td>Chirauli-nut (Buchanania latifolia Roxb.)</td>
<td></td>
</tr>
<tr>
<td>Ciruela verde (Bunchosia armeniaca (Cav.) DC.)</td>
<td></td>
</tr>
<tr>
<td>Cocoplum (Chrysobalanus icaco L.)</td>
<td></td>
</tr>
<tr>
<td>Date (Phoenix dactylifera L.)</td>
<td></td>
</tr>
<tr>
<td>Davidson's plum (Davidsonia pruriens F. Muell.)</td>
<td></td>
</tr>
<tr>
<td>Desert-date (Balanites aegyptiacus (L.) Delile)</td>
<td></td>
</tr>
<tr>
<td>Doum palm coconut (Hyphaene thebaica (L.) Mart.)</td>
<td></td>
</tr>
</tbody>
</table>
| False sandalwood  
(\textit{Ximenia americana} L.) |
<p>| Feijoa (\textit{Acca sellowiana} (O. Berg) Burret) |
| Fig (\textit{Ficus carica} L.) |
| Fragrant manjack (\textit{Cordia dichotoma} G. Forst.) |
| Gooseberry, abyssinian (\textit{Dovyalis abyssinica} (A. Rich.) Warb.) |
| Gooseberry, Ceylon (\textit{Dovyalis hebecarpa} (Gardner) Warb.) |
| Gooseberry, Indian (\textit{Phyllanthus emblica} L.) |
| Gooseberry, otaheite (\textit{Phyllanthus acidus} (L.) Skeels) |
| Governor’s plum (\textit{Flacourtia indica} (Burm. F.) Merr.) |
| Grumichama (\textit{Eugenia brasiliensis} Lam) |
| Guabiroba (\textit{Campomanesia xanthocarpa} O. Berg) |
| Guava (\textit{Psidium guajava} L.) |
| Guava berry (\textit{Myrciaria floribunda} (H. West ex Willd.) O. Berg) |
| Guava, Brazilian (\textit{Psidium guineense} Sw.) |
| Guava, cattley (\textit{Psidium cattleyanum} Sabine) |
| Guava, Costa Rican (\textit{Psidium friedrichsthalianum} (O. Berg) Nied.) |
| Guava, Para (\textit{Psidium acutangulum} DC.) |
| Guava, purple strawberry (\textit{Psidium cattleyanum} Sabine var. \textit{cattleyanum}) |
| Guava, strawberry (\textit{Psidium cattleyanum} Sabine var. \textit{littorale} (Raddi) Fosberg) |
| Guava, yellow strawberry (\textit{Psidium cattleyanum} Sabine var. \textit{cattleyanum forma lucidum} O. Deg.) |
| Guayabillo (\textit{Psidium sartorianum} (O. Berg) Nied.) |
| Illawarra plum (\textit{Podocarpus elatus} R. Br. Ex Endl.) |
| Imbé (\textit{Garcinia livingstonei} T. Anderson) |
| Imbu (\textit{Spondias tuberosa} Arruda ex Kost.) |
| Indian-plum (\textit{Flacourtia jangomas} (Lour.). \textit{basionym}) |
| Jaboticaba (\textit{Myrciaria cauliflora} (Mart.) O. Berg) |
| Jamaica-cherry (\textit{Muntingia calabura} L.) |
| Jambolan (\textit{Syzygium cumini} (L.) Skeels) |
| Jelly palm (\textit{Butia capitata} (Mart.) Becc.) |
| Jujube, Indian (\textit{Ziziphus mauritiana} Lam.) |
| Kaffir-plum (\textit{Harpephyllum caffrum} Bernh. Ex C. Krauss) |
| Kakadu plum (\textit{Terminalia latipes} Benth. subsp. \textit{psilocarpa} Pedley) |
| Kapundung (\textit{Baccaurea racemosa} (Reinw.) Mull. Arg.) |
| Karanda (\textit{Carissa carandas} L.) |
| Kwai muk (\textit{Artocarpus hypargyreus} Hance ex Benth.) |
| Lemon aspen (\textit{Acronychia acidula} F. Muell) |</p>
<table>
<thead>
<tr>
<th>Plant Name</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mangaba</td>
<td><em>Hancornia speciosa</em> Gomes</td>
</tr>
<tr>
<td>Marian plum</td>
<td><em>Bouea macrophylla</em> Griff.</td>
</tr>
<tr>
<td>Mombin, malayan</td>
<td><em>Spondias pinnata</em> (J. Koenig ex L. f.) Kurz</td>
</tr>
<tr>
<td>Mombin, purple</td>
<td><em>Spondias purpurea</em> L.</td>
</tr>
<tr>
<td>Mombin, yellow</td>
<td><em>Spondias mombin</em> L.</td>
</tr>
<tr>
<td>Monkeyfruit</td>
<td><em>Artocarpus lacucha</em> Buch. Ham.</td>
</tr>
<tr>
<td>Monos plum</td>
<td><em>Pseudanamomis umbellulifera</em> (Kunth) Kausel</td>
</tr>
<tr>
<td>Mountain cherry</td>
<td><em>Bunchosia cornifolia</em> Kunth</td>
</tr>
<tr>
<td>Nance</td>
<td><em>Byrsonima crassifolia</em> L. Kunth</td>
</tr>
<tr>
<td>Natal plum</td>
<td><em>Carissa macrocarpa</em> Eckl. A. DC.</td>
</tr>
<tr>
<td>Noni</td>
<td><em>Morinda citrifolia</em> L.</td>
</tr>
<tr>
<td>Olive</td>
<td><em>Olea europaea</em> L. subsp. <em>europaea</em></td>
</tr>
<tr>
<td>Papaya, mountain</td>
<td><em>Vasconcellea pubescens</em> A. DC.</td>
</tr>
<tr>
<td>Patauá</td>
<td><em>Oenocarpus bataua</em> Mart.</td>
</tr>
<tr>
<td>Peach palm, fruit</td>
<td><em>Bactris gasipae</em> Kunth var. <em>gasipae</em></td>
</tr>
<tr>
<td>Persimmon, black</td>
<td><em>Diospyros texana</em> Scheele</td>
</tr>
<tr>
<td>Persimmon, Japanese</td>
<td><em>Diospyros kaki</em> Thunb.</td>
</tr>
<tr>
<td>Pitomba</td>
<td><em>Eugenia luschnathiana</em> Klotzsch ex O. Berg</td>
</tr>
<tr>
<td>Plum-of-Martinique</td>
<td><em>Flacourtia inermis</em> Roxb.</td>
</tr>
<tr>
<td>Pomerac</td>
<td><em>Syzygium malaccense</em> (L.) Merr. &amp; L.M. Perry</td>
</tr>
<tr>
<td>Rambai</td>
<td><em>Baccaurea motleyana</em> (Mull. Arg.) Mull. Arg.</td>
</tr>
<tr>
<td>Rose apple</td>
<td><em>Syzygium jambos</em> (L.) Alston</td>
</tr>
<tr>
<td>Rukam</td>
<td><em>Flacourtia rukam</em> Zoll. &amp; Moritizi</td>
</tr>
<tr>
<td>Rumberry</td>
<td><em>Myrciaria dubia</em> (Kunth) McVaugh Myrtaceae</td>
</tr>
<tr>
<td>Sea grape</td>
<td><em>Coccoloba uvifera</em> (L.) L.</td>
</tr>
<tr>
<td>Sentul</td>
<td><em>Sandonicum koetjape</em> Burm. F. Merr.</td>
</tr>
<tr>
<td>Sete-capotes</td>
<td><em>Campomanesia guazumifolia</em> (Cambess.) O. Berg</td>
</tr>
<tr>
<td>Silver aspen</td>
<td><em>Acronychia wilcoxian</em> (F. Muell.) T.G. Hartley</td>
</tr>
<tr>
<td>Starfruit</td>
<td><em>Averrhoa carambola</em> L.</td>
</tr>
<tr>
<td>Surinam cherry</td>
<td><em>Eugenia uniflora</em> L.</td>
</tr>
<tr>
<td>Tamarind</td>
<td><em>Tamarindus indica</em> L.</td>
</tr>
<tr>
<td>Uvalha</td>
<td><em>Eugenia pyriformis</em> Cambess</td>
</tr>
<tr>
<td>Water apple</td>
<td><em>Syzygium aqueum</em> (Burm. F.) Alston</td>
</tr>
<tr>
<td>Water pear</td>
<td><em>Syzygium guineense</em> (Willd.) DC</td>
</tr>
<tr>
<td>Water berry</td>
<td><em>Syzygium cordatum</em> Hochst. Ex C. Krauss</td>
</tr>
<tr>
<td>Wax jambu</td>
<td><em>Syzygium samarangense</em> (Blume) Merr. &amp; L.M. Perry</td>
</tr>
</tbody>
</table>

Cultivars, varieties, and hybrids of these commodities
### Table F-22 Crop Group 24: Tropical and Subtropical Fruit, Inedible Peels

<table>
<thead>
<tr>
<th>Crop</th>
<th>Scientific Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abiu</td>
<td><em>Pouteria caimito</em> (Ruiz &amp; Pav.) Radlk</td>
</tr>
<tr>
<td>Aisen</td>
<td><em>Boscia senegalensis</em> (Pers.) Lam.</td>
</tr>
<tr>
<td>Akee apple</td>
<td><em>Blighia sapida</em> K.D. Koenig</td>
</tr>
<tr>
<td>Atemoya</td>
<td><em>Annona cherimola</em> Mill. X A. <em>squamosa</em> L.</td>
</tr>
<tr>
<td>Avocado</td>
<td><em>Persea americana</em> Mill.</td>
</tr>
<tr>
<td>Avocado, Guatemalan</td>
<td><em>Persea americana</em> Mill. var. <em>guatemalensis</em></td>
</tr>
<tr>
<td>Avocado, Mexican</td>
<td><em>Persea americana</em> Mill. var. <em>drymifolia</em> (Schltl. &amp; Cham.) S.F. Blak</td>
</tr>
<tr>
<td>Avocado, West Indian</td>
<td><em>Persea americana</em> var. <em>americana</em></td>
</tr>
<tr>
<td>Bacury</td>
<td><em>Platonia insignis</em> Mart.</td>
</tr>
<tr>
<td>Bael fruit</td>
<td><em>Aegle marmelos</em> (L.) Corrêa</td>
</tr>
<tr>
<td>Banana</td>
<td><em>Musa</em> spp.</td>
</tr>
<tr>
<td>Banana, dwarf</td>
<td><em>Musa</em> hybrids; <em>Musa acuminata</em> Colla</td>
</tr>
<tr>
<td>Binjai</td>
<td><em>Mangifera caesia</em> Jack</td>
</tr>
<tr>
<td>Biriba</td>
<td><em>Annona mucosa</em> Jacq.</td>
</tr>
<tr>
<td>Breadfruit</td>
<td><em>Artocarpus altlis</em> (Parkinson) Fosberg</td>
</tr>
<tr>
<td>Burmese grape</td>
<td><em>Baccaurea ramiflora</em> Lou.</td>
</tr>
<tr>
<td>Canistel</td>
<td><em>Pouteria campechiana</em> (Kunth) Baehni</td>
</tr>
<tr>
<td>Cat's-eyes</td>
<td><em>Dimocarpus longan</em> Lour. subsp. <em>malesianus</em> Leenh.</td>
</tr>
<tr>
<td>Champedak</td>
<td><em>Artocarpus integer</em> (Thunb.) Merr.</td>
</tr>
<tr>
<td>Cherimoya</td>
<td><em>Annona cherimola</em> Mill.</td>
</tr>
<tr>
<td>Custard apple</td>
<td><em>Annona reticulata</em> L.</td>
</tr>
<tr>
<td>Dragon fruit</td>
<td><em>Hylocereus undatus</em> (Haw.) Britton &amp; Rose</td>
</tr>
<tr>
<td>Durian</td>
<td><em>Durio zibethinus</em> L.</td>
</tr>
<tr>
<td>Elephant-apple</td>
<td><em>Limonia acidissima</em> L.</td>
</tr>
<tr>
<td>Etambe</td>
<td><em>Mangifera zeylanica</em> (Blume) Hook. F.</td>
</tr>
<tr>
<td>Granadilla</td>
<td><em>Passiflora ligularis</em> Juss.</td>
</tr>
<tr>
<td>Granadilla, giant</td>
<td><em>Passiflora quadrangularis</em> L.</td>
</tr>
<tr>
<td>Ilama</td>
<td><em>Annona macroprophylata</em> Donn. Sm.</td>
</tr>
<tr>
<td>Jackfruit</td>
<td><em>Artocarpus heterophyllus</em> Lam.</td>
</tr>
<tr>
<td>Jatobá</td>
<td><em>Hymenaea courbaril</em> L.</td>
</tr>
<tr>
<td>Karuka</td>
<td><em>Pandanus julianettii</em> Martelli</td>
</tr>
<tr>
<td>Kei apple</td>
<td><em>Dovyalis caffra</em> (Hook. F. &amp; Harv.) Warb.</td>
</tr>
<tr>
<td>Langsat</td>
<td><em>Lansium domesticum</em> Corrêa</td>
</tr>
<tr>
<td>Plant Name</td>
<td>Scientific Name</td>
</tr>
<tr>
<td>----------------------------</td>
<td>------------------------------------------------------</td>
</tr>
<tr>
<td>Lanjut</td>
<td><em>Mangifera lagenifera</em> Griff.</td>
</tr>
<tr>
<td>Longan</td>
<td><em>Dimocarpus longan</em> Lour.</td>
</tr>
<tr>
<td>Lucumia</td>
<td><em>Pouteria lucumia</em> (Ruiz &amp; Pav.) Kuntze</td>
</tr>
<tr>
<td>Lychee</td>
<td><em>Litchi chinensis</em> Sonn.</td>
</tr>
<tr>
<td>Mabolo</td>
<td><em>Diospyros blancoi</em> A. DC.</td>
</tr>
<tr>
<td>Madras-thorn</td>
<td><em>Pithecellobium dulce</em> (Roxb.) Benth.</td>
</tr>
<tr>
<td>Mammy-apple</td>
<td><em>Mammea americana</em> L.</td>
</tr>
<tr>
<td>Manduro</td>
<td><em>Balanites maughamii</em> Sprague</td>
</tr>
<tr>
<td>Mango</td>
<td><em>Mangifera indica</em> L.</td>
</tr>
<tr>
<td>Mango, horse</td>
<td><em>Mangifera foetida</em> Lour.</td>
</tr>
<tr>
<td>Mango, Saipan</td>
<td><em>Mangifera odorata</em> Griff.</td>
</tr>
<tr>
<td>Mangosteen</td>
<td><em>Garcinia mangostana</em> L.</td>
</tr>
<tr>
<td>Marang</td>
<td><em>Artocarpus odoratissimus</em> Blanco</td>
</tr>
<tr>
<td>Marmaladebox</td>
<td><em>Genipa americana</em> L.</td>
</tr>
<tr>
<td>Matsisia</td>
<td><em>Matisia cordata</em> Humb. &amp; Bonpl.</td>
</tr>
<tr>
<td>Mesquite</td>
<td><em>Prosopis juliflora</em> (Sw.) DC.</td>
</tr>
<tr>
<td>Mongongo, fruit</td>
<td><em>Schinziophyton rautanenii</em> (Schinz) Radcl.-Sm</td>
</tr>
<tr>
<td>Monkey-bread-tree</td>
<td><em>Adansonia digitata</em> L.</td>
</tr>
<tr>
<td>Monstera</td>
<td><em>Monstera deliciosa</em> Liebm.</td>
</tr>
<tr>
<td>Nicobar-breadfruit</td>
<td><em>Pandanus leram</em> Jones ex Fontana</td>
</tr>
<tr>
<td>Paho</td>
<td><em>Mangifera altissima</em> Blanco</td>
</tr>
<tr>
<td>Pandanus</td>
<td><em>Pandanus utilis</em> Bory</td>
</tr>
<tr>
<td>Papaya</td>
<td><em>Carica papaya</em> L.</td>
</tr>
<tr>
<td>Passionflower, winged-stem</td>
<td><em>Passiflora alata</em> Curtis</td>
</tr>
<tr>
<td>Passionfruit</td>
<td><em>Passiflora edulis</em> Sims</td>
</tr>
<tr>
<td>Passionfruit, purple</td>
<td><em>Passiflora edulis</em> Sims <em>forma edulis</em></td>
</tr>
<tr>
<td>Passionfruit, yellow</td>
<td><em>Passiflora edulis</em> Sims <em>forma flavicarpa</em> O. Deg.</td>
</tr>
<tr>
<td>Pawpaw, common</td>
<td><em>Asimina triloba</em> (L.) Dunal</td>
</tr>
<tr>
<td>Pawpaw, small-flower</td>
<td><em>Asimina parvi1ora</em> (Michx.) Dunal</td>
</tr>
<tr>
<td>Pelipisan</td>
<td><em>Mangifera casturi</em> Kosterm.</td>
</tr>
<tr>
<td>Pequi</td>
<td><em>Caryocar brasiliense</em> Cambess</td>
</tr>
<tr>
<td>Pequia</td>
<td><em>Caryocar villosum</em> (Aubl.) Pers.</td>
</tr>
<tr>
<td>Persimmon, American</td>
<td><em>Diospyros virginiana</em> L.</td>
</tr>
<tr>
<td>Pineapple</td>
<td><em>Ananas comosus</em> (L.) Merr.</td>
</tr>
<tr>
<td>Pitahaya</td>
<td><em>Hylocereus polyrhizus</em> (F.A.C. Weber) Britton &amp; Rose</td>
</tr>
<tr>
<td>Plant</td>
<td>Common Name/Scientific Name</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>------------------------------------------------------</td>
</tr>
<tr>
<td>Pitaya (Hylocereus sp. including H. megalanthus (H. ocamponis and H. polychizus))</td>
<td>Pitaya, amarilla (Hylocereus triangularis Britton &amp; Rose)</td>
</tr>
<tr>
<td>Pitaya, roja (Hylocereus ocamponis (Salm-Dyck) Britton &amp; Rose)</td>
<td>Pitaya, yellow (Hylocereus megalanthus (K. Schum. ex Vaupel) Ralf Bauer)</td>
</tr>
<tr>
<td>Plantain (Musa paradisiaca L.)</td>
<td></td>
</tr>
<tr>
<td>Pomegranate (Punica granatum L.)</td>
<td></td>
</tr>
<tr>
<td>Poshte (Annona liebmanniana Bail.)</td>
<td></td>
</tr>
<tr>
<td>Prickly pear, fruit (Opuntia ficus-indica (L.) Mill.)</td>
<td></td>
</tr>
<tr>
<td>Prickly pear, Texas, fruit (Opuntia engelmannii Salm-Dyck ex Engelm. var. lindheimeri (Engelm.) B.D. Parfitt &amp; Pinkav)</td>
<td></td>
</tr>
<tr>
<td>Pulasan (Nephelium ramboutan-ake (Labill.) Leenh.)</td>
<td></td>
</tr>
<tr>
<td>Quandong (Santalum acuminatum (R. Br.) DC.)</td>
<td></td>
</tr>
<tr>
<td>Rambutan (Nephelium lappaceum L.)</td>
<td></td>
</tr>
<tr>
<td>Saguaro (Carnegiea gigantea (Engelm.) Britton &amp; Rose)</td>
<td></td>
</tr>
<tr>
<td>Sapodilla (Manilkara zapota (L.) P. Royen)</td>
<td></td>
</tr>
<tr>
<td>Sapote, black (Diospyros digyna Jacq.)</td>
<td></td>
</tr>
<tr>
<td>Sapote, green (Pouteria viridis (Pittier) Cronquist)</td>
<td></td>
</tr>
<tr>
<td>Sapote, maneye (Pouteria sapota (Jacq.) H.E. Moore &amp; Steam)</td>
<td></td>
</tr>
<tr>
<td>Sapote, white (Casimiroa edulis La Llave &amp; Lex)</td>
<td></td>
</tr>
<tr>
<td>Sataw (Parkia speciosa Hassk.)</td>
<td></td>
</tr>
<tr>
<td>Satinleaf (Chrysophyllum oliviforme L.)</td>
<td></td>
</tr>
<tr>
<td>Screw-pine (Pandanus tectorius Parkinson)</td>
<td></td>
</tr>
<tr>
<td>Sierra Leone-tamarind (Dialium guineense Willd.)</td>
<td></td>
</tr>
<tr>
<td>Soncoya (Annona purpurea Moc. &amp; Sessé ex Dunal)</td>
<td></td>
</tr>
<tr>
<td>Soursop (Annona muricata L.)</td>
<td></td>
</tr>
<tr>
<td>Spanish lime (Melicoccus bijugatus Jacq.)</td>
<td></td>
</tr>
<tr>
<td>Star apple (Chrysophyllum cainito L.)</td>
<td></td>
</tr>
<tr>
<td>Sugar apple (Annona squamosa L.)</td>
<td></td>
</tr>
<tr>
<td>Sun sapote (Licania platypus (Hemsli.) Fritsch)</td>
<td></td>
</tr>
<tr>
<td>Tamarind-of-the-Indies (Vangueria madagascariensis J.F. Gmel.)</td>
<td></td>
</tr>
<tr>
<td>Velvet tamarind (Dialium indum L.)</td>
<td></td>
</tr>
<tr>
<td>Wampi (Clausena lansium (Lour.) Skeels)</td>
<td></td>
</tr>
<tr>
<td>White star apple (Chrysophyllum albium G. Don)</td>
<td></td>
</tr>
<tr>
<td>Wild loquat (Uapaca kirkiana Müll. Arg.)</td>
<td></td>
</tr>
<tr>
<td>Cultivars, varieties, and hybrids of these commodities</td>
<td></td>
</tr>
</tbody>
</table>
Appendix G

Respirator Protection Information

Contents

Introduction  G-1
Equipment Selection  G-1
Responsibilities  G-4
Workplace Specific Respiratory Protection Program Elements  G-7
Respirator Selection, Use, and Limitations  G-9
Occupational Medical Monitoring Program (OMMP)  G-11
Fit Testing  G-13
Training  G-14
Care, Inspection, and Maintenance  G-14
Verbal Communication Considerations  G-16
Low Temperature Environment Considerations  G-18
High Temperature Environment Considerations  G-18

Introduction

The information in this chapter has been developed from the Department of Labor, Occupational Safety and Health Administration (OSHA) standard Title 29, Code of Federal Regulations (CFR), Part 1910.134, and the APHIS Safety and Health Manual (under revision). These guidelines apply to all APHIS employees who must wear respiratory protection equipment. These are the minimum requirements for an effective respiratory protection program.

USDA employees should also refer to the USDA APHIS PPQ Safety and Health Sharepoint site or Chapter 11 in the APHIS Safety and Health Manual on the APHIS myportal web site for additional information.

Equipment Selection

USDA APHIS PPQ recommends two different types of supplied air systems to provide breathing air to employees conducting fumigation activities. These are:

- Self Contained Breathing Apparatus (SCBA)
- Cascade air supply system
Each of these systems is configured for **one** style of air mask. When methyl bromide concentrations are unknown or 5 ppm and above, employees must wear and use SCBA. There is **one** approved air mask, the MSA Airhawk Ultra Elite. (*Figure G-1-4*)

**MB 2016 Label**

USDA APHIS PPQ approves the following half and full face air purifying respirators for use in areas where methyl bromide levels are between 1 and 5 ppm (refer to **Appendix E** for ordering information):

**Half face respirators:** MSA Advantage 420, 3M 6100, 6200, 6300, North 7700, Survivair/Sperian 250000, 260000, 270000

**Full face respirators:** MSA Advantage 1000, 3M 6700, 6800, 6900, North 76008A/76008A

Refer to *Figure G-1-1* for approved half face respirators.

*Figure G-1-1  Approved Half Face Respirators*
Refer to **Figure G-1-2** for approved full face respirators.

**Figure G-1-2  Approved Full Face Respirators**

Refer to **Figure G-1-3** for approved organic vapor/acid gas/P100 cartridges for both half and full face respirators.

**Figure G-1-3  Approved Organic Vapor/Acid Gas/P100 Cartridges**

Refer to **Figure G-1-4** for approved SCBA.

**Figure G-1-4  Approved SCBA**
If needed, employees may also order spectacle kits for the MSA AirHawk. Models available include a center-support kit and a sidewire kit.

![MSA AirHawk Ultra Elite Spectacle Kit](image-url)

Figure G-1-5  Approved AirHawk Ultra Elite Spectacle Kit-Sidewire

## Responsibilities

### APHIS Safety, Health, and Environmental Programs

APHIS Safety, Health and Environmental Programs (SHEP) is responsible for:

- ensuring that a physician or other licensed health care professional determines that an employee is physically able to wear a respirator
- establishing a medical evaluation protocol for respirator users and is the authority on medical surveillance of respirators
- establishing and conducting a respiratory protection program according to the requirements of this manual and applicable OSHA standards when respiratory protection is required and used

### Managers and Supervisors

In workplaces where respiratory protection is used managers and supervisors have a direct responsibility for protecting their employees and must:

- advise all respirator wearers that they may safely leave the area at any time for relief from respirator use in the event of equipment malfunction, physical or psychological distress, procedural or communication failure, significant deterioration of operating conditions, or any other conditions that might warrant such relief
- annually review the workplace-specific written plan and provide a copy to the appropriate safety and health office with proper signature for approval
Appendix G  Respirator Protection Information
Responsibilities

- appoint an individual to be responsible for the use, maintenance, inspection, and care of common use, emergency, or escape respirators
- contact applicable safety and health office whenever workplace operations change to schedule appropriate evaluations when new hazardous materials are introduced, processes or procedures are changed, or engineering controls are modified or added
- develop, maintain, and enforce a workplace-specific written plan according to the guidance in 29 CFR 1910.134, Appendix A
- document training on the employee safety and health record, or electronic equivalent
- ensure employees in the respiratory protection program wear the approved respiratory protection for the hazard and for which they have been fit tested and trained
- ensure employees have received the necessary medical evaluations, training, and fit testing before engaging in workplace operations requiring the use of the respirator. Supervisors receive training from the applicable safety office and should contact applicable safety office if they become a manager/supervisor of a new workplace
- follow and enforce the cartridge change-out schedule developed by supervisor/manager at worksite and include the schedule in the workplace-specific written plan
- maintain applicable standards in the workplace
- notify applicable safety and health office of conflicts between respiratory protection guidance and applicable standards
- notify applicable safety office when new employees require fit testing or when current employees have a change affecting their wear of respiratory protection
- provide copies of workplace-specific written plan to employees to hand-carry to their medical evaluation when requested
- provide for quality control of respirator breathing air (if used)

**Important**

Cylinders of purchased breathing air have a certificate of analysis from the supplier. Discontinue the use of compressed breathing air and contact applicable safety office if sample results are unsatisfactory and/or employees complain of taste, odor or irritation from compressed breathing air.

- provide initial and periodic (annual and as changes occur) respiratory protection training, including training to all employees in their workplace who use “voluntary” use (filtering facepieces) respirators. (Refer to 29 CFR 1910.134, Appendix D for mandatory training requirements for voluntary use respirators.)
Employee Responsibilities

Employees who wear respiratory protection will:

- complete initial respirator medical evaluation questionnaire (APHIS 29 Form, Occupational Exposures) and other physical examination requirements as needed prior to performing duties requiring respiratory protection
- ensure that no facial hair comes between the sealing surface of the facepiece and the face or interferes with valve function, if required, to wear a tight-fitting facepiece
- guard respirators against damage, do not use unsanitary, damaged or unserviceable respirators, and turn in unserviceable respirators to their supervisor
- inspect, clean, and maintain any respiratory protection device issued to them for their individual use
- maintain the integrity of the National Institute of Occupational, Safety and Health (NIOSH) certification by not mixing respirator parts from different manufacturers
- provide workplace-specific written program to the provider for the medical evaluation when requested
- receive initial and periodic training and fit testing (annual, and as changes occur)
- report to their supervisor any change in medical status which may impact their ability to safely wear respiratory protection (e.g., weight changes, facial scarring, dental changes, cosmetic surgery, disfigurement, etc.)
- use the provided respiratory protection according to the instructions and training received
- wear only that respiratory protection for which they have received fit testing and training, and only for the tasks specified

Work Unit Responsibilities

With assistance from the applicable safety office, the work unit will:

- conduct fit testing on those individuals who have been medically cleared by a physician or licensed health care provider
- conduct routine surveys in workplaces where respirators are used
- educate and train workplace supervisors, and those individuals appointed to oversee the use, maintenance, and care of common use, or escape-only respirators. Supervisor training will be repeated when a supervisor becomes a supervisor of a different workplace
ensure fit testing is conducted according to OSHA and APHIS guidelines

- maintain or have immediate access to current copies (paper or electronic) of applicable OSHA standards (i.e., 29 CFR 1910, 29 CFR 1926), and the NIOSH Certified Equipment List

- provide guidance to workplace supervisors, as necessary, in the preparation of the workplace-specific written plan and annual training program

- review workplace-specific written plans annually to ensure respiratory protection procedures are addressed and submit to applicable safety office for approval (refer to Figure A-13 on page-A-33 for a site plan template or see the USDA APHIS PPQ Safety and Health Sharepoint site for site-specific plans)

**Physician or Other Licensed Health Care Professional (PLHCP)**

The physician or PLHCP will:

- conduct medical evaluations of individuals identified to wear a respirator, as required

- medically clear individuals to wear a respirator

- review the respirator medical evaluation questionnaires and document as outlined in Occupational Medical Monitoring Program (OMMP)

**Workplace Specific Respiratory Protection Program Elements**

The respiratory protection program must be conducted in accordance with OSHA's standard 29 CFR 1910.134, APHIS Safety and Health Manual, and this Treatment Manual.

The program elements of a respiratory protection program will be shared among workplace supervisors, employees and the applicable safety office. Only NOISH/MSHA approved respirators can be used by employees in federal workplaces. No privately-procured respiratory protection device will be used by federal employees in workplaces.

Management must develop procedures to address the following at each workplace:

- fit testing procedures for tight-fitting respirators in 29 CFR 1910.134(f)
program evaluation procedures in 29 CFR 1910.134(l)

Management must ensure the respiratory protection program is evaluated annually. The applicable safety office should assist management during review and report the findings in writing to workplace supervisor with recommendation for correction if necessary.

training procedures in 29 CFR 1910.134(k)

The program evaluation will review the adequacy of the following elements as a minimum:

- air supply and breathing air (review of air testing results as appropriate) and checking for breathing air outlet incompatibilities with other gas lines
- filters used for each hazard
- maintenance and storage practices (shared, emergency use, and individual respirators)
- the respirator for workplace exposures
- work practices, documentation of inspections of shared and emergency use respirators, and documentation of respirator training

The findings of these evaluations may be included in the workplace survey reports.

Medical evaluations will be conducted as outlined in Occupational Medical Monitoring Program (OMMP).

Workplace-Specific Program Elements

Supervisors in workplaces where respiratory protection is used must develop a written plan as required by 29 CFR 1910.134(c). The plan must be approved by the applicable safety office. Workplace-specific written plans must include the following:

- duration and frequency of respirator use (including use for rescue and escape if applicable)
- expected physical work effort involved in the process requiring respiratory protection (see 29 CFR 1910.134 Appendix C, Part B)
- proper use of respirators in routine and emergency situations
- protective clothing and equipment to be worn while wearing the respirator
- selection criteria—describe the processes in which respirators are required
Respirator Selection, Use, and Limitations

Select respirators according to 29 CFR 1910.134 (d) and the NIOSH Certified Equipment List. Document the rationale for selection in the workplace-specific written plan.

If a more stringent standard such as a substance-specific OSHA standard exists for the contaminants, follow those guidelines and requirements for respirator selection.

Employee Activity
Consider each employee’s activity and location in an inhalational hazardous area when selecting the proper respiratory protection. For example, whether the employee is in the hazardous area continuously or intermittently during the work shift and whether the work rate is light, medium, or heavy.

Respirator Use Conditions
Take into account the period of time a respirator must be worn when selecting a respirator. Consider the type of respirator application, such as for routine, non-routine, emergency, or rescue use.

Location of the Potential Hazardous Area
Consider the location of the hazardous area with respect to a safe area, which has respirable air, when selecting a respirator. This will permit planning for the escape of employees if an emergency occurs, entry of employees to perform maintenance duties, and rescue operations.

Operational Limitations
Environmental conditions and level of effort required of the respirator wearer may affect respirator service life. For example, extreme physical exertion can cause the user to deplete the air supply in a SCBA such that its service life is reduced by half or more.
Immediately Dangerous to Life or Health (IDLH) Conditions
Evaluate all possible actions, such as increasing ventilation or isolating the source of contaminants, to attain an atmosphere that is not IDLH before authorizing employees to enter areas known to have IDLH conditions. Refer to 29 CFR 1910.134 g (3) and g(4) for procedures for IDLH atmospheres.

Other Exposure Routes
Consider other exposure routes (e.g., skin absorption or external radiation) when selecting respiratory protection. Wearing the respirator could increase exposure by longer stay times in a hazardous environment such as exposures to external radiation.

Document respirator selection on the workplace-specific written respiratory protection plans.

Respirator Limitations
In addition to the following, refer to the requirements in 29 CFR 1910.134:

- Communications—consider ambient environmental noise and communication needs when specific respirators are selected. See Verbal Communication Considerations.
- Eye Irritation—if contaminants cause eye irritation, wear full facepiece respirators or chemical protective goggles with half facepiece respirators.
- Respirators in Low Temperature Environments—low temperatures may cause detrimental effects on the performance of respirators. Consider the effects of low temperatures in the selection and maintenance of respirators and respirable gas supplies. See Low Temperature Environment Considerations.
- Respirators In High Temperature Environments—high temperatures may affect the performance of the respirator, and may add undue physiological stress. Consider the effects of high temperatures in respirator selection and for medical approvals. See High Temperature Environment Considerations.

Corrective Lenses
PPQ will pay for corrective lenses; however, employees are required to pay for the personal doctor visit to get the prescription for the lenses.

WARNING
Wearing of contact lenses in contaminated atmospheres with a respiratory protection device is prohibited.
Medical Evaluation

Potential respirator wearers must complete a respirator medical evaluation questionnaire and/or may receive a physical examination prior to initial fit testing to identify existing medical conditions that would place the employee at an increased health risk from the use of a respirator or interfere with the use or wear of a respirator. The OSHA standard 29 CFR 1910.134 (e) and Appendix C specifies the minimum mandatory requirements for medical evaluations. Supervisors will assist employees in the completion of the APHIS Form 29 Occupational Exposure and ensure that the employees required to use respirators are medically qualified and fit-tested for the appropriate respirator. Contact the applicable PPQFO safety manager with any questions regarding the medical clearance process before using a respirator.

Respirator Questionnaires and Medical Evaluations

All health care providers conducting medical evaluations and reviewing completed respirator medical evaluation questionnaires for the respiratory protection program must be a physician or other licensed health care professional (PLHCP), as defined in 29 CFR 1910.134 (b). The Federal Occupational Health (FOH) Medical Advisor meets the requirements of the PLHCP and will be referred to as such in this section.

The medical evaluation consists of the respirator medical evaluation questionnaire and a physical examination if wearing SCBA. The FOH Medical Advisor determines medical evaluation expirations.

Following review of the respirator medical evaluation questionnaire, follow-up medical evaluation may be needed. The FOH Medical Advisor will determine what is needed. The FOH Medical Advisor is the determining official for the employee’s ability to use a respirator.

The FOH Medical Advisor’s written recommendation will be in the form of a medical clearance letter (MCL). The MCL is sent to the employee and employer (applicable PPQFO Safety Manager). It is the employee’s responsibility to provide a copy of the MCL to his/her supervisor. MCL’s will be one of the following:

- MCL for respirator use without restrictions
• MCL for respirator use with restrictions. Follow all restrictions on the MCL.
  ❖ If an employee recovers from the medical condition and the restrictions can be lifted, the employee’s personal doctor must notify the FOH Medical Advisor so the recommendations and restrictions can be updated.

• MCL for no respirator use.
  ❖ The employee will not be allowed to perform any work activities that require the use of a respirator. The FOH Medical Advisor will convey to the employee the reason for the failure to pass the examination and give the employee appropriate options. The reasons are personal health issues identified through the medical history and physical examination (including any testing) during the clearance process. In some cases, there may be no options available. In most cases, there are remedies that can be achieved by the employee working with his/her healthcare provider. The employee has the option to do nothing, in which case, the MCL for no respirator use will still stand.
  ❖ The employee may elect to go to their personal physician to treat the condition. All expenses for personal health issues are the responsibility of the employee. Any documentation to support reconsideration for medical clearance by the FOH Medical Advisor, must be submitted to the FOH medical advisor by the employee or their healthcare provider. Final determination for medical clearance rests with the FOH medical advisor.

**Follow-up Medical Evaluations**

Based on an employee’s answers on the respirator medical evaluation questionnaire, a follow-up medical evaluation may be required. The follow up medical evaluation can be in the form of a physical examination, blood work, and/or a stress test.

Workplace supervisors should be communicating with their employees and know if they may have developed medical conditions affecting respirator use since initial fit testing. Discretion is advised.

Supervisors should brief employees if there are any questions or concerns about an employee’s ability to use a respirator due to a medical condition.

The supervisor will notify as soon as possible, the applicable safety and health office if a worker who uses a respirator develops a medical condition that could affect their ability to use a respirator.
When a worker reports to an annual respirator fit test, a program appointed fit-tester will formally (e.g., with written verification that is locally developed) ask if the employee has experienced any difficulty wearing a respirator and if personnel are medically cleared to wear a respirator. If the worker responds with a change in medical history, he or she will be directed back to the supervisor, and will not be fit-tested until cleared by the FOH Medical Advisor.

Fit Testing

Fit Testing Procedures
Before an employee may be required to wear a respirator with a tight-fitting facepiece, the employee must be fit tested with the same make, model, style, and size of respirator that will be used in the workplace. Current fit tests from other installations may be used if the employee will be using the same make, model and style of respirator.


Fit Test Failures
If a medically cleared employee cannot attain an adequate fit with a tight-fitting respirator the applicable safety and health office should be contacted for assistance.

Record Keeping
Records of respirator fit test results will include the information required in 29 CFR 1910.134 (m)(2)(i)(A-E). This information will be recorded on an Certificate of Respirator Fit Test, or equivalent

Copies of respirator fit test results will be given to the employee and their supervisor to be maintained and filled in personnel records

User Seal Check Procedures
Employees who use tight-fitting respirators will perform a user seal check to ensure that an adequate seal is achieved each time the respirator is donned. Employees will use either the positive and negative pressure check methods listed in 29 CFR 1910.134, Appendix B-1, or the respirator manufacturer’s recommended user seal check method.
Training

Initial Training
All personnel will receive initial respiratory protection training prior to wearing a respirator. Use the USDA SF Form 182, Authorization, Agreement and Certification of Training, to document the initial and annual training.

Management will provide or arrange for the initial training of supervisors who have the responsibility of overseeing work activities of one or more persons who must wear respirators and respirator wearers. Training will include the requirements of 29 CFR 1910.134 (k).

Periodic Training
Trained workplace supervisors will provide annual instruction and retraining to respirator wearers. Training may also be conducted by applicable safety office or fit-tester during the annual fit testing. Management will provide retraining when notified by the supervisor of changes in the workplace or the type of respirator which render previous training obsolete. Management will also provide retraining when notified of or observed inadequacies in the employee’s knowledge or use of the respirator indicate that the employee has not retained the requisite understanding or skills.

Supervisors must discuss respiratory protection requirements with employees during routine surveillance inspection. Supervisor training will be repeated when a supervisor is relocated to a different workplace.

Documentation
Document training in AgLearn or an electronic equivalent.

Care, Inspection, and Maintenance
Employees who are issued a respirator are responsible for its primary maintenance and care. Where respirators are used collectively or kept ready for emergencies by a workplace or operating activity, the supervisor of the activity is responsible for establishing a respirator maintenance and cleaning program as specified in 29 CFR 1910.134. This program includes care, inspection, and maintenance of respirators.

Respirators
◆ Cleaning and Disinfecting
  √ In addition to the requirements in 29 CFR 1910.134, respirators issued to an individual must be cleaned and disinfected, at a minimum, using a respirator wipe at the end of each day in which the
respirator is used. Each respirator must be thoroughly cleaned and disinfected before being worn by a different individual. Emergency use respirators must be thoroughly cleaned and disinfected after being used. Refer to 29 CFR 1910.134, Appendix B-2.

◆ Storage

◆ Respirable Air and Oxygen for SCBA and Air-line Respirators
  - Compressed gaseous air, compressed gaseous oxygen, liquid air, and liquid oxygen used for respiration must be of high purity and tested.

◆ Inspection
  - Each air and oxygen cylinder must be inspected to ensure that it is fully charged according to the manufacturer's instructions.
  - The employee must inspect the respirator immediately before each use and during cleaning to ensure that it is in proper working condition. Inspect emergency or escape-only respirators prior to carrying it into the workplace. After cleaning and disinfecting, inspect each respirator to determine if it is in proper working condition, needs replacement of parts or repairs, or needs to be discarded. Each respirator stored for emergency or rescue use must be inspected at least monthly. Refer to 29 CFR 1910.134 (h)(3).
  - The record of inspection of emergency or rescue respirators must be maintained on Inspection/Maintenance Record. Respirators that do not meet applicable inspection criteria must be immediately removed from service and repaired or replaced.

◆ Maintenance
  - Refer to 29 CFR 1910.134(h) for maintenance and repair instructions.
  - Change cartridges, filters, or canisters of air-purifying respirators immediately after each use or if air is restricted when breathing.
  - If, at any time an employee detects an increase in breathing resistance, smells or tastes the contaminant, or detects the irritant properties of the contaminant the employee must immediately leave the area and replace the cartridge, filter or canister.

**Breathing Air Quality and Use and Testing of Breathing Air Containers**

Breathing air quality and use, testing, and breathing air containers must comply with 29 CFR 1910.134(i).
Ambient or Free-Air Pumps and Compressors
The workplace supervisor is responsible for inspecting ambient or free-air pumps and compressors used with air-line (supplied-air) systems.

- Air-line couplings must be incompatible with outlets for other gas systems to prevent inadvertent servicing of air-line respirators with other gases or oxygen.
- Inspect the air-line, compressor and respirator to ensure all three components match the air pressure and other requirements specified by the manufacturers.
- Place the pumps in a position to avoid entry of contaminated air into the system.

Verbal Communication Considerations
Verbal communication in a noisy industrial environment can be difficult. It is important to ensure that respirator wearers can comfortably communicate when necessary because an employee who is speaking very loudly or yelling may cause a facepiece seal leak, and the employee may be tempted to temporarily dislodge the device in order to communicate. Both situations are undesirable. There are several options that may be used to aid communications when wearing respirators.

Speaking Diaphragms
A speaking diaphragm consists of a resonating surface and cavity that vibrates during speech, amplifying the speaker’s voice outside of the respirator. Consider the following when using speaking diaphragms:

- Not all facepiece respirators are available with a speaking diaphragm. Contact the equipment manufacturer for availability.
- There are key components in maintaining the airtight integrity of the facepiece requiring care when installing and handling.
- Use of a respirator with a speaking diaphragm during welding, cutting, burning, or grinding operations is of special concern, as flying sparks may burn a hole in the diaphragm, creating a leak. Some manufacturers have compensated for these applications by providing shrouds to cover the diaphragm or by using metal diaphragms.

Built-In Microphones
Some respirator manufacturers make small microphones that are mounted inside or connected to the respiratory inlet covering. The microphone may be connected to a radio, telephone, loudspeaker, or other means of electronic transmittal. Consider the following when using built-in microphones:
Appendix G  Respirator Protection Information  
Verbal Communication Considerations

- Any component that is attached to or through the respiratory inlet covering may affect its function. In cases where the manufacturer provides components, strictly adhere to the installation instructions and leak test procedures to ensure that airtight integrity is maintained.

- Voice activated communication systems may cause continuous sound pickup of the blower, when used with powered air-purifying respirators, or air flow noise, when used with supplied air devices.

Hand or Coded Signals
A predetermined set of signals may be useful in communicating.

Cranial, Throat, or Ear Microphones
Cranial and throat microphones are held in place with a harness against the wearer's head and larynx, respectively. Ear microphones are worn in the same manner as a transistor radio earphone and function as both a microphone and speaker. Use of these devices does not require making penetrations or attachments to the respirator, and does not impact the NIOSH certification status. They may be used with radios, telephones, loudspeakers, or other means of electronic transmittal, similar to facepiece microphones. Consider the following when using cranial, throat, or ear microphones:

- Do not place cranial microphones under the head harness of facepiece respirators since their dislodgement may loosen the respirator straps.

- When connecting wires are passed underneath the bibs or neck seals of supplied-air hoods or helmets, attach them to the wearer's body to avoid disturbing the bib positioning.

Telephone Handsets
Since a person exhales while speaking, the exhalation valve in a facepiece respirator is partially open. This is a perfect location to place a handset or hand-held microphone to obtain the clearest voice transmission. An alternative is to hold the handset or microphone to the wearer's throat while speaking.

Safety Considerations
Electronic devices shall be selected and used with caution in explosive atmospheres or Class I hazardous locations identified in Article 501 of the National Electric Code (NEC). When required, ensure all such devices comply with requirements for permissibility and intrinsically safe systems according to Article 504 of the NEC. Consider the effects of radio frequency emissions when utilizing such devices in the vicinity of sensitive electronic equipment.
Low Temperature Environment Considerations

A low temperature environment may cause lens fogging in a respiratory inlet covering and freezing or improper sealing of the valves. Coating the inside surface of the lens may inhibit fogging at temperatures approaching 0 degrees Celsius (°C) (32 degrees Fahrenheit (°F)). Full facepieces are available with nose cups that direct the warm and moist exhaled air through the exhalation valve without contacting the lens. Facepieces with nose cups may provide satisfactory vision at temperatures as low as -32 °C (-25 °F).

SCBA equipped with a full facepiece and certified for use below 32 °F shall be equipped with a nose cup or other suitable accessory or coating to maintain the device's NIOSH certification when it is used in environments below 32 °F.

Additionally, there are several other important considerations that users should be aware of when using SCBA in a low temperature environment. Users should thoroughly review the manufacturer's instructions and, if necessary, consult with the manufacturer to become thoroughly familiar with the pre-cautions and recommendations for use of a specific SCBA in cold weather conditions. In general, consider the following:

- **Storage**—elastomeric components such as facepieces and breathing tubes may be prone to distortion if improperly stored in cold weather; such distortion could prevent the user from an adequate fit
- **Accessory availability**—cold temperature accessories and components such as special elastomeric gaskets and diaphragms may not be readily available

Respirator valves may freeze open or closed due to the presence of moisture at very low temperatures. Some air-line respirators are approved with a device called a “vortex tube” that warms the air supplied to the respiratory inlet covering of the respirator.

High Temperature Environment Considerations

Working in a high temperature environment while wearing a respirator creates additional stress on the wearer. Using a respirator that has a low weight, offers a low resistance to breathing, possesses a minimal dead air space, and, if feasible, provides a tempering of inlet air should minimize the additional stress.

Dead air volume is the volume of previously exhaled air (which is available to be inhaled) remaining in a respiratory inlet covering. Reducing the amount of dead air volume in a respirator reduces the level of carbon dioxide in the
inhaled air, which is a major source of respirator usage related stress. This can be accomplished through the use of powered air-purifying respirators, continuous flow air-line respirators, use of a half facepiece respirator in lieu of a full facepiece, and use of a nose cup in full face-piece devices (regardless of the mode of operation).

Air-line respirators are recommended for use in a high temperature environment. Air-line respirators approved with a vortex tube will substantially reduce the temperature of the air supplied to the respirator. If air-purifying respirators are to be used, a half facepiece respirator, where it offers adequate protection, is preferable to the full facepiece.

Elastomeric components of respirators stored in high temperature environments may deteriorate at an accelerated rate and the facepiece may become permanently distorted. Use special care to prevent facepiece distortion.
Symbols
"L" Fume 5-4-41, 5-5-53
Numerics
2-hour reading
methyl bromide 2-4-29
30-minute reading
methyl bromide 2-4-29
A
A. fraterculus
MB at NAP treatment 5-2-8
vapor heat treatment 5-2-76
A. ludens
cold treatment 5-2-80
forced hot air treatment 5-2-61
hot water treatment 5-2-58
A. obliqua
forced hot air treatment 5-2-61
A. serpentina
forced hot air treatment 5-2-61
ability to heat area
methyl bromide 2-4-8
abiu
irradiated from Hawaii 5-2-70
absorbed dose 3-8-5
Acalypha 5-6-21
treatment options 5-6-21
Achatina
cold treatment 5-2-91, 5-5-10
MB at NAP treatment 5-5-5
other treatment options 5-5-7
Achatinidae
cold treatment 5-2-91, 5-5-10
achimenes 5-6-15
Aconitum 5-6-21
treatment options 5-6-21
acorn
nonpropagative 5-4-8, 5-4-9
propagative 5-3-28, 5-3-29
actinidia 5-6-15
actionable pests 5-3-20
adding gas and time
oak logs T312a 2-4-36
additional readings
methyl bromide 2-4-29
aerating
fresh fruit, vegetables, and cut flowers
2-4-41
nonsorptive, containerized cargo 2-4-38
nonsorptive, noncontainerized cargo
2-4-39
sorptive, containerized cargo 2-4-44
sorptive, noncontainerized cargo 2-4-42
Aeration Duct, Flexible E-1-9
aeration requirements
methyl bromide 2-4-11, 2-9-12
phosphine 2-11-31
sulfuryl fluoride 2-10-5
Aerosol Insecticides E-1-9
Aerospatiale 5-5-34
African couchgrass
dry heat treatment 5-5-47
Africanized honeybee swarms
residual insect spray treatment 5-5-3
Afromomum melgueta 5-2-32
Agapanthus 5-6-15
Agriolimax
heat treatment 5-4-39
Agriolimacidae
MB at NAP treatment 5-3-6, 5-5-8
Agriolimax
MB at NAP treatment 5-3-6, 5-5-8
air cargo covers
Dupone Tyvec 8-1-30
Air Pump, Auxiliary E-1-10
Airbus Industries of North America, Inc.
5-5-46
aircraft 5-5-34
treatment options 5-5-33
Air-Purifying Respirator E-1-12
Alabama
state hazardous waste management agen-
cies 7-2-12
Alaska
state hazardous waste management agen-
cies 7-2-12
Aleurocanthus woglumi
MB at NAP treatment 5-2-30, 5-3-12
Aleurocanthus woglumi host plants
treatment options 5-3-12
alfalfa seeds
from Europe 5-6-14
Allium 5-6-15
Allium schoenoprasum 5-2-32
Allium tuberosum 5-2-32
allspice 5-2-32
aloe 5-6-15
alpha grass and handicrafts 5-4-17
treatment options 5-4-17
Alphelenchoides fragariae 5-6-16
Aluminum Phosphide E-1-13
Amaryllis 5-6-15, 5-6-19
ambarella
irradiated from Grenada 5-2-70
ambrosia/timber beetles
treatment 5-5-17
American Bureau of Shipping 6-4-4
American Samoa
state hazardous waste management agencies 7-2-12
Amorphophallus 5-6-15
Ampelodesma mauritanicus 5-4-17
Ampelopsis 5-6-15
Amphulariidae
hot water treatment 5-3-3
Anastrepha ludens
domestic treatment of 5-8-4
Anastrepha serpentina
domestic treatment of 5-8-9
Anastrepha spp.
cold treatment 5-2-79, 5-2-80, 5-2-83
forced hot air treatment 5-2-60
hot water treatment 5-2-58
MB at NAP/chamber only treatment 5-2-22
vapor heat treatment 5-2-73
Anchusa 5-6-16
anemometer 8-1-18
Anemone 5-6-15
angelica 5-2-32
Angelica archangelica 5-2-32
Animal and Plant Health Inspection Service
preclearance program for vessels used for intransit cold treatment 6-4-2
anise 5-2-32
anise star 5-2-32
annatto 5-2-32
ant
MB at NAP treatment 5-2-64, 5-5-47
residual insecticidal spray treatment 5-5-3
treatment 5-5-17
Anthemis nobilis 5-2-32
Anthemum graveolens 5-2-32
Anthonomus grandis 5-4-5
MB at NAP/tarpaulin only treatment 5-4-5
Anthriscus cerefolium 5-2-32
AP 2-11-9
Aphelenchoides besseyi 5-6-18
hot water treatment 5-6-18, 5-6-19
Aphelenchoides fragariae spp.
hot water treatment 5-6-20, 5-6-21
Aphelenchoides subtenuis
hot water treatment 5-6-19
aphids 5-3-6
MB at NAP treatment 5-2-64, 5-3-5
APHIS Form 2061, Residue Sample for Food or Feed Product A-A-2
APHIS Form 206-R, Test of the Accuracy of the Permanent RTD Sensors Installed in Hot Water Tanks A-A-4
APHIS Form 208, Performance Test for Mango Hot Water Immersion Tank A-A-6
Apium graveolens 5-2-32
apple 5-2-3, 5-2-79, 5-2-80, 5-2-81, 5-2-82, 5-2-85, 5-2-87
Fuji from Japan and Korea 5-2-89
apple maggot
irradiation treatment 5-2-69
Applicator (Dispenser) for Methyl Bromide E-1-15
Approved Calibration Companies (thermometers) E-1-69
apricot 5-2-3, 5-2-79, 5-2-80, 5-2-82, 5-2-85
aquatic plants infested with freshwater snails
hot water treatment 5-3-3
Araucaria spp.
MB at NAP treatment 5-3-9
Arachachatina 5-5-7
cold treatment 5-2-91, 5-5-10
MB at NAP treatment 5-5-5
Arion
MB at NAP treatment 5-3-6, 5-5-8
Arionidae
MB at NAP treatment 5-3-6, 5-5-8
Arizona
state hazardous waste management agencies 7-2-12
Arkansas
state hazardous waste management agencies 7-2-12
Armoracea 5-6-16
Artemisia absinthium 5-2-32
Artemisia dracunculus 5-2-32
Ascarite 8-1-4
Ascarite II E-1-16
Ascochyta spp. 5-6-11
ash logs 5-4-39
asian citrus psyllid
domestic treatment of 5-8-13
asparagus 5-2-4
from Thailand, Australia, New Zealand 5-2-4
asphalt surfaces 5-5-3
Asphodelus fistulosus 5-5-47
astilbe 5-6-15, 5-6-16, 5-6-19
root 5-3-21
atemoya
irradiated from Hawaii 5-2-70
atmospheric fumigation chambers
basic design elements 6-3-2
certification of 6-3-1
circulation and exhaust systems 6-3-6
construction and performance standards 6-3-1
fumigant dispensing system 6-3-7
gastight construction 6-3-3
other auxiliary equipment 6-3-10
Austrotortrix spp.
cold treatment followed by MB at NAP 5-2-88
MB at NAP followed by cold treatment 5-2-87
Autoclaves E-1-48
Autographa gamma
MB at NAP treatment 5-2-38
automobiles 5-5-26
restricted MB fumigation item 2-3-11
auxiliary pump 8-1-19
avocado 5-2-79, 5-2-85
FIFRA section 18 exemption 2-3-3
from Hawaii, Israel, Philippines 5-2-5
seeds only, without pulp 5-3-28
avocado seed moth
MB in 26" vacuum treatment 5-3-28
avocado seed weevil
MB in 26" vacuum treatment 5-3-28
avocado stem weevil
MB in 26" vacuum treatment 5-3-28
Azalea 5-3-9
azalea 5-6-3
Azalea indica 5-3-9
azaleodendron 5-6-3, 5-6-6
B
Bactrocera cucurbitae
cold treatment 5-2-82
forced hot air treatment 5-2-60, 5-2-62
fumigation plus cold treatment 5-2-85
irradiation treatment 5-2-69, 5-8-4
MB at NAP treatment 5-2-5
vapor heat treatment 5-2-73, 5-2-74, 5-2-75
Bactrocera dorsalis
cold treatment 5-2-82
domestic treatment of 5-8-7
forced hot air treatment 5-2-60, 5-2-62
fumigation plus cold treatment 5-2-85
hot water immersion treatment 5-2-57
irradiation treatment 5-2-69, 5-8-4
MB at NAP treatment 5-2-5
vapor heat treatment 5-2-73, 5-2-74, 5-2-75
Bactrocera jarvisi
irradiation treatment 5-2-69, 5-8-4
Bactrocera neohumeralis
cold treatment 5-2-81
Bactrocera occipitalis
vapor heat treatment 5-2-74
Bactrocera philippinensis
vapor heat treatment 5-2-74
Bactrocera tryoni
cold treatment 5-2-81
cold treatment followed by MB at NAP 5-2-88
fumigation plus cold treatment 5-2-85
irradiation treatment 5-2-69, 5-8-4
MB at NAP followed by cold treatment 5-2-87
Bactrocera zonata
cold treatment 5-2-83
bags and bagging material 5-4-20
for cotton only 5-4-19
for small grains 5-6-5
for soil-grown commodities 5-6-4
for unroasted coffee beans 5-4-21
Index

to contain root crops 5-4-19
treatment schedules for 5-4-19, 5-5-26

baking powder
restricted MB fumigation item 2-3-11

Balances (portable) for weighing individual fruit E-1-16
baled hay 5-4-29
treatment options 5-4-29
baled lint 5-4-2
banana 5-2-5
FIFRA section 18 exemption 2-3-3
irradiated from Hawaii 5-2-70, 5-2-71
root 5-3-21

barges 5-5-26
barhi date 5-2-83
Baris lepidii
MB in 15" vacuum treatment 5-2-34

bark/engraver beetle
treatment 5-5-17

bark-gnawing beetle
treatment 5-5-17

basil 5-2-32

batch system 3-3-4
Batch Systems E-1-17

bay leaf 5-2-32

bean
dry 5-2-6
fava, dried 5-2-27
lablab 5-2-31
snap 5-2-31
string 5-2-31

bee
treatment 5-5-17

beet 5-2-6, 5-2-7

Begonia 5-6-15, 5-6-18
bell pepper 5-2-73

Berberis 5-3-9

bess beetle
treatment 5-5-17

black curaway 5-2-32
black fruit fly
forced hot air treatment 5-2-61
black pepper 5-2-32
blackberry 5-2-7

blended strip tobacco 5-4-23
Bletilla hyacinthina 5-6-15, 5-6-16, 5-6-19
Blower E-1-20
blueberry 5-2-9, 5-2-79
European grapevine moth 5-2-10
external feeders 5-2-7

Mediterranean fruit fly and Natal fruit fly 5-2-79
Mediterranean fruit fly, South American fruit fly, and European grapevine moth 5-2-8

blueprints
restricted MB fumigation item 2-3-11

Boeing Commercial Aeroplane Group 5-5-33

boilers and thermostatic controls 3-3-6
adequate water heating capacity 3-3-6
multiple set point option 3-3-6
thermostatic controls 3-3-6

boll weevil
MB at NAP/tarpaulin only treatment 5-4-5
phosphine at NAP treatment 5-4-5

bone meal
restricted MB fumigation item 2-3-11

Bootanomyia spp.
MB in 26" vacuum treatment 5-3-36
borage 5-2-32
Borago officinalis 5-2-32

borer
Chlorpyrifos spray treatment 5-5-13
dry heat treatment 5-4-9
MB at NAP treatment 5-5-20
MB at NAP/chamber only treatment 5-4-9
MB in 15" vacuum treatment 5-3-4, 5-3-11, 5-3-15, 5-4-18
MB in 26" vacuum treatment 5-3-7
SF at NAP treatment 5-5-14

Bostrichidae
treatment 5-5-17

box and package
aeration 2-3-8
penetration 2-3-8

Brachycerus spp.
MB in 15" vacuum treatment 5-3-22
MB in 15" vacuum/chamber only treatment 5-2-27

Brachyrhinus larvae
MB in 26" vacuum treatment 5-3-21

Bradybaena
cold treatment 5-2-91, 5-5-10
MB at NAP treatment 5-5-9

Bradybaenidae
cold treatment 5-2-91, 5-5-10
MB at NAP treatment 5-5-9
branch borer
Brassica alboglabra 5-2-11
Brassica campestris 5-2-11, 5-2-14
Brassica chinensis 5-2-13
Brassica juncea 5-2-32, 5-2-40
Brassica leafy vegetables not on the label
FIFRA section 18 exemption 2-3-4
Brassica napus 5-2-48
Brassica oleracea 5-2-13
Brassica oleracea var. acephala 5-2-24, 5-2-34
Brassica oleracea var. botrytis 5-2-10, 5-2-16, 5-2-17
Brassica oleracea var. gongyiodes 5-2-36
Brassica pekinensis 5-2-11
Brassica rapa Japonica group 5-2-40
Brassica rapa Perviridis group 5-2-41
brassware
from Mumbai, India 5-5-48, 5-5-49
breadfruit 5-2-55
irradiated from Hawaii 5-2-70, 5-2-71
break bulk cargo
tarpaulin fumigation 2-4-11
fan arrangement and operation 2-4-15
gas introduction lines 2-4-16
gas sampling tubes 2-4-16, 2-4-18
Brevipalpus chilensis 5-2-69
fumigation plus cold treatment 5-2-85
MB at NAP treatment 5-2-22
soapy water and wax treatment 5-2-55, 5-2-56, 5-2-59
broccoli 5-2-10
Chinese 5-2-11
broccoli raap 5-2-11
bromeliads 5-3-3, 5-3-4, 5-3-11, 5-6-8
broomcorn and broomcorn articles
5-4-26, 5-4-27, 5-6-20
treatment options 5-4-26, 5-6-20
brooms
made of rice straw 5-6-12
Bruchidae
MB at NAP treatment 5-2-6, 5-2-27, 5-2-38, 5-2-44, 5-2-47, 5-3-38, 5-3-40
MB in 26" vacuum treatment 5-3-35, 5-3-40
MB in 26" vacuum/chamber only treatment 5-2-27
Bruchophagus spp.
MB in 26" vacuum treatment 5-3-37
brussels sprouts 5-2-12
Bubble Fumigation System E-1-20
bulb nematode
hot water dip treatment 5-6-20
other treatment options 5-6-15, 5-6-16, 5-6-17
bulb scale mite
hot water treatment 5-3-25
MB at NAP treatment 5-3-24
bulb vegetables not on the label
FIFRA section 18 exemption 2-3-4
bulbs 5-6-15
bulbs, corms, tubers, rhizomes, and roots 5-3-21
Bulinidae
hot water treatment 5-3-3
bumet 5-2-32
Buprestidae
treatment 5-5-17
butter
restricted MB fumigation item 2-3-11
C
cabbage 5-2-12, 5-2-13
Chinese 5-2-13
Chinese mustard 5-2-14
cabbageworm
MB at NAP treatment 5-5-13
cacti 5-3-4, 5-3-11
FIFRA section 18 exemption 2-3-3
cactus 5-6-15
Calendula officinalis 5-2-32
Calibration of Temperature Probes (Cold Treatment) A-A-7
California
state hazardous waste management agencies 7-2-12
Calla
rhizomes 5-6-17
calliopsis 5-6-15
Camellia 5-3-9, 5-6-9
camomile 5-2-32
Campanula 5-6-15
Candidula 5-2-91, 5-5-5, 5-5-7, 5-5-10
cantaloupe 5-2-14
cape gooseberry 5-2-79
caper buds 5-2-32
Capparis spinosa 5-2-32
Capsicum spp.
  irradiated from Hawaii 5-2-70
Caracollina
  MB at NAP treatment 5-5-5, 5-5-8
carambola 5-2-80, 5-2-82
  irradiated from Hawaii 5-2-70
caraway 5-2-32
carbon dioxide 2-11-4
cardamom 5-2-32
Caribbean fruit fly
  irradiation treatment 5-2-69, 5-8-4
carpenter ant
  SF at NAP treatment 5-5-14
treatment 5-5-17
carpenter bee
  SF at NAP treatment 5-5-14
treatment 5-5-17
carpenter worm
  treatment 5-5-17
Carposina niponensis
  cold treatment followed by MB at NAP 5-2-89
carrot 5-2-15
Carum carvi 5-2-32
Caryedon spp. 5-3-38
Cascade Air Tank Recharging System (SCBA) E-1-21
cassava 5-2-16
  manihot 5-2-16
  yuca 5-2-16
cassia bark 5-2-32
cassia buds 5-2-32
Casurina
  seeds of 5-3-36
Cathaica 5-2-91, 5-5-9, 5-5-10
catnip 5-2-32
cattleya fly
  MB in 15" vacuum treatment 5-3-15
cauliflower 5-2-16
Caulophyllum latinasus
  MB in 26" vacuum treatment 5-3-28
Cavalo broccolo 5-2-17
Cecidomyid galls 5-3-15
celeriac
  celery root 5-2-17
celery
  above-ground parts 5-2-18
celery seed 5-2-32
Cepaea
  cold treatment 5-2-91, 5-5-10
  MB at NAP treatment 5-5-5, 5-5-8
Cerambycidae
  treatment 5-5-17
Cerambycids
  Chlorpyrifos spray treatment 5-5-13
Ceratitis capitata 5-2-62
  cold treatment 5-2-79, 5-2-83
  cold treatment followed by MB at NAP 5-2-88
domestic treatment of 5-8-5
forced hot air treatment 5-2-60, 5-2-62
fumigation plus cold treatment 5-2-85
hot water immersion treatment 5-2-57, 5-2-58
irradiation treatment 5-2-69, 5-8-4
MB at NAP followed by cold treatment 5-2-87
MB at NAP treatment 5-2-5, 5-2-8, 5-2-22, 5-2-35, 5-2-51, 5-2-52
  grape 5-2-29
vapor heat treatment 5-2-73, 5-2-74, 5-2-75, 5-2-76
Ceratitis rosa
  cold treatment 5-2-79, 5-2-82, 5-2-83
Cercospora mamaonis
  hot water dip treatment 5-6-18
Cercospora spp.
  Bordeaux dip or spray treatment 5-6-4
treatment options 5-6-3
cereal leaf beetle
  phosphine at NAP treatment 5-4-29
Cernuella
  cold treatment 5-2-91, 5-5-10
  MB at NAP treatment 5-5-5, 5-5-7
certifying
  atmospheric fumigation chambers 6-3-1
  facilities 6-1-1
forced hot air treatment facilities 6-7-1
heat treatment of firewood facilities 6-9-1
hot water immersion treatment facilities 6-5-1
irradiation treatment facilities 6-8-1
vacuum fumigation chambers 6-2-1
vapor heat treatment facilities 6-7-1
Cestrum 5-6-15
Chain Hoist (electronic) E-1-21
charcoal
  restricted MB fumigation item 2-3-11
chayote
  fruit only 5-2-18
cold treatments
fumigants 2-2-1
  characteristics of 2-2-1
  introduction to 2-2-1
  overview of 2-1-1
cherimoya
  from Chile 5-2-55
cherry 5-2-19, 5-2-79, 5-2-80, 5-2-85
chervil 5-2-32
chestnut 5-2-20, 5-3-28, 5-3-29
chestnut dioon 5-3-8
chicory
  above-ground parts 5-2-20
  root 5-2-21
Chilean false red mite
  MB at NAP treatment 5-2-22
  soapy water and wax treatment 5-2-55, 5-2-56, 5-2-59
Chinese chive 5-2-32
chive 5-2-32
Christmas trees 5-6-4
  treatment schedules for 5-4-38
chrysanthemum 5-6-3, 5-6-17
Chrysanthemum balsamita 5-2-32
Chrysanthemum spp. 5-3-11
  rooted and unrooted cuttings 5-3-5, 5-3-6
chrysomelid beetle
  MB in 15" vacuum/chamber only treatment 5-2-21
Chrysomyxa spp. 5-6-3, 5-6-4, 5-6-6
cigarette beetle
  Kabat application treatment 5-4-23
  MB in 28" vacuum treatment 5-4-24
  vacuum steam flow treatment 5-4-23
Cimicifuga 5-6-15, 5-6-19
cinder blocks
  restricted MB fumigation item 2-3-11
Cinnamomum aromaticum 5-2-32
Cinnamomum verum 5-2-32
cinnamon 5-2-32
cipollini
  bulbs 5-2-21
Cissus 5-6-15
citrus 5-2-79, 5-2-81, 5-2-82
  from Hawaii 5-2-60
  from Mexico and infested U.S. areas 5-2-60
  from U.S. 5-2-22
  irradiated from Hawaii 5-2-70
  seeds of 5-3-39
citrus black spot
  domestic treatment of 5-8-29
citrus blackfly
  MB at NAP treatment 5-2-30, 5-3-12
citrus canker
  domestic treatment of fruit 5-8-11
  domestic treatment of seed 5-8-11
  domestic treatment of vehicles and equipment 5-8-12
  hot water treatment plus chemical dip 5-3-39
citrus whitefly
  MB at NAP treatment 5-3-10, 5-3-13
citrus whitefly hosts
  MB at NAP treatment 5-3-9
clary 5-2-32
clear-winged moth
  treatment 5-5-17
Clematis 5-6-15, 5-6-16
clementine 5-2-79, 5-2-80
  from Chile 5-2-22
  from Mexico 5-2-73, 5-2-74
  from Mexico and U.S. quarantine areas 5-2-22
clove buds 5-2-32
CO2 scrubbers
  restricted MB fumigation item 2-3-11
Coast Guard regulations B-B-1
Cochlicella
cold treatment 5-2-91, 5-5-10
  MB at NAP treatment 5-5-5, 5-5-7
coconut
  whole, without husk 5-2-24
codling moth
  irradiation treatment 5-2-69
  MB at NAP/chamber only treatment 5-2-19
cold storage, 5-8-24
Cold treatment
  integral containers used for cold treatment 6-4-11
  temperature recording instruments standards 6-4-14
  vessels used for intransit cold treatment 6-4-2
  approval requirements 6-4-4
  temperature recording systems standards 6-4-2
  warehouses used for 6-4-14
coles 5-2-23
collard greens 5-2-24
Colorado
  state hazardous waste management agen-
Colosius  
MB at NAP treatment 5-3-6, 5-5-8  
commercial line conditioner 3-3-5  
commodity injury 5-2-1  
conifer seed 5-3-29, 5-3-30  
Connecticut  
state hazardous waste management agencies 7-2-12  
Conogethes punctiferalis  
cold treatment followed by MB at NAP 5-2-89  
Conopomorpha sinensis  
cold treatment 5-2-82  
Conotrachelus spp.  
MB in 26” vacuum treatment 5-3-28  
Conotrachleus nenuphar 5-2-69  
Consultants (hot water immersion treatments) E-1-22  
containerized cargo  
methyl bromide 2-4-18  
tarpaulin fumigation 2-4-12  
fan arrangement and operation 2-4-15  
gas introduction lines 2-4-16  
gas sampling tubes 2-4-17  
containers 5-5-26, 5-6-7  
used 5-5-27  
continuous flow system 3-3-4  
contruction equipment 5-5-26  
without cabs 5-5-27  
Convallaria 5-6-15  
conversion tables C-C-1  
Convolvus japonicus 5-6-15  
Copitarsia spp.  
MB at NAP treatment 5-2-4, 5-2-5, 5-2-7, 5-2-39, 5-2-46, 5-2-49  
copra 5-2-24  
Copturus agyacatae  
MB in 26” vacuum treatment 5-3-28  
coriander 5-2-32  
Coriandrum sativum 5-2-32  
crop group  
berries and small fruit F-1-12  
Brassica leafy vegetables F-1-6  
bulb vegetables F-1-4  
cereal grains F-1-14  
citrus fruit F-1-9  
cucurbit vegetables F-1-8  
edible fungi F-1-19, F-1-20, F-1-21  
forage, fodder, and straw of cereal grains F-1-14  
fruiting vegetables F-1-7  
grass forage, fodder, and hay F-1-14  
herbs and spices F-1-16  
leafy vegetables (except Brassica) F-1-5  
leaves of legume vegetables F-1-7  
leaves of root and tuber vegetables F-1-3  
legume vegetables (succulent or dried) F-1-6  
nongrass animal feed F-1-15  
oilseed F-1-18  
pome fruit F-1-10  
root and tuber F-1-2  
stalk, stem, and leaf petiole vegetables F-1-20  
stone fruit F-1-11  
tree nuts F-1-13  
Corytholoma 5-6-15  
Cossidae  
treatment 5-5-17  
costmary 5-2-32  
cotton and cotton products 5-4-5  
samples of 5-4-7  
treatment schedules for 5-4-2  
cottonseed 5-4-3, 5-4-6, 5-4-7  
bagged, packaged, bulk 5-3-31, 5-3-32  
hulls 5-4-6, 5-4-7  
meal 5-4-4, 5-4-6, 5-4-7  
covers  
for small grains 5-6-5  
for soil-grown commodities 5-6-4  
for wheat 5-6-6  
cowpea  
irradiated from Hawaii 5-2-71  
cricket  
residual insecticidal spray treatment 5-5-3  
Crocidosema aporema  
MB in 15” vacuum/chamber only treatment 5-2-31  
crocus 5-6-19  
Crocus sativus 5-2-32  
crop group  
berries and small fruit F-1-12  
Brassica leafy vegetables F-1-6  
bulb vegetables F-1-4  
cereal grains F-1-14  
citrus fruit F-1-9  
cucurbit vegetables F-1-8  
edible fungi F-1-19, F-1-20, F-1-21  
forage, fodder, and straw of cereal grains F-1-14  
fruiting vegetables F-1-7  
grass forage, fodder, and hay F-1-14  
herbs and spices F-1-16  
leafy vegetables (except Brassica) F-1-5  
leaves of legume vegetables F-1-7  
leaves of root and tuber vegetables F-1-3  
legume vegetables (succulent or dried) F-1-6  
nongrass animal feed F-1-15  
oilseed F-1-18  
pome fruit F-1-10  
root and tuber F-1-2  
stalk, stem, and leaf petiole vegetables F-1-20  
stone fruit F-1-11  
tree nuts F-1-13
tropical and subtropical fruit, edible peels F-1-21
   tropical and subtropical fruit, inedible peels F-1-24
Cryptophlebia illepida 5-2-69
   MB at NAP treatment 5-3-33, 5-3-34
Cryptophlebia ombrodelta 5-2-69
cucumber 5-2-25
Cucurbit vegetables not on the label
   FIFRA section 18 exemption 2-3-4
Cucurbita spp.
   irradiated from Hawaii 5-2-70
culantro 5-2-32
cumin 5-2-32
Cuminum cyminum 5-2-32
Curculio caryae
   cold treatment 5-2-83
Curculio spp.
   MB at NAP treatment 5-2-20, 5-3-29,
   5-4-8
   MB in 26" vacuum/chamber only treat-
   ment 5-2-20, 5-4-9
Curculionidae
   treatment 5-5-17
Curcuma 5-6-15
curry 5-2-32
curryleaf
   domestic treatment of 5-8-13
Curtains (air, safeguarding) E-1-23
Cuscuta spp.
   dry heat treatment 5-5-48
   steam heat treatment 5-5-48
cut
   conifer Christmas trees 5-4-38
   flowers and greenery 5-4-18, 5-4-19
   treatment schedules for 5-4-18
   pine Christmas trees 5-4-38
   pine logs 5-4-38
   cut flowers and leis
   irradiated from Hawaii 5-2-71
cycads 5-3-6, 5-3-9, 5-3-11
Cyclamen 5-6-15
cyclamen mite
   MB in 15" vacuum treatment 5-3-11
Cydia fabivora
   MB at NAP treatment 5-2-31
   MB in 15" vacuum/chamber only treat-
   ment 5-2-31
Cydia pomonella
   irradiation treatment 5-2-69
   MB at NAP/chamber only treatment
   5-2-19
Cydia splendana
   MB at NAP treatment 5-2-20, 5-3-29,
   5-4-8
   MB in 26" vacuum/chamber only treat-
   ment 5-2-20, 5-4-9
Cylas formicarius elegantulus
   irradiation treatment 5-2-69
Cylindrosporium camalliae
   treatment options 5-6-9
Cymbopogon citratus 5-2-32
cyst nematode
   hot water treatment 5-6-16
Cytec 2-11-32
Cytisus 5-6-15
D
dahlia 5-6-15
Daphne spp. 5-3-9
dasheen 5-2-25, 5-2-26
   FIFRA section 18 exemption 2-3-3
date 'Bahri 5-2-83
deciduous woody plants
   dormant 5-3-7
Degesch Fumi-Cel 5-4-41, 5-5-53
Degesch Fumi-Strip 5-4-41, 5-5-53
Degesch Phostoxin 5-4-41, 5-5-53
Degesch Phostoxin Tablet Prepac Rope
   5-4-41, 5-5-53
Delaware
   state hazardous waste management agen-
   cies 7-2-13
Deroceras
   MB at NAP treatment 5-3-6, 5-5-8
detector kits 8-1-14
Detia 5-4-41, 5-5-53
Detia Gas EX-B 5-4-41, 5-5-53
Detia Rotox AP 5-4-41, 5-5-53
Dialeurodes citri
   MB at NAP treatment 5-3-10, 5-3-13
Dialeurodes citri foliated host plants
   treatment options 5-3-10
Dialeurodes citri nonfoliated host plants
   treatment options 5-3-13
Diaphorina citri
   domestic treatment of 5-8-13
Dieffenbachia spp. 5-3-8, 5-3-11
Digital Thermister Instrument and Porta-
ble Sensors E-1-24
Digitaria spp.
dry heat treatment 5-5-47
dill 5-2-32
dioon edule 5-3-8
Dioscorea spp. 5-2-53, 5-3-26
dip treatment
equipment 2-13-1
procedures
clean up 2-13-4
designate restricted use areas 2-13-3
dip plants 2-13-4
disinfect original shipping containers 2-13-4
dry plants 2-13-4
plan 2-13-3
prepare pesticide solution 2-13-3
prepare plant material 2-13-3
release cargo 2-13-4
remove plants 2-13-4
responsibilities 2-13-4
Diplosolenodes
MB at NAP treatment 5-3-6, 5-5-8
Directory of commercial suppliers E-1-1
Disinfectants E-1-34
District of Columbia
state hazardous waste management agencies 7-2-13
Ditylenchus destructor
hot water treatment 5-6-19
other treatment options 5-6-15, 5-6-16
Ditylenchus dipsaci
hot water treatment 5-6-20
other treatment options 5-6-16, 5-6-17
presoak treatment 5-6-15
dosage calculations
preparation 2-4-23, 2-9-16
dose mapping 3-8-4
dosimetry 3-8-4
downy mildews infestation
treatment options 5-6-5
Dracaena spp. 5-3-8, 5-3-11, 5-6-15
dragon fruit 5-2-52
irradiated from Hawaii 5-2-70, 5-2-71
irradiated from Thailand 5-2-71
irradiated from Viet Nam 5-2-71
drainboard, 5-8-16
dried coconut 5-2-24
dried mint
FIFRA section 18 exemption 2-3-3
dried plant material 5-6-14
Drierite 8-1-4
Drierite (anhydrous calcium sulfate) E-1-26
Drierite® E-1-26
dry heat, 5-8-24
drying tube
thermal conductivity gas analyzers 8-1-4
durian 5-2-55
dusts 2-14-1
Dyspessa ulula
MB in 15" vacuum treatment 5-3-22
MB in 15" vacuum/chamber only treatment 5-2-27
E
ear corn 5-4-9
earwig
MB at NAP treatment 5-2-64
ECO2FUME 2-11-9
eggplant 5-2-73
irradiated from Ghana 5-2-71
irradiated from Hawaii 5-2-70
electrical generator 3-3-6
electrical power supply
tarapulin fumigation sites 2-4-11, 2-9-12
electronic equipment
restricted MB fumigation item 2-3-11
Elettaria cardamomum 5-2-32
emerald ash borer
heat treatment 5-4-39
quarantine areas 5-4-39
empty holds 5-5-4
endive 5-2-26
EPDM rubber
restricted MB fumigation item 2-3-11
Ephestia elutella
Kabat application treatment 5-4-23
MB in 28" vacuum treatment 5-4-24
vacuum-steam flow treatment 5-4-23
Epimendium pinnatum 5-6-15, 5-6-19
Epiphyas postvittana
irradiation treatment 5-2-69
Epiphyas spp.
cold treatment followed by MB at NAP 5-2-88
MB at NAP followed by cold treatment 5-2-87
Equipment
reference guide to commercial suppliers E-1-1
Eryngium foetidum 5-2-32
ethrog 5-2-79, 5-2-80
Eucalyptus wood chips 5-5-25
Eugenia caryophyllata 5-2-32
Euonymus alata 5-6-15
Eupatorium 5-6-15
Euphorbia 5-6-15
European cherry fruit fly
   MB at NAP treatment 5-3-39
European corn borer
   MB at NAP treatment 5-2-24, 5-2-47, 5-4-27
   MB at NAP/chamber only treatment 5-4-26
   steam sterilization treatment 5-4-27
European grapevine moth
   MB at NAP tarpaulin treatment blueberry 5-2-9
   MB at NAP treatment grape 5-2-29
   MB at NAP treatment chamber blueberry 5-2-10
European pine shoot moth
   MB at NAP treatment 5-3-16
Eurytoma spp.
   hot water treatment 5-3-15
   MB in 26" vacuum treatment 5-3-37
Exosoma lusitanica
   irradiation treatment 5-2-69
evergreens 5-3-9
Exhaust Duct E-1-27
exhaust outlet
   thermal conductivity gas analyzers 8-1-4
exhausting gas
   conducting fumigation 2-4-36
Exosceps postfasciatus
   irradiation treatment 5-2-69
evengrains 5-3-9
Exhaust Duct E-1-27
exhaust outlet
   thermal conductivity gas analyzers 8-1-4
exhausting gas
   conducting fumigation 2-4-36
Exosoma lusitanica
   MB in 15" vacuum/chamber only treatment 5-2-21
exotic legume pod borer 5-2-31
   MB in 15" vacuum/chamber only treatment 5-2-31
external feeder
   hot water treatment 5-3-21
   Malathion-carbaryl chemical dip treatment 5-3-5
   MB at NAP treatment 5-2-3, 5-2-4, 5-2-5, 5-2-7, 5-2-10, 5-2-11, 5-2-12, 5-2-13, 5-2-14, 5-2-15, 5-2-16, 5-2-17, 5-2-18, 5-2-20, 5-2-21, 5-2-22, 5-2-23, 5-2-24, 5-2-25, 5-2-26, 5-2-28, 5-2-33, 5-2-34, 5-2-35, 5-2-36, 5-2-37, 5-2-39, 5-2-40, 5-2-41, 5-2-44, 5-2-45, 5-2-46, 5-2-47, 5-2-48, 5-2-49, 5-2-50, 5-2-51, 5-2-52, 5-2-53, 5-2-54, 5-3-3, 5-3-4, 5-3-7, 5-3-9, 5-3-10, 5-3-14, 5-3-17, 5-3-18, 5-3-26, 5-3-29, 5-3-30, 5-3-35, 5-4-18
MB at NAP/chamber only treatment 5-3-8, 5-3-25, 5-3-31
MB at NAP/tarpaulin only treatment 5-3-19, 5-3-26, 5-3-31
MB in 15" vacuum treatment 5-3-6, 5-3-23
MB in 16" vacuum/chamber only treatment 5-3-31
MB in 26" vacuum treatment 5-3-8
   phosphine at NAP 5-3-32
   warm, soapy water treatment 5-2-55
false codling moth
cold treatment 5-2-82
false red spider mite
   fumigation plus cold treatment 5-2-85
   irradiation treatment 5-2-69
fan manufacturers E-1-27
fan specifications 8-1-33
farm equipment
   used 5-5-26
   without cabs 5-5-27
fava bean
dried 5-2-27
feather pillows
   restricted MB fumigation item 2-3-11
feeds and milled products 5-4-22
felt
   restricted MB fumigation item 2-3-11
fennel 5-2-32
fenugreek 5-2-32
FIFRA section 18 exemptions 5-2-1
   avocado 2-3-3
   banana 2-3-3
   banana leaf 2-3-3
   blackberry 2-3-4
   blueberry and other small fruit crop group 2-3-3
   Brassica leafy vegetables not on the label 2-3-4
   bulb vegetables not on the label 2-3-4
   cacti, edible 2-3-3
   coconut 2-3-3
   coffee bean, fresh 2-3-3
cottonseed 2-3-3
cucurbit seed 2-3-3
Cucurbit vegetables not on the label 2-3-4
dasheen 2-3-3
dragon fruit 2-3-3
dried mint 2-3-3
edible podded legume vegetables 2-3-4
fig, fresh 2-3-3
fresh herbs 2-3-3
fresh mint 2-3-3
genip (spanish lime) 2-3-3
ivy gourd 2-3-3
kaffir lime leaves 2-3-3
kola (cola) nut 2-3-3
leafy vegetables not on the label 2-3-4
leaves of legume vegetables 2-3-3
leaves of roots and tubers not on the label 2-3-4
longan 2-3-3
lychee fruit 2-3-3
Malvaceae seeds 2-3-3
oilseed 2-3-3
persimmon 2-3-3
pithaya, pitaya 2-3-3
plantain 2-3-3
pointed gourd 2-3-3
pomegranate, fresh 2-3-3
rambutan 2-3-3
root and tuber crop group 2-3-3
squash and lorocco flowers 2-3-3
stone fruit crop group 2-3-3
fig
fumigation for chilean false red mite 5-2-30
irradiated from Mexico 5-2-70
irradiated from Peru 5-2-70
fig, fresh
FIFRA section 18 exemption 2-3-3
final reading
methyl bromide 2-4-29
flag smut
dry heat treatment 5-6-5, 5-6-6
steam treatment 5-6-5, 5-6-6
flat-headed borer
treatment 5-5-17
Florida
state hazardous waste management agencies 7-2-13
flow rate adjustment
thermal conductivity gas analyzers 8-1-2
flow rate meter
thermal conductivity gas analyzers 8-1-2
Foeniculum vulgare 5-2-32
foliar nematode
hot water treatment 5-6-16, 5-6-21
treatment options 5-6-19
on Begonia and Oryza 5-6-18
on Fragaria 5-6-21
on Senecio 5-6-21
forced hot air treatment 3-5-1, 6-7-1
niger seed 3-6-1
forced hot air treatment facilities
certification of 6-7-1
conducting test treatment 6-7-6
documentation 6-7-7
plan and process approval 6-7-2
preliminary performance testing 6-7-3
Formicidae
treatment 5-5-17
forms
APHIS Form 2061, Residue Sample for Food or Feed Product A-A-2
APHIS Form 206-R, Test of the Accuracy of the Permanent RTD Sensors Installed in Hot Water Tanks A-A-4
APHIS Form 208, Performance Test for Mango Hot Water Immersion Tank A-A-6
Calibration of Temperature Probes (Cold Treatment) A-A-7
Location of Temperature Sensors in Containerized Cargo (Cold Treatment) A-A-8
PPQ Form 203, Foreign Site Certificate of Inspection and/or Treatment A-A-9
PPQ Form 429, Fumigation Record A-A-10
PPQ Form 519, Compliance Agreement A-A-13
PPQ Form 523, Emergency Action Notification A-A-16
PPQ Form 556, Intransit Cold Treatment Clearance Report A-A-32
Fragaria 5-6-15, 5-6-17, 5-6-21
Fraxinus 5-4-39
fresh herbs
  FIFRA section 18 exemption 2-3-3
fresh mint
  FIFRA section 18 exemption 2-3-3
fresh spices
  FIFRA section 18 exemption 2-3-3
frozen food locker, 5-8-24
Fruit Crates (plastic) E-1-28
fruit fly
  domestic treatment
    soil in containerized nursery stock
    5-8-3
  MB at NAP treatment 5-5-2
  seed depulping treatment 5-3-40
Fruit Sizing Equipment E-1-28
fruit tree spider mite
  cold treatment followed by MB at NAP
  5-2-89
fruit-sizing equipment 3-3-6
fumigant selector switch
  thermal conductivity gas analyzers 8-1-3
fumigants
  physical properties of 2-2-4
fumigation
  guidelines 2-2-3
Fumigators (commercial) E-1-29
Fumiphos
  bags 5-4-41, 5-5-53
  pellets 5-4-41, 5-5-53
  tablets 5-4-41, 5-5-53
Fumiscopes 8-1-2
Fumitoxin 5-4-41, 5-5-53
Fungicides E-1-29
fungous diseases
  steam sterilization treatment 5-4-15
fungous rice diseases
  dry heat treatment 5-4-15, 5-4-16
  steam sterilization treatment 5-4-16
furs
  restricted MB fumigation item 2-3-12
fusarium oxsporum f. sp. vasinfectum 5-4-8
G
Galium odorata 5-2-32
garbage 5-5-50, 5-5-51
Gardenia 5-6-15
gardenia 5-6-15
garlic 5-2-27, 5-3-22
garlic beetle
  MB in 15" vacuum treatment 5-3-22
  MB in 15" vacuum/chamber only treatment 5-2-27
garlic carpenterworm
  MB in 15" vacuum/chamber only treatment 5-2-27
gas analyzer
  electrochemical gas sensor and pyrolyzer, Air Check Advantage 8-1-32
Gas Analyzers E-1-31
gas detector
  phosphine portasens 8-1-25
  photo ionization detector 8-1-26
Gas Detector Tube (colorimetric) and Apparatus E-1-32
Gas Drying Tube (for Drierite) E-1-34
gas introduction
  methyl bromide 2-9-18
gas introduction lines
  methyl bromide 2-4-15, 2-9-13
gas penetration and distribution
tarpaulin fumigation 2-4-14
gas samples 8-1-14
gas sampling tubes
  methyl bromide 2-4-16, 2-9-13
Gastrotoxins 5-4-41, 5-5-53
Gaultheria procumbens 5-2-32
Gentiana 5-6-8, 5-6-15
Geomitridae
  cold treatment 5-2-91, 5-5-10
Georgia
  state hazardous waste management agencies 7-2-13
Gerbera 5-6-15
Germicides E-1-34
gesneria 5-6-15
Geum 5-6-15
gin trash 5-4-2, 5-4-6, 5-4-7
ginger
  rhizome 5-2-28
Gladiolus 5-6-15, 5-6-19
Gladiolus spp. 5-3-23
gladiolus thrips
  MB at NAP treatment 5-3-23
  MB in 26" vacuum treatment 5-3-23
glass mercury and certified precision thermometers 8-1-27
Globodera pallida
  hot water treatment 5-6-15, 5-6-16,
Index

5-6-20
other treatment options 5-6-15

Globodera rostochiensis
hot water treatment 5-6-16, 5-6-20
MB at NAP treatment 5-5-26, 5-5-32
MB at NAP/chamber only treatment 5-4-5
MB in 26” vacuum treatment 5-4-19, 5-5-11, 5-5-14, 5-5-26, 5-5-30, 5-5-32
other treatment options 5-6-15
steam cleaning treatment 5-5-26
steam treatment 5-5-27

goatskin 5-5-51, 5-5-52
goatskin, lambskin, sheepskin
treatment options 5-5-51

golden nematode 5-5-26
hot water treatment 5-6-16
MB at NAP treatment 5-5-32
MB at NAP/chamber only treatment 5-4-5
MB in 26” vacuum treatment 5-4-19, 5-5-11, 5-5-14, 5-5-26, 5-5-30, 5-5-32
steam treatment 5-5-27
great
nonpropagative 5-4-14
grains
nonpropagative 5-4-10, 5-4-11, 5-4-12, 5-4-13
treatment options 5-4-8
nonpropagative and contaminated with cottonseed 5-4-12
grains of paradise 5-2-32
grape 5-2-29, 5-2-79, 5-2-80, 5-2-82, 5-2-85, 5-2-87, 5-6-16
from Australia 5-2-88
fungation for chilean false red mite 5-2-30
irradiated from South Africa 5-2-71
grapefruit 5-2-30, 5-2-79, 5-2-80, 5-2-81
from Chile 5-2-22
from Mexico 5-2-73
Grapes
methyl bromide fumigation treatment schedule 5-2-36

Graphognathus spp.
MB at NAP treatment 5-2-46

Grapholita molesta 5-2-69
grey (Gy) 3-8-5
green pod vegetables 5-2-31


greenhouse-grown plants 5-3-10, 5-3-11
greenwood cuttings of woody plants 5-3-10, 5-3-11
Guam
state hazardous waste management agencies 7-2-13
guava
irradiated from Mexico 5-2-71

Guizotia abyssinica 5-5-47
gummosis disease
domestic treatment of 5-8-24


gypsyn moth egg masses
heat treatment 5-4-39
MB at NAP treatment 5-4-38, 5-5-49

H

Halotydeus destructor
MB at NAP treatment 5-2-4

handicrafts 5-4-17

hardwood firewood 5-4-39
Harmolita spp.
MB at NAP/chamber only treatment 5-4-17

Hawaii
state hazardous waste management agencies 7-2-13
heat treatment 3-2-1

heat treatment of firewood facilities
calibrating temperature sensors 6-9-3
certification frequency 6-9-5
certification of 6-9-1
conducting test treatment 6-9-5
contact information 6-9-6
documentation 6-9-6
official certification testing 6-9-3
plan and process approval 6-9-2
thermal mapping 6-9-4
heated regulated dispenser 2-11-13

Heilipus lauri
MB in 26” vacuum treatment 5-3-28

Helicella
cold treatment 5-2-91, 5-5-10
MB at NAP treatment 5-5-5, 5-5-7

Helicella spp.
MB in 26” vacuum treatment 5-3-34

Helicellidae
cold treatment 5-2-91, 5-5-10

Helicidae
cold treatment 5-2-91, 5-5-10
MB at NAP treatment 5-5-8

Helicopsis
MB at NAP treatment 5-5-5, 5-5-7
Helicostyla
cold treatment 5-2-91, 5-5-10
MB at NAP treatment 5-5-9
Helicoverpa armigera
MB at NAP treatment 5-2-38
Heliopsis 5-6-15
Helix
cold treatment 5-2-91, 5-5-10
MB at NAP treatment 5-5-5, 5-5-8
Helleborus 5-6-15, 5-6-16
Hemileia spp.
treatment options 5-6-9
herbaceous plants and cuttings 5-3-10, 5-3-11
herbs and spices
dried 5-2-32
fresh 5-2-33
Hessian fly
phosphine at NAP treatment 5-4-29
Heterodera humuli
hot water treatment 5-6-16
Hevea brasiliensis
seeds of 5-3-37
Hibiscus 5-6-15, 5-6-16
pods and seeds of 5-3-32, 5-3-33
hibiscus
pods and seeds of 5-3-32
hickory nuts 5-2-83
high-protein flours
restricted MB fumigation item 2-3-12
hitchhiking insect
aerosol treatments 5-5-34
Callington 1-Shot aerosol treatment 5-5-35
d-phenothrin aerosol treatment 5-5-35
MB at NAP treatment 5-2-64, 5-4-18
residual insecticidal spray treatment 5-5-3
honeydew melon 5-2-39
horehound 5-2-32
horsehair articles
restricted MB fumigation item 2-3-12
horseradish 5-2-34
root 5-3-23, 5-6-16
Hosta 5-6-15, 5-6-19
hot water immersion treatment
facility electrical components 3-3-5
USDA checklist 3-3-3
facility design 3-3-4
on-site inspection 3-3-4
proposal submission 3-3-3
hot water immersion treatment facilities
certification of 6-5-1
foreign treatment facility protocols 6-5-7
mango temperatures prior to treatment 6-5-3
new procedures 6-5-2
permanent probe temperatures 6-5-4
preliminary performance testing 6-5-1
Hoya 5-6-15
humulus 5-6-16
Hyacinthus
bulbs 5-6-16
Hygromiidae
cold treatment 5-2-91, 5-5-10
Hymenoptera
treatment 5-5-17
hyssop 5-2-32
Hyssopus officinalis 5-2-32
Idaho
state hazardous waste management agencies 7-2-13
Ilex 5-3-9
Illicium verum 5-2-32
Illinois
state hazardous waste management agencies 7-2-13
imbu
irradiated from Grenada 5-2-70
impervious surface
methyl bromide 2-4-9
imported crucifer weevil
MB in 15" vacuum/chamber only treatment 5-2-34
imported fire ant
domestic treatment of 5-8-14
inanimate, nonfood articles with gypsy moth egg masses 5-5-49
incense-cedar wood wasp
treatment 5-5-17
Incinerators E-1-35
Indiana
state hazardous waste management agencies 7-2-13
Infrared Spectroscopy Gas Monitoring Device
Spectros 8-1-10
inlet
thermal conductivity gas analyzers 8-1-2
internal feeder
dry heat treatment 5-4-15
MB at NAP treatment 5-2-38, 5-2-43, 5-2-45, 5-2-49, 5-2-51, 5-2-53, 5-3-24, 5-3-26, 5-3-32, 5-4-15
MB in 15" vacuum treatment 5-2-15, 5-3-4
MB in 15" vacuum/chamber only treatment 5-2-6, 5-2-26, 5-2-28, 5-2-43, 5-2-48, 5-2-53
MB in 26" vacuum treatment 5-3-8, 5-3-28, 5-3-30, 5-3-34, 5-3-35, 5-4-16
MB in 26" vacuum treatment/kennaf and okra seed only 5-3-32
MB in 26" vacuum/chamber only treatment 5-3-6
phosphine at NAP 5-3-33
steam sterilization treatment 5-4-15
ionizing radiation 3-8-5
Iowa
state hazardous waste management agencies 7-2-13
Ipomoea 5-2-51
Ipomoea spp. 5-3-26
iris 5-6-15
bulbs and rhizomes 5-6-16
irradiation 3-8-1, 3-8-5
documentation 3-8-4
terminology 3-8-5
treatment objectives 3-8-2
irradiation minimum absorbed dose for
Anastrepha ludens 5-2-69, 5-8-4
Anastrepha obliqua 5-2-69, 5-8-4
Anastrepha serpentina 5-2-69, 5-8-4
Anastrepha suspensa 5-2-69, 5-8-4
apple maggot 5-2-69
Bactrocera cucurbitae 5-2-69, 5-8-4
Bactrocera dorsalis 5-2-69, 5-8-4
Bactrocera jarvisi 5-2-69, 5-8-4
Bactrocera tryoni 5-2-69, 5-8-4
Brevipalpus chilensis 5-2-69
Caribbean fruit fly 5-2-69, 5-8-4
Ceratitis capitata 5-2-69, 5-8-4
colding moth 5-2-69
Conotrachelus nenuphar 5-2-69
Cryptophlebia illepida 5-2-69
Cryptophlebia ombrodelta 5-2-69
Cydia pomonella 5-2-69
Cylas formicarius elegantulus 5-2-69
Eusepes postfasciatus 5-2-69
false red spider mite 5-2-69
Grapholita molesta 5-2-69
Jarvis fruit fly 5-2-69, 5-8-4
koan seeding worm 5-2-69
light brown apple moth 5-2-69
litchi fruit moth 5-2-69
mango pulp weevil 5-2-69
mango seed weevil 5-2-69
Mediterranean fruit fly 5-2-69, 5-8-4
melon fruit fly 5-2-69, 5-8-4
Mexican fruit fly 5-2-69, 5-8-4
Omphisa anastomosalis 5-2-69
oriental fruit fly 5-2-69, 5-8-4
oriental fruit moth 5-2-69
plum curculio 5-2-69
Queensland fruit fly 5-2-69, 5-8-4
Ragoletis pomonella 5-2-69
Sapote fruit fly 5-2-69, 5-8-4
Sternochetus frigidus 5-2-69
Sternochetus mangiferae 5-2-69
sweet potato vine borer 5-2-69
sweet potato weevil 5-2-69
West Indian fruit fly 5-2-69, 5-8-4
West Indian sweet potato weevil 5-2-69
irradiation treatment facilities
audits 6-8-12
certification of 6-8-1
certification requirements 6-8-2
recertification 6-8-11
Isoptera
treatment 5-5-17
ivy gourd
FIFRA section 18 exemption 2-3-3
J
jackfruit
irradiated from Hawaii 5-2-70, 5-2-71
irradiated from Malaysia 5-2-71
Jarvis fruit fly 5-2-69, 5-8-4
Jasminum 5-6-15
jointworm
MB at NAP/chamber only treatment 5-4-17
juniper berry 5-2-32
Juniperus communis 5-2-32
K
kaempferia 5-6-15
kaffir lime leaves
FIFRA section 18 exemption 2-3-3
Kalanchoe synsepala 5-3-11
Kalanchoe synsepala 5-3-11
Kalusacia communis 5-6-15
kale 5-2-34
Kansas
state hazardous waste management agencies 7-2-13
Kanzawa mite
   cold treatment followed by MB at NAP 5-2-89
karnal bunt
   domestic treatment of 5-8-25
kenaf
   pods and seeds of 5-3-32, 5-3-33
Kentucky
   state hazardous waste management agencies 7-2-13
khapra beetle
   aircraft treatment 5-5-34
   heat treatment 5-4-22
   Malathion spray treatment 5-5-3
   MB at NAP treatment 5-3-34, 5-4-4, 5-4-20, 5-5-6, 5-5-11, 5-5-20, 5-5-48
   MB at NAP/chamber only treatment 5-4-2
   MB at NAP/tarpaulin only treatment 5-4-2, 5-4-3, 5-4-10, 5-5-51
   MB at NAP/tarpaulin-covered car treatment 5-5-2, 5-5-6
   MB in 26" NAP/chamber only treatment 5-4-11
   MB in 26" vacuum treatment 5-4-20, 5-5-52
   MB in 26" vacuum/chamber only treatment 5-4-11, 5-5-52
khapra beetle-infested material
   treatment options 5-4-22
kiwi 5-2-35, 5-2-79, 5-2-81, 5-2-85
kiwi, baby
   fumigation for chilean false red mite 5-2-30
Kniphofia 5-6-16
koa seedworm
   irradiation treatment 5-2-69
   MB at NAP treatment 5-3-33, 5-3-34
Kodo millet 5-5-47
kohleria 5-6-15
kohlrabi 5-2-36
L
lablab bean 5-2-31
lambskin 5-5-51, 5-5-52
   treatment options 5-5-51
lard
   restricted MB fumigation item 2-3-11
Lasioderma serricorne
Kabat application treatment 5-4-23
   MB in 28" vacuum treatment 5-4-24
   vacuum-steam flow treatment 5-4-23
Laurus nobilis 5-2-32
Lavandula spp. 5-3-9, 5-3-11
lavender 5-2-32
Lavandula officinalis 5-2-32
leaf miner
   hot water treatment 5-3-6, 5-3-15
   MB at NAP treatment 5-2-10, 5-2-11, 5-2-12, 5-2-13, 5-2-14, 5-2-16, 5-2-17, 5-2-23, 5-2-24, 5-2-31, 5-2-33, 5-2-34, 5-2-36, 5-2-37, 5-2-40, 5-2-41, 5-2-43, 5-2-48, 5-2-49, 5-2-52, 5-2-64, 5-3-10, 5-4-18
   MB in 15" vacuum/chamber only treatment 5-2-31
leaf tobacco vacuum steam treatment 5-4-23
leafy vegetables 5-2-37
leafy vegetables not on the label
   FIFRA section 18 exemption 2-3-4
leather goods
   restricted MB fumigation item 2-3-12
leaves of legume vegetables
   FIFRA section 18 exemption 2-3-3
leaves of roots and tubers not on the label
   FIFRA section 18 exemption 2-3-4
leek 5-2-38, 5-3-22
Leguminosae (Fabaceae)
   seeds of 5-3-38
   Leguminosae=Fabaceae
   seeds of 5-3-37
Leidyula
   MB at NAP treatment 5-3-36, 5-5-8
lemon
   from Chile 5-2-22
lemon balm 5-2-32
lemongrass 5-2-32
lentil
   dry 5-2-38
Lepidoptera
   MB at NAP treatment 5-5-13
   treatment 5-5-17
Leptosphaeria spp.
   treatment options 5-6-9
lesion nematode
   hot water treatment 5-6-16
lesser Queensland fruit fly
   cold treatment 5-2-81
lettuce
    from Spain 5-2-38
Levisticum officinale 5-2-32
Libium
    bulbs 5-6-20
light brown apple moth complex
    cold treatment followed by MB at NAP 5-2-88
    MB at NAP followed by cold treatment 5-2-87
Lignus 5-5-7
    cold treatment 5-2-91, 5-5-10
    MB at NAP treatment 5-5-5
lily bulbs packed in subsoil 5-3-24
Limicolidae
    MB at NAP treatment 5-3-6, 5-5-8
Limax
    MB at NAP treatment 5-3-6, 5-5-8
lime 5-2-56
    from Chile 5-2-22, 5-2-56
Limbicolaria
    cold treatment 5-2-91, 5-5-10
    MB at NAP treatment 5-5-5
    other treatment options 5-5-7
Limnaeidae
    hot water treatment 5-3-3
line switches
    thermal conductivity gas analyzers 8-1-3
lint 5-4-6, 5-4-7
linters 5-4-2, 5-4-6
litchi 5-2-39, 5-2-79, 5-2-80, 5-2-82
    from Hawaii 5-2-57, 5-2-74
    irradiated from Australia 5-2-71
    irradiated from South Africa 5-2-71
    irradiated from Thailand 5-2-71
    irradiated from the Philippines 5-2-71
    irradiated from Viet Nam 5-2-71
lychee fruit borer
    cold treatment 5-2-82
lycoris 5-3-24
Lyctidae
    treatment 5-5-17
lygaeid bug
    MB at NAP treatment 5-2-64
Lymexylonidae
    treatment 5-4-38
M
macadamia nut
    seeds of 5-3-33, 5-3-34
mace 5-2-32
machinery with milled surfaces
    restricted MB fumigation item 2-3-12
magazines
    restricted MB fumigation item 2-3-12
magnesium articles
restricted MB fumigation item 2-3-12
Magnesium Phosphide E-1-35
Maine
  state hazardous waste management agencies 7-2-14
Malavaceae seeds
    FIFRA section 18 exemption 2-3-3
Mamestra brassicae
    MB at NAP treatment 5-2-38
    from Chile 5-2-22
mango 5-2-58
    from Mexico 5-2-61, 5-2-73
    from Taiwan 5-2-75
    from the Philippines 5-2-74
    irradiated (150 Gy) from the Philippines 5-2-70
    irradiated (165 Gy) from the Philippines 5-2-72
    irradiated (300 Gy) from the Philippines 5-2-72
    irradiated from Australia 5-2-72
    irradiated from Dominican Republic 5-2-71
    irradiated from Hawaii 5-2-72
    irradiated from India 5-2-71
    irradiated from Jamaica 5-2-70
    irradiated from Pakistan 5-2-71
    irradiated from Thailand 5-2-71
    irradiated from Viet Nam 5-2-71
mango pulp weevil
  irradiation treatment 5-2-69, 5-2-72
mango seed weevil
  irradiation treatment 5-2-69, 5-2-72
mangosteen
  irradiated from Hawaii 5-2-70, 5-2-71
Manometer E-1-36
marigold 5-2-32
marjoram 5-2-32
Marribium vulgare 5-2-32
Maruca vitrata
  MB at NAP treatment 5-2-31
  MB in 15” vacuum/chamber only treatment 5-2-31
Maryland
  state hazardous waste management agencies 7-2-14
Massachusetts
  state hazardous waste management agencies 7-2-14
Mayetiola destructor
  phoshine at NAP treatment 5-4-29
McDonald-Douglas Corporation 5-5-34
mealybug
  hot water immersion treatment 5-2-56
  MB at NAP treatment 5-2-39, 5-2-66, 5-4-19
mechanical cotton picker and other cotton equipment 5-5-29
  treatment schedules for 5-5-29
Medicago falcata 5-6-14
Medicago gaetula 5-6-14
Medicago glutinosa 5-6-14
Medicago media 5-6-14
Medicago sativa 5-6-14
Mediterranean fruit fly
  cold treatment 5-2-79, 5-2-80, 5-2-82, 5-2-83
  cold treatment followed by MB at NAP 5-2-88
  domestic treatment of 5-8-5
  forced hot air treatment 5-2-60, 5-2-62
  fumigation plus cold treatment 5-2-85
  hot water immersion treatment 5-2-57, 5-2-58
  irradiation treatment 5-2-69, 5-8-4
  MB at NAP followed by cold treatment 5-2-87
  MB at NAP treatment 5-2-5, 5-2-8, 5-2-22, 5-2-29, 5-2-35, 5-2-51, 5-2-52
  vapor heat treatment 5-2-73, 5-2-74, 5-2-75, 5-2-76
Meghimatium
  MB at NAP treatment 5-3-6, 5-5-8
Melanagromyza obtusa
  MB at NAP treatment 5-2-31
  MB in 15” vacuum/chamber only treatment 5-2-31
Melissa officinalis 5-2-32
Meloidogyne spp.
  hot water treatment 5-6-16, 5-6-17, 5-6-18
  on Chrysanthemum 5-6-17
  on Rosa 5-6-18
melon 5-2-39
  irradiated from Hawaii 5-2-70, 5-2-71
melon fly
  cold treatment 5-2-82
  forced hot air treatment 5-2-60, 5-2-62
  fumigation plus cold treatment 5-2-85
irradiation treatment 5-2-69, 5-8-4
vapor heat treatment 5-2-73, 5-2-75
Mentha pulegium 5-2-32
despite borer treatment 5-5-17
Metam-sodium E-1-38
methyl bromide 2-3-1
"Q labels" and section 18 exemptions 2-3-2
box and package aeration 2-3-8
box and package penetration 2-3-8
chamber fumigation 2-5-1, 2-5-9
container fumigations without tarpaulin 2-8-1
gas analysis 2-3-5
humidity effects 2-3-8
leak detection 2-3-5
properties and use 2-3-1
residual effect 2-3-11
ship fumigation for Khapra beetle 2-6-1
sorption 2-3-10
structure fumigation 2-7-1
tarpaulin fumigation 2-4-1
break bulk cargo 2-4-11
preparation 2-4-18
tarpaulin fumigation sites
ability to heat area 2-4-8
aeration requirements 2-4-11, 2-9-12
electrical power supply 2-4-11, 2-9-12
impervious surface 2-4-9
nonwork area 2-4-10, 2-8-10, 2-9-11
water supply 2-4-11, 2-9-12
well-lighted area 2-4-11, 2-9-12
well-ventilated, sheltered area 2-4-7, 2-8-11
temperature effects 2-3-8
Methyl Bromide 100% E-1-39
Mexican fruit fly
cold treatment 5-2-80
domestic treatment of 5-8-4
forced hot air treatment 5-2-61
hot water immersion treatment 5-2-58
irradiation treatment 5-2-69, 5-8-4
Michigan
state hazardous waste management agencies 7-2-14
Milacidae
MB at NAP treatment 5-3-6, 5-5-8
Milax
MB at NAP treatment 5-3-6, 5-5-8
minimum absorbed dose 3-8-5
Minnestoia
state hazardous waste management agencies 7-2-14
miscellaneous cargo
nonfood 5-5-7, 5-5-9
miscellaneous cargo (nonfood and non-feed commodities) 5-5-7, 5-5-8, 5-5-9, 5-5-10, 5-5-11, 5-5-13, 5-5-26
nonfood that is NOT sorptive or difficult to penetrate 5-5-11, 5-5-12
nonfood that IS sorptive or difficult to penetrate 5-5-12
treatment options 5-5-7
Mississippi
state hazardous waste management agencies 7-2-14
Missouri
state hazardous waste management agencies 7-2-14
mite
hot water treatment 5-3-6
Mityvac hand-held vacuum pump 8-1-25
mizuna 5-2-40
Moisture Meter (for wood) E-1-41
Monarcha
MB at NAP treatment 5-5-5, 5-5-7
Montana
state hazardous waste management agencies 7-2-14
Mordellistena spp.
MB in 15" vacuum treatment 5-3-15
moringa pods
irradiated from Hawaii 5-2-70, 5-2-71
mosses
herbarium specimens in soil 5-5-30
mountain papaya 5-2-73
from Chile 5-2-62
MP 2-11-9
Murrya koenigii 5-2-32
Musca 5-6-20
muskmelon 5-2-39
mustard greens 5-2-40
mustard seed 5-2-32
mustard spinach 5-2-41
Mycosphaerella spp.
treatment options 5-6-9
Myristica fragrans 5-2-32
Naegelia 5-6-15

Narcissus
bulbs 5-6-17
narcissus 5-3-24, 5-3-25
narrow-wasted bark beetle
treatment 5-5-17
nasturtium 5-2-32
Natal fruit fly
cold treatment 5-2-83
nash fruit fly
cold treatment 5-2-79, 5-2-82
natural rubber goods
restricted MB fumigation item 2-3-12
Nebraska
state hazardous waste management agencies 7-2-14
nectarine 5-2-3, 5-2-41, 5-2-79, 5-2-82, 5-2-85
nematode
other treatment options 5-6-19
steam cleaning treatment 5-5-32
nematode cyst
high pressure steam cleaning treatment 5-5-2
neoprene
restricted MB fumigation item 2-3-12
Nepeta cataria 5-2-32
Nevada
state hazardous waste management agencies 7-2-15
New Hampshire
state hazardous waste management agencies 7-2-15
New Jersey
state hazardous waste management agencies 7-2-15
New Mexico
state hazardous waste management agencies 7-2-15
New York
state hazardous waste management agencies 7-2-15
Newsletters E-1-41
newspapers
restricted MB fumigation item 2-3-12
Nigelia sativa 5-2-32
niger seed 5-5-47
treatment facilities 3-6-1
USDA-APHIS requirements 3-6-1

Noctuidae spp.
MB at NAP treatment 5-2-4, 5-2-5, 5-2-7, 5-2-39, 5-2-46, 5-2-49

Nonchemical treatments
Cold Treatment (CT) 3-7-1
nonperishable commodities in temporary enclosures 2-2-2
nonplant articles 5-5-47, 5-6-7
nonwork area
methyl bromide 2-4-10, 2-8-10, 2-9-11
normal atmospheric pressure (NAP) chambers 2-5-12
North Carolina
state hazardous waste management agencies 7-2-15
North Dakota
state hazardous waste management agencies 7-2-15
Northern Mariana Islands
state hazardous waste management agencies 7-2-15
novelties
made from rice straw 5-6-13
made of rice straw 5-6-12
noxious weed seeds
other treatment options 5-5-48
steam heat treatment 5-5-48
nut fruit tortrix
MB at NAP treatment 5-2-20, 5-3-29, 5-4-8
MB in 26” vacuum/chamber only treatment 5-2-20, 5-4-9
nutmeg 5-2-32
Nysius huttoni
MB at NAP treatment 5-2-35

Oak logs and lumber 5-4-31
treatment schedules for 5-4-30
oak wilt disease
MB at NAP treatment 5-4-31
occupational medical monitoring program G-1-11
Occupational Safety and Health Administration (OSHA) 7-1-1
Ocimum basilicum 5-2-32
Ohio
state hazardous waste management agencies 7-2-15
Oklahoma
state hazardous waste management agen-
Okra 5-2-42
irradiated from Ghana 5-2-71
Pods and seeds of 5-3-32, 5-3-33
Omalomyx unguis
water spray treatment 5-3-12
Omalonyx
MB at NAP treatment 5-5-5, 5-5-9
Omalonyx unguis host plants
treatment options 5-3-12, 5-3-13
Omphisa anastomosalis
irradiation treatment 5-2-69
Onion 5-2-43
Onion/garlic carpenterworm
MB in 15" vacuum treatment 5-3-22
Onionweed
dry heat treatment 5-5-47
open-arm manometer 8-1-21
Opidothella orchidearum 5-6-9
Opuntia 5-2-52
Orange 5-2-79, 5-2-80, 5-2-81
cold treatment 5-2-83
from Chile 5-2-22
from Mexico 5-2-73, 5-2-74
Orchid plant pest infestation
treatment options 5-6-9
Orchids 5-3-11, 5-6-4, 5-6-9, 5-6-11, 5-6-15
plants and cuttings 5-3-14, 5-3-15
to Florida 5-6-8
Oregon
state hazardous waste management agencies 7-2-16
Oriental fruit fly
cold treatment 5-2-82
domestic treatment of 5-8-7
forced hot air treatment 5-2-60, 5-2-62
fumigation plus cold treatment 5-2-85
hot water immersion treatment 5-2-57
irradiation treatment 5-2-69, 5-8-4
vapor heat treatment 5-2-73, 5-2-74, 5-2-75, 5-2-76
Oriental fruit moth
irradiation treatment 5-2-69
Origanum spp. 5-2-32
Ornithogalum 5-6-15, 5-6-20
Ortanique 5-2-79
Orussidae
treatment 5-5-17
Oryza 5-6-18
Oryza spp. 5-5-47
OSHA 7-1-1
Osmanthus americanus
treatment options 5-3-9, 5-3-11
Ostrinia nubilalis
MB at NAP treatment 5-2-24, 5-2-47, 5-4-27
MB at NAP/chamber only treatment 5-4-26
MB in 26" vacuum treatment 5-4-26
steam sterilization treatment 5-4-27
Otala
cold treatment 5-2-91, 5-5-10
MB at NAP treatment 5-5-5, 5-5-8
Oulema melanopus
phosphine at NAP treatment 5-4-29

P

Packaged cottonseed 5-4-7
Padding corners
methyl bromide 2-4-18, 2-9-14
Paddy rice 5-6-18
Paeonia 5-6-15, 5-6-19
Pallifera
MB at NAP treatment 5-3-6, 5-5-8
Papaver somniferum 5-2-32
Papaya 5-2-73, 5-2-75, 5-6-18
from Belize 5-2-62
from Hawaii 5-2-62
irradiated from Hawaii 5-2-70
irradiated from Malaysia 5-2-71
Paper with high rag or sulfur content
restricted MB fumigation item 2-3-12
Parasitic wood wasp
treatment 5-5-17
Parsley 5-2-32
Parsnip 5-2-43
Paspalum scrobiculatum
dry heat treatment 5-5-47
Passalidae
treatment 5-5-17
Passiflora 5-6-15
Passion fruit
from Chile 5-2-59
pea 5-2-31
dry 5-2-44
Peach 5-2-3, 5-2-44, 5-2-79, 5-2-80, 5-2-82, 5-2-85
Peach fruit fly
cold treatment 5-2-83
Peach fruit moth
cold treatment followed by MB at NAP 5-2-89
peanut
  with gypsy moth egg masses 5-3-9
pear  5-2-3, 5-2-44, 5-2-79, 5-2-81, 5-2-85, 5-2-87
    from Australia 5-2-88
pecan 5-2-83
pecan weevil
  cold treatment 5-2-83
Pectinophora gossypiella
  MB at NAP treatment 5-5-2, 5-5-29
  MB at NAP/chamber only treatment 5-2-42
Pectinophora spp.  5-4-7
  acid delinting and heat treatment 5-4-3
  MB at NAP/chamber only treatment 5-4-6, 5-4-19
  MB at NAP/tarpaulin only treatment 5-4-2, 5-4-7
  MB in 26” vacuum/chamber only treatment 5-4-6
  other treatment options 5-4-12, 5-4-14
  phosphine at NAP treatment 5-4-6
Pelargonium spp.
  MB in 15” vacuum treatment 5-3-11
Pennsylvania
  state hazardous waste management agencies 7-2-16
pennyroyal 5-2-32
Pentatomidae spp.
  MB at NAP treatment 5-2-7, 5-2-49
pepper 5-2-45
  irradiated from Ghana 5-2-71
perishable commodities in temporary enclosures 2-2-3
persimmon 5-2-79, 5-2-80
  irradiated from South Africa 5-2-71
pesticide spills
  cleanup techniques 7-2-8
  contaminated materials disposal 7-2-10
  contamination control 7-2-5
  crash notification 7-2-5
  decontamination 7-2-9
  emergency kit 7-2-17
  emergency procedures 7-2-2
  environmental monitoring 7-2-10
  evaluate situation 7-2-3
  identify contacts 7-2-3
  managing of 7-2-1
  planning for 7-2-11
  post-spill procedures 7-2-10
  reporting 7-2-10
  safety and first aid 7-2-4
  site security 7-2-7
Pestroselinum crispum 5-2-32
Philodendron spp.  5-3-8, 5-3-11
Philocybe
  MB at NAP treatment 5-3-6, 5-5-8
Phomo chrysanthemi
  Bordeaux spray or dip treatment 5-6-3, 5-6-4
  other treatment options 5-6-3
Phomopsis carica-papayae
  hot water treatment 5-6-18
  on papaya 5-6-18
Phomopsis orchidophilia
  treatment options 5-6-9
Phos-Kill 5-4-41, 5-5-53
phosphine
  AP and MP 2-11-18
  AP and MP fumigation 2-11-30
  probing 2-11-30
  dispensing ECO2FUME fumigant gas 2-11-11
    approved dispensing methods 2-11-13
    equipment specification and use 2-11-12
    unapproved dispensing methods 2-11-12
  ECO2FUME 2-11-19
  leak detection 2-11-4
  properties and use 2-11-1
  respiratory protection 2-11-7
  safety 2-11-4
    applicator requirements 2-11-4
    first aid treatment 2-11-7
    storage and handling 2-11-5
  VAPORPH3OS 2-11-20
phosphine detector 8-1-25
Photinia 5-3-9
photo ionization detector 8-1-26
photographic prints
  restricted MB fumigation item 2-3-12
photography chemicals
  restricted MB fumigation item 2-3-12
Phthorimaea operculela
  MB at NAP treatment 5-2-47
Phyllosticta spp.
  treatment options 5-6-9
Phyllacticta bromeliae
  Captan treatment 5-6-8
Phyllacticta spp.
treatment options 5-6-9
Physoderma diseases
  treatment options 5-6-5
Physrophthora ramorum
  domestic treatment of 5-8-26
piece goods 5-4-2
Pieris spp.
  MB at NAP treatment 5-5-13
  piers 5-5-26
pigeon pea 5-2-31
Pimenta dioica 5-2-32
Pimpinella anisum 5-2-32
pine
  from Canada 5-3-16
pine shoot beetle
  domestic treatment of 5-8-9
  MB at NAP treatment 5-4-38
pineapple 5-2-45, 5-2-73
  irradiated from Hawaii 5-2-70
  irradiated from Malaysia 5-2-71
  irradiated from Thailand 5-2-71
pineapple slip 5-3-15, 5-3-16
pin-hole borer
  treatment 5-5-17
pink bollworm
  MB at NAP treatment 5-5-2, 5-5-29
  MB at NAP/chamber only treatment 5-2-42
Pinus radiata wood chips 5-5-25
Pinus spp.
  from Canada 5-3-9, 5-3-16
Piper nigrum 5-2-32
pips 5-6-15
pitahaya 5-2-52
pitaya 5-2-52
Placards E-1-76
Planorbidae
  hot water treatment 5-3-3
  plant cuttings 5-3-18
  root cuttings 5-3-18, 5-3-19
plant material not tolerant to fumigation 5-3-19, 5-3-20, 5-3-21
plant pathogenic fungi and bacteria
  treatment options 5-6-14
plantain 5-2-46
  FIFRA section 18 exemption 2-3-3
Plants in Growing Media ??–E-1-1
Platyboydidae
  treatment 5-5-17
Platytheba
  MB at NAP treatment 5-5-5, 5-5-7
  plum 5-2-3, 5-2-46, 5-2-79, 5-2-80, 5-2-82, 5-2-85
  plum curculio
    irradiation treatment 5-2-69
  plumcot 5-2-79
  pointed gourd
    FIFRA section 18 exemption 2-3-3
Polianthes 5-6-15
  tuberose 5-6-20
  polyurethane foam
    restricted MB fumigation item 2-3-12
Pome F-1-10
pomegranate 5-2-79, 5-2-80
  fumigation for chilean false red mite 5-2-30
  irradiated from India 5-2-71
  irradiated from Peru 5-2-70
pomegranate, fresh
  FIFRA section 18 exemption 2-3-3
poppy 5-2-32
Portable Sensors E-1-24
PortaSens phosphine detector 8-1-25
post-treatment cooling options 3-3-13
potato
  white or Irish 5-2-46, 5-2-47
potato cyst nematode
  MB in 26" vacuum treatment 5-6-4, 5-6-7
potato tuber 5-6-20
potato tuberworm
  MB at NAP treatment 5-2-47
powder-post beetle
  treatment 5-5-17
PPQ Form 203, Foreign Site Certificate of Inspection and/or Treatment A-A-29
PPQ Form 429, Fumigation Record A-A-9
PPQ Form 519, Compliance Agreement A-A-13
PPQ Form 523, Emergency Action Notification  A-A-16
PPQ Form 556, Intransit Cold Treatment Clearance Report A-A-32
Pratylenchus infestation
  on Fragaria
    hot water treatment 5-6-17
Pratylenchus spp.
  hot water treatment 5-6-16, 5-6-17, 5-6-21
on Chrysanthemum
  hot water treatment 5-6-17
Preclearance programs
  see Certifying facilities
pressure-leakage test for NAP fumigation chambers 6-3-9
pretreatment warming options 3-3-13
prickly pear 5-2-52
Primula 5-6-16
Prospis spp.
  dry heat treatment 5-5-47
Pseudococcidae
  hot water immersion treatment 5-2-56
  MB at NAP treatment 5-2-39, 5-2-66
Pseudotrichia
  MB at NAP treatment 5-5-5, 5-5-7
Pseudoveronicella
  MB at NAP treatment 5-3-6, 5-5-8
Puerto Rico
  state hazardous waste management agencies 7-2-16
pulp-infesting insect
  depulping treatment 5-3-40
pulpy fruit
  definition 2-4-19
pulses
  dried 5-2-47
  pummelo 5-2-79
  pumpkin 5-2-47
  purple mombin
    irradiated from Grenada 5-2-70
Qu
quarantine treatments
  monitoring of 2-2-2
    fumigation guidelines 2-2-3
    nonperishable commodities in temporary enclosures 2-2-2
    perishable commodities in temporary enclosures 2-2-3
quarantine-significant slug
  treatment options 5-3-6
Queensland fruit fly
  cold treatment 5-2-81
  cold treatment followed by MB at NAP 5-2-88
  fumigation plus cold treatment 5-2-85
  irradiation treatment 5-2-69, 5-8-4
  MB at NAP followed by cold treatment 5-2-87
quick freeze guidelines 3-7-21
quick-release dispensing equipment
  2-11-14
quince 5-2-79, 5-2-85
R
radish 5-2-48
radura 3-8-6
railroad cars (empty) 5-5-2, 5-5-26
  treatment schedules for 5-5-2
rambutan
  FIFRA section 18 exemption 2-3-3
  from Hawaii 5-2-62, 5-2-76
  irradiated from Hawaii 5-2-70
  irradiated from Malaysia 5-2-71
  irradiated from Thailand 5-2-71
  irradiated from the Philippines 5-2-71
  irradiated from Viet Nam 5-2-71
rape greens 5-2-48
raspberry 5-2-49
reapirator
  approved spectacle kit G-1-4
red rice 5-5-47
Refrigerated transport
  See also Cold treatment
    vessels used for intransit cold treatments 6-4-2
Refrigerated warehouses
  used for cold treatment 6-4-14
reichsteineria 5-6-16
residue monitoring
  safety 4-2-1
  sample
    collection 4-2-2
    labeling 4-2-2
    shipment 4-2-3
    storage 4-2-3
respirator
  approved cartridges G-1-3
  approved full face G-1-3
  approved half face G-1-2
  approved SCBA G-1-3
  care, inspection, maintenance G-1-14
  fit testing G-1-13
  high temperature environments G-1-18
  low temperature environments G-1-18
  occupational medical monitoring program G-1-11
  responsibilities G-1-4
  selection and use G-1-9
  training G-1-14
  verbal communication considerations G-1-16
workplace specific program elements
G-1-7
respiratory protection 8-1-14
restricted MB fumigation item
automobiles 2-3-11
baking powder 2-3-11
blueprints 2-3-11
bone meal 2-3-11
butter 2-3-11
charcoal 2-3-11
cinder blocks 2-3-11
CO2 scrubbers 2-3-11
EDPM rubber 2-3-11
electronic equipment 2-3-11
feather pillows 2-3-11
felt 2-3-11
furs 2-3-12
high-protein flours 2-3-12
horsehair articles 2-3-12
lard 2-3-11
leather goods 2-3-12
machinery with milled surfaces 2-3-12
magazines 2-3-12
magnesium articles 2-3-12
natural rubber goods 2-3-12
neoprene 2-3-12
newspapers 2-3-12
paper with high rag or sulfur content 2-3-12
photographic prints 2-3-12
photography chemicals 2-3-12
polyurethane foam 2-3-12
rug pads 2-3-12
silver polishing papers 2-3-12
soft yarns 2-3-12
sweaters 2-3-12
viscose rayon fabrics 2-3-12
woolen 2-3-12
yak rugs 2-3-12
resurrection plants 5-3-25, 5-3-26
Rhagoletis cerasi
MB at NAP treatment 5-3-39
Rhagoletis indifferens
MB at NAP/chamber only treatment 5-2-19
Rhagoletis pomonella
irradiation treatment 5-2-69
Rhagoletis tomatis
MB at NAP treatment 5-2-51
Rhode Island
state hazardous waste management agen-
cies 7-2-16
rhododendron 5-6-4, 5-6-6
Rhyacionia buoliana
MB at NAP treatment 5-3-16
Rhyzophagidae
treatment 5-5-17
rice hulls
closely packed 5-6-13
imported for purposes other than ap-
proved processing 5-4-16
imported in small lots of 25 lbs. or less 5-4-16
loose 5-6-13
rice straw
articles 5-4-15
indoor use only 5-4-15
brooms 5-6-12
closely packed 5-6-13
imported for purposes other than ap-
proved processing 5-4-16
imported in small lots of 25 lbs. or less 5-4-16
loose 5-6-13
novelties 5-6-12, 5-6-13
treatment schedules for 5-4-15
rice-related diseases
treatment options 5-6-12, 5-6-13
root and tuber crop group
FIFRA section 18 exemption 2-3-3
root-eating beetle
treatment 5-5-17
root-feeding weevil
treatment 5-5-17
root-knot nematode
hot water treatment 5-6-16, 5-6-17
Rosa spp. 5-6-18
Rosemarinus officinalis 5-2-32
rosemary 5-2-32
Rosmarinus seeds 5-3-34
round-headed borer
treatment 5-5-17
rubber tree
seeds of 5-3-37
rue 5-2-32
rug pads
restricted MB fumigation item 2-3-12
rust infestation
treatment options 5-6-8
rusts 5-6-8
Ruta graveolens 5-2-32
S

saccharum
  bagasse 5-6-11
  field and processing equipment 5-6-11
  seed pieces 5-6-11
  true seed 5-6-11
safeguarding treated fruit 3-3-12
Safety Equipment E-1-42
saffron 5-2-32
sage 5-2-32
Salpingidiae
  treatment 5-5-17
Salvia officinalis 5-2-32
Salvia sciarea 5-2-32
sand pear 5-2-79, 5-2-82
Sanguisorba minor 5-2-32
Sansevieria 5-6-16
sapodilla
  irradiated from Hawaii 5-2-70
Sapote fruit fly
  irradiation treatment 5-2-69, 5-8-4
sapote fruit fly
  domestic treatment of 5-8-9
Sarasinula
  MB at NAP treatment 5-3-6, 5-5-8
Satureja spp. 5-2-32
saw fly
  MB at NAP/chamber only treatment 5-4-26, 5-4-27
  MB in 26" vacuum treatment 5-4-26
  steam sterilization treatment 5-4-27
Scabiosa 5-6-16
Scale (portable platform) E-1-43
scale insect
  MB at NAP treatment 5-2-64
scale or digital display
  thermal conductivity gas analyzers 8-1-3
scarab beetle
  residual insecticidal spray treatment 5-5-3
scilla 5-6-20
scion wood
  plant cuttings 5-3-17
Scirtothrips dorsalis
  MB at NAP treatment 5-2-4
Scolytidae
  treatment 5-5-17
Sealing Tape E-1-43
Section 18 exemptions
  commodities covered by 2-3-3
Sedum 5-6-16
  Sedum adolphi 5-3-11
seed beetle
  MB at NAP treatment 5-2-6, 5-2-27, 5-2-38, 5-2-44, 5-2-47, 5-3-38, 5-3-40
  MB in 26" vacuum treatment 5-3-35, 5-3-40
  MB in 26" vacuum/chamber only treatment 5-2-27
seed-boring insect
  MB at NAP treatment 5-3-37
seeds 5-3-34, 5-3-35
  nonpropagative 5-4-10, 5-4-11, 5-4-12, 5-4-13, 5-4-14
  nonpropagative and contaminated with cottonseed 5-4-12
  not listed in T203 schedules 5-3-35
  treatment options 5-3-28
  with infested pulp 5-3-40
Selaginella spp. 5-3-25, 5-3-26
Self-Contained Breathing Apparatus (SCBA) E-1-44
Semperula
  MB at NAP treatment 5-3-6, 5-5-8
Senecio 5-6-16, 5-6-21
Septoria gentinae
  treatment options 5-6-8
Sesiidae
  treatment 5-5-17
shallot 5-2-49
sheepskin 5-5-51, 5-5-52
ship
  hold 5-5-5, 5-5-6
  storeroom 5-5-5, 5-5-6
ship timber beetle
  treatment 5-5-17
ships, containers, and surrounding area
  treatment options 5-5-3
silver polishing papers
  restricted MB fumigation item 2-3-12
Siricidae
  treatment 5-5-17
slug
  MB at NAP treatment 5-2-64
Smoking Candle E-1-44
snail
  MB in 26" vacuum treatment 5-3-34
  mechanical separation treatment 5-4-14
snail host plants
  treatment options 5-3-12, 5-3-13
Snakes (sand) E-1-45
Snakes (water) E-1-45
snap bean 5-2-31
soft scale
   MB at NAP treatment 5-3-14
   MB in 15" vacuum treatment 5-3-4, 5-3-11, 5-3-15, 5-4-18
soft yarns
   restricted MB fumigation item 2-3-12
soil 5-6-4
   as such 5-5-31, 5-5-32
   treatment options 5-5-30
   contaminated durable commodities 5-5-31, 5-5-32
   contaminated nonfood commodities 5-5-33
Soil Fumigants E-1-45
soil fungi 5-5-32
soil samples, 5-8-24
Solanum 5-6-20
Solanum viarum
   dry heat treatment 5-5-47
Solenopsis invicta and S. richteri
   domestic treatment of 5-8-14
South American fruit fly
   MB at NAP treatment 5-2-8
   vapor heat treatment 5-2-76
South Carolina
   state hazardous waste management agencies 7-2-16
South Dakota
   state hazardous waste management agencies 7-2-16
Sphaerodothis spp.
   treatment options 5-6-9
Sphenospora spp.
   treatment options 5-6-9
spider mite
   MB at NAP treatment 5-2-64
Spill Recovery Materials E-1-46
Spodoptera littoralis
   MB at NAP treatment 5-2-38
Spondias
   irradiated from Grenada 5-2-70
sprays 2-15-1
squash 5-2-73
   winter, summer, and chayote 5-2-50
stack covering
   methyl bromide 2-4-21, 2-9-15
star apple
   irradiated from Viet Nam 5-2-71
star fruit
   irradiated from Malaysia 5-2-71
state hazardous waste management agencies 7-2-12
   Alabama 7-2-12
   Alaska 7-2-12
   American Samoa 7-2-12
   Arizona 7-2-12
   Arkansas 7-2-12
   California 7-2-12
   Colorado 7-2-12
   Connecticut 7-2-12
   Delaware 7-2-13
   District of Columbia 7-2-13
   Florida 7-2-13
   Georgia 7-2-13
   Guam 7-2-13
   Hawaii 7-2-13
   Idaho 7-2-13
   Illinois 7-2-13
   Indiana 7-2-13
   Iowa 7-2-13
   Kansas 7-2-13
   Kentucky 7-2-13
   Louisiana 7-2-14
   Maine 7-2-14
   Maryland 7-2-14
   Massachusetts 7-2-14
   Michigan 7-2-14
   Minnesota 7-2-14
   Mississippi 7-2-14
   Missouri 7-2-14
   Montana 7-2-14
   Nebraska 7-2-14
   Nevada 7-2-15
   New Hampshire 7-2-15
   New Jersey 7-2-15
   New Mexico 7-2-15
   New York 7-2-15
   North Carolina 7-2-15
   North Dakota 7-2-15
   Northern Mariana Islands 7-2-15
   Ohio 7-2-15
   Oklahoma 7-2-15
   Oregon 7-2-16
   Pennsylvania 7-2-16
   Puerto Rico 7-2-16
   Rhode Island 7-2-16
   South Carolina 7-2-16
   South Dakota 7-2-16
   Tennessee 7-2-16
   Texas 7-2-16
Utah 7-2-16
Vermont 7-2-16
Virgin Islands 7-2-17
Virginia 7-2-17
Washington 7-2-17
West Virginia 7-2-17
Wisconsin 7-2-17
Wyoming 7-2-17
Steam boilers (for hot water immersion treatment) E-1-47
Steam Generators E-1-47
steam heat, 5-8-24
steam jet method 3-4-2
steam pressure sterilization 3-4-1
closely packed 3-4-2
loose masses 3-4-2
Steam Sterilizers E-1-48
steam treatments 3-4-1
Steneotarsonemus laticeps
hot water treatment 5-3-25
MB at NAP treatment 5-3-24
MB in 26" vacuum treatment 5-3-25
Stenoma catenifer
MB in 26" vacuum treatment 5-3-28
Sternochetus frigidus
irradiation treatment 5-2-69, 5-2-72
Sternochetus mangiferae
irradiation treatment 5-2-69, 5-2-72
Stipa tenacissima 5-4-17
stone fruit crop group
FIFRA section 18 exemption 2-3-3
stored product pest
MB at NAP treatment 5-2-32
stored tobacco kabat treatment 5-4-23
strawberry 5-2-50, 5-6-15, 5-6-17, 5-6-21
Striga spp.
dry heat treatment 5-5-47
MB at NAP/tarpaulin only treatment 5-5-33
string bean 5-2-31
Succinea horticola 5-3-11
Succinea spp.
MB at NAP treatment 5-5-5, 5-5-9
Succinea spp. host plants
treatment options 5-3-12, 5-3-13
Succineidae
cold treatment 5-2-91, 5-5-10
MB at NAP treatment 5-5-9
sugarcane
baggasse 5-6-11
baled 5-6-12
field and processing equipment 5-6-11
loose 5-6-12
related diseases
treatment schedules for 5-6-12
seed pieces 5-6-11
true seed 5-6-11
sugarcane leaf scald
domestic treatment of 5-8-24
Sulfuryl Fluoride E-1-48
sulfuryl fluoride
chamber fumigation 2-10-6
leak detection 2-10-2
properties and use 2-10-1
safety and first aid 2-10-6
eye contact 2-10-7
if inhaled 2-10-7
if spilled on skin 2-10-7
protective clothing 2-10-6
shipboard fumigation 2-10-6
structural fumigation 2-10-5
tarpaulin fumigation 2-10-2
aeration 2-10-5
circulation 2-10-3
condensation prevention 2-10-3
dosage rate 2-10-4
gas concentration measurements 2-10-5
gas introduction 2-10-3
gas sampling lines 2-10-3
replacing lost gas 2-10-5
sealing 2-10-2
summer savory 5-2-32
Suppliers
reference guide to commercial suppliers E-1-1
surface
diseases 5-6-17
pests 5-2-64, 5-4-18
surface-feeding caterpillar
MB at NAP treatment 5-2-64
sweaters
restricted MB fumigation item 2-3-12
sweet bay 5-2-32
sweet orange 5-2-79
sweet potato 5-2-51, 5-3-26
irradiated from Hawaii 5-2-70
sweet potato vine borer
irradiation treatment 5-2-69
sweet potato weevil
irradiation treatment 5-2-69
Syntexicae
treatment 5-5-17
Systole spp.
MB in 26" vacuum treatment 5-3-39

T
T100 schedules 5-2-1
T101 methyl bromide fumigation schedules 5-2-3
T102 water treatment schedules 5-2-55
T103 high temperature forced air treatment schedules 5-2-60
T104 pest specific/host variable treatment schedules 5-2-63
T105 irradiation treatment schedules 5-2-68
T106 vapor heat treatment schedules 5-2-73
T107 cold treatment schedules 5-2-78
T108 fumigation plus refrigeration of fruits treatment schedules 5-2-84
T109 cold treatment plus fumigation of fruits treatment schedules 5-2-88
T110 quick freeze treatment schedules 5-2-90
T200 schedules 5-3-1
T201 plant treatment schedules 5-3-3
T202 treatment schedules for bulbs, corms, tubers, rhizomes, and roots 5-3-21
T203 treatment schedules for seeds 5-3-28
T300 schedules 5-4-1
T301 treatment schedules for cotton and cotton products 5-4-2
T302 treatment schedules for grains and seeds not intended for propagation 5-4-8
T303 treatment schedules for rice straw and hulls 5-4-15
T304 treatment schedules for alpha grass and handicrafts 5-4-17
T305 treatment schedules for cut flowers and greenery 5-4-18
T306 treatment schedules for bags and bagging material 5-4-19
T308 treatment schedules for tobacco 5-4-23
T309 treatment schedules for broomcorn and broomcorn articles 5-4-26
T310 treatment schedules for nonfood, tick-infested materials 5-4-27
T311 treatment schedules for baled hay 5-4-29
T312 treatment schedules for oak logs and lumber 5-4-30
T312-a-Alternative special procedures for adding gas to oak logs 2-4-36
T313 treatment schedules for Christmas trees 5-4-38
T314 treatment schedules for logs and firewood 5-4-39
T400 schedules 5-5-1
T401 treatment schedules for empty railroad cars 5-5-2
T403 treatment schedules for nonfood, miscellaneous cargo 5-5-7
T404 treatment schedules for wood products 5-5-13
T404-f 5-5-25
T405 treatment schedules for bags and bagging material 5-5-26
T406 treatment schedules for golden nematode contaminations 5-5-26
T407 treatment schedules for mechanical cotton pickers and other cotton equipment 5-5-29
T408 treatment schedules for soil as such and soil contaminating durable commodities 5-5-30
T409 treatment schedules for aircraft 5-5-33
T410 treatment schedules for tick infestations 5-5-47
T411 treatment schedules for ant infestation of nonplant products 5-5-47
T412 treatment schedules for noxious weed seeds 5-5-47
T413 treatment schedules for brassware from Mumbai, India 5-5-48
T414 treatment schedules for inanimate, nonfood articles with gypsy moth egg masses 5-5-49
T415 treatment schedules for garbage 5-5-50
T416 treatment schedules for goatskins, lambskins, sheepskins 5-5-51
T500 schedules 5-6-1
T501 treatment schedules for Chrysomyxa spp., Cercospora spp., and Phomopsis chrysanthemi infestation 5-6-3
T502 treatment schedules for potato cyst
nematode infestation 5-6-4
T503 treatment schedules for downy mildews infestations and physoderma maize diseases 5-6-5
T504 treatment schedules for flag smut infestation 5-6-5
T505 treatment schedules for Chrysomysa spp. infestation 5-6-6
T506 treatment schedules for potato cyst nematode infestation 5-6-7
T507 treatment schedules for Phyllosticia bromeliale, Uredo, and Septoria gentinae infestation 5-6-8
T508 treatment schedules for rust infestation 5-6-8
T509 treatment schedules for Camellia and orchid infestation 5-6-9
T510 treatment schedules for corn-related diseases 5-6-9
T513 treatment schedules for Ascochyta infestation 5-6-11
T514 treatment schedules for Xanthomons albilineans and X. vasculorum 5-6-11
T515 treatment schedules for sugar-cane-related diseases 5-6-12
T518 treatment schedules for rice-related diseases 5-6-12
T519 treatment schedules for rice-related diseases 5-6-13
T520 treatment schedules for Verticillium albo-atrum infestation 5-6-14
T521 treatment schedules for plant pathogenic fungi and bacteria 5-6-14
T551 treatment schedules for Globodera rostochiensis on Convallaria 5-6-15
T552 treatment schedules for Ditylenchus dipsaci and Ditylenchus destructor infestation 5-6-15
T553 treatment schedules for nematode infestation 5-6-15
T554 treatment schedules for Ditylenchus dipsaci and Ditylenchus destructor infestation on Hyacinthus 5-6-16
T555 treatment schedules for Ditylenchus dipsaci infestation on Narcissus 5-6-17
T556 treatment schedules for root-knot nematode infestation on Calla 5-6-17
T557 treatment schedules for root-knot nematode infestation on Chrysanthemum 5-6-17
T558 treatment schedules for Pratylenchus surface diseases on Fragaria 5-6-17
T559 treatment schedules for foliar nematode infestation on Begonia and Oryza 5-6-18
T560 treatment schedules for Meloidogyne spp. infestation on Rosa 5-6-18
T561 treatment schedules for Cercospora mamoanis and Phomopsis carica-papayae infestation on papayas 5-6-18
T564 treatment schedules for foliar nematode infestation 5-6-19
T565 treatment schedules for nematode infestation 5-6-19
T566 treatment schedules for various diseases on broomcorn, broomcorn articles, and Libium 5-6-20
T567 treatment schedules for bulb nematode infestation 5-6-20
T568 treatment schedules for foliar nematode infestation on Senecio 5-6-21
T569 treatment schedules for foliar nematode infestation on Fragaria 5-6-21
T570 treatment schedules for Acalypha and Aconitum diseases 5-6-21
Taeniothrips eucharii 5-3-24
Taeniothrips simplex 5-3-23
taking concentration readings
  methyl bromide 2-4-28, 2-9-20
  phosphine 2-11-17
  sulfuryl fluoride 2-10-5
Tanacetum vulgare 5-2-32
tangelo 5-2-79
tangerine 5-2-79, 5-2-80
cold treatment 5-2-83
from Chile 5-2-22
from Mexico and U.S. quarantine areas 5-2-22
tansy 5-2-32
tarpaulin sealing
  methyl bromide 2-4-22, 2-9-20
  phosphine 2-11-25
  sulfuryl fluoride 2-10-2
Tarpaulins E-1-48
tarpless container fumigation
  aeration 2-8-26
  introduction 2-8-1
  methods and procedures 2-8-5
preparation and pre-test 2-8-16
pressure test 2-8-16
tarragon 5-2-32
Tarsonemus spp.
  MB at NAP treatment 5-2-7
temperature measurements
  methyl bromide 2-4-19, 2-9-14
Temperature Recorders (built-in for cold treatment) E-1-52, E-1-53
Temperature Recorders (hot water immersion treatment) E-1-54
Temperature Recorders (portable for cold treatment) E-1-50
temperature recording systems
  standards for atmospheric chamber fumigations 6-3-10
  standards for closed-door MB container fumigations 2-9-8
  standards for cold treatment 6-4-2
  standards for hot water treatment 3-3-8
  standards for MB fumigations longer than 6 hours 2-4-8
  standards for phosphine treatments 2-11-22
Tennessee
  state hazardous waste management agencies 7-2-16
Tephritidae
  domestic treatment
    soil in containerized nursery stock 5-8-3
Tephritidae fruit fly family
  domestic treatment irradiation of 5-8-4
termite
  MB at NAP treatment 5-5-19
  other treatment options 5-5-11
  SF at NAP treatment 5-5-14, 5-5-19
  treatment 5-5-17
testing for leaks
  methyl bromide 2-4-27, 2-9-19
  phosphine 2-11-27
  sulfuryl fluoride 2-10-2
Tetranychus kanzawai
  cold treatment followed by MB at NAP 5-2-89
Tetranychus viennensis
  cold treatment followed by MB at NAP 5-2-89
Texas
  state hazardous waste management agencies 7-2-16
Thaumatotibia leucotreta
  cold treatment 5-2-82
Theba
  cold treatment 5-2-91, 5-5-10
  MB at NAP treatment 5-5-5, 5-5-8
thermal conductivity gas analyzers 8-1-2
drying tube 8-1-4
exhaust outlet 8-1-4
flow rate adjustment 8-1-2
flow rate meter 8-1-2
fumigant selector switch 8-1-3
inlet 8-1-2
instrument description 8-1-2
line switches 8-1-3
scale or digital display 8-1-3
zero adjustment 8-1-3
thermal mapping 6-7-5
Thermocouple Wire E-1-59
Thermometers E-1-59
thermometers
  glass mercury certified precision 8-1-27
Thermometers (approved calibration companies) E-1-69
Thermometers (digital certified precision) E-1-64
Thermometers (glass mercury certified precision) E-1-61
Thermometers (glass non-mercury certified precision) E-1-63
Thompsonia nepalensis 5-6-16
thrips
  MB at NAP treatment 5-2-64, 5-3-10
Thrips spp.
  MB at NAP treatment 5-2-4, 5-2-5, 5-2-7, 5-2-39, 5-2-46, 5-2-49
thyme 5-2-32
Thymus spp. 5-2-32
tick
  MB at NAP treatment 5-4-27
  MB at NAP/chamber only treatment 5-4-26
  MB in 26°C vacuum treatment 5-4-26
  other treatment options 5-5-47
tick infestation (nonfood materials)
  MB in 26°C vacuum treatment 5-4-28
  other treatment options 5-4-27, 5-5-47
  sulfuryl fluoride at NAP treatment 5-4-28
Tigridia 5-6-16
Tilletia indica
  domestic treatment of 5-8-25
tobacco
blended strip 5-4-23
leaf 5-4-23
MB fumigation at NAP 5-4-24
MB fumigation in vacuum 5-4-24
PH fumigation in warehouse 5-4-25
PH fumigation under tarpaulin or in container 5-4-25
stored 5-4-23
treatment schedules for 5-4-23
tobacco moth
Kabat application treatment 5-4-23
MB in 28" vacuum treatment 5-4-24
vacuum steam flow method 5-4-23
vacuum steam flow method followed by reconditioning 5-4-23
tomato 5-2-73
from Chile 5-2-51
from Hawaii 5-2-51
irradiated from Hawaii 5-2-70
tomato fruit fly
MB at NAP treatment 5-2-51
tomato fruit moth
MB at NAP treatment 5-2-51
Tomicus piniperda
MB at NAP treatment 5-4-38
Trade Journals E-1-41
treatment facilities
certifying 6-4-1
Treatment Manual
application of 1-1-4
conventions of 1-1-4
purpose of 1-1-1
related documents of 1-1-3
reporting problems of 1-1-4
restrictions of 1-1-1
scope of 1-1-2
use of 1-1-4
users of 1-1-3
treatment schedule index 5-1-1
Trigonella foenumgraecum 5-2-32
Trishoplita
cold treatment 5-2-91, 5-5-10
MB at NAP treatment 5-5-9
Trocioidea
cold treatment 5-2-91, 5-5-10
MB at NAP treatment 5-5-5, 5-5-7
Trogoderma granarium
Malathion spray treatment 5-5-3
MB at NAP treatment 5-3-34, 5-4-2, 5-4-4, 5-4-20, 5-5-6, 5-5-11, 5-5-20, 5-5-48
MB at NAP/chamber only treatment 5-4-2, 5-4-12, 5-4-13
MB at NAP/tarpaulin only treatment 5-4-3, 5-4-10, 5-5-51
MB at NAP/tarpaulin-covered car treatment 5-5-2, 5-5-6
MB in 26" vacuum treatment 5-5-52
MB in 26" vacuum/chamber only treatment 5-4-11, 5-4-13, 5-4-20, 5-5-52
other treatment options 5-5-34
Trogositidae
treatment 5-5-17
Tropacolum majus 5-2-32
tropical soda apple 5-5-47
tuber 5-6-15
Tubing (gas sampling) E-1-74
tuna 5-2-52
turmeric 5-6-15
turnip 5-2-53
Tuta absoluta
MB at NAP treatment 5-2-51
tydaea 5-6-16
U
Umbelliferae
seeds of 5-3-39
Uredo infestation
treatment options 5-6-8
Uredo spp.
treatment options 5-6-8, 5-6-9
Urochloa panicoides
dry heat treatment 5-5-47
Utah
state hazardous waste management agencies 7-2-16
V
vacuum chamber 6-2-1
vacuum fumigation chamber 2-5-12
accessories 6-2-3
certification of 6-2-1
certification standards 6-2-4
circulation and exhaust system 6-2-2
construction and performance standards 6-2-1
fumigant introduction systems 6-2-2
vacuum pump 6-2-2, E-1-75
Vaginulus
MB at NAP treatment 5-3-6, 5-5-8
vanilla 5-2-32
Vanilla planifolia 5-2-32
Vapam E-1-76
vapor heat treatment 3-5-1, 6-7-1
vapor heat treatment facilities
  calibrating the portable temperature sensors 6-7-4
  certification of 6-7-1
  conducting test treatment 6-7-6
  documentation for 6-7-7
  plan and process approval 6-7-2
  preliminary performance testing 6-7-3
VAPORPH3OS 2-11-9
Verbena 5-6-16
Vermont
state hazardous waste management agencies 7-2-16
Veronicella
MB at NAP treatment 5-3-6, 5-5-8
other treatment options 5-3-11
Veronicellidae
MB at NAP treatment 5-3-6, 5-5-8
Verticillium albo-atrum
  treatment options 5-6-14
Vicia spp.
  seeds of 5-3-40
Vikane E-1-48
Vinsonia spp.
  MB in 15" vacuum treatment 5-3-15
Virgin Islands
state hazardous waste management agencies 7-2-17
Virginia
state hazardous waste management agencies 7-2-17
viscose rayon fabrics
  restricted MB fumigation item 2-3-12
Vitis 5-6-16
Viviparidae
hot water treatment 5-3-3
volatilizer 8-1-16, E-1-76
volume measurements
  methyl bromide 2-4-22, 2-9-16
W
Warehouses
  used for cold treatment 6-4-14
Warning Signs E-1-76
Washington
state hazardous waste management agencies 7-2-17
wasp
  treatment 5-5-17
waste 5-4-2, 5-4-6, 5-4-7
water
  circulation 3-3-7
  quality 3-3-5
  tarpaulin fumigation sites 2-4-11, 2-9-12
water trap 8-1-28
watermelon 5-2-39
weevil
  MB at NAP treatment 5-4-8
  MB in 26" vacuum/chamber only treatment 5-4-9
Weigela 5-6-16
well-lighted area
  tarpaulin fumigation sites 2-4-11, 2-9-12
well-ventilated, sheltered area
  tarpaulin fumigation sites 2-4-7, 2-8-11
West Indian fruit fly
  forced hot air treatment 5-2-61
  irradiation treatment 5-2-69, 5-8-4
West Indian sweet potato weevil
  irradiation treatment 5-2-69
West Virginia
  state hazardous waste management agencies 7-2-17
western cherry fruit fly
  MB at NAP/chamber only treatment 5-2-19
wheat bug
  MB at NAP treatment 5-2-35
white fringed beetle
  MB at NAP treatment 5-2-46
white tip nematode
  hot water treatment 5-6-18
white zapote 5-2-80
winter savory 5-2-32
wintergreen 5-2-32
Wisconsin
  state hazardous waste management agencies 7-2-17
witchweed
  dry heat treatment 5-5-47
  MB at NAP/tarpaulin only treatment 5-5-33
wood borer
  treatment options 5-5-11
wood packing material 5-5-24, 5-5-25
wood products
  including containers 5-5-14, 5-5-15, 5-5-16, 5-5-19, 5-5-20
treatment schedules for 5-5-13
wood wasp
  Chlorpyrifos spray treatment 5-5-13
  SF at NAP treatment 5-5-14
  treatment 5-5-17
wood-boring weevil
treatment 5-5-17
woodyruff 5-2-32
woolens
  restricted MB fumigation item 2-3-12
wormwood 5-2-32
Wyoming
  state hazardous waste management agencies 7-2-17
X
Xanthomonas albilineans
domestic treatment of 5-8-24
  dry heat treatment 5-6-11
  other treatment options 5-6-11
Xanthomonas axonopodis
domestic treatment of fruit 5-8-11
domestic treatment of seed 5-8-11
domestic treatment of vehicles and equipment 5-8-12
  fruit chemical treatment 5-6-10
  seed hot water treatment followed by chemical dip 5-3-39, 5-6-10
Xanthomonas vasculorum
domestic treatment of 5-8-24
treatment options 5-6-11
Xeroletta
cold treatment 5-2-91, 5-5-10
  MB at NAP treatment 5-5-5, 5-5-7
Xeropicta
cold treatment 5-2-91, 5-5-10
  MB at NAP treatment 5-5-5, 5-5-7
Xeropecta
cold treatment 5-2-91, 5-5-10
  MB at NAP treatment 5-5-5, 5-5-7
Xerotricha
cold treatment 5-2-91, 5-5-10
  MB at NAP treatment 5-5-5, 5-5-7
Xilocopidae
treatment 5-5-17
Xyphydriidae
treatment 5-5-17
Y
ya pear
  from Chile 5-2-83
yak rugs
  restricted MB fumigation item 2-3-12
yam 5-2-53, 5-3-26
yard-long bean 5-2-31
yellow mombin
  irradiated from Grenada 5-2-70
yellow peach moth
treatment options 5-2-89
yellow pitaya
  from Colombia 5-2-76
Z
Zantedeschia 5-6-16
zero adjustment
  thermal conductivity gas analyzers 8-1-3
Zingiberaceae 5-6-16
zucchini 5-2-54, 5-2-73